Show simple item record

dc.contributor.authorOlarte, Javier
dc.contributor.authorMartínez de Ilarduya Martínez de San Vicente, Jaione
dc.contributor.authorZulueta Guerrero, Ekaitz
dc.contributor.authorFerret, Raquel
dc.contributor.authorGarcía Ortega, Joseba
dc.contributor.authorLópez Guede, José Manuel
dc.date.accessioned2022-11-25T18:49:38Z
dc.date.available2022-11-25T18:49:38Z
dc.date.issued2022-11-14
dc.identifier.citationBatteries 8(11) : (2022) // Article ID 238es_ES
dc.identifier.issn2313-0105
dc.identifier.urihttp://hdl.handle.net/10810/58564
dc.description.abstractThis paper introduces the use of a new low-computation cost algorithm combining neural networks with the Nelder–Mead simplex method to monitor the variations of the parameters of a previously selected equivalent circuit calculated from Electrochemical Impedance Spectroscopy (EIS) corresponding to a series of battery aging experiments. These variations could be correlated with variations in the battery state over time and, therefore, identify or predict battery degradation patterns or failure modes. The authors have benchmarked four different Electrical Equivalent Circuit (EEC) parameter identification algorithms: plain neural network mapping EIS raw data to EEC parameters, Particle Swarm Optimization, Zview, and the proposed new one. In order to improve the prediction accuracy of the neural network, a data augmentation method has been proposed to improve the neural network training error. The proposed parameter identification algorithms have been compared and validated through real data obtained from a six-month aging test experiment carried out with a set of six commercial 80 Ah VLRA batteries under different cycling and temperature operation conditions.es_ES
dc.description.sponsorshipSpecial thanks should also be expressed to the Torres Quevedo (PTQ) 2019 Aid from the State Research Agency, within the framework of the State Program for the Promotion of Talent and its Employability in R + D + i, Ref. PTQ2019-010787/AEI/10.13039/501100011033.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.relationinfo:eu-repo/grantAgreement/MICINN/PTQ2019-010787es_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectlead-acid batteryes_ES
dc.subjectelectrochemical impedance spectroscopy (EIS)es_ES
dc.subjectneural networks (NN)es_ES
dc.subjectelectrical equivalent circuit (EEC)es_ES
dc.subjectState of Charge (SOC)es_ES
dc.subjectState of Health (SOH)es_ES
dc.titleOnline Identification of VLRA Battery Model Parameters Using Electrochemical Impedance Spectroscopyes_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2022-11-24T14:43:23Z
dc.rights.holder© 2022 by the authors.Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2313-0105/8/11/238es_ES
dc.identifier.doi10.3390/batteries8110238
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoeuSistemen ingeniaritza eta automatika


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 by the authors.Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Except where otherwise noted, this item's license is described as © 2022 by the authors.Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).