University Master's Degree

eman ta zabal zazu

w Computational Engineering and Intelligent
Systems

Universidad Euskal Herriko
del Pais Vasco Unibertsitatea

Konputazio Zientziak eta Adimen Artifiziala Saila -
Departamento de Ciencias de la Computacidn e Inteligencia Artificial

Master's Thesis

Dialog Systems Based on Markov Decision
Processes Over two Real Tasks

Casanueva Perez, Iiigo

Director

Torres Baraiiano, Maria Inés
Departamento de Electricidad y Electrénica
Facultad de Ciencia y Tecnologia

‘ Leioa
informatika facultad de
fakultatea informatica
L September 2012 E——

Abstract

In this work the state of the art of the automatic dialogue strategy
management using Markov decision processes (MDP) with reinforcement
learning (RL) is described. Partially observable Markov decision processes
(POMDP) are also described. To test the validity of these methods, two
spoken dialogue systems have been developed. The first one is a spoken
dialogue system for weather forecast providing, and the second one is
a more complex system for train information. With the first system,
comparisons between a rule-based system and an automatically trained
system have been done, using a real corpus to train the automatic strategy.
In the second system, the scalability of these methods when used in larger
systems has been tested.

1 Introduction

Since the mid 1990, researchers realized about the importance of auto-
matic Spoken Dialogue Systems (SDS) for fields such as telephone assis-
tance, to allow the management of simple calls. These first SDS were
rule-based, which made them have very low adaptability [1]. In the next
SDS generation the main goal was to make these SDS more adaptable to
the user behavior as well as the possible distortions due to the automatic
speech recognizer (ASR). The structure of a typical SDS is shown in 1
obtained from [3]. We can distinguish two parts, corresponding to the
2 agents that take part in the dialogue. On one side we have the user,
and on the other side we have the SDS. The SDS can be decomposed
in three levels. First of all, we have the acoustic level ASR and voice
synthesizer, which transforms acoustic signals (Y) in words (W). In the
second level we have the semantic level, which interprets the words (W)
obtained from the ASR and transforms them in concepts (C) that the
machine is able to understand. In the last level, we have the dialogue
manager, which interprets the concepts (C) and decides which action the
system should take. The system works as a turn taking cycle where the
data flows in the direction of the arrow along the three levels, switching
interactions between the user and the system until one of them decides to
finish the dialogue. Anyways, more complex turn taking models can be
implemented as explained in [5]

Work objectives are to do a review of the bibliography about MDP based
SDS and to develop two real systems which can validate these methods.
In the first section the state of the art of actual spoken dialogue systems
is explained, as well of the different methods to plan the strategy with a
wide explanation of MDP based dialogue managers. In the next section
the development of a weather forecast SDS in described as well as the
results obtained from its testing. In the third, the same description is
done for a more complex train information SDS. And in the last the con-
clusions obtained from working with these techniques are presented. The
bibliography reviewed is about automatic dialogue management , so when
developing the whole systems we will focus on the dialogue management
module and the rest of the modules (ASR and semantic understanding

1
|
Dialogue Manager [‘d_td
' base
i
Concepts C i
Response Parser/ 1 |_Grammar
Generator Interpreter '
I
i l Words W T !
] I
]]
!) : I | Language
i Synthesizer Recognizer T Model
]
I]
] I

""""" |"'§fcf)ﬁs'n'c§"\?"' T
User

Figure 1: Arquitecture of a SDS.

module) will be developed in the simplest way possible or previously de-
signed modules will be used.

2 State of the art

In this section the bibliography reviewed to work on this project, and
therefore to develop the two real systems shown later, is described.

2.1 Statistical framework for SDS

A good description of a statistical framework for SDS can be found on
[3]. The typical SDS block diagram is represented in fig 2 taken from
[3]. The system is controlled by a dialogue manager, which generates
a series of actions a:, dependant of the actual state s;. These actions
(Usually acoustic data) are interpreted by the user, who will generate a
response y; (Acoustic data) which will be distorted by the environment
noise n;. This data has to be converted in binary data by the ASR [2] so
the semantic understanding module can transform it into a sequence of
concepts ¢;. In function of these concepts the system will change its state
from s¢ to s¢y+1 and a reward signal r¢+y1 will be generated.

The state, action, acoustic signal and concept sequence joint distribution
can be decomposed as:

P(st41,at,yt, ct|st,n1) = P(sey1|ce, s0) Plas|se) P(yilat, s¢) P(ctlye, at, st,ne)

Where the first term P(S¢+1|ct, s¢) represents the model and gives the
probability of a transition to the state s;+1 given the previous state and
the incoming concept sequence. The second term P(a|s;) represents the
dialogue manager, the action taken given the actual state. The third
P(y:|at, s¢) represents the user model, described in a following section,
and the last one P(c¢|ys, at, s¢,nt) represents the ASR and semantic un-
derstanding process.

; ¢ » Task
SUS Model

User

RN - ——

Dialogue Manager &

Figure 2: Block diagram of a SDS.

