Show simple item record

dc.contributor.authorArias Ferreiro, Goretti
dc.contributor.authorAres-Pernas, Ana
dc.contributor.authorLasagabáster-Latorre, Aurora
dc.contributor.authorAramburu Ocáriz, Nora ORCID
dc.contributor.authorGuerrica Echevarría Estanga, Gonzalo María ORCID
dc.contributor.authorDopico-García, M. Sonia
dc.contributor.authorAbad, María-José
dc.date.accessioned2021-07-21T09:26:28Z
dc.date.available2021-07-21T09:26:28Z
dc.date.issued2021-06-23
dc.identifier.citationPolymers 13(13) : (2021) // Article ID 2068es_ES
dc.identifier.issn2073-4360
dc.identifier.urihttp://hdl.handle.net/10810/52541
dc.description.abstractThere is need for developing novel conductive polymers for Digital Light Processing (DLP) 3D printing. In this work, photorheology, in combination with Jacobs working curves, efficaciously predict the printability of polyaniline (PANI)/acrylate formulations with different contents of PANI and photoinitiator. The adjustment of the layer thickness according to cure depth values (Cd) allows printing of most formulations, except those with the highest gel point times determined by photorheology. In the working conditions, the maximum amount of PANI embedded within the resin was ≃3 wt% with a conductivity of 10−5 S cm−1, three orders of magnitude higher than the pure resin. Higher PANI loadings hinder printing quality without improving electrical conductivity. The optimal photoinitiator concentration was found between 6 and 7 wt%. The mechanical properties of the acrylic matrix are maintained in the composites, confirming the viability of these simple, low-cost, conductive composites for applications in flexible electronic devices.es_ES
dc.description.sponsorshipGoretti Arias-Ferreiro thanks the financial funding received from the Xunta de Galicia and the European Union (Program to support the predoctoral stage at SUG 2019 (ED481A-2019/001)). The authors would like to thank the financial support from Xunta de Galicia-FEDER (Program of Consolidation and structuring competitive research units (ED431C 2019/17)).es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectpolyanilinees_ES
dc.subjectUV curinges_ES
dc.subjectacrylic conductive compositees_ES
dc.subject3D printinges_ES
dc.subjectvat polymerizationes_ES
dc.subjectDLPes_ES
dc.titlePrintability Study of a Conductive Polyaniline/Acrylic Formulation for 3D Printinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2021-07-08T14:23:05Z
dc.rights.holder2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2073-4360/13/13/2068/htmes_ES
dc.identifier.doi10.3390/polym13132068
dc.departamentoesPolímeros y Materiales Avanzados: Física, Química y Tecnología
dc.departamentoeuPolimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Except where otherwise noted, this item's license is described as 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).