
Preprocess and Data Analysis Techniques for

Affymetrix DNA Microarrays Using

Bioconductor: A Case Study in Alzheimer disease

Alberto Poncelas

Abstract

DNA microarray, or DNA chip, is a technology that allows us to obtain the
expression level of many genes in a single experiment. The fact that numerical
expression values can be easily obtained gives us the possibility to use multiple
statistical techniques of data analysis.

In this project microarray data is obtained from Gene Expression Omnibus,
the repository of National Center for Biotechnology Information (NCBI). Then,
the noise is removed and data is normalized, also we use hypothesis tests to
find the most relevant genes that may be involved in a disease and use machine
learning methods like KNN, Random Forest or Kmeans.

For performing the analysis we use Bioconductor, packages in R for the
analysis of biological data, and we conduct a case study in Alzheimer disease.
The complete code can be found in https://github.com/alberto-poncelas/

bioc-alzheimer

Contents

1 Introduction 1

2 Molecular biology and microarrays 3
2.1 Introduction to molecular biology 3

2.1.1 Molecules involved in life 3
2.1.2 DNA and RNA . 4

2.2 Microarray technology . 5

3 Overview of the steps in the analysis of microarray data 7
3.1 The pipeline . 7
3.2 Gene Expression Omnibus . 8
3.3 Bioconductor . 10

3.3.1 Starting with Bioconductor 10
3.3.2 Bioconductor objects for gene expression 10
3.3.3 Finding gene information 11

4 Preprocess techniques for raw signals 13
4.1 Background correction . 13

4.1.1 RMA background correction 14
4.1.2 MAS 5.0 background subtraction 14

4.2 Normalization methods . 15
4.2.1 Scaling . 15
4.2.2 Quantile normalization 15
4.2.3 Variance Stabilization and Normalization (VSN) 16

4.3 Summarization . 17
4.3.1 Tukey Bi-Wight . 17
4.3.2 Medianpolish . 18

4.4 Probe correction . 19

5 Quality assessment of microarray data 21
5.1 Quality assessment plots . 21

5.1.1 Probe intensities: density histograms and boxplot 21
5.1.2 QCstats . 22
5.1.3 RLE and NUSE plots . 24

v

5.1.4 MA plots . 26
5.1.5 RNA degradation . 27

6 Methods for filtering genes from an ExpressionSet 29
6.1 Filter genes by variance . 29

6.1.1 Non-Specific filter . 29
6.2 Filter genes by means of parametric statistical tests 30

6.2.1 Mean difference t-test . 30
6.2.2 Multiple testing . 31
6.2.3 Moderated t-statistics . 32

7 Supervised and unsupervised learning techniques for the anal-
ysis of microarray data 35
7.1 Preparing data . 35

7.1.1 Standardization . 35
7.1.2 Distance matrix . 36
7.1.3 Principal component analysis (PCA) 36

7.2 Supervised learning (Classification) 36
7.2.1 KNN . 37
7.2.2 Random forest . 37

7.3 Unsupervised learning (Clustering) 38
7.3.1 K-means . 38
7.3.2 Hierarchical clustering . 39

7.4 Evaluation . 39
7.4.1 Cross validation (for classification) 39
7.4.2 Silhouette (for clustering) 41

8 A Case study on microarray data analysis for Alzheimer disease 43
8.1 The data set . 43
8.2 Import data . 44
8.3 Preprocess data . 45
8.4 Filter genes . 49
8.5 Classification . 51
8.6 Clustering . 53
8.7 Obtaining information about genes 57

A R Code 63
A.1 Helper functions . 63
A.2 Main script . 66

vi

Chapter 1

Introduction

The main motivation of this project is to create a manual with a recopilation of
the most used techniques for the analysis of gene expression level in microarray
technology. Another aim is to explain what Bioconductor is, and how to use
it to perform in R the whole data analysis process applying the techniques ex-
plained in the document.

For the good comprehension of the project this document is structured as
follows.

In the first chapter we give an introduction about biology. We focus specially
in DNA and how the proteins are created. Also we introduce the microarray
technology.

In the next chapter we give an overview of the necessary steps for a whole
data analysis process. We also explain what Gene Expression Omnibus is and
how to obtain data from there. Also we introduce Bioconductor and give a
sample script with the first steps to start using it.

Once Bioconductor is installed and we have imported the raw data, we need
to preprocess it, that is, remove noise, normalize, etc. We explain some of the
most used techniques to do that.

Also, in order to control the quality of the data before, meanwhile and after
preprocessing it we need a way of visualizing the data, displaying for that dif-
ferent plots. We mention some of the most used ones.

When analysing a particular disease we are only interested in genes which
are differentially expressed. If a gene shows similar expression levels for a dis-
ease samples and control samples it means that it does not have an influence
on the disease. We want to remove these genes and keep only the ones which
are differentially expressed. For doing that we can use statistical techniques, we

1

mention some of them.

In addition, we also introduce the concept of supervised and unsupervised
learning, give some examples of them and explain some ways to validate the
quality of the models produced.

In the last chapter, we do a case study in Alzheimer disease. We take both
samples of control and severe stage of Alzheimer and perform a whole data
analysis using mentioned techniques in this document

2

Chapter 2

Molecular biology and
microarrays

For a better understanding it is useful to have a basic knowledge on molecular
biology and microarray technology. The purpose of this chapter is to give an
overview of them.

2.1 Introduction to molecular biology

In this section we are going to give a brief explanation about molecular biol-
ogy, with an emphasis on molecules of DNA, RNA and the process of protein
creation. The purpose of this is to give an introduction to people without a
background in biology.

2.1.1 Molecules involved in life

There are four kind of molecules involved in life [1]:

• Small molecules: Those molecules have different roles such as being a
source of energy, signal transmission or being the building blocks of other
molecules. Some important building blocks are nucleotides and amino
acids. DNA and RNA are made of nucleotides and proteins are made of
amino acids.

• Proteins: These are the main building blocks and functional molecules of
the cell. They have multiple functions like catalysing biochemical reac-
tions, cell signalling or being a building block of different organisms.

• DNA: Deoxyribonucleic acid, or DNA, is the molecule that stores all the
information to create proteins.

• RNA: Ribonucleic acid, or RNA, is a molecule that takes part in the
process of protein synthesis, using the information in DNA.

3

2.1.2 DNA and RNA

As mentioned before, DNA is the molecule that stores all the information to
create proteins and it can be found in the nucleus of every cell of every organism.

The structure of DNA is usually represented as a two-stranded chemical
structure, which is called double helix. Each of these strands is a chain of
molecules called nucleotides. There are four types of nucleotides, depending on
the chemical base they have: adenosine, guanine, cytosine and thymine. They
are usually denoted by their initial letters A, G, C and T. To represent a strand
of nucleotides we use those letters, and at the ends of the sequence, 5’ and 3’,
by convention it is usually written with 5’ on the left and 3’ on the right:

5’ A-G-T-C-C-A-A-G-C-T-T 3’

In double stranded DNA, the two strands are paired forming bounds between
them:

5’ C-G-A-T-T-G-C-A-A-C-G-A-T-G-C 3’

| | | | | | | | | | | | | | |

3’ G-C-T-A-A-C-G-T-T-G-C-T-A-C-G 5’

Only two kind of bounds are possible: A-T and C-G. This means that two
strands are complementary, one strand fully determines the other one.

Because of this property DNA replication is possible (this happens for ex-
ample, during the cell division). During this process the DNA double helix
unwinds and forks. Then, from each strand, their complimentary strand is syn-
thesised. After the process, there are two identical double-helix DNA molecules.

RNA is constructed from nucleotides (as DNA is), but instead of having the
base thymine (T), it has uracil (U). RNA are single stranded (they do not form
a double helix) and can be complementary to a single strand of a DNA molecule
and bind to it but, instead A-T bounds, A-U bounds are created.

C-G-A-T-T-G-C-A-A-C-G-A-T-G-C (DNA)

| | | | | | | | | | | | | | |

G-C-U-A-A-C-G-U-U-G-C-U-A-C-G (RNA)

There are three kind of RNA: messenger RNA (mRNA), ribosomal RNA
(rRNA), and transfer RNA (tRNA). Messenger RNA is the one that plays a
major role in microarray experiments [5] and its function is to carry the genetic
information from DNA so proteins can be synthesized.

The process of making proteins is called protein synthesis and it has three
phases:

1. Transcription: In this phase one strand of DNA is copied into a comple-
mentary pre mRNA.

4

2. Splicing: the pre mRNA created in the previous step has parts which code
proteins (Exons) and parts which do not (Introns). Exons and Introns are
interspersed. The splicing phase consists on removing Introns and joining
Exons together. The result of this step is mRNA (from pre mRNA to
mRNA).

3. Translation: In this phase the proteins are created. These proteins are
made by joining together the amino acids encoded by mRNA. Only 20
different amino acids exist, each one encoded by a triplet (three adja-
cent nucleotides of mRNA) called codon. Since there are four different
nucleotides (A, G, C or T) a triplet is required to encode a amino acid
(because 43 > 20).

2.2 Microarray technology

The microarrays we are using in this project are one-channel (the arrays pro-
vide the expression level, two-channel arrays compares two DNA samples) mi-
croarrays from Affymetrix. Affymetrix, http://www.affymetrix.com/, is an
American company, based in California, that manufactures DNA microarrays.

A microarray, or DNA chip, is a glass or polymer slide where DNA molecules
are attached at fixed locations (spots). Each gene and expressed sequence tag is
represented by oligonucleotides on the array which matches the sequence of the
gen of interest [6]. Each of this oligonucleotides is called probe. The purpose is
to measure the abundance of labeled mRNA obtained from biological samples.
For each transcript there are a group of probes called probe set.

Figure 2.1: Illustration of a probe set. It consist on multiple pairs of PM and
MM

A probe set consist on two types of probes: PM which measures the hy-
bridization level, and MM (Mismatch) which measures cross-hybridization level,
hybridization in a probe that is supposed to detect another mRNA. Usually PM
and MM probes are together (so the background effect is similar) so we refer to
them as probe pairs. In each data set there are between 11 and 20 probe pairs
[6, 7].

For obtaining gene expression levels we need to do these steps [2]:

5

1. Extract DNA. It can be obtained from any biological sample such as blood
or saliva.

2. DNA is processed to obtain millions of short pieces. Also to each piece is
attached a molecule called biotin.

3. The prepared DNA sample is placed over the array for 14 to 16 hours.
During that time some DNA slices will attach to microarray.

4. After that a fluorescent molecule placed on the microarray. This fluores-
cent molecule will attach to biotin. This means that fluorescent will be
attached to DNA slices that are attached to microarray.

