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This paper deals with the convergence of a remote iterative learning control system subject to data dropouts.The system is composed
by a set of discrete-timemultiple input-multiple output linearmodels, each onewith its corresponding actuator device and its sensor.
Each actuator applies the input signals vector to its correspondingmodel at the sampling instants and the sensormeasures the output
signals vector. The iterative learning law is processed in a controller located far away of the models so the control signals vector has
to be transmitted from the controller to the actuators through transmission channels. Such a law uses the measurements of each
model to generate the input vector to be applied to its subsequent model so the measurements of the models have to be transmitted
from the sensors to the controller. All transmissions are subject to failures which are described as a binary sequence taking value 1
or 0. A compensation dropout technique is used to replace the lost data in the transmission processes. The convergence to zero of
the errors between the output signals vector and a reference one is achieved as the number of models tends to infinity.

1. Introduction

Iterative learning control (ILC) strategies have been broadly
used in many industrial applications, for instance in man-
ufacturing, robotics, or chemical processes, to improve the
performance of systems which executes the same task multi-
ple times [1–5]. In the past years, such control strategies have
been also applied to improve the performance of closed-loop
discrete-time control systems where the controller device is
sited far away from the set composed by the process to be
controlled, its actuator, and its sensor. On the one hand, these
systems require the transmission of the control signals from
the controller to the actuator in order to apply the control
action to the process at each sampling time. On the other
hand, the output measurements have to be transmitted at
each sampling time from the sensor to the controller for syn-
thesizing the control signals by using the information of the
output of the process. Unfortunately, such transmissions are

susceptible to suffering eventual failures due to several causes
as punctual disconnections or intermittent data dropouts and
delays appearing as a consequence of the limited bandwidth
of the communication channels or by the presence of uncer-
tainties andnoises in such channels [6, 7].These failures cause
the deterioration of the performance in the control system
dynamics and potential instability. Such data dropouts and
delays happen mainly when the transmission channels are
used by several control systems working simultaneously and,
also, in cases of large interconnected systems which need to
have coupled information for control purposes [8, 9]. In such
a context, a possibility to circumvent such difficulties is to
consider several copies of the set composed by the process,
actuator, and sensor for applying the control action several
times at each sampling instant. Each one of these copies
refers to an iterative model. This alternative is interesting for
instance when the process to be controlled is implemented in
a computer, so it is available to dispose several copies of it,
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and the controller is developed either in another computer or
in an analog device sited far away from the process location
[10].

All the iterative models are running simultaneously
during the finite time interval for executing a certain task.
However, the control signals vector is applied to each iterative
model in a sequential way within each intersampling period.
Namely, the control vector corresponding to the 𝑘th iterative
model is synthesized after the controller has received the
measurements vector from the sensor corresponding to the
precedent (𝑘 − 1)th iterative model. Later, such a control
vector is transmitted to the actuator of the 𝑘th iterativemodel
to be applied to this model and finally its sensor sends the
output signals vector to the controller in order to synthesize
the control signals vector for the subsequent (𝑘 + 1)th
iterativemodel. Later such a cycle is repeated for the (𝑘 + 1)th
iterative model and so on. In this context, ILC strategies are
a good choice to synthesize the control signals vector to be
applied to the set of iterative models of the system since
they use the information about the output errors vector of
each iteration model to modify the input signals vector to be
applied to the subsequent one. In such a way, the accuracy
of the system can be improved if a reference model tracking
is required. Obviously, the number of iterative models has
to be appropriately chosen such that all the iterative models
are run within each intersampling time period. Furthermore,
the actuator of the 𝑘th iterative model cannot update the
control signals vector applied to such model in a realistic
situation, with presence of failures in the transmissions at
certain sampling instants, when there is a data dropout in
the communication channel from the controller to such an
actuator, which implies a deterioration in their performance.
The same undesirable result in the performance of the 𝑘th
iterative model occurs when there is a data dropout in the
transmission channel which links the sensor of the (𝑘 − 1)th
iterative model with the controller. In both situations, the
controller cannot use the measurements vector of the (𝑘 −

1)th iterative model to synthesize the control signals vector
to be applied to the 𝑘th iterative model. The performance
deterioration caused by such transmission failures can be
compensated by replacing the lost datum corresponding to
the 𝑘th iterative model, that is, the control signals vector of
𝑘th iterativemodel or themeasurements vector of the (𝑘 − 1)-
iterative model, by that corresponding to the precedent (𝑘 −

1)th iterative model, that is, the control vector of (𝑘 − 1)th
iterative model or the measurements vector of the (𝑘 − 2)-
iterative model, respectively [11–13].

This paper studies the output error convergence of an
ILC system, composed of a set of discrete linear and time-
invariant models with their actuators and sensors and a
remote control device, under potential data missing caused
by transmission failures. Such failures, those from the sensors
to the controller as well as those from the controller to the
actuators, are distributed as among the iterative models as
during the time interval which lasts a complete execution of
a task by the system.The study proposes a new data dropouts
compensation algorithm to guarantee the convergence to
zero of the tracking error as the number of iterative models
tends to infinity. Such an algorithm is an extension of those

proposed in [11, 12]. This paper studies the presence of data
dropouts in the transmission from the controller to the actuators
as well as from the sensors to the controller. In this sense,
the algorithm proposed in [11] only considers transmission
failures from the controller to the actuators while that in
[12] only considers failures in the transmissions from the
sensors to the controller. Moreover, the dropout compen-
sation technique proposed in such papers replaces the lost
datum of the 𝑘th iterative model by that corresponding to
the precedent iterative model at the same sampling instant.
As a consequence, such algorithms can give place to a
defective behaviour if two consecutive iterative models fail
at the same sampling time. In this sense, this paper considers
replacing the lost datum with that corresponding to one of
the precedent models. Concretely, the algorithm takes the
datum corresponding to the closest iterative model to the
current one without failure at such a sampling instant. In
this way, the behaviour of the system can be improved in
the eventual case of several consecutive transmission failures
in a set of consecutive iterative models. The main aim of
the paper is the proof of convergence of the ILC system with
such a dropout compensation algorithm. Also, a simulation
example illustrates the behaviour of the system with such an
algorithm and a comparison with the algorithm proposed in
[11] is provided.

2. Problem Statement

2.1. System Scheme with the Set of Iterative Models. Consider
an ILC system composed by a set of 𝑞 discrete-time linear
time-invariant models described by

𝑥𝑘 (𝑡 + 1) = 𝐴𝑥𝑘 (𝑡) + 𝐵�̃�𝑘 (𝑡) ;

𝑦𝑘 (𝑡) = 𝐶𝑥𝑘 (𝑡) + 𝐷�̃�𝑘 (𝑡) ,

(1)

where 𝑥𝑘(𝑡), �̃�𝑘(𝑡), and 𝑦𝑘(𝑡) are the state, control, and
output vectors of respective dimensions 𝑛, 𝑚, and 𝑝, with
max{𝑚, 𝑝} ≤ 𝑛, of each 𝑘th model. The matrices 𝐴, 𝐵,
𝐶, and 𝐷 are of orders being compatible with the respec-
tive dimensions of the above vectors. The subscript 𝑘 ∈

{0, 1, 2, . . . , 𝑞 − 1} and the discrete argument 𝑡 ∈ [0, 𝑇] ∩

N0 with N0 = N ∩ {0} for some integer 𝑇 (defining the
horizon size) run, respectively, for the set of models and
for the set of sampling instants (i.e., for the discrete time).
Each 𝑘th model is equipped with an actuator and a sensor.
The actuator receives from the remote controller a set of
control signals vectors at each sampling time instant, each one
through a different communication channel, and it chooses
one of them, namely, �̃�𝑘(𝑡), to be applied to its corresponding
model. This redundancy augments the probability that each
actuator receives an actualized control signals vector at each
sampling time when all of the transmissions are subject to
data dropouts due to the unreliability of the communications.
Each sensor measures the outputs vector of its corresponding
model and sends such measurements to the controller which
generates the control signals vectors to be transmitted to the
actuators. Also, such transmissions are subject to failures.