2.2 Markov decision processes

One of the most used strategies to develop these models are the MDP [3]
[4]. In a MDP based SDS, the systems optimizes the dialogue strategy
using reinforcement learning, giving a reward value to each decision taken
by the manager, and maximizing the accumulated value of the reward.
Usually the reward values are set to make the dialogue the shortest, most
concrete and easiest possible. Taking into account that it has to pro-
vide the user the information required by him. But these reward values
depend on the system designer and modifying them result into different
optimal strategies. The MDP are characterized by a system that meets
the Markov assumption (Each time step variables depend only of the pre-
vious time step) the tuple (S, A, T, R), where:

oS is a finite set of states; It describes the full set of ”information states”
the system may be in.

e A is a finite set of actions; It describes the full set of actions the system
may take.

oT : is a state transition function such as T'(s';a,s) = p(si+1 = §'|s¢ =
s,a: = a); It models the a priori transition probability from a state s to
a state s’ if action a has been taken.

eR: S xS x Ais the reward function such as T'(s’,a, s) = e(ri+1|st41 =
s',a; = a,s; = s); It models the immediate reward obtained when action
a is taken in state s

The function to maximize is the full session reward, which may have a
discount factor «':

)

(V' R(st, ar)) (1)

t

51

To choose in each state the action which maximizes the expected reward
the value function (VF) is used:

VT(s) = _m(s,a) Y _T(s',a,8)[R(s",d’,s) + V(5] 2)

Which recursively computes the expected reward for each state. The
optimal dialogue strategy is the deterministic strategy which gives the
max VF (V*(s)) such as:

V*(s) = maza ZT(S/, a,s)[R(s',d,s) + V*(s)] (3)

s/

then the optimal dialogue policy is given by:

" (s) = argmaz, Z T(s',a,s)[R(s',a’,s) + V*(s')] (4)

s’

Which is the policy that chooses the action which has the highest expected
reward in function of the state transition matrix and the reward matrix.

2.2.1 Discount factor and equation convergence

When implementing the strategy selection algorithm, if done recursively,
after a short number of states the problem becomes unviable. Although
the equation converges, it may do it in a very far temporal horizon son
the number of recursive iterations must be bounded. To do this a value
called Discount Factor 0 < v < 1 (DF) which multiplies the recursivity in
the equation 3 so it becomes:

V*(s) = maz, ZT(S/, a,s)[R(s',a’,s) + vV (s")] (5)

S

This way, the contribution of the following rewards goes decaying in the
time and in some number of iterations it will become almost zero, allowing
the computation of a limited number of iterations (e.g. with a discount
factor of 0.95 with 20 iterations is enough.)

2.2.2 Dynamic programming approach

Even limiting the number of recursive iterations, it is not feasible com-
puting the optimal strategy with the equation 3 (The computational cost
would be O((|Al*|S|)"°*im) where |A| number of actions, |S| the number
of states and recy;m the iteration limit). Due to the meeting of the Markov
condition by the model (Each state transition depends only of the previ-
ous state), the problem can be solved as a dynamic programming problem.
We start computing the VF for the iteration rec;,, and the results of each
iteration are stored in an array of size [|S|, reciim] where each value e ;
represents the max VF in the state s and the recursivity ¢. Each value of
the last recursivity (¢ = 0) maps with an action of the action set. This
way we can compute the optimal strategy with cost of O(|A|*|S|*reciim).
In the figure 3 the way to compute the VF with dynamic programming is
shown. The rows represent the recursivity iteration and the columns the
states.

Iteration | Vy'(1) A0 Vi(s) Vi (Smax)
D | @ | e | K@ . | Vi)
Va1 (1) Va-1(2) Va-1(8) Vi-1(Smax)
V(1) Vi (2) Vi (s) Vi (Smax)
State

Figure 3: Table of the dynamic programming computing of the Value Function

2.3 User models

In order to develop a system based on MDP, it is necessary to estimate
the state transition function T'(s‘,a, s) = p(s’|s,a). To this end, a corpus
of dialogues where the state and action history of the SDS is recorded is
needed. But very large corpuses are needed to have a good estimation
of the T" matrix, and in order to have all the parameters of the matrix
estimated, is necessary to try every action at every state to check the state
transitions. This leads to dialogues with a system which chooses actions
almost at random to get a training corpus, which obviously is very dis-
gusting for human users. To avoid training the system with humans, user
models are created [6] [7]. This way, the first training step is performed
with a stochastic user simulator that interacts with the SDS, generating
responses which simulate what a human user would do (As shown in fig-
ure 4). This allows getting a dialogue corpus much faster and easier than
interacting with real users, and the transition matrix can be inferred from
it.

User modeling for dialogue strategy training is an open topic with re-
searchers working with different techniques, as it is surveyed in [12]. Here,
some statistical predictive user models are explained, such as N-grams,
Graph-based models, Bayesian networks, Machine-Learning techniques
and Hidden Markov models.

N-gram based user models [6] where the first proposed models and they
choose as action a,,: the one with highest probability given the last n
system actions. This method has the advantage of being domain inde-
pendent, but they do not take in account de dialogue state information
so they usually lead to nonsense dialogues. The user model used in this
work is a simplification of this kind of model.

The importance of the user model in the SDS design is huge since the final
performance of the system with real users has a big dependence on how
well does the user model recreate real user responses, and a system trained
with a bad user model may perform well when tested with that model,
but it will have a bad performance when tested with a better model or a
real user.