5. The microarray is read by a laser and the expression levels are obtained
depending on the quantity of the fluorescent molecule.

6

Chapter 3

Overview of the steps in the
analysis of microarray data

In this chapter we want to give an overview of a complete microarray data
analysis and a small guide to how to start. We explain the steps done to go
from raw data to machine learning models. The tool we are using to do this is
Bioconductor, an open source project in R for genomic analysis. In this chapter
we also provide an introduction to install and start using it.

3.1 The pipeline

In the Figure 3.1 we show which is the pipeline we are going to follow on this
document:

• First we import the raw data, which is stored in files with .CEL extension.
Each file contains the data of one sample. Imported files will be stored in
memory in an AffyBatch object.

• The data of AffyBatch object must be preprocessed and normalized. We
also have some techniques so we can asses the quality of data, and remove
outliers if needed, or help us deciding wether to use different preprocessing
techniques or not.

• Once the data has been conveniently preprocessed it is converted into an
ExpressionSet object. We are going to use this object to create models

• A step we can do with the ExpressionSet is a feature selection. We can
try to remove the genes which are not informative for a particular disease.

• Finally we can use different machine learning models. In this document
we explain some classification and clustering techniques.

7

Figure 3.1: The pipeline with the steps of the complete microarray data analysis
that we are following on this document.

3.2 Gene Expression Omnibus

The microarray data used for this project has been obtained from Gene Expres-
sion Omnibus (GEO). Gene Expression Omnibus is a public functional genomics
data repository [3] from NCBI (National Center for Biotechnology Information).

For searching sets of microarray data it is possible to access to GEO DataSet
browser, http://www.ncbi.nlm.nih.gov/sites/GDSbrowser/,

8

Figure 3.2: Main screen of GEO DataSet browser [3]

In the Figure 3.2 we present GEO DataSet browser main screen. The main
three parts are:

1. A header with the logos and a search box field which can be used for
searching for datasets.

2. A table listing the datasets. This is where results of the search are dis-
played. Clicking on the ”Series” code it is possible to access to the ex-
periment page, where an experiment summary and other information is
displayed. This is specially interesting for us, because microarray raw data
(.CEL files) may be provided in that site.

3. A table with information of selected data set. Here is specially interesting
for us is the button of the top called ”Sample Subsets”. There we can see
the information about each sample of the dataset. Also, on the right, we
can download the dataset already processed in several formats.

9

3.3 Bioconductor

In this section we are going to explain how to start using Bioconductor. Biocon-
ductor is an open source, open development software project, based primarily
on the R programming language, which provide tools for the analysis of genomic
data [4].

3.3.1 Starting with Bioconductor

To start using Bioconductor, we need first to install (or update) it. We can do
it executing the following code:

source("http://bioconductor.org/biocLite.R")

old.packages(repos=biocinstallRepos())

library("Biobase")

#To install a library, execute the following command:

#biocLite("LIBRARY_NAME")

If we need to use a Bioconductor library that we have not installed yet, we
need to execute biocLite command to install it (once Biobase library is loaded).
For example, to install affy library, we need to execute biocLite("affy").

Once Bioconductor is installed, we can load microarray files (like CEL files).
To read every file in the current folder, we execute the following:

library("affy")

library("AnnotationDbi")

AffyBatchObject = ReadAffy()

3.3.2 Bioconductor objects for gene expression

In this section we explain the two main objects we are going to use: the Affy-
Batch object and the ExpressionSet. These objects contain the all data of
microarray (expression levels, information about the samples...) in a single ob-
ject. The main difference between them is that AffyBatch stores raw data and
ExpressionSet the data after being preprocessed. Once we have applied pre-
processing techniques and obtained the ExpressionSet we are ready to perform
different data analysis techniques.

The ExpressionSet and AffyBatch have a similar structure:

• Assay data: It contains the matrix of expression values obtained from
microarrays.

• Sample annotation: It contains the information about the samples (age,sex,
treatment status...)

10

• Feature data: It contains the description of the variables of the sample
annotation.

• Experiment data: It contains information about the laboratory, investiga-
tors etc. where the experiment was done.

To access to each field of the Expression set:

#Obtain the assayData:

exprs(ExpressionSet)

#Obtain the Sample annotation:

pData(ExpressionSet)

#Obtain the description of the features:

varMetadata(ExpressionSet)

#Obtain the Experiment data:

experimentData(ExpressionSet)

Also the following functions are useful:

Probe names

featureNames(ExpressionSet)

Sample names

sampleNames(ExpressionSet)

Columns of Sample annotation

varLabels(ExpressionSet)

3.3.3 Finding gene information

The ExpressionSet object stores the expression levels of the probes. We may
want to know which is the gene that represents a particular probe. Information
about genes can be found in the NCBI gene database http://www.ncbi.nlm.

nih.gov/gene.

For obtaining the corresponding gene of a probe we can create a table exe-
cuting this code:

library("hgu95av2.db")

#genes database

genesDB<-merge(

toTable(hgu95av2ENTREZID),

toTable(hgu95av2GENENAME))

11

We can have an overview of the generated table by displaying first rows,
executing head(entrezGenesDB). Then, to obtain more information about a
particular gene we can search their id or name in the NCBI gene database.

12

Chapter 4

Preprocess techniques for
raw signals

In this chapter we explain some preprocessing techniques. This techniques are
needed so we can compare different microarrays. They are divided in 3 groups,
and usually (although there are exceptions) are used in the following order:

1. Background correction: Elimination of background noise.

2. Normalization: Scaling the different microarrays so they can be compara-
ble.

3. Summarization: Obtaining a single value for each gen from the values of
different probes.

We will focus on the techniques of following preprocessing procedures:

• MAS 5.0 (MAS+Scaling+Tukey). It is the preprocessing procedures of
Affymetrix. It does and adjust of PM and MM [8]. In this preprocessing
process summarization step is done before normalization.

• RMA (RMA+QuantileNorm+Medianpolish). Uses only PM values (and
ignores MM) [5].

From now on we use, as notation, i to denote probes and j to denote mi-
croarrays.

4.1 Background correction

When analysing microarrays, the measure obtained from the probes are usually
affected by the background, which is considered as a kind of noise. The methods
of background correction try to estimate how much does the background signal
affect to the signal so we can subtract it.

13

library("affyPLM")

#Methods: "MAS", "RMA.2" among others

preprocess(AffyBatchObject,

background.method="MAS",

)

4.1.1 RMA background correction

The RMA method uses only PM probes and ignore MM. This method models
the observed intensity as O = S + N . The intensity of the observation consist
on a signal component S which is the true signal value and assumes it has a
Exp(α) distribution, and a component of noise N with a normal distribution
N(µ, σ2).

In this process we try to estimate the true value S given an observation o.
For that, [9] proposes the following estimator model:

E(s|O = o) = a+ σ
φ(aσ)−φ(o−aσ)

Φ(aσ)+Φ(o−aσ)−1

where:

• Φ the normal distribution function: Φ(z) =
∫ z
−∞

1√
2π
exp(− 1

2w
2)dw

• φ the density function: φ(z) = 1√
2π
exp(− 1

2z
2)

• a = o− µ− σ2α

It is assumed that values of µ, α y σ2 are the same for every PM probe
intensity of every chip.

4.1.2 MAS 5.0 background subtraction

The algorithm of background correction MAS is the one proposed by Affymetrix.
To estimate the background level it considers to the position of each probe in
the chip [5, 8]. For subtracting the background level and calculate the new
intensities we do the following steps:

1. The chip is split up in K different zones (16 by default).

2. For each zone K it is calculated the background (bk) and the noise (nk)

(a) The average of 2% lowest intensities is chosen as background (bk).

(b) The standard deviation of the 2% lowest is chosen as noise (nk)

3. For each element (x, y) it is calculated the background level b(x, y). For
that it is used a weighted average of different bk. As weight, the distance
between the element and the centroid of zone k is used.

14

4. In the same way we compute n(x, y) for each element calculating a weighted
average of the differents nk.

5. Finally, the Background adjusted intensity is given:

Inew(x, y) = max{I(x, y)− b(x, y), 0.5 ∗ n(x, y)}.

4.2 Normalization methods

Normalization is the process of removing unwanted non-biological variation that
might exist between microarrays [9]. To make measurements from different
microarrays to be comparable we need to eliminate differences caused by the
different amount of RNA, scanner settings, etc. For this reason, we need a
method to bring the arrays onto a similar scale.

library("affyPLM")

#Methods: "quantile", "scaling" among others

preprocess(AffyBatchObject,

normalize.method="scaling"

)

4.2.1 Scaling

Scaling is a normalization method to transform the data so every microarray
have the same statistical measure such as mean, median or, as it is the case
of MAS 5.0, the 2% trimmed mean, the mean after removing the lowest and
highest 2%.

The intensities of each probe is multiplied by a scaling factor fj , different
for each array j. The value of the factor is calculated [8]:

fj = Sc
TrimMean(Sj ,0.2,0.98)

The value of Sc is 500 by default. TrimMean(Sj , 0.2, 0.98) is the mean of
the intensities of array after truncating the highest and lowest 2% intensities
(that is the reason for 0.2 and 0.98 values).

4.2.2 Quantile normalization

Quantile normalization is a normalization method that makes identical the dis-
tributions of intensities of multiple arrays.

1. The highest values of each array are chosen.

2. The mean of those values is calculated.

15

3. In the array, the values chosen are substituted by the obtained mean.

4. The steps 1 and 2 are repeated, but choosing the second highest values,
then the same thing with third highest values... until we do the same with
every value of the chip.

After the quantile normalization is applied, in every array there will be the
same values. Obviously, thos values will not be on the same positions. Each
array will have their highest values in the same positions the highest values were
before normalization, and the same thing with the lowest values. However, after
quantile normalization, every array will have the same distribution, the same
mean, median...

4.2.3 Variance Stabilization and Normalization (VSN)

For normalizing Huber et al. [10] propose the following model:

yij = αij + βijxij

Where xii represents the true expression value, βij is a scaling factor and
αij is the chip offset.

In the model, a part of αij and βij is the same within a chip j, so we can
express it as:

• βij = βjγije
ηij , where βj is a scale factor, the same in the chip j, and γij

represents an affinity value of the probe i. eηij is considered as an error
term.

• αij = aj + ν̄ij , where aj is the chip j offset and ν̄ij is considered as noise.

