Show simple item record

dc.contributor.advisorPascual Saiz, José Antonio ORCID
dc.contributor.authorSainz de la Maza Gamboa, Unai
dc.contributor.otherF. INFORMATICA
dc.contributor.otherINFORMATIKA F.
dc.date.accessioned2022-10-19T16:56:10Z
dc.date.available2022-10-19T16:56:10Z
dc.date.issued2022-10-19
dc.identifier.urihttp://hdl.handle.net/10810/58102
dc.description.abstractQuantum Computing is one of the most researched areas in computer science and physics, however, current quantum computers are influenced by unwanted noise from environmental factors. Quantum Extreme Learning Machine (QELM) is a hybrid classical-quantum framework that is intended to take advantage of these complex and rich dynamics of noisy intermediate-scale quantum (NISQ) devices to improve learning capacity. The objective of this work is to explore the power of a contemporary gate-based QELM relative to current classical binary classification problem solvers.es_ES
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectquantum computinges_ES
dc.subjectmachine learninges_ES
dc.subjectquantum machine learninges_ES
dc.titleQuantum extreme learning machine for classification taskses_ES
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.date.updated2022-07-29T09:42:21Z
dc.language.rfc3066es
dc.rights.holder© 2022, el autor
dc.contributor.degreeGrado en Ingeniería Informáticaes_ES
dc.contributor.degreeInformatikaren Ingeniaritzako Gradua
dc.identifier.gaurregister126248-884132-12
dc.identifier.gaurassign138253-884132


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record