WORDS (W) CONCEPTS(C)
Undestanding

1
1
1
1
1
1
1
1 module
1
1
1
1
1
RULE-BASED USER I o5
MODEL ' ialogue
: manager
1
1
[
1
1
1
| Matural
| €«— language
: WORDS (W) generator CONCEPTS (C)
1
1
1
1
1

Figure 4: Diagram with user model

2.4 Partially observable Markov decision processes

Unfortunately, MDP require full knowledge of the state, which is not al-
ways true because of problems such as the understanding error of the ASR
and the errors of understanding system, which does not always transform
the sequence of words into the correct sequence of concepts. As these
problems do happen in real systems, some solutions such as parallel dia-
log state hypotheses and local use of confidence scores have been proposed.
The best framework to work with uncertainty is to cast the SDS as a par-
tially observable MDP (POMDP) [11]. In a POMDP instead of knowing
the real state of the system at each time step, we work with a probability
distribution over states called belief state b(s), inferred from the obser-
vations we get from the user. A POMDP is characterized by the tuple
(S,A,T,R,0, Z) where:

S, A, T, R form a MDP (2.2);
o0 is a finite set of observations got from the environment; and
o7 is the observation function such as Z(o, s,a) = p(o|s, a)

The belief state transition function is defined as:

V'(s") =p(s'|o,a,b) = k xp(d'|s’, a) Zp(s'|a7 5)b(s) (6)

seS

Where k is a normalization constant and the numerator of this constant
consists of the observation function Z, transition matrix 7', and current
belief state b. b is the belief state in time step t + 1, such as b = b, and

b = byt (full explanation in [11]). The reward function becomes:

p(b,a) =Y R(s,a)-b(s) (7

seS

Basically, the POMDP works as a MDP where all the equations explained
before are calculated over a distribution of states b(s) instead of just
one. Its working cycle is explained in figure 5 where the circles represent
random variables, squares represent decision nodes and diamonds utility
nodes. Shaded variables represent unobservable variables. Solid directed
arcs indicate causal effect and dashed ones indicate that a distribution is
used (image taken from [11]). This approach provides a unified way to
solve some of the main problems of the MDP. Unfortunately, computing
each parameter over a state distribution makes this approach computa-
tionally very complex, and it scales poorly with the size of the state space.
To solve this researchers are working on approaches that reduce the com-
putational cost of the models such as Bayesian update of dialogue state
[13] and hierarchical reinforcement learning [7].

™,
.,

-

R

a

/

/
o S—

Timestep n : Timestep n+1

Figure 5: Influence diagram representation of a POMDP

3 MDP based SDS in real world

When taking these theoretical frameworks into the real world some prob-
lems arise. Some publications try to describe these problems [8] [9]. To
test these problems and obtain conclusions about the validity of these
systems when implemented, two MDP based SDS have been developed.
First of all a not very complex system, designed to provide weather fore-
cast, and then a SDS for train information with a considerably greater
complexity. Some modifications of the value function explained in 5 have
also been used. The steps followed in the design and test of both systems
has been the following:

a)Design the architecture of the system; Although the objective is to test
the automatic dialogue strategy learning methods, to test the system all
the architecture of a system explained in figure 1 must be implemented.
This step includes the design of the interface, the understanding module
and the natural language generator, among other support modules. The
dialogue manager is developed in the next step.

b)Design the MDP based dialogue manager; In this step, the algorithm of
optimal action selection has been implemented, with the modules needed
to train it, such as a user model to obtain a corpus of dialogues. In addi-
tion, two more additional action selection algorithms have been designed
as slight modifications of the equation 5.

c)Test the model; In the last step, the system is tested with the three
action selection algorithms (equation 5 and two more action selection al-
gorithms explained later) and the obtained results are explained.

4 SDS for weather forecast

To test the validity of these frameworks a SDS that can be asked about and
provide weather forecast information has been implemented. The weather
data of the system is obtained from a web page (www.eltiempo.es) and
the system can be asked about the following types of weather information:

e Type of weather
e Temperature
eDawn

eDusk

eWind

eRain

The user can ask for those in any city, at a specific date and hour. To
simplify the development of the system, the ASR step has been omitted
and the system works as a chat box with text input and output as shown
in figure 6.

In the following sections, the modules developed to the design of the sys-
tem are explained.

4.1 State space

The state space models the ”knowledge state” of the system in each time
step, mapping one state to each knowledge combination possible. The
different ”knowledge” the system may have are the concepts the user is
asking for (Type of information) and the attributes needed to provide in-
formation about these concepts. To make the system as simple as possible
the state space has been defined so the system needs to obtain four data
from the user, (4 slots). These are three attributes (city, day and hour)
and a concept (kind of information). This way the system has 2* = 16

WORDS (W) CONCEPTS (C)
Undestanding

—_—>
module
N
Dialogue
manager
Matural
] language €
WORDS (W) generator CONCEPTS (C)

Figure 6: Arquitecture of the developed SDS

states, plus an additional terminal state to model the end of the dialogue.
A very simple way to represent this, similar to the one explained in [7],
is to assign to each slot a value of 1 or 0, depending if the value of the
slot is known or not. (e.g. if we know the day, city and information data,
but we do not know the hour, the state in binary would be 1101, the 13th
state, as shown in figure 7.)

City Day Hour |Information| current state
Slotvalue Madrid 19-jul 77 weather
State slot value 1 1 0 1 13

Figure 7: Example of codification of the state space for the weather forecast
system.

4.2 Action space

The definition of the action space is one of the most hand-made parts of
the design of the system. The actions in this space will be the actions that
the system is able to take, but it would not be able to learn new ones, so
the designer must be sure that all the actions needed for the dialogue goal
are in the system. Including all the typical actions that a person would
take in the place of the SDS has been intended. The defined action space
is the following:

oAl Greeting.
eA2 Ask for city.

e A3 Ask for day.

eA4 Ask for hour.

e A5 Ask for information.
e A6 Provide information.