Putting everything together the model is: yij = (aj + ν̄ij) + (βjγije
ηij)xij

Instead of trying to determine explicitly the value of the probe, we use
mij = γijxij as a measure of the abundance of transcript. Also, we scale the
additive noise, ν̄ij = νij/βj , so we obtain:

ykiij = aj +
νij
βj

+ βje
ηijmij

yij−aj
βj

= eηijmij + νij

The left hand side describes the calibration of the microarray intensities Yij
through subtraction of the offset aj and scaling by normalization factor βj .

The next step is to estimate the values of aj y βj so the variance is sta-
ble. For a family of random variables Yu with expectation values E(Yu) = u

16

and variances V ar(Yu) = v(u) then V ar(h(Yu)) ≈ h′(u)2v(u), and we can do a
variance-stabilizing transformation finding a function h(y) so h′(u)2 = 1

v(u) .

In this case, the function h(y) is the following: hj(y) = arcsinh
y−aj
bj

And then, after transformation:

arcsinh
y−aj
bj

= µij + εij

Where µij represents the expression level after normalization.

Finally, values of aj and βj are estimated using a maximum-likelihood esti-
mation.

4.3 Summarization

In the microarrays we have many probes for measuring the expression of each
gene. We need, a method to summarize, a method to obtain a single expression
level value from the measured probe intensity levels.

#Methods: "median.polish", "tukey.biweight" among others

threestep(AffyBatchObject,

summary.method="median.polish"

)

#or also

ExpressionSet<- expresso(AffyBatchObject,

bgcorrect.method="rma",

normalize.method="quantiles",

pmcorrect.method="pmonly",

summary.method="medianpolish")

4.3.1 Tukey Bi-Wight

Tukey Biweight is a summarization algorithm which use the median [8], instead
of mean, not to be affected by outliers. algorithm proceeds as follows:

1. For each element i the distance ui to the center is calculated: ui = xi−M
0.5∗S+ε

Where M is the median of the probes, S is the median of |xi −M | and ε
is a small value to avoid division by 0.

2. The weights are calculated, depending on the distance:

w(u) =

{
(1 + u2)2 |u| 6 1

0 |u| > 1

17

To exclude the outliers we set their weights to 0

3. Finally, we compute a weighted mean: Tbi =
∑n
i=1 w(u)xi∑n
i=1 w(u)

this value Tbi will be used as the expression value.

4.3.2 Medianpolish

It was observed that the variability between different probes may be higher
than the variability of a probe across different arrays [11]. We want to find a
summarization method which also can borrow information from multiple arrays.

The median polish algorithm uses probes from multiple array. This method
is the summarization process of RMA, where only PM values are used [5]. We
try to fit the following model:

log2(yij) = αi + µj + εij

Where µj is the expression value we want to use. αi is an affinity factor of
each probe i and εij is an error term.

To obtain the estimation of µj median polish is used. This method fits a
similar model:

yij = αi + βj + µ+ εij

Where (βj + µ) is the value µj (in log2 scale) in our model.

Now, to estimate the terms αi,βj and µ we use median polish algorithm as
follows:

1. The following matrix is created:

e11 · · · e1j · · · e1NA a1

... · · · eij · · ·
...

...
eIn1 · · · eInj · · · eInNA aIn
b1 · · · bj · · · bNA m

Initially ai = bj = m = 0 . In the matrix, eij = yij , the intensities of the
probes of each array j are in each column.

2. For each row i: The median Mi of this i row (from e matrix) is calculated.
To each element eij , their Mi is subtracted, and added to ai.

3. The same thing with columns, for each column j: The median Mj , of this
j column is calculated. To each element eij their Mj is subtracted, and
added to bj .

18

4. Steps 2 and 3 are repeated until eij elements are close to 0.

5. At the end of the process the estimations are: µ̂ = m, α̂ = a, β̂ = b. The
elements eij are the residuals.

4.4 Probe correction

For detecting cross-hybridization level, together to each Perfect Match probe
(PM) there is a Mismatch probe (MM). Initially, Affymetrix subtracted MM
values to they corresponding PM values, however MM do not behave as ex-
pected and it could lead to a bad adjusted probe values.

There are preprocessing techniques (like RMA) which ignore MM values.
Other methods, like the one used by Affymetrix (MAS 5.0) improved the way
to adjust PM values. They use an algorithm to estimate the mismatch value,
the Ideal Mismatch (IM), and then subtract it to PM values [8]:. The algorithm
for the probe correction is the following:

1. A proportion of PM and MM in a probe set is calculated using Tukey
biweight algorithm:

SB = Tbi(log2(
PMp

MMp
) : p = 1..ns)

2. The Ideal Mismatch (IM) is calculated depending on three cases:

• Si MM < PM , then
IM = MM

• If SB > τ , (by default τ = 0.03) it means, even if MM value is higher
than PM, in general the PM values of the probe set are higher:
IM = PM

2(SB)

we use a scaled PM value.

• If SB < τ , it means, in general the MM values of the probe set are
higher than their PM, then:
IM = PM

2a

where a = τ
1+ τ−SBs

scτ

(by default scτ = 10)

3. The calculated IM values are subtracted to PM values: PM − IM .

19

Chapter 5

Quality assessment of
microarray data

In this chapter we introduce how to perform quality assessment of microarrrays.
The gene expression levels are obtained through a complex procedure which may
have potential variations. For this reason a control of the quality of the data
is needed. We may want to remove outliers, or microarrays that are not well
hybridized. Also, quality control techniques are useful to decide whether the
data needs more pre-processing or not.

5.1 Quality assessment plots

We present different techniques for data visualization. The plots presented here
are helpful for providing an overview of the quality of data, detecting potential
problematic microarrays etc. The data used for displaying the plots in this
section has been obtained from http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE21779 site.

5.1.1 Probe intensities: density histograms and boxplot

To examine the raw data intensities of microarrays we use histograms and box-
plots. Differences between microarrays, in the shape or center of the distribu-
tion, often means that a normalization is needed [14].

hist(AffyBatchObject)

boxplot(AffyBatchObject)

21

Figure 5.1: Density histogram (left) and boxplot (right)

5.1.2 QCstats

Before made comparisons between microarrays, it is necessary to check that
they are of sufficient quality. Affymetrix provides a collection of quality con-
trol metrics to asses array quality [15]. The function qc , generates the most
commonly used metrics:

1. Average background : The average background should be similar across all
chips.

2. Scale factors: It is assumed that the majority of genes are not differentially
expressed, so we expect the trimmed mean intensity of each array to be
similar. However, due to non biological reasons, the intensities of arrays
may not be in the same scale. Scale factor provides a measure of the overall
expression level for an array. We should avoid having large differences
between scale factors, Affymetrix recommend that they should be within
3-fold of one another.

3. Number of genes called present : Present/Marginal/Absent calls are gen-
erated looking at the diference between PM and MM. If PM values are
not significantly above MM it is flagged as Marginal or Absent. Absolute
value is not a good metric because it can be caused by non biological
reasons. Only when we notice significant differences in % Present call
between arrays they should be treated with caution.

4. 3’ to 5’ ratios: Affymetrix chips contain separate probe sets targeting the
5, mid and 3 regions of Housekeeping genes (genes which are expressed at

22

constant levels in every cell) such as GAPDH and β-actin. We can obtain
a measure of the quality of RNA comparing the amount of signal from the
3 probeset to 5 probesets. It is expected not have very large differences.

The function qc takes an AffyBatch object (it has to be unnormalized) and stats
are calculated from MAS 5.0 algorithm. Those stats are used to check that
arrays have been hybridised correctly and that sample quality is acceptable.

library (simpleaffy)

#Execute qc function

QCstats = qc(AffyBatchObject)

#Obtain the average, min, and max backgrounds

avbg(QCstats)

minbg(QCstats)

maxbg(QCstats)

#Obtain scale factors

sfs(QCstats)

#Obtain percent present

percent.present(QCstats)

#Obtain 3’/5’ and 3’/mid ratios of

#actin and GAPDH

ratios(QCstats)

#Display a plot of qc stats

plot(QCstats)

23

Figure 5.2: Plot of qc stats. The red dots indicates that data may need to be
preprocessed

In the Figure 5.2 we have the following:

• Next to the name of the array (on the left) we have the the percent present
(the percent above) and average background level (the number below). If
they show high variation they will be coloured red, otherwise, blue.

• The blue strips represents the range where scale factors are within 3-fold.
The dots are the scale factor of each array. If every dot is inside the blue
strip the dots will be blue, otherwise all dots will be red.

• GAPDH 3/5 values are plotted as circles and β-actin, 3/5 ratios are plotted
as triangles. If GAPDH values are considered potential outliers (when
they are above 1.25) they are coloured red, otherwise they are blue. For
β-actin it is recommended the ratio to be below 3. If they are, they will
be coloured blue, and those above 3, red [15].

5.1.3 RLE and NUSE plots

Relative Log Expression (RLE)plot compares the expression levels of each chip
to a calculated median value of all arrays [12, 13]. To display the box plot [14]:

1. Compute the log scale estimates θ̂gj for each gen g and each array j.

24

2. Compute the median mg value across arrays for each gene.

3. Define relative expression as Mgi = θ̂gj − mg and display a boxplot for
each array j.

We assume that most genes have similar expression values, so, every array should
be centred in 0 and have a similar interquartile range. Deviating boxplots often
indicate problematic chips.

Normalized Unscaled Standard Error (NUSE) plot visualizes the standard
error estimates for each gene and each array and standardized across arrays so
the median standard error is 1 for every array[12, 13, 14].

NUSE(θ̂gj) =
SE(θ̂gj)

medi(SE(θ̂gj))

Low quality arrays are those that are significantly different than the other
arrays.

library("affyPLM")

AffyBatchPLM= fitPLM(AffyBatchObject)

#RLE plot

Mbox(AffyBatchPLM, main="RLE")

abline(h=0)

#NUSE plot

boxplot(AffyBatchPLM, main="NUSE")

abline(h=1)

25

Figure 5.3: RLE plot (left) and NUSE plot (right). The fact that every box is
centred on the horizontal line and are similar to each other indicates that there
are no problematic array

5.1.4 MA plots

To compare two intensities I1, I2 instead of I1 = I2 plot, usually is plotted a
45 degrees rotated version. The rotation helps to detect patterns as deviations
from horizontal, instead of diagonal. This is called MA plot [13, 14]. On the
y axis we have log intensities difference (M), and on x axis the mean of their
logarithms (A):

• M = log(I1)− log(I2)

• A = [log(I1) + log(I2)]/2

We expect the mass of the distribution of MA plot to be concentrated along
the M = 0 axis.