The potential presence of data dropouts in the transmis-
sion of signals, from the controller to the actuators as well
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Figure 1: Scheme of the control system.

as from the sensors to the controller, motivates the use of a
platform of several identical models described by (1) instead
of an only one. Although all of such models possess the
same dynamics, their time evolution will be different as a
consequence of the presence of dropouts and the algorithm
to compensate it. In this sense the ILC law calculates the
input signal vector to be applied to the 𝑘th iterative model
by modifying that corresponding to the precedent (𝑘 − 1)th
iterative model with an additional term being proportional
to the tracking errors vector associated to the later iterative
model. Such tracking errors are computed for each iterative
model by comparison of the iterative model outputs vector
with a reference signals vector being obtained fromadiscrete-
time dynamic model defined by

𝑥𝑑 (𝑡 + 1) = 𝐴𝑥𝑑 (𝑡) + 𝐵𝑢𝑑 (𝑡) ;

𝑦𝑑 (𝑡) = 𝐶𝑥𝑑 (𝑡) + 𝐷𝑢𝑑 (𝑡) ,

(2)

where 𝑥𝑑(𝑡), 𝑢𝑑(𝑡), and 𝑦𝑑(𝑡) are the reference model state,
input, and output vectors of respective dimensions 𝑛, 𝑚, and
𝑝. In order that the model is BIBO-stable, it is assumed
that the reference inputs vector 𝑢𝑑(𝑡) is bounded for all time
and that 𝐴 is a stable matrix; that is, all its eigenvalues are
inside the open unit complex circle.The scheme of the control
system is displayed in Figure 1.

The paper addresses the output convergence of the system
as the number of iterative models tends to infinity under the
assumptions that the actuator can miss data from the remote
controller while the controller can miss data from the output
sensors. The output convergence requires the compensation
of both types of data dropouts.The control scheme takes into
account the following features.

(a) The actuator associated to the 𝑘th iterative model
receives its corresponding control signals vector 𝑢𝑘(𝑡)
as well as those corresponding to its precedent itera-
tive models, namely, 𝑢𝑖(𝑡) for 𝑖 ∈ {0, 1, . . . , 𝑘−1}, from

the remote controller at the current sampling instant.
Each one of these vectors is transmitted through a
different communication channel from the controller
to the actuator. Such an actuator applies the control
vector 𝑢𝑘(𝑡) to such an iterative model if it has been
transmitted without failure. Otherwise, the control
vector corresponding to the closest precedent iterative
model to the current one which has been received
without transmission failure is used to replace the lost
one.

(b) The remote controller requires the output measure-
ments vector of each iterative model in order to
synthesize the control signals vector of the subse-
quent iterative model at the current sampling instant.
Namely, the controller needs the output measure-
ments vector 𝑦𝑘−1(𝑡) of the (𝑘 − 1)th iterative model
to calculate the control vector 𝑢𝑘(𝑡) corresponding to
the 𝑘th one. In this context, the controller can miss
data due to transmission failures from the sensors
providing such output measurements vectors. In such
a situation, the replacement of the missed output
data with alternative ones is required. In that case,
the controller replaces the lost output measurements
vector, namely, 𝑦𝑘−1(𝑡), by that corresponding to
the closest precedent iterative model whose output
measurements vector was appropriately transmitted,
namely, 𝑦𝑘−2(𝑡), if it has been transmitted from its
sensor to the controller without failure, otherwise,
𝑦𝑘−3(𝑡) and so on.

(c) All the iterative models potentially suffer from trans-
mission failures in their communication channels
from the controller to the actuator and/or from the
sensor to the controller. Such failures are distributed
within the time interval [0, 𝑇] for the execution of
a task. In this context, the scalar variables 𝛼𝑘,𝑗(𝑡)

and 𝛽𝑘(𝑡), for 𝑡 ∈ [0, 𝑇], 𝑘 ∈ {0, 1, 2, . . . , 𝑞 − 1},
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and 𝑗 ∈ {0, 1, . . . , 𝑘}, taking values 0 or 1, which
are mutually uncorrelated, are used to denote these
failures. The value 1 means that the corresponding
signal has been transmitted without failure while 0
implies the contrary.

(d) The data are missed or not from the sensors to the
controller and from the controller to the actuators
independently of each other.

2.2. Design of the Remote Controller for Compensating the
Presence of Dropouts. An ILC law is implemented in the
remote controller in order to compensate the data dropouts.
Such a control law is given by the following equations:

𝑢𝑘+1 (𝑡) = 𝑢𝑘 (𝑡) + Γ (𝑡) 𝑒𝑘 (𝑡) for 𝑘 ∈ {0, 1, 2, . . . , 𝑞 − 1} ,

(3)

where 𝑞 is the number of iterative models, 𝑢0(𝑡) ∈ R𝑚×1, for
all 𝑡 ∈ [0, 𝑇], is a free-design control signals vector to the first
iterative model in the ILC scheme, Γ(𝑡) ∈ R𝑚×𝑝 is a learning
gain matrix, and

𝑒𝑘 (𝑡) = 𝑉𝑘 (𝑡) 𝑒𝑘 (𝑡) + (

𝑘

∏

𝑖=0

(1 − 𝛽𝑘−𝑖 (𝑡))) 𝑒𝑘 (𝑡 − 1) ∈ R
𝑝×1

(4)

with

𝑒𝑘 (𝑡) = [𝑒
𝑇

𝑘
(𝑡) 𝑒
𝑇

𝑘−1
(𝑡) ⋅ ⋅ ⋅ 𝑒

𝑇

1
(𝑡) 𝑒
𝑇

0
(𝑡)]
𝑇

∈ R
𝑝(𝑘+1)×1

,

𝑉𝑘 (𝑡) = [𝑉𝑘,1 (𝑡) 𝑉𝑘,2 (𝑡) ⋅ ⋅ ⋅ 𝑉𝑘,𝑘 (𝑡) 𝑉𝑘,𝑘+1 (𝑡)]

∈ R
𝑝×𝑝(𝑘+1)

,

(5)

where 𝑉𝑘,1(𝑡) = 𝛽𝑘(𝑡)𝐼𝑝 and 𝑉𝑘,𝑗(𝑡) = (∏
𝑗−2

𝑖=0
(1 −

𝛽𝑘−𝑖(𝑡)))𝛽𝑘−𝑗+1(𝑡)𝐼𝑝, for 𝑗 ∈ {2, 3, . . . , 𝑘 + 1}, 𝐼𝑝 is the 𝑝th
order identity matrix, and 𝛽𝑖(𝑡), for 𝑖 ∈ {0, 1, . . . , 𝑘 − 1, 𝑘}, are
the scalar variables taking values 0 or 1, as it was described in
feature (c) of the previous subsection, which indicate whether
a transmission failure between the sensor of the 𝑖th iterative
model and the controller has occurred (𝛽𝑖(𝑡) = 0) or not
(𝛽𝑖(𝑡) = 1) at the sampling instant 𝑡. If the value of 𝛽𝑘(𝑡) is
1 then the first block of 𝑉𝑘(𝑡) is 𝑉𝑘,1(𝑡) = 𝐼𝑝 while the other
ones are zero. Itmeans that themeasurement signals vector of
the 𝑘th iterative model, namely, 𝑦𝑘(𝑡), has been appropriately
transmitted from the sensor of such a model to the controller
and then 𝑒𝑘(𝑡) = 𝑦𝑑(𝑡) − 𝑦𝑘(𝑡) ∈ R𝑝×1, which is the error
signals vector, is available to be used in the calculation of the
control signals vector of the subsequent (𝑘 + 1)th iterative
model. Otherwise, such a datum has not been received by the
controller and then the controller has to replace such a lost
datum by another one corresponding to one of the precedent
iterative models without transmission failure between its
sensor and the controller. From the construction of 𝑉𝑘(𝑡),
such an alternative measurements vector corresponds to the
closest precedent iterative model to the current one without

transmission failure. Note that, atmost, only one of the blocks
of 𝑉𝑘(𝑡) can be equal to 𝐼𝑝 at each sampling instant while the
other ones are zero. Also, if all of such blocks are zero then
the controller uses the error signals vector of the 𝑘th iterative
model at the previous sampling instant, that is, 𝑒𝑘(𝑡 − 1), for
generating the control signals vector 𝑢𝑘+1(𝑡).