There are some auxiliary actions related to specific events (e.g. if the
city asked for is not in the data base, or if there still is not information
for the asked day), but they are always linked to one of these actions. In
some works [13], summary actions are mentioned. This concept organizes
actions in a hierarchical way to make the action election level by level, thus
reducing the complexity of this decision making. This could have been
applied in this project in the way of clustering A2, A3, A4, and A5 in the
same summary action, called ask for slot. Then after the system chose
this action the slot to be asked would be chosen in a sub level decision
taking. Anyways, this technique has not been applied because the system
complexity in not big enough to require complexity reduction techniques.

4.3 Semantic understanding

As the concept understanding module is not the topic of this project, it
has been designed with very simple rules that just map words to concepts
(With the help of the Freeling toolkit, [10]). In this system concepts are
city, day, hour and information. This way if this toolkit tags a sequence
of words as a date, the system fills the slot of the day or hour with the
detected value. If the user writes the word weather, the system will deduce
that weather is the information kind that the user wants to know.

4.3.1 Freeling

As it has been said in 4.3, to make the concept understanding, the seman-
tic analyzer Freeling has been used. This toolkit provides some apis that
allow making fairly complete semantic analysis from a word sequence. It
takes a word sequence as input and returns a tagged word sequence as
output, indicating what kind of word is each one of the input sequence.
In this application is especially useful for some reasons. First, the analy-
sis provides us the root of the word (e.g. if the analyzed word is raining,
the api will provide the root rain), which is very useful because allows
rule simplification to relate words with concepts (It is especially useful in
Spanish). On the other hand, it is quite powerful detecting dates, which
directly transform in a format such as [DayO fWeek /Day /Month /Y ear
/Hour [Minute /am — pm], where the fields are filled with 777" value
by default and are filled with the values found by the analysis. At last, it
also detects proper nouns so it simplifies the search for cities.

4.4 Answer generator

As well as the concept understanding module, the natural language gen-
erator module has also been developed in a very simple way because it is
not the goal of the project. The responses are written in a text file with
just some fields such as city or date, and each action maps to a written

10

sentence. The natural language generator just replaces the fields on the
sentences with the value provided by the dialogue manager.

4.5 Rule-based dialog policy

To test the system as a SDS of the first generation, a rule based strategy
can be designed because of the low complexity of the state space. The
advantages of designing a rule based strategy are the following;:

e A example strategy is obtained, which will be very useful to test if
the learned strategies trained later are valid.

e Using this system with real users, a corpus of user responses is generated
which will be later used to design an user model.

This strategy starts the dialogue greeting the user and offering its help,
giving the initiative to the user. After the greeting continues asking for
the slots that have not been filled in a deterministic order until it can
provide the information required. Then, the strategy used is to ask for
the unfilled slots until the four are filled, following this order: City, day,
hour, information. It is a direct mapping from states to actions of section
4.2:

e Beginning of the dialogue — Al.
Oxxx state—> A2.
10xx state— A3.
110x state— A4.
1110 state—> Ab.
1111 state— AS6.

4.6 MDP based dialog policy

After developing the rule-based policy, an automatically learnt dialogue
policy using a MDP has been designed. To obtain the optimal policy,
given by equation 3, the first step is to obtain the transition matrix 7" and
the reward matrix R.

4.6.1 Transition matrix

To compute the transition matrix T'(s’,a,s) = p(s'|s,a) is necessary to
have a dialogue corpus that provides data of transitions from every state
choosing every action available. This can be done directly testing the
system against a user model without having any dialogue data, and let-
ting the equation 5 explore the state-action space as well as the transition
matrix changes with new dialogue data. This procedure lets us know the
evolution of the strategy (which can be measured with the total reward of
each dialogue for example), but it does not do an exhaustive exploration,
and maybe suboptimal actions could be chosen while optimal ones remain
unexplored. A way to avoid this is to have dialogues with a SDS whose
policy is to randomly choose an action from the state space, which leads

11

to a much wider space exploration at the cost of learning time. As it has
been explained in 2.3, it is very hard for a person to maintain dialogue
with a system with this policy so a user model has to be used to get the
corpus this way. The advantages of this strategy are that every state-
action pair is explored, but after this the system should be implemented
with the previous VF based strategy. The problem with this is that an
action which was optimal with the user model but it is not with real users
could remain unexplored.

We then propose alternative proceedings to balance exploration and ex-
ploitation. These procedures are presented in section 4.7.1.

4.6.2 User models

Two user models have been developed to test the system. First, a very
simple, user model has been designed, which tries to answer to each sys-
tem sentence in the way a human user would do, but without recording
any dialogue history. It is a model similar to the N-gram based model
explained in 2.3, with the difference that it does not need to infer the ac-
tion performed by the system with n-grams, it does it by rules because it
knows the action space of the system. The user model has a set of actions
related to each machine action possible, so it just chooses one action at
random from this set (e.g. if the system ask for the city, the user model
will provide a city at random, or it may provide a city and the day). As it
does not record any dialogue history, it may be asked twice for the same
data slot and provide different information in each interaction, but this
fact is irrelevant because the system state will not change because of the
way the systems updates the state. (For the system is irrelevant to have
de day slot filled with 6 or with 9, its state just shows that the day slot is
known). The interaction between System and user model is explained in
figure 8 where s; represents the system state at time ¢, a; the system at
time ¢, and a,, the user action at time ¢. Directed arrows represent direct
influence and the user model is represented as a single node to indicate
that its action decision is independent of the time step t.

The second user model is a bit more complex. It follows the same scheme
of the first one but its action space has been taken from dialogues obtained
testing the rule-based system with real users. This way we have an action
space a bit more realistic, because it responds to each system sentence
with actions that real users have taken. The problem is that those actions
may have been taken in a different state of the dialogue so this model is
still far from being realistic, but lets us getting a corpus big and realistic
enough to calculate the transition function.

