dc.contributor.advisor | Arganda Carreras, Ignacio | |
dc.contributor.advisor | Santana Hermida, Roberto | |
dc.contributor.author | Serrano Guerrero, Ainhoa | |
dc.contributor.other | F. INFORMATICA | |
dc.contributor.other | INFORMATIKA F. | |
dc.date.accessioned | 2021-10-08T16:53:40Z | |
dc.date.available | 2021-10-08T16:53:40Z | |
dc.date.issued | 2021-10-08 | |
dc.identifier.uri | http://hdl.handle.net/10810/53292 | |
dc.description.abstract | [ES]El TFG trata de la investigación de una red neuronal reciente de super-resolución así como su implementación en un notebook fácil de usar dirigido a gente no experta en programación. | es_ES |
dc.description.abstract | [EN]The main objective of this work is to present one of the most recent deep neural networks to solve the super-resolution task, named DFCAN, as well as the study of different methods that solve the same problem. Throughout the document, different approaches are explained and compared, emphasising the state-of-the-art methods.
This work also contains different experiments done with the DFCAN using different datasets. Finally, to complete the thesis, there is a guide for an easy-to-use Jupyter notebook, created with the aim of being available for anyone, specifically designed for people who do not have expertise in programming and deep learning. | eng |
dc.language.iso | eng | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Easy-to-use deep learning based super-resolution in microscopy images | es_ES |
dc.type | info:eu-repo/semantics/bachelorThesis | |
dc.date.updated | 2021-07-26T06:28:43Z | |
dc.language.rfc3066 | es | |
dc.rights.holder | © 2021, la autora | |
dc.contributor.degree | Informatika Ingeniaritzako Gradua | |
dc.contributor.degree | Grado en Ingeniería Informática | |
dc.identifier.gaurregister | 117396-868185-12 | |
dc.identifier.gaurassign | 123213-868185 | |