The actuator associated with the 𝑘th iterative model can
receive several control vectors from the controller, each one
through a different transmission channel. They can be com-
pactly written as 𝑢𝑘(𝑡) = [𝑢

𝑇

𝑘
(𝑡) 𝑢
𝑇

𝑘−1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑇

1
(𝑡) 𝑢
𝑇

0
(𝑡)]
𝑇

for 𝑘 ∈ {0, 1, 2, . . . , 𝑞 − 1}. The actuator applies the control
given by

�̃�𝑘 (𝑡) = Δ 𝑘 (𝑡) 𝑢𝑘 (𝑡)

+ (

𝑘

∏

𝑖=0

(1 − 𝛼𝑘,𝑘−𝑖 (𝑡))) �̃�𝑘 (𝑡 − 1) ∈ R
𝑚×1

(6)

with

Δ 𝑘 (𝑡) = [Δ 𝑘,1 (𝑡) Δ 𝑘,2 (𝑡) ⋅ ⋅ ⋅ Δ 𝑘,𝑘 (𝑡) Δ 𝑘,𝑘+1 (𝑡)]

∈ R
𝑚×(𝑘+1)𝑚

,

(7)

where Δ 𝑘,1(𝑡) = 𝛼𝑘,𝑘(𝑡)𝐼𝑚, Δ 𝑘,𝑗(𝑡) = (∏
𝑗−2

𝑖=0
(1 −

𝛼𝑘,𝑘−𝑖(𝑡)))𝛼𝑘,𝑘−𝑗+1(𝑡)𝐼𝑚 for 𝑗 ∈ {2, 3, . . . , 𝑘 + 1}, 𝐼𝑚 is the 𝑚th
order identity matrix, and 𝛼𝑘,𝑖(𝑡), for 𝑖 ∈ {0, 1, . . . , 𝑘 − 1, 𝑘},
are scalar variables taking values 0 or 1 as those described in
feature (c) of the previous subsection. If the value of 𝛼𝑘,𝑖(𝑡) is
1 it means that the control vector 𝑢𝑖(𝑡) has been appropriately
transmitted from the controller to the actuator of the 𝑘th
iterative model at the current sampling instant. From the
construction of Δ 𝑘(𝑡) the control vector 𝑢𝑘(𝑡) is used as
input for the 𝑘th iterative model if it has been appropriately
transmitted from the controller to the actuator, that is, if
𝛼𝑘,𝑘(𝑡) = 1. Otherwise, such a datum has not been received
by the actuator and then the actuator has to apply to the 𝑘th
iterative model another input vector. From the construction
of Δ 𝑘(𝑡), such an input vector is the control vector of the
closest precedent iterative model to the current one without
transmission failure through the channel which carries such
a control vector from the controller to the actuator of the 𝑘th
iterative model.

Note that if the control signals vector corresponding
to the 𝑘th iterative model, namely, 𝑢𝑘(𝑡), is transmitted
without failure from the controller to the 𝑘th actuator and the
measurements vector of the (𝑘−1)th iterative model, namely,
𝑦𝑘−1(𝑡), is transmittedwithout failure from the (𝑘−1)th sensor
to the controller at the sampling instant 𝑡, that is, 𝛼𝑘,𝑘(𝑡) =

𝛽𝑘−1(𝑡) = 1, then one gets from (3)–(7) that the control
vector applied to the 𝑘th iterative model at such a sampling
instant is �̃�𝑘(𝑡) = 𝑢𝑘(𝑡) = 𝑢𝑘−1(𝑡) + Γ(𝑡)𝑒𝑘−1(𝑡). If the control
signal corresponding to the 𝑘th iterative model fails in the
transmission from the controller to the 𝑘th actuator but that
corresponding to the (𝑘 − 1)th one is well transmitted at the
sampling instant 𝑡, that is, 𝛼𝑘,𝑘(𝑡) = 0 and 𝛼𝑘,𝑘−1(𝑡) = 1,
then �̃�𝑘(𝑡) = 𝑢𝑘−1(𝑡) = 𝑢𝑘−2(𝑡) + Γ(𝑡)𝑒𝑘−2(𝑡) provided that
𝛽𝑘−2(𝑡) = 1; that is, the measurements vector corresponding
to the (𝑘 − 2)th iterative model is transmitted without failure
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from the (𝑘 − 2)th sensor to the controller. Otherwise, the
output measurement vector corresponding to the (𝑘 − 3)th
iterative model will be used if it is transmitted without
failure from the (𝑘 − 3)th sensor to the controller, that is, if
𝛽𝑘−3(𝑡) = 1 and so on. Finally, if all the transmissions from
the controller to the 𝑘th actuator fail simultaneously at the
sampling instant 𝑡 then �̃�𝑘(𝑡) = �̃�𝑘(𝑡 − 1); that is, the actu-
ator maintains the control vector of the previous sampling
instant.

Remark 1. From a practical viewpoint, the scheme of
Figure 1 can be simplified such that the actuator corre-
sponding to the 𝑘th iterative model potentially receives
a set of 𝑝 control signals vectors, namely, 𝑢𝑘(𝑡) =

[𝑢
𝑇

𝑘
(𝑡) 𝑢
𝑇

𝑘−1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑇

𝑘−𝑝+2
(𝑡) 𝑢
𝑇

𝑘−𝑝+1
(𝑡)]
𝑇, instead of 𝑢𝑘(𝑡) =

[𝑢
𝑇

𝑘
(𝑡) 𝑢
𝑇

𝑘−1
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑇

1
(𝑡) 𝑢
𝑇

0
(𝑡)]
𝑇 if 𝑘 ≥ 𝑝− 1. Otherwise, it

potentially receives the set of 𝑘 + 1 control signals vector as
it has been explained in the main text. Then, the number of
communication channels between the controller and all the
actuators of the ILC system is (𝑝(𝑝−1)/2)+(𝑞−𝑝+1)𝑝while
there are 𝑞 channels for the transmissions from the sensors to
the controller. Thus, the total number of transmissions in the
systemwithin the time period 𝑡 ∈ [0, 𝑇] is 𝑛𝑡 = ((𝑝(𝑝−1)/2)+

(𝑞 − 𝑝 + 1)𝑝 + 𝑞)(𝑇 + 1).

3. Convergence Analysis of the Output Errors

The following result is concerned with the convergence of the
output errors 𝑒𝑘(𝑡) to zero as 𝑘 tends to infinity for all 𝑡 ∈

[0, 𝑇].

Theorem 2. Assume the following.

(a) 𝑥𝑘(0) = 𝑥𝑑(0) for all 𝑘 ∈ {0, 1, 2, . . . , 𝑞 − 1}.

(b) At least one of the scalar variables 𝛼𝑘,𝑖(𝑡) and at least
one of those 𝛽𝑗(𝑡), for any 𝑖, 𝑗 ∈ {𝑘, 𝑘−1, . . . , 𝑘−𝑝+1},
are 1 at each sampling time instant for 𝑘 ≥ 𝑝 − 1 with
𝑝 being a large enough integer number.

(c) Each 𝑘th iterative model, for 𝑘 ∈ {0, 1, 2, . . . , 𝑞 −

1}, suffers at most one dropout in its actuator at the
sampling instant 𝑡𝛼,𝑘 ∈ [0, 𝑇] because of 𝛼𝑘,𝑘(𝑡𝛼,𝑘) = 0

and another one in its sensor at 𝑡𝛽,𝑘 ∈ [0, 𝑇]; that is,
𝛽𝑘(𝑡𝛽,𝑘) = 0.

Then, the following properties hold.

(i) 𝛿𝑢𝑘(𝑡) ≜ 𝑢𝑑(𝑡) − 𝑢𝑘(𝑡) → 0 as 𝑘 → ∞ ∀𝑡 ∈ [0, 𝑇]

provided that Γ(𝑡) is chosen such that ‖𝐼𝑚 −Γ(𝑡)𝐷‖ < 1

and ‖Γ(𝑡)𝐷‖ < 1/3 ∀𝑡 ∈ [0, 𝑇].

(ii) 𝑒𝑘(𝑡) → 0 as 𝑘 → ∞ for all 𝑡 ∈ [0, 𝑇].