4.6.3 Reward matrix

The reward function design step is the most hand-made step of the de-
sign of an automatic policy, so we have tried to make it the most simple
possible. Designing a very complex reward matrix is equivalent to design
a rule-based strategy, and designing a very complex matrix would be very
time consuming for big systems, so one of the characteristics of the reward
matrix is its simplicity. Each action has a reward of -1, excepting 2 cases.

12

1
1
1
1E
1
1
1
]
1
1
f
il
1
1
1
1
1
1
]
1
1
1
1
1
1

i A

USER MODEL

Figure 8: System with user model influence diagram

The case in which the system has obtained all the data required (1111
state) and the action A6 (Provide information) is chosen, the reward will
be +10. In the case that action A6 is chosen in any other state, the reward
will be -10.

Another reward function has been implemented, which is the same as the
previous with the exception that choosing an action that does not change
the actual state s’ = s, the reward given is -2. The objective of this new
matrix is to avoid actions which do not lead to a state change, and in
consequence to the space exploration.

4.7 Experiments

First of all the MDP based strategy has been tested, learning it from the
first user model and comparing the obtained strategy with the rule based
one. The first way the strategy has been trained is letting the model
”talk” with a SDS with random action selection as strategy, for 400 dia-
logues, to have a corpus from where compute the transition matrix. After
that the optimal policy strategy has been applied (5) and the strategy ob-
tained has been checked. Figure 10 represents the deterministic policies
for the rule based system (SDSRB) and other 3 SDS, where the first row
represents the states and the next one the action taken in each state by
that system. SDS2 is a system where Al action is only available as first
action, so the action space has only 5 actions (The 6 before minus the Al
action), and the resulting policy is almost the same than the rule based
one. This policy has been calculated with a discount factor v = 0.95.
Another policy with v = 0.80 has been computed (SDS3).

After this training the strategy exploring the state-action space directly
with the VF equation has been tested. This way the convergence may

13

be faster but the exploration is smaller. As we wanted to test more ac-
tion selection ways that the optimal action selection, two more stochastic
action selection algorithms, explained in the next sub-section have been
designed and tested.

4.7.1 Stochastic action selection

lteration | V{"(8)q, V7' (), V{f(s)a}, VI (S)ayae
Vi (8)g, Vi (S)a, Vi (S)q; V() apax

T?—l(s)al 77—1 (S)a,z T?—l(s)a]' T?—l(s)amax

W ($)a, V' (8)a, W (8)q; W (g,

Action

Figure 9: Table for computing VF stochastically

The problem with the previous way of policy design is that when the
policy is computed, it is strongly related to the behavior of the user model.
Even if the system continues the exploration of the action-state space, it
may get stuck in a suboptimal action chosen from the training with the
user model which is not the optimal with real users. Two different strat-
egy selection algorithms have been tested which explore the action-state
space in a wider way.

eSemi-Random Value function selection: The first strategy is based on
an idea taken from [12]. At each system turn, the system takes the opti-
mal strategy or a random one with a probability 8, which goes decreasing
while the system takes more dialogue data. In our system this parameter
has been set as 8 = 1/ V2, where n is the number of dialogues in the
training corpus. This way, the system does a wider exploration in the
first steps of the training and converges to an almost optimal strategy
when the training data is big enough. But in the long term following
this strategy will be almost the same than following the optimal one, so
some authors propose to have a bottom threshold for the probability, for
example 0.1, so there is always a small part of exploration in the dialogue
strategy.

eGlobal value function based action selection: The second way to try to
avoid this is to make some kind of stochastic decision when taking an
action, giving to each action a probability related to its value function.
But the value functions cannot be calculated with 3, because even if the
user takes the action in that time step stochastically the algorithm as-
sumes that in the next step it will take the optimal one. our proposal has
been doing it not computing the optimal value function, but computing
it with the general value function equation 2, where in each recursivity,
the policy (s, a) is computed from the values of the value function in
the previous iteration. We have an example of how to compute it in 9.

14

This table corresponds to the VF computation for a single state s. The
rows represent the recursivity iteration and columns represent the value
function if the action a is chosen. To compute 7(s,a) in each step the ac-
tion probability distribution is computed from the values of the previous
iteration column.

Using this method results into a very random strategy. This is due to
the fact that the VF values are not bounded, which makes the most VF
have small difference between them compared to the worst or best action
in each step (There is always an action with very different value of the
others, usually A6 which has or a much bigger or a much lower value, so
in the cases where its value its much lower than the others it makes the
distribution of the rest of actions very similar). To solve this problem,
implementing this system choosing only the best n actions to compute
the policy has been tried, which has lead to a system with better per-
formance but still very random in some cases. In the last case, the same
system taking the best three actions and using the second reward function
described in section 4.6.3 has been tried.