#Display the MA-plot against a pseudo-median.

par(mfrow = c(3, 3)) #Displays 9 plots

MAplot(AffyBatchObject, plot.method = "smoothScatter")

26

Figure 5.4: A MAplot of each microarray. Since microarrays are one-channel,
each one is plotted against a pseudo-median reference chip

The curve all MAplots in Figure 5.4 should be around M=0 axis. As we can
see, they are not, this means that we have to normalize.

5.1.5 RNA degradation

RNA degradation starts from the 5 end, so we expect probe intensities to be
higher at 3’ end and lower at 5’ end. If RNA is too degraded it will have a high
slope from 5’ to 3’. RNA degradation plots tell us as if there are big differences
in RNA degradation between arrays. The slope itself is not important, what we
want is microarrays to have a similar slope [14].

27

degradeObject <- AffyRNAdeg(AffyBatchObject)

plotAffyRNAdeg(degradeObject)

Figure 5.5: A RNA degradation plot of some microarrays

28

Chapter 6

Methods for filtering genes
from an ExpressionSet

For doing data analysis, we are interested in the genes that are differentially
expressed. For this reason feature selection algorithms are useful because we
can remove genes which are similarly expressed among every sample and does
not show large difference between control group and disease group.

6.1 Filter genes by variance

In this section we introduce a technique that does not need to separate samples
in groups. We perform a feature selection without taking into consideration the
sample annotation.

6.1.1 Non-Specific filter

A probe that has similar expression level in every sample is not very informative.
It means that is similarly expressed in disease samples and control samples. We
want to remove these probes and keep the ones which show large variation. As
a preliminary filter we remove genes with low variation. To do that, we can use
nsFilter function [16]. In the following example we remove the 60% of genes
with lowest variance:

library("genefilter")

#Remove 60% of genes with lowest variance

esetFilter<-nsFilter(ExpressionSet,

remove.dupEntrez=FALSE,

require.entrez=FALSE,

var.cutoff=0.6)

29

#The object esetFilter has:

#--The log (filter.log) with the number of features removed and

#--The ExpressionSet filtered (eset)

Filterlog<-esetFilter$filter.log

ExpressionSet<-esetFilter$eset

6.2 Filter genes by means of parametric statis-
tical tests

In this section we introduce a different approach of gene filtering. We use sample
annotation to form two groups of samples: Control and Disease. Then, we can
perform different hypothesis test between groups for each gene, The aim is to
find if the expression levels of the groups are similar or not.

6.2.1 Mean difference t-test

The most simple way to compare the mean of two groups is to perform a mean
difference hypothesis test. This is what we do in the following code, divide
sample in two groups. The results are used to do feature selection on the
ExpressionSet.

library("genefilter")

RowTestTable = rowttests(ExpressionSet, "CLASS_NAME")

#Crate filtered ExpressionSet

N=50 #Number of genes we want to keep

order=order(RowTestTable$p.value)[1:N]

features=featureNames(ExpressionSet)[order]

ExpressionSet=ExpressionSet[features,]

In the code, CLASS NAME is the name of the class we want to use to form
two groups (the values of CLASS NAME must have only two possible values)
of samples and compare the differences of the mean. We can obtain de names
of the different classes using: varLabels(ExpressionSet).

After executing the code we have a data frame with the columns indicating
the statistics (RowTestTable$statistic), mean difference (RowTestTable$dm)
and p-value (RowTestTable$p.value). We have decided to order the data frame
by p-value, which represents how likely the results are if null hypothesis H0 is
true (how likely are the means of both groups to be the same). If p-value is
small, we reject the hypothesis H0, so we are looking for probes with large mean
difference and small p-values. To represent the relation between P-values and

30

mean differences, we can do a volcano plot (like Figure 6.1).

plot(RowTestTable$dm,

-log10(RowTestTable$p.value),

xlab="mean differences (in log-ratio)",

ylab=expression(-log[10]~(p-value)))

Figure 6.1: A Volcano plot. The mean difference is plotted against p-value
(both in log values)

6.2.2 Multiple testing

The Westfall and Young permutation computes an adjusted p-value [20]:

1. P-values are calculated for each gene based on the original data set using
Welch statistics for each gene [16].
t = x̄1−x̄2√

s21
n1

+
s22
n2

The samples are divided in two groups, control and treatment. Average
expression level of the groups are denoted by x̄1 and x̄2, the variance by
s2

1 and s2
2 and the number of samples by n1 and n2 [21].

2. Create a pseudo-data set by dividing the data into artificial treatment and
control groups.

31

3. P-values for all genes are computed on the pseudo-data set.

4. The successive minimum of the new p-values are retained and compared
to the original ones.

5. The process is repeated a large number of times. The adjusted p-value is
the proportion of resampled data sets where the minimum pseudo-p-value
is less than the original p-value.

Using this procedure, the adjusted p-values obtained are usually higher than
original p-values. Therefore, we may be missing a large number of differentially
expressed genes, so a procedure to control the proportion of incorrectly rejected
genes is needed. One of the methods is the False Discovery Rate (FDR) proposed
by Benjamini and Hochberg [22]. The procedure is [20]:

1. Rank the p-value of each gene from the smallest to the largest.

2. Corrected p-value of i-th gene (from a total of n genes) is:
corrected p.value = p.value ∗ ni

3. If corrected p-value of a gene is less than 0.05 then the gene is significant.

library("multtest")

#Westfall and Young procedure

cl=as.numeric(CLASS_NAME==CLASS_VALUE)

resWY = mt.maxT(exprs(ExpressionSet),classlabel=cl,B=1000)

#Benjamini and Hochberg procedure

resBH = mt.rawp2adjp(resWY$rawp,proc = "BH")

In resWY object we have a data frame with a gene per row (ordered by p-
value) and four columns: The index of the gene in the ExpressionSet (resWY$index),
test statistic (resWY$teststat), the p-values (resWY$rawp) and adjusted p-
values (resWY$adjp).

In resBH object we have two fields: a matrix (resBH$adjp) with a row for
each gene and two columns: the p-value and new adjusted p-value. The other
field contains the index of the genes in the ExpressionSet (resBH$index).

6.2.3 Moderated t-statistics

In the cases where we have few samples, instead of ordinary t-test it might be
better to use moderated t-test [16]. For that, we need to fit a linear model for
each gene with lmFit function, and then moderated t-test with eBayes function.

32

Given m sets (y(i),x
(i)
1 , x

(i)
2 ... x

(i)
n) (with i = 1, ...,m) where y(i) is the

observation and x
(i)
1 , x

(i)
2 ... x

(i)
n are the independent variables, linear model

tries to find α0,α1...αn so we can estimate y using the following model:

ŷ(i) = α0 + α1x
(i)
1 + ...αnx

(i)
n

We want a different linear model to predict each gen. The following algo-
rithm is done for each gene. In this case, each xn is the class of the sample n
(encoded as a number), and we want to estimate y, the log2 intensity of a gene.
So, we want to find α to predict the intensity given a class:
y = α ∗ CLASS NAME

To make α to encode the differences between two classes we use the mean,
which works as intercept α0:
y −mean = α ∗ CLASS NAME
y = mean+ α ∗ CLASS NAME

To calculate a linear model for each gene we can use lmFit function. This
functions returns an object that can be used to do a moderated t-test.

The covariance of coefficients is var(α̂) = V s2. It is given by a multiplication
of a unscaled standard deviations matrix V and residual standard deviation s2.
Both V and s2 of all genes can be obtained from the object returned by lmFit,
the components fit$stdev.unscaled and fit$sigma. The ordinary t-statistic
would be:

t = β̂
s.e. = β̂√

var
= β̂

s
√
v

Where β̂ is the contrast estimator and v, in the case where we have two-
group comparison, is defined as (0, 1)TV (0, 1) to pick out the coefficient relating
to the difference between the two groups [18].

In moderated t-statistic, gene-specific variance s is replaced by s̃, a mixture
of s2 (per-gene deviation variation) and overall estimate variation s2

0:

s̃2 =
d0s

2
0+ds2

d0+d = d0
d0+d ∗ s

2
0 + d

d0+d ∗ s
2

Where d0
d0+d weight coefficient is associated with all probes and d

d0+d is as-
sociated with the particular gene [17, 19].

Finally, moderated t-statistic (Smyth, 2004 [17]) is the following:

t = β̂
s̃
√
v

We can compute moderated t-statistics using eBayes function. The complete

33

code is:

library(limma)

#Create design matrix

#Convert from categorical values to numbers

cl=as.integer(ExpressionSet$CLASS_NAME)-1

design=cbind(mean=1,diff=cl)

#Do a linear model for each gene

fit=lmFit(exprs(ExpressionSet),design)

#compute moderated t-statistics

fit=eBayes(fit)

In the code, we first create a design matrix. The column of design matrix
has, encoded as 0 or 1, the class of the n samples. In the second column each
row r (with r = 1, ..., n) there is a 0 or 1 representing the class of the sample r.
In the first column we have 1 so we obtain the mean as α0 (every sample have
the same single class, so predicted value is the mean).

The design matrix is used to calculate a linear model for each gene using
lmFit, and then we calculate t-statistics using eBayes.

34

Chapter 7

Supervised and
unsupervised learning
techniques for the analysis
of microarray data

The last step of the data analysis are supervised and unsupervised learning
methods. Both of them are explained in this chapter.

7.1 Preparing data

Before using machine learning techniques, in this section we are going to intro-
duce some concepts which will be useful, or even necessary, for later uses.

7.1.1 Standardization

To ensure that all genes have an equal weighting in the machine learning tech-
niques we are going to use, a standardization of the data is needed. The stan-
dardization proposed [16] substracts row medians to each element and divide
them by row IQR (Interquartile range).

library("matrixStats")

M<-exprs(ExpressionSet) #Obtain the matrix of ExpressionSet

esetScaled<-(M- rowMedians(M))/rowIQRs(M) #Scale ExpressionSet

exprs(ExpressionSet)<-esetScaled

35

7.1.2 Distance matrix

A distance matrix is a matrix which contains the distances between each pair of
elements (a,b) from the data set. It is a N ×N matrix, where N is the number
of elements in the data set. Each element mij of the matrix corresponds to the
distance between a and b.