Proof. (i) From (1) and (2), one obtains that

𝛿𝑥𝑘 (𝑡) ≜ 𝑥𝑑 (𝑡) − 𝑥𝑘 (𝑡)

= 𝐴𝛿𝑥𝑘 (𝑡 − 1)

+ 𝐵 (𝑢𝑑 (𝑡 − 1) − Δ 𝑘 (𝑡 − 1) 𝑢𝑑,𝑘 (𝑡 − 1))

+ 𝐵Δ 𝑘 (𝑡 − 1) 𝛿𝑢𝑘 (𝑡 − 1)

− 𝐵𝑔𝛼,𝑘 (𝑡 − 1) �̃�𝑘 (𝑡 − 2)

= 𝐴𝛿𝑥𝑘 (𝑡 − 1) + 𝑔𝛼,𝑘 (𝑡 − 1) 𝑢𝑑 (𝑡 − 1)

+ 𝐵Δ 𝑘 (𝑡 − 1) 𝛿𝑢𝑘 (𝑡 − 1)

− 𝐵𝑔𝛼,𝑘 (𝑡 − 1) �̃�𝑘 (𝑡 − 2) ,

(8)

where 𝑔𝛼,𝑘(𝑡) = ∏
𝑘

𝑖=0
(1 − 𝛼𝑘,𝑖(𝑡)) and 𝛿𝑢𝑘(𝑡) ≜ 𝑢𝑑,𝑘(𝑡) −

𝑢𝑘(𝑡) = [𝛿𝑢
𝑇

𝑘
(𝑡) 𝛿𝑢

𝑇

𝑘−1
(𝑡) ⋅ ⋅ ⋅ 𝛿𝑢

𝑇

1
(𝑡) 𝛿𝑢

𝑇

0
(𝑡)]
𝑇 with 𝑢𝑑,𝑘(𝑡) =

[𝑢
𝑇

𝑑
(𝑡) 𝑢
𝑇

𝑑
(𝑡) ⋅ ⋅ ⋅ 𝑢

𝑇

𝑑
(𝑡) 𝑢
𝑇

𝑑
(𝑡)]
𝑇

∈ R𝑚(𝑘+1)×1. Moreover, the
fact that Δ 𝑘(𝑡 − 1)𝑢𝑑,𝑘(𝑡 − 1) = 0 if 𝑔𝛼,𝑘(𝑡) = 1 and Δ 𝑘(𝑡 −

1)𝑢𝑑,𝑘(𝑡 − 1) = 𝑢𝑑(𝑡 − 1) if 𝑔𝛼,𝑘(𝑡) = 0 has been used.
In this sense, note that 𝑔𝛼,𝑘(𝑡) only takes two values, namely,
𝑔𝛼,𝑘(𝑡) = 1 if all the transmissions from the controller to the
actuator of the 𝑘th iterative model fail at the sampling instant
𝑡 and otherwise; that is, if at least one of such transmissions
is successful then 𝑔𝛼,𝑘(𝑡) = 0. By proceeding recursively from
(8),

𝛿𝑥𝑘 (𝑡)

=

𝑡−1

∑

𝑗=0

𝐴
𝑡−1−𝑗

𝐵

× [Δ 𝑘 (𝑗) 𝛿𝑢𝑘 (𝑗) + 𝑔𝛼,𝑘 (𝑗) (𝑢𝑑 (𝑗) − �̃�𝑘 (𝑗 − 1))] ,

(9)

where the fact that 𝛿𝑥𝑘(0) = 0𝑛×1 ∈ R𝑛×1 has been used. By
using (9), one obtains

𝑒𝑘 (𝑡)

= 𝑦𝑑 (𝑡) − 𝑦𝑘 (𝑡)

= 𝐶

𝑡−1

∑

𝑗=0

𝐴
𝑡−1−𝑗

𝐵

× [Δ 𝑘 (𝑗) 𝛿𝑢𝑘 (𝑗) + 𝑔𝛼,𝑘 (𝑗) (𝑢𝑑 (𝑗) − �̃�𝑘 (𝑗 − 1))]

+ 𝐷 [Δ 𝑘 (𝑡) 𝛿𝑢𝑘 (𝑡) + 𝑔𝛼,𝑘 (𝑡) (𝑢𝑑 (𝑡) − �̃�𝑘 (𝑡 − 1))]

= 𝐶

𝑡−1

∑

𝑗=0

𝐴
𝑡−1−𝑗

𝐵
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× [

𝑘

∑

𝑖=0

Δ 𝑘,𝑘−𝑖+1 (𝑗) 𝛿𝑢𝑖 (𝑗) + 𝑔𝛼,𝑘 (𝑗) (𝑢𝑑 (𝑗) − �̃�𝑘 (𝑗 − 1))]

+ 𝐷[

𝑘

∑

𝑖=0

Δ 𝑘,𝑘−𝑖+1 (𝑡) 𝛿𝑢𝑖 (𝑡) + 𝑔𝛼,𝑘 (𝑡) (𝑢𝑑 (𝑡) − �̃�𝑘 (𝑡 − 1))] .

(10)

From (3), (4), and (10), it follows that

𝛿𝑢𝑘+1 (𝑡) = 𝛿𝑢𝑘 (𝑡) − Γ (𝑡) 𝑉𝑘 (𝑡) 𝑒𝑘 (𝑡)

− Γ (𝑡) 𝑔𝛽,𝑘 (𝑡) 𝑒𝑘 (𝑡 − 1)

= 𝛿𝑢𝑘 (𝑡) − Γ (𝑡)

𝑘

∑

𝑖=0

𝑉𝑘,𝑘−𝑖+1 (𝑡) 𝑒𝑖 (𝑡)

− Γ (𝑡) 𝑔𝛽,𝑘 (𝑡) 𝑒𝑘 (𝑡 − 1) ,

(11)

where 𝑔𝛽,𝑘(𝑡) = ∏
𝑘

𝑖=0
(1 − 𝛽𝑘−𝑖(𝑡)). From (10) and (11), one

obtains that

𝛿𝑢𝑘+1 (𝑡)

= 𝛿𝑢𝑘 (𝑡) − Γ (𝑡)

𝑘

∑

𝑖=𝑘−𝑝+1

𝑉𝑘,𝑘−𝑖+1 (𝑡) 𝑒𝑖 (𝑡)

= 𝛿𝑢𝑘 (𝑡) − Γ (𝑡)

×

𝑘

∑

𝑖=𝑘−𝑝+1

𝑉𝑘,𝑘−𝑖+1 (𝑡) 𝐷(

𝑖

∑

ℓ=𝑖−𝑝+1

Δ 𝑖,𝑖−ℓ+1 (𝑡) 𝛿𝑢ℓ (𝑡))

− Γ (𝑡)

𝑘

∑

𝑖=𝑘−𝑝+1

𝑉𝑘,𝑘−𝑖+1 (𝑡) 𝐶

× (

𝑡−1

∑

𝑗=0

𝐴
𝑡−1−𝑗

𝐵

𝑖

∑

ℓ=𝑖−𝑝+1

Δ 𝑖,𝑖−ℓ+1 (𝑗) 𝛿𝑢ℓ (𝑗))

(12)

for any 𝑘 ≥ 𝑝 − 1, where the facts that 𝑔𝛼,𝑘(𝑗) = 0, for all
𝑗 ∈ {0, 1, . . . , 𝑡}, and 𝑔𝛽,𝑘(𝑡) = 0 in view of assumption (b),
and also

𝑘

∑

𝑖=0

𝑘

∏

𝑗=𝑖+1

(1 − 𝛼𝑘,𝑗 (𝑡)) 𝛼𝑘,𝑖 (𝑡) 𝛿𝑢𝑖 (𝑡)

=

𝑘

∑

𝑖=𝑘−𝑝+1

𝑘

∏

𝑗=𝑖+1

(1 − 𝛼𝑘,𝑗 (𝑡)) 𝛼𝑘,𝑖 (𝑡) 𝛿𝑢𝑖 (𝑡) ,

𝑘

∑

𝑖=0

𝑘

∏

𝑗=𝑖+1

(1 − 𝛽𝑗 (𝑡)) 𝛽𝑖 (𝑡) 𝑒𝑖 (𝑡)

=

𝑘

∑

𝑖=𝑘−𝑝+1

𝑘

∏

𝑗=𝑖+1

(1 − 𝛽𝑗 (𝑡)) 𝛽𝑖 (𝑡) 𝑒𝑖 (𝑡)