4.8 Results

State | O] 1| 2| 3| 4| 5 6| 7] 8 9/10/11|12/13/14|15
SDSRB |A2|A2 | A2 |A2 A2 | A2 A2 | A2|A3|A3| A3 A3|A4|A4|A5 A6
SDS1 |A1|A1|A2|A1|A1|A1 A2 | A2|A3|A1|A3 ALl|A4|A4|A5| A6
SDS2 |A2|A2 | A2|A3|A2| A2 A5 A2 A4 A4|AS A3|AS|A4|AS | A6
SDS3 |A2|A2 | A2|A3 A2| A4 A5 A2|AS|A3| A5 A3|A5|A4|A5 A6

Figure 10: Results for different systems

As there is not a function to measure the value of a dialogue manager

other than the total mean reward, which is not a good measure because
the reward is set by the designer, the evaluation of dialogue managers has
to be done in an intuitive way. This means that a strategy will be good
if it is user friendly when used with real users.
The results obtained with the systems trained with the random strategy
are quite good (figure 10). In the optimal strategy, the main difference
between this strategy and the learnt is that the learnt one (SDS1) abuses
of the greeting action (A1). This means that with the data obtained from
the user model the system reaches its goal quicker letting the user have the
initiative. But this may only work with the defined user model because
it responds to the Al action providing by mean more than one datum,
while when asked for a single slot it provides a mean of about one. The
policy obtained from the interaction with the second user model was very
similar to the obtained with the first. With the first stochastic algorithm
the resulting strategy is almost the same because in the long term it works
as the normal one.

15

With the global value function based action selection strategy using the
second reward function the result has been very satisfactory with a tran-
sition function trained with the random method, and in the most cases
it chooses the optimal action with a probability of about 0.8 (Optimal
actions are considered the ones that SDS2 got), and suboptimal actions
with the rest of probability. The system resulting this way is easy to use
for real users and it can learn online because it continues searching in
the solution space. When choosing a higher value for n, the more the
state space is explored but the system may become more random and less
user friendly. The problem with this procedure of choosing the action is
that when trying to use this method with an untrained system (With no
previous dialogues from where compute the transition matrix) it did not
converge to a transition function which leaded to a dialogue strategy with
stable reward. So even if the strategy explores more than the optimal one,
it seems to be unstable in the long term so it is not valid.

The 11 shows the mean reward over the number of sample dialogues of

Reward

10

e _:_ /_\ A V. R e
NN AN =
ol ¥ \V/ L V

Dialogues

Figure 11: Reward over number of sample dialogues. NVF represents the normal
value function, RVF the first stochastic value function and EVF the second
stochastic value function.

the three strategies: Normal value function (NVF), first stochastic strat-
egy (RVF), and second stochastic strategy (EVF). As can be seen both
NVF and RVF converge to a strategy which has a reward of about 5.
RVF gets higher reward faster but it is less stable than NVF, as is logi-
cal due to the random component of RVF. On the other hand, as it has
been explained before, EVF is unstable and does not converge in a good
strategy.

16

5 SDS for train information

After the developing of the weather forecast SDS, a system to provide
train information has been developed. This new system is more complex
than the previous one and its objective is to test the validity of the MDP
based dialogue strategy methods in bigger systems. Some parts of this
system had been previously designed in CITAR PROYECTO DIHANA
but the dialogue management module has been fully redesigned as a MDP.
The information this SDS can provide is the following:

eDeparture and arrival times of trains.
ePrices.

eTravel duration.

o'Irain types.

eServices available in trains.

Almost the same steps followed to design the previous system have been
taken, excepting the ones corresponding to the design of rule-based strat-
egy.

5.1 State space

To design the state space of this system a similar strategy as the used in
the weather forecast SDS has been used, where there are a list of concepts
and attributes which are coded binary depending on if they are known or
not. The concepts correspond to the information type the user wants to
know and the attributes to the data given to provide those concepts. The
list of concepts and attributes defined is the following:

Concepts:

eDeparture time of a train.
eArrival time of a train.
oTicket price.

e'Train type.

eTravel duration.

eServices of the train.

Attributes:
eDeparture city.
eArrival city.
eDeparture time.
eArrival time.
eDate.

eo'Train type.
o'Travel type.
eTicket type.
ePrice.
eServices.

So the state space has been designed as a Boolean array which includes

17

all these concepts and attributes, a total of 15, plus an additional history
slot which is used to not provide more than once the same information,
plus an additional terminal state. This makes a space of 27 + 1 states,
much bigger than the previous one. But this space has been only designed
theoretically, because the computer used to develop the system did not
have enough memory to work with a transition matrix of this size. In the
testing we have worked with a system with 3 concepts and 6 attributes,
which makes a space of 2'° 4 1 states.

5.2 Action space

The action space is very similar to the one described in 4.2, where the
actions are oriented to gather the information required to fill the slots
needed to provide information. In this case, as happens with the state
space, the action space is bigger but it scales linearly with the size of the
system, so it is not so big. In our case it has 18 actions, which are the
following:

oAl Provide departure time information.
eA2 Provide arrival time information.

e A3 Provide price information.

eA4 Provide train type information.

e A5 Provide travel duration information.
e A6 Provide services information.

e A7 Ask for departure city.

e A8 Ask for arrival city.

eA9 Ask for departure time.

eA10 Ask for arrival time.

eA1l Ask for date.

eA12 Ask for train type.

e A13 Ask for travel type.

eA14 Ask for ticket type.

eA15 Ask for price.

eA16 Ask for services.

eA17 Ask for information type.

eStart action: Greeting.

These actions could be gathered in 3 summary actions, provide infor-
mation, ask for slot and greeting, but to simplify the design of the system
it has been implemented as a set of 18 actions.

5.3 Semantic understanding

To develop the semantic understanding module, the help of previous work
done in [16] has been used. Specifically, a corpus of tagged dialogues
[14][15] where each word or group of words that correspond to a con-
cept/attribute has been assigned to a text file corresponding to each con-
cept/attribute. Then the semantic understanding is done with the help of
these files (for each user utterance the module returns a list of concepts
and attributes) and with the additional help of the Freeling api [10] for

18

date and hour detection as explained in 4.3. The semantic understand-
ing rate of this module is far away from being perfect but as the system
dispenses the ASR module, it somehow simulates the understanding error
generated in a real system from the combination of ASR and semantic
understanding.

