Show simple item record

dc.contributor.advisorArganda Carreras, Ignacio
dc.contributor.advisorSantana Hermida, Roberto ORCID
dc.contributor.authorSerrano Guerrero, Ainhoa
dc.contributor.otherF. INFORMATICA
dc.contributor.otherINFORMATIKA F.
dc.date.accessioned2021-10-08T16:53:40Z
dc.date.available2021-10-08T16:53:40Z
dc.date.issued2021-10-08
dc.identifier.urihttp://hdl.handle.net/10810/53292
dc.description.abstract[ES]El TFG trata de la investigación de una red neuronal reciente de super-resolución así como su implementación en un notebook fácil de usar dirigido a gente no experta en programación.es_ES
dc.description.abstract[EN]The main objective of this work is to present one of the most recent deep neural networks to solve the super-resolution task, named DFCAN, as well as the study of different methods that solve the same problem. Throughout the document, different approaches are explained and compared, emphasising the state-of-the-art methods. This work also contains different experiments done with the DFCAN using different datasets. Finally, to complete the thesis, there is a guide for an easy-to-use Jupyter notebook, created with the aim of being available for anyone, specifically designed for people who do not have expertise in programming and deep learning.eng
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEasy-to-use deep learning based super-resolution in microscopy imageses_ES
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.date.updated2021-07-26T06:28:43Z
dc.language.rfc3066es
dc.rights.holder© 2021, la autora
dc.contributor.degreeInformatika Ingeniaritzako Gradua
dc.contributor.degreeGrado en Ingeniería Informática
dc.identifier.gaurregister117396-868185-12
dc.identifier.gaurassign123213-868185


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record