(13)

for all 𝑘 ≥ 𝑝 − 1 have been applied since ∑
𝑘−𝑝

𝑖=0
∏
𝑘

𝑗=𝑖+1
(1 −

𝛼𝑘,𝑗(𝑡))𝛼𝑘,𝑖(𝑡)𝛿𝑢𝑖(𝑡) = 0 and∑
𝑘−𝑝

𝑖=0
∏
𝑘

𝑗=𝑖+1
(1−𝛽𝑗(𝑡))𝛽𝑖(𝑡)𝑒𝑖(𝑡) =

0 in view of such an assumption. Moreover, it follows that

𝛿𝑢𝑘+1 (𝑡)

= (𝐼𝑚 − 𝛽𝑘 (𝑡) 𝛼𝑘,𝑘 (𝑡) Γ (𝑡)𝐷) 𝛿𝑢𝑘 (𝑡)

− Γ (𝑡) 𝐶𝛽𝑘 (𝑡)

𝑡−1

∑

𝑗=0

𝐴
𝑡−1−𝑗

𝐵𝛼𝑘,𝑘 (𝑗) 𝛿𝑢𝑘 (𝑗)

− Γ (𝑡) 𝛽𝑘 (𝑡) 𝐷

𝑘−1

∑

𝑖=𝑘−𝑝+1

Δ 𝑘,𝑘−𝑖+1 (𝑡) 𝛿𝑢𝑖 (𝑡)

− Γ (𝑡)

𝑘−1

∑

𝑖=𝑘−𝑝+1

𝑉𝑘,𝑘−𝑖+1 (𝑡) 𝐷

(14)

× (

𝑖

∑

ℓ=𝑖−𝑝+1

Δ 𝑖,𝑖−ℓ+1 (𝑡) 𝛿𝑢ℓ (𝑡))

− Γ (𝑡) 𝛽𝑘 (𝑡) 𝐶(

𝑡−1

∑

𝑗=0

𝐴
𝑡−1−𝑗

𝐵

𝑘−1

∑

𝑖=𝑘−𝑝+1

Δ 𝑘,𝑘−𝑖+1 (𝑗) 𝛿𝑢𝑖 (𝑗))

− Γ (𝑡)

𝑘−1

∑

𝑖=𝑘−𝑝+1

𝑉𝑘,𝑘−𝑖+1 (𝑡) 𝐶

× (

𝑡−1

∑

𝑗=0

𝐴
𝑡−1−𝑗

𝐵

𝑖

∑

ℓ=𝑖−𝑝+1

Δ 𝑖,𝑖−ℓ+1 (𝑗) 𝛿𝑢ℓ (𝑗)) ,

(15)

where the facts that Δ 𝑘,1(𝑡) = 𝛼𝑘,𝑘(𝑡)𝐼𝑚 and 𝑉𝑘,1(𝑡) = 𝛽𝑘(𝑡)𝐼𝑝
have been used. Such an expression holds for all 𝑡 ∈ [0, 𝑇] so
that one can obtain by taking norms in (14)

𝛿𝑈𝑘+1 ≤ 𝑀𝑘𝛿𝑈𝑘 +

2𝑝−2

∑

𝑖=1

𝑁𝑘,𝑘−𝑖𝛿𝑈𝑘−𝑖, (16)

where 𝛿𝑈𝑖 = [‖𝛿𝑢𝑖(𝑇)‖ ‖𝛿𝑢𝑖(𝑇−1)‖ ⋅ ⋅ ⋅ ‖𝛿𝑢𝑖(1)‖ ‖𝛿𝑢𝑖(0)‖]
𝑇

for 𝑖 ∈ {0, 1, 2, . . . , 𝑘 + 1} and
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𝑀𝑘 =

[
[
[
[
[
[

[

𝐼𝑚 − 𝑚𝑘,𝑘 (𝑇, 𝑇) Γ (𝑇)𝐷
 𝑚𝑘,𝑘 (𝑇, 𝑇 − 1) 𝜌 (𝑇, 0) ⋅ ⋅ ⋅ 𝑚𝑘,𝑘 (𝑇, 0) 𝜌 (𝑇, 𝑇 − 1)

0
𝐼𝑚 − 𝑚𝑘,𝑘 (𝑇 − 1, 𝑇 − 1) Γ (𝑇 − 1)𝐷

 ⋅ ⋅ ⋅ 𝑚𝑘,𝑘 (𝑇 − 1, 0) 𝜌 (𝑇 − 1, 𝑇 − 2)

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 𝑚𝑘,𝑘 (1, 0) 𝜌 (1, 0)

0 0 ⋅ ⋅ ⋅
𝐼𝑚 − 𝑚𝑘,𝑘 (0, 0) Γ (0)𝐷



]
]
]
]
]
]

]

,

𝑁𝑘,𝑘−𝑖 =

[
[
[
[
[
[

[

𝑛𝑘,𝑘−𝑖 (𝑇, 𝑇) ‖Γ (𝑇)𝐷‖ 𝑛𝑘,𝑘−𝑖 (𝑇, 𝑇 − 1) 𝜌 (𝑇, 0) ⋅ ⋅ ⋅ 𝑛𝑘,𝑘−𝑖 (𝑇, 0) 𝜌 (𝑇, 𝑇 − 1)

0 𝑛𝑘,𝑘−𝑖 (𝑇 − 1, 𝑇 − 1) ‖Γ (𝑇 − 1)𝐷‖ ⋅ ⋅ ⋅ 𝑛𝑘,𝑘−𝑖 (𝑇 − 1, 0) 𝜌 (𝑇 − 1, 𝑇 − 2)

.

.

.
.
.
. d

.

.

.

0 0 ⋅ ⋅ ⋅ 𝑛𝑘,𝑘−𝑖 (1, 0) 𝜌 (1, 0)

0 0 ⋅ ⋅ ⋅ 𝑛𝑘,𝑘−𝑖 (0, 0) ‖Γ (0)𝐷‖

]
]
]
]
]
]

]

(17)

with

𝜌 (𝜏1, 𝜏2) =
Γ (𝜏1) 𝐶𝐴

𝜏
2𝐵

 ;

𝑚𝑘,𝑘 (𝜏1, 𝜏2) = 𝛽𝑘 (𝜏1) 𝛼𝑘,𝑘 (𝜏2) ,

𝑛𝑘,𝑘−𝑖 (𝜏1, 𝜏2)

=

{{{{{{{{{{

{{{{{{{{{{

{

𝑖

∑

ℓ=0

𝑉𝑘,ℓ+1 (𝜏1) Δ 𝑘−ℓ,𝑖+1−ℓ (𝜏2)

for 𝑖 ∈ {1, 2, . . . , 𝑝 − 1}

𝑝−1

∑

ℓ=𝑖−𝑝+1

𝑉𝑘,ℓ+1 (𝜏1) Δ 𝑘−ℓ,𝑖+1−ℓ (𝜏2)

for 𝑖 ∈ {𝑝, 𝑝 + 1, . . . , 2𝑝 − 2} .

(18)

Note that in the ideal case of absence of dropouts for all the
iterative models and for all 𝑡 ∈ [0, 𝑇] one obtains, from (16),
that

𝛿𝑈𝑘+1 ≤ 𝑀𝑘𝛿𝑈𝑘 ≤ 𝑀𝑘𝑀𝑘−1𝛿𝑈𝑘−1

≤ ⋅ ⋅ ⋅ ≤ (

𝑘

∏

𝑖=0

𝑀𝑖)𝛿𝑈0 = 𝑄
𝑘+1

𝛿𝑈0

(19)

since

𝑀𝑖 = 𝑄 =

[
[
[
[
[
[

[

𝐼𝑚 − Γ (𝑇)𝐷
 𝜌 (𝑇, 0) ⋅ ⋅ ⋅ 𝜌 (𝑇, 𝑇 − 2) 𝜌 (𝑇, 𝑇 − 1)

0
𝐼𝑚 − Γ (𝑇 − 1)𝐷

 ⋅ ⋅ ⋅ 𝜌 (𝑇 − 1, 𝑇 − 3) 𝜌 (𝑇 − 1, 𝑇 − 2)

.

.

.
.
.
. d

.

.

.
.
.
.