5.4 Response generator

As in 4.4, the response generator has been designed in a functional way
that permits the testing of the goal of the work, which is the dialogue
management. In this case the module is even simpler because when it
provides information it does not have a database from which obtain data,
so it just prompts which data it should provide and supposes that the
data will always be in the database.

5.5 MDP based dialog policy

When developing the algorithm that controls the MDP based dialog policy
a problem has arisen; Due to the memory limitations of the computer
where the project has been developed it could not work with a transition
matrix of size | S| x |S| x |A|, where |S| is the size of the state space and |A|
is the size of the action space, so the size of the transition matrix would
be ((2'° 4 1)?) * 18, which exceeds the memory of the used computer. To
test the system with a feasible state space the concept number has been
reduced to three (departure time, arrival time and price) and the attribute
number to six (departure city, arrival city, departure time, arrival time,
date and train/travel/ticket type). The action space has been reduced in
the same way to a total of eleven. This way, the transition matrix size
will be ((2'° 4-1)?) * 11.

5.5.1 Transition matrix

To compute the transition matrix the same procedures that in 4.6.1 have
been used, but this time much more sample dialogues are needed because
of the bigger size of the state space. While in the previous SDS in 100
dialogues it had obtained a policy with stable reward in this system does
not get a stable reward until it has about 2000 dialogues. This means that
a huge corpus of dialogues is needed to train this kind of system which
forces the usage of user models to train the system.

5.5.2 User models

The same user model explained in 2.3 has been used, changing the actions
the user model can take for actions related to train information asking.
The user model is so simple to test if a system of this size could be trained
with a very simple user model, and to test how does a model trained with
a simple model act when interacts with a real user which uses different
conversation strategies.

19

5.5.3 Reward matrix

The design of the reward function has been more complex than the one
in the weather forecast system, because in this case we have a wider vari-
ety of actions that in different states can give a large positive or negative
reward. The reward matrix has been defined in the following way:

eProvide any information when the state meets the conditions: +10
eProvide any information when the state does not meet the conditions:
-10

eAny other action: -1

The conditions the system needs to meet in each provide information ac-
tion are explained in figure 12. This table shows the necessary attributes
(X) and optional ones (O) to provide concept information. If the neces-
sary attributes value is true when the action is performed the reward will
be 10, otherwise the reward will be -10. The optional attributes mod-
ify the information provided by the system but the reward value is the
same. To these attributes the slot value for the history information must
be added, which will be in true if any value has changed since the last
provide information action and in false if no value has changed.

Concept
Dep.time | Arr. Time Price

ttribute
Dep. city
Arr. city

Dep. time
Arr. Time
Date A X
Type 0

R A B = B -

Figure 12: Attributes needed to provide concept information

5.6 Experiments

The experiments done with this SDS have been the two which gave best
results in the previous SDS, which are training the system with the user

20

model explained in 5.5.2 directly using the normal VF (5) and the ”Semi-
Random” variation explained in 4.7.1 to explore the action-state space
and to get the corpus necessary to get the transition matrix. As the state
space is much bigger this time the number of dialogues needed to get this
corpora has been 2000, but even after this some states remain unexplored
so more dialogues could be needed to get a more robust system. To
compensate the increase of dialogues of the corpora the parameter used
to decide if the action taken in the ”Semi-Random” strategy is random
has been set to 8 = 1/¢n, which will make the system eventually take
random actions for a longer period of dialogues.

5.7 Results

The results obtained are shown in figure 13, where the vertical axis shows
the mean reward over 50 dialogues and the horizontal the number of di-
alogues. The two results shown represent the evolution of the reward for
the normal value function (NVF in red) and for the semi-random value
function (SRVF in blue). As can be seen, in this SDS the NVF con-
verges much faster to a higher reward than the SRVF, the contrary that
happened in the weather forecast system. This may be because of the
B = 1//n parameter used in the SRVF, which makes the system take too
many random actions, or because of the simplicity of the user model used
which makes the NVF find the optimal path to an high reward dialogue
very easily, because the model has very little behavior variations. Anyway
both systems have converged to a suitable dialogue strategy what means
that these methods are suitable to train a MDP based SDS.

But it must be taken into account that these systems are only trained to
interact with users that have a similar behavior of the user model, when
the real user tries a strategy that has not been followed by the user model
the system will probably fall into an unexplored state and will not take
the optimal action. This means that the behavior of the system is strongly
related to the user model behavior. And may not get the same reward
when tested with real users.

6 Conclusions

After revising the bibliography and implementing the two systems ex-
plained before these are the conclusions obtained:

1.) The performance of the dialogue manager is strongly related to the
rest of modules of the whole SDS, especially to the understanding mod-
ule. Authors try to design domain independent dialogue managers, but
as most of the times the semantic interpretation of an utterance depends
on the dialogue state, the dialogue state should be designed to be used by
the understanding and dialogue modules, or both modules be developed
together. And the understanding module can not be designed domain
independent. The rest of modules do also have big importance in the
systems performance. (e.g. if the natural language generator module can
not make the user understand the action taken by the dialogue manager,

21

Reward

A ——SRVF

: [NV —

-40
(o O o R o R = = = === == = e === = =]
(T O T T T T T T T O O T O T T I TN T T O T T T s O
N Mg WM~ 00 o AN N W R 0
L I = I = O I B =
Dialogues

Figure 13: Reward over number of sample dialogues

this will affect the users next utterance.)