#Obtain matrix of distances

Distances=dist(exprs(ExpressionSet),method="euclidean")

To create a distance matrix it is necessary to define how distance are mea-
sured (a metric). The metric is set using method parameter. The main available
distances between two points a = (a1, ...ac) and b = (b1, ..., bc) are:

• Euclidean distance ("euclidean"):
d(a,b) =

√∑c
i=1(ai − bi)2

• Maximum distance ("maximum"):
d(a,b) = max{|ai − bi|i}

• Manhattan distance ("manhattan"):
d(a,b) =

∑c
i=1 |ai − bi|

• Minkowski distance ("minkowski"):
d(a,b) = p

√∑c
i=1(ai − bi)p

7.1.3 Principal component analysis (PCA)

Principal component analysis (or PCA) is a procedure used to reduce the num-
ber of dimensions of the data. One of the uses of PCA is for exploring data. It
is possible to plot the two most informative components so we can visualize an
approximate representation of the data in two dimensions.

PCA<-prcomp(exprs(ExpressionSet),scale.=T)

plot(PCA$x [,1], PCA$x [,2])

#Optionally, it is possible display gene names

text(PCA$x[,1],PCA$x[,2]-0.5,labels=featureNames(ExpressionSet))

7.2 Supervised learning (Classification)

Supervised learning (or classification) techniques tries to classify, to label, an
element. For doing that, this techniques uses the information of data set of
labelled elements.

36

7.2.1 KNN

KNN (K-Nearest-Neighbour) is a method of supervised classification. Given a
data set of N elements {x1, ...xN} we want to classify a new element xN+1. The
class of this element will be the most common class among its k most similar
elements:

1. Choose the k elements which are the closest to the new element xN+1.

2. The class of the new element is the most frequent class among selected k
elements.

library("MLInterfaces")

fvalidation<-xvalSpec("LOO")

f<-formula(paste(CLASS_NAME, "~ ."))

Classifier = MLearn(f,

data=ExpressionSet,

.method=knnI(k=1),

trainInd=fvalidation)

In the code the function fvalidation is used because it is a necessary pa-
rameter. The purpose of this function will be explained later.

7.2.2 Random forest

Random forest technique uses the data set to construct a forest of independent
classification trees. Then, a new element xN+1 is classified according to the vote
of the majority of trees. Given a set of N elements {x1, ...xN} , each element
xi ∈ Rd multiple classification trees are constructed, each tree is created as
follows [24]:

1. The root of the tree is a training set of N elements. This training set is
created selecting N elements randomly with replacement.

2. Choose a subset of m elements (m < N) randomly from the training set.

3. Pick the best xi which splits best data in two partitions for some dimension
of d. Those partitions will be the children of the actual node.

4. Repeat the process (from the step 2) with each children creating a classi-
fication tree.

To classify a new element we push the element throw every classification tree.
From each tree we obtain the probabilities of each class. The element is classified
with the most probable class.

37

library("MLInterfaces")

fvalidation<-xvalSpec("LOO")

f<-formula(paste(CLASS_NAME, "~ ."))

Classifier =MLearn(f,

data=ExpressionSet,

.method=randomForestI,

ntree=100,

trainInd=fvalidation)

In this code there is an extra parameter, ntree, the number of trees of the
forest. By default, the value of m is sqrt(number of features).

7.3 Unsupervised learning (Clustering)

Unsupervised learning (or clustering) is the process for grouping the elements of
the data set into groups called clusters. The goal is having the elements which
are close from one another in the same cluster, while elements from different
clusters are far from one another [23]. This techniques do not use the class
of the elements.In this section we introduce some of the unsupervised learning
techniques.

7.3.1 K-means

Given a set of N elements {x1, ...xN} the K-means algorithm tries to find a
partition of data into k clusters. The value of k must be given by us (the plot of
PCA could give us an intuition of which should it be). The k-means algorithm
chooses k centroids randomly and updates them as we assign the elements of
the data set [23]:

1. Initialize k cluster centroids randomly.

2. For each element xi, from x1 to xN:

(a) Assign each element xi to the cluster whose centroid is the closest.

(b) Recalculate de centroids of the clusters.

CLUSTER_NUMBER=2

kmeans=kmeans(exprs(ExpressionSet),

centers=CLUSTER_NUMBER,nstart=5)

#Save in a list the name of genes of each cluster

ClusterGenes<-list()

for (i in 1:CLUSTER_NUMBER){

38

ClusterGenes[[i]]<-names(kmeans$cluster[kmeans$cluster==i])

}

7.3.2 Hierarchical clustering

Hierarchical clustering is a technique that tries to create a hierarchy of clusters.
One of the advantages of this technique is that it does not require to know
the number of cluster in advance, it is possible to select the most convenient
partition after the hierarchy is created. Here we explain the algorithm of the
agglomerative version:

1. Initially each element is a cluster so, there there are N clusters: P0 =
{{x1}, ..., {xN}}

2. Select the two closest clusters and join them

3. Go to step 2. Repeat the process until we obtain a single cluster.

HierarchicalClust=hclust(Distances,method="single")

plot(HierarchicalClust)

7.4 Evaluation

Once the classification models have been constructed, we need to estimate how
good or bad they are. In this section we present techniques to evaluate su-
pervised learning (or classification) and unsupervised learning (or clustering)
algorithms.

7.4.1 Cross validation (for classification)

A method to evaluate a classification algorithm is using cross validation. This
technique consist on dividing the data set in two partitions: training set and
validation set. Then, the model is constructed using training set and it is
evaluated with validation set. In this section we introduce two types of cross
validation:

• K-fold cross validation: Data set is divided in K partitions (K folds)
randomly. K − 1 partitions are used for training set and 1 for validation.
The process is repeated k times using a different fold for validation each
time.

• Leave-one-out: It is a particular case of K-fold, using K as the number of
elements on the original data set.

39

The technique of cross validation that we want to use is set as a parameter
of MLearn. Here we show the code of both K-fold and Leave-one-out techniques.

#k-fold

k=8 #there are 8 folds in this example

fvalidation<-xvalSpec("LOG", k, partitionFunc=balKfold.xvspec(k))

#Leave-One-Out

fvalidation<-xvalSpec("LOO")

Once the validation is done, we can construct a confusion matrix to analyse
the results. Confusion matrix is a table where the number of elements which
have been correctly and incorrectly classified are displayed. The following table
shows the structure of a confusion matrix. We assume there are only two classes,
Positive and Negative, and each element can only be assigned to one of them.

Predicted class
Positive Negative

Actual Class
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

The code in R to display the confusion matrix is the following:

confuMat(Classifier)

Using confusion matrix, we can construct a metric to evaluate the classifi-
cation model. Some of the most used metrics are [25]:

• Precision: The percentage of positive predictions that are correct.
TP

TP+FP

• Recall / Sensitivity: The percentage of positive labeled instances that
were predicted as positive.

TP
TP+FN

• Specificity: The percentage of negative labeled instances that were pre-
dicted as negative.
TN

TN+FP

• Accuracy: The percentage of predictions that are correct.
TP+TN

TP+TN+FP+FN

40

7.4.2 Silhouette (for clustering)

Silhouette is a method for validating how well data has been clustered. For each
element xi a value s(i) is defined to represent how well the element is clustered.
s(i) is calculate as follows:

s(i) = a(i)−b(i)
max{a(i),b(i)}

Where:

• a(i) is the average distance between element xi and the elements of the
same cluster CA (being xi ∈ CA):
a(i) = 1

nA−1

∑
j∈CA d(i, j)

• b(i) is the distance of element xi to the closest cluster C (being CA 6= C,
so xi /∈ C):
b(i) = minC 6=CAd(xi, C)
The distance between an element xi and a cluster C is defined as the
average of distances between xi and every element xj of cluster C (xj ∈ C):
d(xi, C) = 1

nC

∑
j∈C d(xi, xj).

If s(i) is large (higher than 0, close to 1), we can say that element s(i) is
well clustered. However, if s(i) is closer to −1 it means that element xi should
be in another cluster [26]. To obtain a measure of how properly the entire data
has been clustered we can calculate s̄, the average of s(i).

s̄ = 1
N

∑N
i=1 s(i)

silhouette=silhouette(kmeans$cluster, Distances)

plot(silhouette)

#Obtain the average silhouette of the data

summary(silhouette)[["avg.width"]]

41

Chapter 8

A Case study on microarray
data analysis for Alzheimer
disease

In this chapter we explain how to perform an analysis of DNA microarrays
from the raw data. For that we use the techniques explained in the previous
chapters. The whole script can be found in the appendix or in my GitHub site
https://github.com/alberto-poncelas/bioc-alzheimer

8.1 The data set

The data set used for this example is the one on the experiment of ’Microar-
ray analyses of laser-captured hippocampus reveal distinct gray and white matter
signatures associated with incipient Alzheimers disease’ [27] where some parts
of the brain have been analysed for Alzheimer disease investigation. The data of
microarrays of the experiment is stored in Gene Expression Omnibus with the
name Various stages of Alzheimer’s disease: laser-captured hippocampal CA1
gray matter and Reference Serie GSE28146.

The data consists of 30 samples. However for this example we only consider
15 of them: 8 of control and 7 of severe stage of Alzheimer disease.

For performing the analysis the script is prepared to load the CEL files from
a folder called data. Therefore, so after downloading the raw data we have to
place it in that folder. Also, the information about the samples needs to be
load from a text file called phenodata.txt. This be copied from GEO DataSet
browser.

43

8.2 Import data

First of all we are installing all packages needed. This code uses the function
installPackageList created by us to automatically load all necessary libraries.

#install all required libraries

source("installPackageList.R")

libraries<-c("affy","AnnotationDbi","affyPLM","simpleaffy",

"genefilter","matrixStats",

"MLInterfaces","hgu133plus2.db")

installPackageList(libraries)

Once the CEL files have been correctly downloaded and placed in the proper
folder, we need to import them into an AffyBatch object.

First, we define the folders with the main script and the folder where CEL
files are stored. In the code obtainRawData is a helper function (the code is
included in the appendix) created to automatically download raw data and put
CEL files in the proper folder.

current_directory=getwd()

data_folder_name="data"

dataset_directory=paste(getwd(),data_folder_name,sep="/")

library("affy")

library("AnnotationDbi")

#Download raw data

source("obtainRawData.R")

obtainRawData("GSE28146",folder=data_folder_name)

Once the data has been downloaded we need to import files into an Affy-
Batch object. We can do it with ReadAffy function. However, we are only
interested in samples which are ”control” or ”sever stage of Alzheimer”. In this
code we load the data of the samples from a text file (which later will become
the sample annotation) and filter the names of microarrays by ”severe stage”
and ”control” so we load only those files.