0 0 ⋅ ⋅ ⋅
𝐼𝑚 − Γ (1)𝐷

 𝜌 (1, 0)

0 0 ⋅ ⋅ ⋅ 0
𝐼𝑚 − Γ (0)𝐷



]
]
]
]
]
]

]

(20)

for all 𝑖 ∈ {0, 1, 2, . . . , 𝑘}, and all the matrices 𝑁𝑘,𝑘−𝑖 are zero
for all 𝑖 ∈ {0, 1, 2, . . . , 𝑘−1}. In such a situation, ifΓ(𝑡) is chosen
such that ‖𝐼𝑚 − Γ(𝑡)𝐷‖ < 1 for all 𝑡 ∈ [0, 𝑇], then 𝛿𝑈𝑘+1 →

0 as 𝑘 → ∞ since the spectral radius of 𝑄 is smaller
than 1. The following facts have to be taken into account
when there are dropouts distributed during the time interval
[0, 𝑇].

Fact 1. When a dropout occurs in the actuator of the 𝑘th
iterative model at the sampling instant 𝑡𝛼,𝑘 ∈ [0, 𝑇] because
of 𝛼𝑘,𝑘(𝑡𝛼,𝑘) = 0, then the entries in the column 𝑇 + 1 − 𝑡𝛼,𝑘
of 𝑀𝑘 are zero except that in the main diagonal which is 1.
Furthermore, the entries in the column 𝑇 + 1 − 𝑡𝛼,𝑘 of one,
and only one, of the matrices 𝑁𝑘,𝑘−𝑖, for 𝑖 ∈ {1, 2, . . . , 2𝑝 − 2},
namely, 𝑁𝑘,𝑘−ℓ

𝛼,𝑘

, are the components of the vector:

[
𝜌(𝑇 − 𝑡𝛼,𝑘, 𝑇 − 1 − 𝑡𝛼,𝑘) 𝜌(𝑇 − 1 − 𝑡𝛼,𝑘, 𝑇 − 2 − 𝑡𝛼,𝑘) ⋅ ⋅ ⋅ 𝜌(1, 0)

Γ(𝑡𝛼,𝑘)𝐷
 0 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑡
𝛼,𝑘

]

𝑇

. (21)
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The rest of the columns of𝑁𝑘,𝑘−ℓ
𝛼,𝑘

are zero and the rest of the
matrices 𝑁𝑘,𝑘−𝑖 with 𝑖 ̸= ℓ𝛼,𝑘 are zero.

Fact 2. When there is a dropout in the sensor of the
𝑘thiterative model at the sampling instant 𝑡𝛽,𝑘 ∈ [0, 𝑇]

because of 𝛽𝑘(𝑡𝛽,𝑘) = 0, then the entries in the row 𝑇+1− 𝑡𝛽,𝑘
of 𝑀𝑘 are zero except that in the main diagonal which is 1.
Furthermore, the entries in the row𝑇+1−𝑡𝛽,𝑘 of one, and only
one, of the matrices 𝑁𝑘,𝑘−𝑖, for 𝑖 ∈ {1, 2, . . . , 2𝑝 − 2}, namely,
𝑁𝑘,𝑘−ℓ

𝛽,𝑘

, are the components of the vector:

[
0 0 ⋅ ⋅ ⋅ 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑇−𝑡
𝛽,𝑘


Γ (𝑡𝛽,𝑘)𝐷


𝜌 (𝑡𝛽,𝑘, 0) ⋅ ⋅ ⋅ 𝜌 (𝑡𝛽,𝑘, 𝑡𝛽,𝑘 − 2) 𝜌 (𝑡𝛽,𝑘, 𝑡𝛽,𝑘 − 1)

] . (22)

The rest of the rows of 𝑁𝑘,𝑘−ℓ
𝛽,𝑘

are zero and the rest of the
matrices 𝑁𝑘,𝑘−𝑖 with 𝑖 ̸= ℓ𝛽,𝑘 are zero.

Fact 3. If there are dropouts in the 𝑘th iterative model at
several sampling instants, then each one of them implies a
change in one of the matrix 𝑁𝑘,𝑘−𝑖 following the previous
Facts 1 and 2 depending on the occurrence of the failure in
the actuator or in the sensor.

If there is a dropout in the actuator of the 𝑘th iterative
model at the sampling instant 𝑡𝛼,𝑘 because of 𝛼𝑘,𝑘(𝑡𝛼,𝑘) = 0

and a dropout in its sensor at the sampling instant 𝑡𝛽,𝑘, that
is, 𝛽𝑘(𝑡𝛽,𝑘) = 0, then it follows from (16) that

𝛿𝑈𝑘+1 ≤ 𝑀𝑘𝛿𝑈𝑘 + 𝑁𝑘,𝑘−ℓ
𝛼,𝑘

𝛿𝑈𝑘−ℓ
𝛼,𝑘

+ 𝑁𝑘,𝑘−ℓ
𝛽,𝑘

𝛿𝑈𝑘−ℓ
𝛽,𝑘

(23)

for one ℓ𝛼,𝑘 ∈ {1, 2, . . . , 2𝑝 − 2} and one ℓ𝛽,𝑘 ∈ {1, 2, . . . , 2𝑝 −

2}, where 𝑀𝑘, 𝑁𝑘,𝑘−ℓ
𝛼,𝑘

and 𝑁𝑘,𝑘−ℓ
𝛽,𝑘

are built as it has been
pointed out in the above Facts 1 and 2. In the case that ℓ𝛼,𝑘 =
ℓ𝛽,𝑘, the matrix𝑁𝑘,𝑘−ℓ

𝛼,𝑘

+𝑁𝑘,𝑘−ℓ
𝛽,𝑘

has the column 𝑇+1− 𝑡𝛼,𝑘

and the row 𝑇 + 1 − 𝑡𝛽,𝑘 as it is described in Facts 1 and 2,
respectively, and the rest of its entries are zero. By applying
again the recursion (16) in (23), one obtains that

𝛿𝑈𝑘+1 ≤ 𝑀𝑘𝑀𝑘−1𝛿𝑈𝑘−1

+ 𝑀𝑘𝑁𝑘−1,𝑘−1−ℓ
𝛼,𝑘−1

𝛿𝑈𝑘−1−ℓ
𝛼,𝑘−1

+ 𝑀𝑘𝑁𝑘−1,𝑘−1−ℓ
𝛽,𝑘−1

𝛿𝑈𝑘−1−ℓ
𝛽,𝑘−1

+ 𝑁𝑘,𝑘−ℓ
𝛼,𝑘

𝛿𝑈𝑘−ℓ
𝛼,𝑘

+ 𝑁𝑘,𝑘−ℓ
𝛽,𝑘

𝛿𝑈𝑘−ℓ
𝛽,𝑘

(24)

for one ℓ𝛼,𝑘−1 ∈ {1, 2, . . . , 2𝑝 − 2} and one ℓ𝛽,𝑘−1 ∈

{1, 2, . . . , 2𝑝 − 2}, if the actuator of the (𝑘−1)th iterativemodel
fails at the sampling instant 𝑡𝛼,𝑘−1 because of 𝛼𝑘−1,𝑘−1(𝑡𝛼,𝑘−1) =

0 and its sensor fails at the sampling instant 𝑡𝛽,𝑘−1; that is,
𝛽𝑘−1(𝑡𝛽,𝑘−1) = 0. By analyzing the entries of themain diagonal

of the matrices in the five terms of the right hand side of (24),
it follows that

Max {Diag (𝑀𝑘𝑀𝑘−1)}

=

{{{{{{

{{{{{{

{

1 if {𝑡𝛼,𝑘 = 𝑡𝛼,𝑘−1 or
𝑡𝛼,𝑘 = 𝑡𝛽,𝑘−1 or

𝑡𝛽,𝑘 = 𝑡𝛼,𝑘−1 or 𝑡𝛽,𝑘 = 𝑡𝛽,𝑘−1}

𝜇1 < 1 otherwise,

Max {Diag (𝑀𝑘𝑁𝑘−1,𝑘−1−ℓ
𝛼,𝑘−1

)}

=
{

{

{

0 if 𝑡𝛼,𝑘 ̸= 𝑡𝛼,𝑘−1

Γ (𝑡𝛼,𝑘)𝐷
 < 1 otherwise,

Max {Diag (𝑀𝑘𝑁𝑘−1,𝑘−1−ℓ
𝛽,𝑘−1

)}

= {
0 if 𝑡𝛽,𝑘 ̸= 𝑡𝛽,𝑘−1

Γ (𝑡𝛽,𝑘)𝐷


< 1 otherwise,

Max {Diag (𝑁𝑘,𝑘−ℓ
𝛼,𝑘

)} =
Γ (𝑡𝛼,𝑘)𝐷

 < 1;