2.) One of the greatest difficulties of the development of a SDS is the
design of a state space which gathers the most information possible about
its environment but making it small enough to be computationally feasi-
ble. A compromise between environment information and state complex-
ity must be taken, and this many times leads to poor state representations
or state representation that can not represent all the environment infor-
mation needed to choose the strategy.

3.) The design of a realistic user model is one of the keys to make the
automatic learned strategy work. But it is really difficult to design a
model that can simulate human behavior given that human behavior dif-
fers greatly from a person to another. Then it can happen that a system
trained with one model works well for a person but it does not for another.

4.) In this work only ”slot-filling” systems have been tested, which are
the easiest to model as a MDP. This kind of system usually work with a
system-initiative strategy which may be the easiest to learn for a MDP
based dialogue manager, but other kind of systems such as problem solv-
ing systems or systems where the user wants to explore options rather
than get a specific goal, which need to give more user-initiative, should
also be designed. These systems are harder to design because of the state

22

space design and specially because of the reward function design, and may
not learn the optimal strategy so easily.

5.) The design of the reward function is the most unexplored step on
the design of a SDS, and is one of the most important steps if not the
most important. A system in the long term will always act as reward
function indicates, so if a system has a bad performance the most likely
reason will be a poorly designed reward function. Anyways the design
of this function is very complex. A good reward matrix should give high
reward when the user is happy with the system action, but to be com-
pletely sure of the user satisfaction you need some kind of feedback, which
is impossible to have when you are predicting future reward. Then it may
be that an action taken in a specific state that gave high user satisfaction
in one dialogue does not give the same satisfaction in another one, or in a
posterior utterance of the same dialogue. (e.g. if the same information is
provided 2 times, or if information is provided when one of the attributes
needed has been taken erroneously.) Then, a system can give the same
reward in two actions which give contrary satisfaction to the user. This
may also be problem of a bad designed space state which does not differ
between two different situations, so the space state and reward function
are closely related.

References

[1] Delgado, R. L.-C. and Araki, M. 2006 —Front Matter, in Spoken,
Multilingual and Multimodal Dialogue Systems: Development and
Assessment—, John Wiley Sons, Ltd, Chichester, UK.

[2] Lawrence R. Rabiner, 1989 -A Tutorial on Hidden Markov Models
and Selected Applications in Speech Recognition—, Procedings of the
IEE, Vol 77, No.2

[3] Steve Young, 1998. —Probabilistic Methods in Spoken Dialog
Systems—, Royal Society.

[4] Esther Levin, Roberto Pieraccini, Wieland Eckert, 2000 —A
Stochastic Model of Human-Machine Interaction for Learning Dialog
Strategies—, IEEE Transactions On Speech and Audio Processing, Vol
8, No.1

[5] Antoine Raux, Maxine Eskenazi, 2009 —A Finite-State Turn-Taking
Model for Spoken Dialog Systems—, Human Language Technologies:
The 2009 Annual Conference of the North American Chapter of the
ACL, pages 629-637

[6] Esther Levin, Roberto Pieraccini, Wieland Eckert, 1997. — User Mod-
eling For Spoken Dialogue System Fvaluation—, IEEE.

[7] Heriberto Cuayahuitl, Steve Renals, Oliver Lemon, Hiroshi Shi-
modaira, 2009. —Fwvaluation of a Hierarchical Reinforcement Learning

Spoken Dialogue System—, Elsevier - Computer Speech and Language
24, pages 395-429

23

[8] Kate Acomb, Jonathan Bloom, Krishna Dayanidhi, Phillip Hunter,
Peter Krogh, Esther Levin, Roberto Pieraccini, 2007. —Technical Sup-
port Dialog Systems: Issues, Problems, and Solutions—, Bridging the
Gap: Academic and Industrial Research in Dialog Technologies Work-
shop Proceedings, pages 25-31

[9] Tim paek, Roberto Pieraccini, 2008. —Automating spoken dia-
logue management design wusing machine learning: An industry
perspective—, Elsevier - Speech Communication 50, pages 716-729

[10] Llus Padr, 2011.—Analizadores Multilinges en FreeLing—, Lingua-
matica.

[11] Jason D. Williams, Steve Young, 2007. —Partially observable Markov
decision processes for spoken dialog systems—, Computer Speech and
Language 21, pages 393-422

[12] Jost Schatzmann, Steve Young, Karl weilhammer, Matt Stut-
tle 2006. —A Survey of Statistical User Simulation Techniques for
Reinforcement-Learning of Dialogue Management Strategies—, The
Knowledge Engineering Review, vol 00:0, pages 1-24

[13] Blaise Thomson, Jost Schatzmann, Steve Young, 2008. —Bayesian
Update of Dialogue State for Robust Dialogue Systems—, IEEE.

[14] Benedi, J.-M., Lleida, E., Varona, A., Castro, M.-J., Galiano, I.,
Justo, R., Lopez de Letona, 1., Miguel, A., 2006. —Design and acqui-
sition of a telephone spontaneous speech dialogue corpus in spanish:
Dihana—, Fifth International Conference on Language Resources and
Evaluation (LREC). pages 1636-1639.

[15] David Griol, Lluos F. Hurtado, Encarna Segarra, Emilio Sanchis,
2008. —A statistical approach to spoken dialog systems design and
evaluation—, Speech Communication vol. 50, pages 666-682.

[16] M. Ines Torres, Arantza del Pozo, Raquel Justo, Hector Olmedo,
2010. —DIALSDK: desarrollo de una plataforma base para la imple-
mentacion de sistemas de dialogo—,Project granted by the Basque
Governement UE09+/37

24