#Load phenodata (from "phenodata.txt") and name columns

phdataset<- read.table("phenodata.txt", sep="\t")

colnames(phdataset)<-c("sampleNames","age","diseaseStage","title")

44

#Filter control and severe indexes

#(the ones starting by "sever" or "control" in "diseaseStage")

severeIndex<-

grep("^severe",as.character(phdataset[,"diseaseStage"]))

ControlIndex<-

grep("^control",as.character(phdataset[,"diseaseStage"]))

#Obtain the names of samples that are "severe" or "control"

dnames<-phdataset[c(severeIndex,ControlIndex),"sampleNames"]

dnames<-paste(dnames, ".CEL",sep = "")

#Load AffyBatch (load only .CEL of "severe" and "control")

setwd(dataset_directory)

AffyBatchObject = ReadAffy(filenames=dnames)

setwd(current_directory)

The created AffyBatchObject has no information about the samples except
the names, so we need to attach the information of each sample (we are spe-
cially interested in diseaseStage). In the following code we bind the columns
of the existing sample annotation (the name of the samples) and the columns
loaded in the ”phenodata.txt” file. We want to keep all of the columns so we
can check afterwards that the sample annotations has been correctly assigned
to each sample.

#Attach the phenodata

#(the original phenodata with sample names

plus the phenodata of "phenodata.txt")

pData(AffyBatchObject)<-cbind(

pData(AffyBatchObject),

phdataset[c(severeIndex,ControlIndex),])

#Check the data has been correctly assigned to each sample

pData(AffyBatchObject)

Now, in the AffyBatchObject all information about raw data that we need
is stored. The next step is to preprocess the data we have.

8.3 Preprocess data

Now that data has been imported, the first thing we need to do is to assure that
there are no potentially problematic samples. A way to check that is to display

45

a RLE and NUSE plot.

Check for microarrays potentially problematic

library("affyPLM")

AffyBatchPLM= fitPLM(AffyBatchObject)

#RLE plot

Mbox(AffyBatchPLM, main="RLE")

abline(h=0)

#NUSE plot

boxplot(AffyBatchPLM, main="NUSE")

abline(h=1)

In the Figure 8.1 we have the results of RLE and NUSE plots. As we can
see, the box of every array are similar to each other. There is no box which
differs much from the others. So we can conclude that there are no problematic
samples.

Figure 8.1: Plot of RLE and NUSE to check that there are no sample potentially
problematic

Also, data needs to be normalized. If we plot an histogram of the data
executing the code below (we can see the result in the Figure 8.2). Every

46

sample are different from each other.

###Check why normalization is needed###

hist(AffyBatchObject)

Figure 8.2: Plot of the histogram before preprocessing

To normalize data we are executing both preprocess sets explained in this
document (MAS and RMA) and we will compare the results.

######Execute both preprocess and compare####

library("affyPLM")

##MAS preprocess

AffyBatchMAS<-preprocess(AffyBatchObject,

background.method="MAS",

normalize.method="scaling"

)

##RMA preprocess

AffyBatchRMA<-preprocess(AffyBatchObject,

47

background.method="RMA.2",

normalize.method="quantile"

)

par(mfrow = c(1, 2))

hist(AffyBatchMAS)

title("Histogram with MAS")

hist(AffyBatchRMA)

title("Histogram with RMA")

Figure 8.3: Comparation of histograms with MAS and RMA preprocessing
methods

In the Figure 8.3 we have plotted both histograms so we can compare them.
As we can see RMA histogram seems to be better normalized. For this reason
we decide to apply RMA preprocessing technique to obtain the ExpressionSet
object. To do that, we can use expresso function specifying every technique or
rma function which is faster.

48

#######Convert to ExpressionSet####

ExpressionSet<- expresso(AffyBatchObject,

bgcorrect.method="rma",

normalize.method="quantiles",

pmcorrect.method="pmonly",

summary.method="medianpolish")

###Also it is possible to execute RMA directly:

ExpressionSet= rma(AffyBatchObject)

8.4 Filter genes

Once we have obtained the ExpressionSet, we have everything ready to perform
a data analysis. We start filtering and removing the genes that show no variation
among samples, and therefore they are not involved in the disease. The following
code is used for removing the 60% of the genes which shows lowest variation.

####Filter by variance####

library("genefilter")

ExpressionSet<-nsFilter(ExpressionSet,var.cutoff=0.6)$eset

We can go further and create a list with the genes whose mean expression
level in ”control” and ”severe stage” samples which differ the most. In the
following code we use he function rowttests to perform a mean difference
hypothesis test (between ”control” and ”severe stage” samples).

####Filter by mean tests####

N=50 #Number of genes we want to keep. Keep 50 genes

varLabels(ExpressionSet)

#Two groups will be created depending on diseaseStage

Perform a mean difference hypothesis test

between two groups for each gene

RowTestTable = rowttests(ExpressionSet, "diseaseStage")

We display the RowTestTable in a volcano plot.

Obtain the genes with the lowest p-value

order=order(RowTestTable$p.value)[1:N]

features=featureNames(ExpressionSet)[order]

49

Display a plot volcano.

We highlight with a blue dot

the 50 points with the lowest pvalue

plot(RowTestTable$dm,

-log10(RowTestTable$p.value),

xlab="mean differences (in log-ratio)",

ylab=expression(-log[10]~(p-value)))

points(RowTestTable$dm[order],

-log10(RowTestTable$p.value)[order],

pch=18, col="blue")

The results of the volcano plot can be seen in Figure 8.4. We have highlighted
the 50 genes with the lowest p-value with blue dots.

Figure 8.4: Volcano plot of the data. The 50 genes with lowest p-values are
highlighted with blue dots

As final step, we order the RowTestTable by p-value and use them to filter
genes once again.

50

#Order RowTestTable by p-value

RowTestTable<-RowTestTable[order(RowTestTable$p.value),]

Filter the ExpressionSet and keep only obtained

N genes (50 in this case)

ExpressionSet=ExpressionSet[features,]

the 50 genes of the table obtained by rowttests are kept in the Expression-
Set. If we execute head(RowTestTable) we can display the first lines of the
table.

> head(RowTestTable)

statistic dm p.value

202018_s_at -6.606320 -1.2417850 1.698699e-05

205352_at 5.855922 1.4681507 5.630073e-05

204287_at 5.788955 0.7122636 6.289332e-05

208032_s_at 5.751013 0.9984660 6.698413e-05

224311_s_at 5.244928 0.5840541 1.582479e-04

205230_at 5.041252 1.0086608 2.259021e-04

We can observe the first 6 rows with the lowest p-value obtained from test
hypothesis. In the dm column there is the mean difference between two groups.

8.5 Classification

Now, in the ExpressionSet, there are only the most informative genes. Using
this reduced ExpressionSet it would be easier to apply some supervised learning
techniques to construct a model so we can predict if a new sample could be
Alzheimer sample or not.

First of all, we start by scaling the ExpressionSet, executing the following
code.

library("matrixStats")

M<-exprs(ExpressionSet) #Obtain the matrix of ExpressionSet

esetScaled<-(M- rowMedians(M))/rowIQRs(M) #Scale ExpressionSet

exprs(ExpressionSet)<-esetScaled

Once the ExpressionSet has been scaled we are going to use classification
techniques. In the code below we construct a KNN to classify samples in two
groups ”control” and ”severe stage”. Also, we use Leave-One-Out to validate
our model.

51

library("MLInterfaces")

fvalidation<-xvalSpec("LOO")

f<-formula(paste("diseaseStage", "~ .")) #"diseaseStage ~ ."

KNN

ClassifierKNN = MLearn(f,

data=ExpressionSet,

.method=knnI(k=1),

trainInd=fvalidation)

Obtain confusion matrix

confusionMatrixKNN<-confuMat(ClassifierKNN)

As well as KNN we can construct a classifier using Random Forest. In the
code below we construct the model.

Random forest

ClassifierRForest =MLearn(f,

data=ExpressionSet,

.method=randomForestI,

ntree=100,

trainInd=fvalidation)

Obtain confusion matrix

confusionMatrixRForest<-confuMat(ClassifierRForest)

To estimate how good or bad our models are, or just to be able to compare
them, we use a confusion matrix. We are interested only in ”control” and severe
stage group” so we display only those two classes in the matrix.

Display confusion matrices###

confusionMatrixRForest<-

confusionMatrixRForest[c("control","severe stage"),

c("control","severe stage")]

confusionMatrixRForest

Display both confusion matrices

confusionMatrixKNN

confusionMatrixRForest

52

The values of confusion matrices obtained are:

> confusionMatrixKNN

control severe stage

control 8 0

severe stage 1 6

> confusionMatrixRForest

control severe stage

control 7 1

severe stage 1 6

The accuracy of these confusion matrices are 0.93 and 0.86. As we can see
both of them give good results.

8.6 Clustering

In this section we are applying clustering techniques. First of all, we compute
distance matrices for later uses. We compute two distance matrix, one with
distances between samples and another one with distances between probes.

#####Compute distance matrix #####

between samples, and also between probes

DistanceSamples=dist(t(exprs(ExpressionSet)),method="euclidean")

DistanceProbes=dist(exprs(ExpressionSet),method="euclidean")

We start performing the analysis of clustering using samples distance matrix.
We first do a PCA so we can visualize the distances between samples, and then,
we perform a hierarchical clustering.

######Clustering of samples#############

#We display PCA to have an intuition of

#the number of clusters of samples

PCAsamples<-prcomp(t(exprs(ExpressionSet)))

plot(PCAsamples$x [,1], PCAsamples$x [,2])

HierarchicalClustSamples=hclust(DistanceSamples,method="single")

plot(HierarchicalClustSamples)")

53

Figure 8.5: PCA of the samples

In the Figure 8.5 we show the plot of the PCA of the samples. At first
sight we cannot distinguish any groups of samples. For this reason we perform
a hierarchical clustering (so we do not need to decide the number of clusters)
obtaining as results the Figure 8.6.

54

Figure 8.6: The results of the hierarchical clustering of the samples displayed
as a dendrogram

Now, we are using the same techniques but in this case with distances be-
tween probes (instead of between samples).

Clustering of probes

#We display PCA to have an intuition of the number of clusters

PCAprobes<-prcomp(exprs(ExpressionSet))

plot(PCAprobes$x [,1], PCAprobes$x [,2])

text(PCAprobes$x[,1],

PCAprobes$x[,2]-0.2,

labels=featureNames(ExpressionSet))

Hierarchical clustering of probes

HierarchicalClustProbes=hclust(DistanceProbes,method="single")

plot(HierarchicalClustProbes)

55

Figure 8.7: PCA of the probes showing that there are two clusters

In the Figure 8.7 we can see the results of PCA of the probes. Although
the code also makes possible to display the name of the probes on the plot, we
choose to plot just the points to help the visualization. This time we can observe
that there are two groups. We decide then, to perform a k-means setting as 2
the number of clusters.