Max {Diag (𝑁𝑘,𝑘−ℓ
𝛽,𝑘

)} =

Γ (𝑡𝛽,𝑘)𝐷


< 1,

(25)

where the fact that Γ(𝑡) is such that ‖𝐼𝑚 − Γ(𝑡)𝐷‖ < 1 ∀𝑡 ∈

[0, 𝑇] has been taken into account. Moreover,
𝜇1 = Max{Max𝑡∈𝐼

𝑘
∪𝐼
𝑘−1

{‖𝐼𝑚 −Γ(𝑡)𝐷‖}, Max𝑡∈[0,𝑇]/(𝐼
𝑘
∪𝐼
𝑘−1
){‖𝐼𝑚−

Γ(𝑡)𝐷‖
2
}} < 1 has been used with 𝐼𝑘 = {𝑡𝛼,𝑘, 𝑡𝛽,𝑘}, that is,

the set of sampling instants at which the 𝑘th iterative model
suffers a dropout in its actuator or in its sensor. Note that 𝜇1 =
Max{Max𝑡∈𝐼

𝑘
∪𝐼
𝑘−1

{‖𝐼𝑚−Γ(𝑡)𝐷‖},Max𝑡∈[0,𝑇]{‖𝐼𝑚 − Γ(𝑡)𝐷‖
2
}} ≤

𝜇 with 𝜇 = Max𝑡∈[0,𝑇]{‖𝐼𝑚 − Γ(𝑡)𝐷‖} < 1. Now, the recursion
(16) in (24) is used. Four situations can occur, namely, (s1)
ℓ𝛼,𝑘 ̸= 1 and ℓ𝛽,𝑘 ̸= 1, (s2) ℓ𝛼,𝑘 = 1 and ℓ𝛽,𝑘 ̸= 1, (s3) ℓ𝛼,𝑘 ̸= 1
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but ℓ𝛽,𝑘 = 1, and (s4) ℓ𝛼,𝑘 = ℓ𝛽,𝑘 = 1. In the situation (s1), one
obtains that

𝛿𝑈𝑘+1 ≤ 𝑀𝑘𝑀𝑘−1𝑀𝑘−2𝛿𝑈𝑘−2

+ 𝑀𝑘𝑀𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛼,𝑘−2

𝛿𝑈𝑘−2−ℓ
𝛼,𝑘−2

+ 𝑀𝑘𝑀𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛽,𝑘−2

𝛿𝑈𝑘−2−ℓ
𝛽,𝑘−2

+ 𝑀𝑘𝑁𝑘−1,𝑘−1−ℓ
𝛼,𝑘−1

𝛿𝑈𝑘−1−ℓ
𝛼,𝑘−1

+ 𝑀𝑘𝑁𝑘−1,𝑘−1−ℓ
𝛽,𝑘−1

𝛿𝑈𝑘−1−ℓ
𝛽,𝑘−1

+ 𝑁𝑘,𝑘−ℓ
𝛼,𝑘

𝛿𝑈𝑘−ℓ
𝛼,𝑘

+ 𝑁𝑘,𝑘−ℓ
𝛽,𝑘

𝛿𝑈𝑘−ℓ
𝛽,𝑘

(26)

if the actuator of the (𝑘 − 2)th iterative model fails at the
sampling instant 𝑡𝛼,𝑘−2 because of 𝛼𝑘−2,𝑘−2(𝑡𝛼,𝑘−2) = 0 and its
sensor fails at the sampling instant 𝑡𝛽,𝑘−2; that is,𝛽𝑘−2(𝑡𝛽,𝑘−2) =

0. If 𝑡𝛼,𝑘 = 𝑡𝛼,𝑘−1 or 𝑡𝛼,𝑘 = 𝑡𝛽,𝑘−1 or 𝑡𝛽,𝑘 = 𝑡𝛼,𝑘−1 or 𝑡𝛽,𝑘 = 𝑡𝛽,𝑘−1,
then the entries of the main diagonal of the matrices in the
five terms of the right hand side of (26) fulfill the fact that

Max {Diag (𝑀𝑘𝑀𝑘−1𝑀𝑘−2)}

=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

1 if {𝑡𝛼,𝑘−2 = 𝑡𝛼,𝑘 = 𝑡𝛼,𝑘−1 or
𝑡𝛼,𝑘−2 = 𝑡𝛼,𝑘 = 𝑡𝛽,𝑘−1 or
𝑡𝛼,𝑘−2 = 𝑡𝛽,𝑘 = 𝑡𝛼,𝑘−1 or
𝑡𝛼,𝑘−2 = 𝑡𝛽,𝑘 = 𝑡𝛽,𝑘−1 or
𝑡𝛽,𝑘−2 = 𝑡𝛼,𝑘 = 𝑡𝛼,𝑘−1 or
𝑡𝛽,𝑘−2 = 𝑡𝛼,𝑘 = 𝑡𝛽,𝑘−1 or
𝑡𝛽,𝑘−2 = 𝑡𝛽,𝑘 = 𝑡𝛼,𝑘−1 or
𝑡𝛽,𝑘−2 = 𝑡𝛽,𝑘 = 𝑡𝛽,𝑘−1}

𝜇2 < 1 otherwise,

Max {Diag (𝑀𝑘𝑀𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛼,𝑘−2

)}

= {
0 if 𝑡𝛼,𝑘−2 ̸= 𝑡𝛼,𝑘 = 𝑡𝛼,𝑘−1
Γ (𝑡𝛼,𝑘)𝐷

 < 1 otherwise,

Max {Diag (𝑀𝑘𝑀𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛽,𝑘−2

)}

= {
0 if 𝑡𝛽,𝑘−2 ̸= 𝑡𝛽,𝑘 = 𝑡𝛽,𝑘−1

Γ (𝑡𝛽,𝑘)𝐷


< 1 otherwise,

(27)

where 𝜇2 = Max{Max𝑡∈𝐼
𝑘
=𝐼
𝑘−1

{‖𝐼𝑚 − Γ(𝑡)𝐷‖}, Max𝑡∈𝐼
𝑘−2

{‖𝐼𝑚−

Γ(𝑡)𝐷‖
2
}, and Max𝑡∈[0,𝑇]/(𝐼

𝑘
∪𝐼
𝑘−2
){‖𝐼𝑚 − Γ(𝑡)𝐷‖

3
}} < 𝜇 has

been used. Note also that in this situation (s1) if 𝑡𝛼,𝑘 ̸= 𝑡𝛼,𝑘−1,
𝑡𝛼,𝑘 ̸= 𝑡𝛽,𝑘−1, 𝑡𝛽,𝑘 ̸= 𝑡𝛼,𝑘−1, and 𝑡𝛽,𝑘 ̸= 𝑡𝛽,𝑘−1, then

Max {Diag (𝑀𝑘𝑀𝑘−1𝑀𝑘−2)}

=

{{{{{{{{

{{{{{{{{

{

𝜇3 < 1 if {𝑡𝛼,𝑘−2 = 𝑡𝛼,𝑘 or 𝑡𝛼,𝑘−2 = 𝑡𝛼,𝑘−1 or
𝑡𝛼,𝑘−2 = 𝑡𝛽,𝑘 or 𝑡𝛼,𝑘−2 = 𝑡𝛽,𝑘−1 or

