Show simple item record

dc.contributor.advisorArbelaiz Gallego, Olatz ORCID
dc.contributor.authorBarrio Campos, Ander
dc.contributor.otherF. INFORMATICA
dc.contributor.otherINFORMATIKA F.
dc.date.accessioned2022-10-19T18:33:15Z
dc.date.available2022-10-19T18:33:15Z
dc.date.issued2022-10-19
dc.identifier.urihttp://hdl.handle.net/10810/58123
dc.description.abstractParkinson’s disease (PD) is the second most common neurodegenerative disorder, after Alzheimer’s disease. In the early stages of the disease, when motor symptoms have not yet manifested themselves, the accuracy of making a correct diagnosis is currently very limited. This work aims to analyse the influence of sex in diagnostic classification of Parkinson’s disease based on non-motor symptoms by using machine learning methods. These symptoms have been evaluated in 490 subjects with PD and 197 healthy control subjects.
dc.language.isoenges_ES
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAnalysis of the influence of sex in diagnostic classification of Parkinson's disease based on non-motor manifestations by means of machine learning methodses_ES
dc.typeinfo:eu-repo/semantics/bachelorThesis
dc.date.updated2022-06-21T07:22:51Z
dc.language.rfc3066es
dc.rights.holder© 2022, el autor
dc.contributor.degreeGrado en Ingeniería Informáticaes_ES
dc.contributor.degreeInformatika Ingeniaritzako Gradua
dc.identifier.gaurregister124081-886070-10
dc.identifier.gaurassign138108-886070


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record