####K-means####

#We decide to set the number of clusters as 2

CLUSTER_NUMBER=2

kmeans=kmeans(exprs(ExpressionSet),centers=CLUSTER_NUMBER,nstart=5)

#Save in a list the name of genes of each cluster

ClusterGenes<-list()

for (i in 1:CLUSTER_NUMBER){

ClusterGenes[[i]]<-names(kmeans$cluster[kmeans$cluster==i])

}

The second part of the code above is to create an object with two vectors,
each one containing the probes of the cluster. As we can see, there is a small

56

cluster with only six probes, the same six probes which in Figure 8.7 are sepa-
rated.

> ClusterGenes

[[1]]

[1] "202018_s_at" "207055_at" "228346_at" "229046_s_at"

[5] "211612_s_at" "223801_s_at"

[[2]]

[1] "205352_at" "204287_at" "208032_s_at" "224311_s_at"

[5] "205230_at" "200978_at" "213927_at" "205635_at"

[9] "221504_s_at" "219145_at" "222005_s_at" "217564_s_at"

[13] "229770_at" "204471_at" "228280_at" "200703_at"

[17] "236591_at" "203797_at" "204141_at" "228027_at"

[21] "235781_at" "206045_s_at" "205113_at" "229818_at"

[25] "218604_at" "214293_at" "207507_s_at" "243521_at"

[29] "242372_s_at" "202077_at" "206481_s_at" "1557122_s_at"

[33] "244834_at" "229963_at" "226580_at" "204229_at"

[37] "226003_at" "209615_s_at" "228716_at" "213309_at"

[41] "244111_at" "222985_at" "225658_at" "215045_at"

8.7 Obtaining information about genes

Once we have discovered the most relevant probes, we want to search which is
the gene that these probes represent. We also would like to access NCBI to find
more information about the genes.

First of all, we are going to create a table with probe names, their gene id and
the gene name. In this case, the anotation of the ExpressionSet is hgu133plus2
so we download the corresponding library and create the table.

annotation(ExpressionSet)

library("hgu133plus2.db")

#Entrez genes data.frame

genesDB<-merge(

toTable(hgu133plus2ENTREZID),

toTable(hgu133plus2GENENAME))

In the genesDB table we have the information of the probes. For this ex-
ample we use the first 10 features with the smallest p-value obtained from
RowTestTable. These probes are stored in the variable features.

57

In ’features’ is stored the 50 probes

with smallest p-value (ordered)

#Obtain 10 features

features10<-features[1:10]

#Find the probes in the table

genesDB[genesDB$probe_id %in% features10,]

The last code line displays the rows of the table filtered by the 10 probes we
have selected, resulting:

> genesDB[genesDB$probe_id %in% features10,]

probe_id gene_id gene_name

6837 200978_at 4190 malate dehydrogenase 1, NAD (soluble)

7856 202018_s_at 4057 lactotransferrin

10097 204287_at 9145 synaptogyrin 1

11021 205230_at 22895 rabphilin 3A homolog (mouse)

11142 205352_at 5274 serpin peptidase inhibitor, clade I (neuroserpin), member 1

11421 205635_at 8997 kalirin, RhoGEF kinase

12791 207055_at 9283 G protein-coupled receptor 37 like 1

13692 208032_s_at 2892 glutamate receptor, ionotropic, AMPA 3

19127 213927_at 4293 mitogen-activated protein kinase kinase kinase 9

28034 224311_s_at 51719 calcium binding protein 39

Now, we have the information about the genes which may be the most
relevant. Looking at the table, we know the genes id numbers and the names.
We can use both of them to search for more information in NCBI, http://www.
ncbi.nlm.nih.gov/gene.

58

Bibliography

[1] A. Brazma, H. Parkinson, T. Schlitt, M. Shojatalab ’A quick introduction
to elements of biology - cells, molecules, genes, functional genomics, mi-
croarrays’.
http://www.ebi.ac.uk/microarray/biology_intro.html

[2] ’How Affymetrix geneChip DNA microarray work’.
http://public.tgen.org/tgen.org/downloads/autism/

Genotypingessentials.pdf

[3] Gene Expression Omnibus web site:
http://www.ncbi.nlm.nih.gov/geo/

[4] Bioconductor web site:
http://www.bioconductor.org/

[5] Freudenberg, Johannes M. ”Comparison of background correction and nor-
malization procedures for high-density oligonucleotide microarrays.” Insti-
tut fur Informatik (2005): 120.

[6] Causton, Helen, John Quackenbush, and Alvis Brazma. Microarray gene
expression data analysis: a beginner’s guide. Wiley-Blackwell, 2009.

[7] Bar-Or, Carmiya, Henryk Czosnek, and Hinanit Koltai. ”Cross-species mi-
croarray hybridizations: a developing tool for studying species diversity.”
TRENDS in Genetics 23.4 (2007): 200-207.

[8] Affymetrix ’Affymetrix. Statistical Algorithms Description Document.’.
Affymetrix, Inc., Santa Clara 202

[9] Bolstad, Benjamin Milo. Low-level analysis of high-density oligonucleotide
array data: background, normalization and summarization. Diss. Univer-
sity of California, 2004.

[10] Huber, Wolfgang, et al. ”Parameter estimation for the calibration and vari-
ance stabilization of microarray data.” Statistical Applications in Genetics
and Molecular Biology 2.1 (2003): 1008.

59

[11] Bolstad, Benjamin Milo. Low-level analysis of high-density oligonucleotide
array data: background, normalization and summarization. Diss. Univer-
sity of California, 2004.

[12] Bradley, Holly Zheng. ”Quality Assessment of Microarray Gene Expression
Data.”
http://www.ebi.ac.uk/microarray-srv/tutorials/mugen_tutorial_

affy_qa.pdf

[13] G. Rustici, A. Kauffmann ’Microarray data analysis with Bioconductor’.
http://www.ebi.ac.uk/microarray/General/Events/EMBO2009/

presentations/day5/19-QM%20hands%20on.pdf

[14] R. Irizarry, R. Gentleman ’Preprocessing Affymetrix Data. Educational
Materials’.
http://www.bioconductor.org/help/course-materials/2006/

biocintro_april/thurs/affy/Affy.pdf

[15] C. Wilson, S. D Pepper, C. J Miller ’QC and Affymetrix data’.
http://bioinformatics.picr.man.ac.uk/downloads/

QCandSimpleaffy.pdf

[16] Hahne, Florian, and Robert Gentleman. Bioconductor case studies.
Springer, 2008.

[17] Smyth, G. K. ”Statistical Applications in Genetics and Molecular bBiol-
ogy.” Linear models and empirical Bayes methods for assessing differential
expression in microarray experiments (2004).

[18] McCarthy, Davis J., and Gordon K. Smyth. ”Testing significance relative to
a fold-change threshold is a TREAT.” Bioinformatics 25.6 (2009): 765-771.

[19] C. Wong ’Differential Expression’.
http://www.bioconductor.org/help/course-materials/2010/

SeattleJan10/day2/DifferentialExpression.pdf

[20] Agilent Technologies, Inc. 2005 ’Multiple Testing Corrections’.
http://www.chem.agilent.com/cag/bsp/sig/downloads/pdf/mtc.pdf

[21] Ge, Youngchao, Sandrine Dudoit, and Terence P. Speed. ”Resampling-
based multiple testing for microarray data analysis.” Test 12.1 (2003): 1-77.

[22] Benjamini, Yoav, and Yosef Hochberg. ”Controlling the false discovery rate:
a practical and powerful approach to multiple testing.” Journal of the Royal
Statistical Society. Series B (Methodological) (1995): 289-300.

[23] Rajaraman, Anand, and Jeffrey David Ullman. Mining of massive datasets.
Cambridge University Press, 2011.

60

[24] L. Breiman, A. Cutler ’Random Forests’.
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.

htm

[25] R. Eisner ’Basic Evaluation Measures for Classifier Performance’.
http://webdocs.cs.ualberta.ca/~eisner/measures.html

[26] Rousseeuw, Peter J. ”Silhouettes: a graphical aid to the interpretation
and validation of cluster analysis.” Journal of Computational and Applied
Mathematics 20 (1987): 53-65.

[27] Blalock, Eric M., et al. ”Microarray analyses of laser-captured hippocampus
reveal distinct gray and white matter signatures associated with incipient
Alzheimer’s disease.” Journal of Chemical Neuroanatomy 42.2 (2011): 118-
126.

61

Appendix A

R Code

In these appendix we show the scripts used in Chapter 8. The whole script can
also be found in my GitHub site https://github.com/alberto-poncelas/

bioc-alzheimer

A.1 Helper functions

Here we present the code of the helper functions that have been created.

First, obtainRawData function, downloads .CEL files from Gene Expression
Omnibus and place the .CEL files into a folder

Function name: obtainRawData

Author: Alberto Poncelas

This function downloads .CEL files from

Gene Expression Omnibus (see http://www.ncbi.nlm.nih.gov/sites/GDSbrowser) and

extract the .CEL files into a folder. (for just downloading the

compressed .tar file, use "getGEOSuppFiles" command)

The function parameters are:

----accession_number: The accession number of the data set

(the code of "series" column in http://www.ncbi.nlm.nih.gov/sites/GDSbrowser)

----folder_name: The name of the folder where .CEL files will be stored

Note: This function creates and deletes temporal folders and files,

so it is recommended to use in project’s folder

obtainRawData<-function(accession_number,folder="data"){

63

library(GEOquery)

library(R.utils)

#Define the path of a temporal folder to extract files

temp_folder=paste(getwd(),"/temp",sep="")

#Define and create the path to save .CEL files

data_folder=paste(getwd(),folder,sep="/")

dir.create(data_folder)

#Download .tar with files from GEO

getGEOSuppFiles(GEO=accession_number)

#Obtain the path of rae data and unzip it in temporal folder

raw_file_name=paste(accession_number,"_RAW.tar",sep="")

raw_file_folder=paste(getwd(),"/",accession_number,"/",raw_file_name,sep="")

untar(raw_file_folder, exdir=temp_folder)

#Get the names of .cel.gz compressed files

cel_zip_files <- list.files(temp_folder, pattern = "cel.gz$",ignore.case=TRUE)

#Unzip the files that contains .CEL files

sapply(paste(temp_folder, cel_zip_files , sep="/"), gunzip, remove=TRUE)

#Get the names of .CEL files

cel_files <- list.files(temp_folder, pattern = ".cel$",ignore.case=TRUE)

#Copy those files from temporal folder to data folder

files_from<-paste(temp_folder, cel_files, sep="/")

files_to<-paste(data_folder, cel_files, sep="/")

file.copy(from=files_from,to=files_to)

#Delete temporal folder

unlink(temp_folder, recursive = TRUE)

#Delete downloaded .tar with raw data

raw_file_folder=paste(getwd(),"/",accession_number,sep="")

unlink(raw_file_folder, recursive = TRUE)

}

64

The installPackageList function takes a vector with the names of pack-
ages and install the ones which have not been installed yet.

