Mostrar el registro sencillo del ítem

dc.contributor.authorUralde Arrue, Jokin
dc.contributor.authorBarambones Caramazana, Oscar ORCID
dc.contributor.authorDel Rio Coronel, Asier
dc.contributor.authorCalvo Gordillo, Isidro
dc.contributor.authorArtetxe Lázaro, Eneko ORCID
dc.date.accessioned2024-06-27T13:27:12Z
dc.date.available2024-06-27T13:27:12Z
dc.date.issued2024-06-19
dc.identifier.citationBatteries 10(6) : (2024) // Article ID 214es_ES
dc.identifier.issn2313-0105
dc.identifier.urihttp://hdl.handle.net/10810/68682
dc.description.abstractHydrogen, due to its high energy density, stands out as an energy storage method for the car industry in order to reduce the impact of the automotive sector on air pollution and global warming. The fuel cell electric vehicle (FCEV) emerges as a modification of the electric car by adding a proton exchange membrane fuel cell (PEMFC) to the battery pack and electric motor, that is capable of converting hydrogen into electric energy. In order to control the energy flow of so many elements, an optimal energy management system (EMS) is needed, where rule-based strategies represent the smallest computational burden and are the most widely used in the industry. In this work, a rule-based operation mode control strategy for the EMS of an FCEV validated by different driving cycles and several tests at the strategic points of the battery state of charge (SOC) is proposed. The results obtained in the new European driving cycle (NEDC) show the 12 kW battery variation of 2% and a hydrogen consumption of 1.2 kg/100 km compared to the variation of 1.42% and a consumption of 1.08 kg/100 km obtained in the worldwide harmonized light-duty test cycle (WLTC). Moreover, battery tests have demonstrated the optimal performance of the proposed EMS strategy.es_ES
dc.description.sponsorshipThe authors wish to express their gratitude to the Basque Government, through the project EKOHEGAZ II (ELKARTEK KK-2023/00051), to the Diputación Foral de Álava (DFA), through the project CONAVANTER, to the UPV/EHU, through the project GIU23/002, and to the MobilityLab Foundation (CONV23/14, CONV23/12) for supporting this work.es_ES
dc.language.isoenges_ES
dc.publisherMDPIes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/es/
dc.subjecthydrogen cares_ES
dc.subjectfuel celles_ES
dc.subjectenergy managementes_ES
dc.subjectrule-based controles_ES
dc.titleRule-based operation mode control strategy for the energy management of a fuel cell electric vehiclees_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.date.updated2024-06-26T13:24:35Z
dc.rights.holder© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).es_ES
dc.relation.publisherversionhttps://www.mdpi.com/2313-0105/10/6/214es_ES
dc.identifier.doi10.3390/batteries10060214
dc.departamentoesIngeniería de sistemas y automática
dc.departamentoeuSistemen ingeniaritza eta automatika


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).