Function name: installPackageList

Author: Alberto Poncelas

When in a script we need to lead a library from Bioconductor

which is not installed, we need to install it.

This function takes a vector with the names of packages

and install the ones which have not been installed yet

The function parameters are:

----packageList: a vector with the names of the packages

that need to be installed

installPackageList<-function(packageList){

#Get installed packages

installedPackages<-rownames(installed.packages())

checkInstalled<-packageList %in% installedPackages

if (! all(checkInstalled)==TRUE){

#Get the list of uninstalled packages

uninstalled<-packageList[checkInstalled==FALSE]

#Prepare Bioconductor

source("http://bioconductor.org/biocLite.R")

old.packages(repos=biocinstallRepos())

library("Biobase")

#install uninstalled packages

for (pckg in uninstalled){

biocLite(pckg)

}

}

load libraries

for (lib in packageList){

print(lib)

65

do.call(library, list(lib))

}

}

A.2 Main script

Here we present the complete code of the main script for microarray data anal-
ysis.

#install all required libraries

source("installPackageList.R")

libraries<-c("affy","AnnotationDbi","affyPLM","simpleaffy","genefilter",

"matrixStats","MLInterfaces","hgu133plus2.db")

installPackageList(libraries)

###

############# IMPORT DATA ###########################

###

current_directory=getwd()

data_folder_name="data"

dataset_directory=paste(current_directory,data_folder_name,sep="/")

library("affy")

library("AnnotationDbi")

#Download raw data

source("obtainRawData.R")

#obtainRawData("GSE28146",folder=data_folder_name)

#Load phenodata (from "phenodata.txt") and name columns

phdataset<- read.table("phenodata.txt", sep="\t")

colnames(phdataset)<-c("sampleNames","age","diseaseStage","title")

66

#Filter control and severe indexes

#(those which start by "sever" or "control" in "diseaseStage" column)

severeIndex<-grep("^severe",as.character(phdataset[,"diseaseStage"]))

ControlIndex<-grep("^control",as.character(phdataset[,"diseaseStage"]))

#Obtain the names of samples that are "severe" or "control"

dnames<-phdataset[c(severeIndex,ControlIndex),"sampleNames"]

dnames<-paste(dnames, ".CEL",sep = "")

#Load AffyBatch (load only .CEL of "severe" and "control")

setwd(dataset_directory)

AffyBatchObject = ReadAffy(filenames=dnames)

setwd(current_directory)

#Attach the phenodata

#(the original phenodata with sample names plus the phenodata of "phenodata.txt")

pData(AffyBatchObject)<-cbind(

pData(AffyBatchObject),

phdataset[c(severeIndex,ControlIndex),])

#Check the data has been correctly assigned to each sample

pData(AffyBatchObject)

###

#############PREPROCESS###############################

###

Check for microarrays potentially problematic

library("affyPLM")

AffyBatchPLM= fitPLM(AffyBatchObject)

#RLE plot

Mbox(AffyBatchPLM, main="RLE")

abline(h=0)

#NUSE plot

boxplot(AffyBatchPLM, main="NUSE")

67

abline(h=1)

###Check why normalization is needed

hist(AffyBatchObject)

library (simpleaffy)

#Execute qc function

QCstats = qc(AffyBatchObject)

#Display a plot of qc stats

plot(QCstats)

######Execute both preprocess and compare

library("affyPLM")

##MAS preprocess

AffyBatchMAS<-preprocess(AffyBatchObject,

background.method="MAS",

normalize.method="scaling"

)

##RMA preprocess

AffyBatchRMA<-preprocess(AffyBatchObject,

background.method="RMA.2",

normalize.method="quantile"

)

par(mfrow = c(1, 2))

hist(AffyBatchMAS)

title("Histogram with MAS")

hist(AffyBatchRMA)

title("Histogram with RMA")

#######Convert to ExpressionSet

ExpressionSet<- expresso(AffyBatchObject,

bgcorrect.method="rma",

68

normalize.method="quantiles",

pmcorrect.method="pmonly",

summary.method="medianpolish")

###Also it is possible to execute RMA directly:

ExpressionSet= rma(AffyBatchObject)

##

###################### FILTER GENES ########################

##

####Filter by variance####

library("genefilter")

ExpressionSet<-nsFilter(ExpressionSet,var.cutoff=0.6)$eset

####Filter by mean tests####

N=50 #Number of genes we want to keep. Keep 50 genes

varLabels(ExpressionSet)

#Two groups will be created depending on diseaseStage

Perform a mean difference hypothesis test

between two groups for each gene

RowTestTable = rowttests(ExpressionSet, "diseaseStage")

Obtain the genes with the lowest p-value

order=order(RowTestTable$p.value)[1:N]

features=featureNames(ExpressionSet)[order]

Display a plot volcano.

We highlight with a blue dot

the 50 points with the lowest pvalue

plot(RowTestTable$dm,

-log10(RowTestTable$p.value),

xlab="mean differences (in log-ratio)",

ylab=expression(-log[10]~(p-value)))

points(RowTestTable$dm[order],

-log10(RowTestTable$p.value)[order],

pch=18, col="blue")

69

#Order RowTestTable by p-value

RowTestTable<-RowTestTable[order(RowTestTable$p.value),]

Filter the ExpressionSet and keep only obtained

N genes (50 in this case)

ExpressionSet=ExpressionSet[features,]

##

################ CLASSIFICATION #####################

##

#####Scale ExpressionSet###

library("matrixStats")

M<-exprs(ExpressionSet) #Obtain the matrix of ExpressionSet

esetScaled<-(M- rowMedians(M))/rowIQRs(M) #Scale the ExpressionSet

exprs(ExpressionSet)<-esetScaled

library("MLInterfaces")

fvalidation<-xvalSpec("LOO")

f<-formula(paste("diseaseStage", "~ .")) #f is "diseaseStage ~ ."

KNN

ClassifierKNN = MLearn(f,

data=ExpressionSet,

.method=knnI(k=1),

trainInd=fvalidation)

Obtain confusion matrix

confusionMatrixKNN<-confuMat(ClassifierKNN)

Random forest

ClassifierRForest =MLearn(f,

70

data=ExpressionSet,

.method=randomForestI,

ntree=100,

trainInd=fvalidation)

Obtain confusion matrix

confusionMatrixRForest<-confuMat(ClassifierRForest)

Display confusion matrices###

confusionMatrixRForest<-

confusionMatrixRForest[c("control","severe stage"),

c("control","severe stage")]

confusionMatrixRForest

Display both confusion matrices

confusionMatrixKNN

confusionMatrixRForest

##

################## CLUSTERING #######################

##

#####Compute distance matrix #####

between samples, and also between probes

DistanceSamples=dist(t(exprs(ExpressionSet)),method="euclidean")

DistanceProbes=dist(exprs(ExpressionSet),method="euclidean")

######Clustering of samples#############

#We display PCA to have an intuition of

#the number of clusters of samples

PCAsamples<-prcomp(t(exprs(ExpressionSet)))

71

plot(PCAsamples$x [,1], PCAsamples$x [,2])

HierarchicalClustSamples=hclust(DistanceSamples,method="single")

plot(HierarchicalClustSamples)

######Clustering of probes##################

#We display PCA to have an intuition of the number of clusters

PCAprobes<-prcomp(exprs(ExpressionSet))

plot(PCAprobes$x [,1], PCAprobes$x [,2])

text(PCAprobes$x[,1],

PCAprobes$x[,2]-0.2,

labels=featureNames(ExpressionSet))

##Hierarchical clustering of probes####

HierarchicalClustProbes=hclust(DistanceProbes,method="single")

plot(HierarchicalClustProbes)

####K-means####

#We decide to set the number of clusters as 2

CLUSTER_NUMBER=2

kmeans=kmeans(exprs(ExpressionSet),centers=CLUSTER_NUMBER,nstart=5)

#Save in a list the name of genes of each cluster

ClusterGenes<-list()

for (i in 1:CLUSTER_NUMBER){

ClusterGenes[[i]]<-names(kmeans$cluster[kmeans$cluster==i])

}

ClusterGenes

72

##

############# GENE INFORMATION ######################

##

annotation(ExpressionSet)

library("hgu133plus2.db")

#Entrez genes data.frame

genesDB<-merge(

toTable(hgu133plus2ENTREZID),

toTable(hgu133plus2GENENAME))

In ’features’ is stored the 50 probes

with smallest p-value (ordered)

#Obtain 10 features

features10<-features[1:10]

#Find the probes in the table

genesDB[genesDB$probe_id %in% features10,]

73

	Introduction
	Molecular biology and microarrays
	Introduction to molecular biology
	Molecules involved in life
	DNA and RNA

	Microarray technology

	Overview of the steps in the analysis of microarray data
	The pipeline
	Gene Expression Omnibus
	Bioconductor
	Starting with Bioconductor
	Bioconductor objects for gene expression
	Finding gene information

	Preprocess techniques for raw signals
	Background correction
	RMA background correction
	MAS 5.0 background subtraction

	Normalization methods
	Scaling
	Quantile normalization
	Variance Stabilization and Normalization (VSN)

	Summarization
	Tukey Bi-Wight
	Medianpolish

	Probe correction

	Quality assessment of microarray data
	Quality assessment plots
	Probe intensities: density histograms and boxplot
	QCstats
	RLE and NUSE plots
	MA plots
	RNA degradation

	Methods for filtering genes from an ExpressionSet
	Filter genes by variance
	Non-Specific filter

	Filter genes by means of parametric statistical tests
	Mean difference t-test
	Multiple testing
	Moderated t-statistics

	Supervised and unsupervised learning techniques for the analysis of microarray data
	Preparing data
	Standardization
	Distance matrix
	Principal component analysis (PCA)

	Supervised learning (Classification)
	KNN
	Random forest

	Unsupervised learning (Clustering)
	K-means
	Hierarchical clustering

	Evaluation
	Cross validation (for classification)
	Silhouette (for clustering)

	A Case study on microarray data analysis for Alzheimer disease
	The data set
	Import data
	Preprocess data
	Filter genes
	Classification
	Clustering
	Obtaining information about genes

	R Code
	Helper functions
	Main script