𝑡𝛽,𝑘−2 = 𝑡𝛼,𝑘 or 𝑡𝛽,𝑘−2 = 𝑡𝛼,𝑘−1 or

𝑡𝛽,𝑘−2 = 𝑡𝛽,𝑘 or 𝑡𝛽,𝑘−2 = 𝑡𝛽,𝑘−1}

𝜇4 < 1 otherwise,

Max {Diag (𝑀𝑘𝑀𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛼,𝑘−2

)}

= Max {Diag (𝑀𝑘𝑀𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛽,𝑘−2

)} = 0,

(28)

where 𝜇3 = Max{Max𝑡∈𝐼
𝑘
=𝐼
𝑘−2

{‖𝐼𝑚 − Γ(𝑡)𝐷‖}, Max𝑡∈𝐼
𝑘−1

{‖𝐼𝑚−

Γ(𝑡)𝐷‖
2
}, Max𝑡∈[0,𝑇]/(𝐼

𝑘
∪𝐼
𝑘−1
){‖𝐼𝑚 − Γ(𝑡)𝐷‖

3
}} < 𝜇, 𝜇4 =

Max{Max𝑡∈𝐼
𝑘
∪𝐼
𝑘−1
∪𝐼
𝑘−2

{‖𝐼𝑚−Γ(𝑡)𝐷‖
2
}, Max𝑡∈[0,𝑇]/(𝐼

𝑘
∪𝐼
𝑘−1
∪𝐼
𝑘−2
){‖𝐼𝑚−

Γ(𝑡)𝐷‖
3
}} < 𝜇 have been used. In the situation (s2) one

obtains, by applying again the recursion (16) in (24), that

𝛿𝑈𝑘+1 ≤ 𝑀𝑘𝑀𝑘−1𝑀𝑘−2𝛿𝑈𝑘−2

+ 𝑁𝑘,𝑘−1𝑀𝑘−2𝛿𝑈𝑘−2

+ 𝑀𝑘𝑀𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛼,𝑘−2

𝛿𝑈𝑘−2−ℓ
𝛼,𝑘−2

+ 𝑁𝑘,𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛼,𝑘−2

𝛿𝑈𝑘−2−ℓ
𝛼,𝑘−2

+ 𝑀𝑘𝑀𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛽,𝑘−2

𝛿𝑈𝑘−2−ℓ
𝛽,𝑘−2

+ 𝑁𝑘,𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛽,𝑘−2

𝛿𝑈𝑘−2−ℓ
𝛽,𝑘−2

+ 𝑀𝑘𝑁𝑘−1,𝑘−1−ℓ
𝛼,𝑘−1

𝛿𝑈𝑘−1−ℓ
𝛼,𝑘−1

+ 𝑀𝑘𝑁𝑘−1,𝑘−1−ℓ
𝛽,𝑘−1

𝛿𝑈𝑘−1−ℓ
𝛽,𝑘−1

+ 𝑁𝑘,𝑘−ℓ
𝛽,𝑘

𝛿𝑈𝑘−ℓ
𝛽,𝑘

(29)

if the actuator of the (𝑘 − 2)th iterative model fails at the
sampling instant 𝑡𝛼,𝑘−2 because of 𝛼𝑘−2,𝑘−2(𝑡𝛼,𝑘−2) = 0 and its
sensor fails at the sampling instant 𝑡𝛽,𝑘−2; that is,𝛽𝑘−2(𝑡𝛽,𝑘−2) =

0. If 𝑡𝛼,𝑘 = 𝑡𝛼,𝑘−1 or 𝑡𝛼,𝑘 = 𝑡𝛽,𝑘−1 or 𝑡𝛽,𝑘 = 𝑡𝛼,𝑘−1 or 𝑡𝛽,𝑘 = 𝑡𝛽,𝑘−1,
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then the entries of the main diagonal of the matrices in the
new terms of the right hand side of (29) fulfill the fact that

Max {Diag (𝑁𝑘,𝑘−1𝑀𝑘−2)}

=
{

{

{

Γ (𝑡𝛼,𝑘)𝐷

𝐼𝑚 − Γ (𝑡𝛼,𝑘)𝐷

 < 1 if 𝑡𝛼,𝑘−2 ̸= 𝑡𝛼,𝑘

Γ (𝑡𝛼,𝑘)𝐷
 < 1 otherwise,

Max {Diag (𝑁𝑘,𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛼,𝑘−2

)}

= {
0 if 𝑡𝛼,𝑘−2 ̸= 𝑡𝛼,𝑘
Γ (𝑡𝛼,𝑘)𝐷


2
< 1 otherwise,

Max {Diag (𝑁𝑘,𝑘−1𝑁𝑘−2,𝑘−2−ℓ
𝛽,𝑘−2

)}

=
{

{

{

0 if 𝑡𝛽,𝑘−2 ̸= 𝑡𝛽,𝑘


Γ (𝑡𝛽,𝑘)𝐷



2

< 1 otherwise.
(30)

Note that in this situation (s2) the expressions in (30) are also
valid if 𝑡𝛼,𝑘 ̸= 𝑡𝛼,𝑘−1, 𝑡𝛼,𝑘 ̸= 𝑡𝛽,𝑘−1, 𝑡𝛽,𝑘 ̸= 𝑡𝛼,𝑘−1, and 𝑡𝛽,𝑘 ̸= 𝑡𝛽,𝑘−1.
Similar results to that of (29) and (30) can be obtained in the
other situations (s3) and (s4). In the following the situation
(s1) is analyzed since the results can be easily extended to
the other cases. By applying the recursion (16) in (26) a finite
number of times, namely, ℎ − 1, one obtains that

𝛿𝑈𝑘+1

≤ (

ℎ

∏

𝑖=1

𝑀𝑘−𝑖+1)𝛿𝑈𝑘−ℎ+1 +

ℎ−1

∑

𝑖=1

(

ℎ−1

∏

𝑗=ℎ−𝑖

𝑀𝑘+𝑗−ℎ+1)

× (𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛼,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛼,𝑘−𝑖

+ 𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛽,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛽,𝑘−𝑖

)

+ 𝑁𝑘,𝑘−ℓ
𝛼,𝑘

𝛿𝑈𝑘−ℓ
𝛼,𝑘

+ 𝑁𝑘,𝑘−ℓ
𝛽,𝑘

𝛿𝑈𝑘−ℓ
𝛽,𝑘

≤ (

ℎ

∏

𝑖=1

𝑀𝑘−𝑖+1)𝛿𝑈𝑘−ℎ+1 +

ℎ−1

∑

𝑖=1

(

ℎ−1

∏

𝑗=ℎ−𝑖

𝑀𝑘+𝑗−ℎ+1)

× (𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛼,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛼,𝑘−𝑖

+ 𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛽,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛽,𝑘−𝑖

)

+ 𝑁𝑘,𝑘−ℓ
𝛼,𝑘

[

[

(

ℎ

∏

𝑖=ℓ
𝛼,𝑘
+2

𝑀𝑘−𝑖+1)𝛿𝑈𝑘−ℎ+1

+

ℎ−1

∑

𝑖=ℓ
𝛼,𝑘
+2

(

ℎ−1

∏

𝑗=ℎ−𝑖

𝑀𝑘+𝑗−ℎ+1)

× (𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛼,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛼,𝑘−𝑖

+ 𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛽,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛽,𝑘−𝑖

)]

]

+ 𝑁𝑘,𝑘−ℓ
𝛽,𝑘

[

[

(

ℎ

∏

𝑖=ℓ
𝛽,𝑘
+2

𝑀𝑘−𝑖+1)𝛿𝑈𝑘−ℎ+1

+

ℎ−1

∑

𝑖=ℓ
𝛽,𝑘
+2

(

ℎ−1

∏

𝑗=ℎ−𝑖

𝑀𝑘+𝑗−ℎ+1)

× (𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛼,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛼,𝑘−𝑖

+ 𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛽,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛽,𝑘−𝑖

)]

]

+ 𝑁𝑘−ℓ
𝛼,𝑘
−1,𝑘−ℓ

𝛼,𝑘
−1−ℓ
𝛼,𝑘−ℓ
𝛼,𝑘
−1

𝛿𝑈𝑘−ℓ
𝛼,𝑘
−1,𝑘−ℓ

𝛼,𝑘
−1−ℓ
𝛼,𝑘−ℓ
𝛼,𝑘
−1

+ 𝑁𝑘−ℓ
𝛽,𝑘
−1,𝑘−ℓ

𝛽,𝑘
−1−ℓ
𝛽,𝑘−ℓ
𝛽,𝑘
−1

𝛿𝑈𝑘−ℓ
𝛽,𝑘
−1,𝑘−ℓ

𝛽,𝑘
−1−ℓ
𝛽,𝑘−ℓ
𝛽,𝑘
−1

.

(31)

By iterating this process one can express the right hand side
of (31) as a sum of terms where each of them is the product
of a matrix and a vector 𝛿𝑈𝑗 where 𝑗 ∈ 𝑆0 with 𝑆0 defined by

𝑆0 = {𝑘 − ℎ + 1, 𝑘 − ℎ, . . . , 𝑘 − ℎ + 1 − ℓ𝛼,𝑘−ℎ+1,

𝑘 − ℎ + 1 − ℓ𝛽,𝑘−ℎ+1, 𝑘 − ℎ − ℓ𝛼,𝑘−ℎ,

𝑘 − ℎ − ℓ𝛽,𝑘−ℎ, . . .} .

(32)

One obtains, from (31) and (32), that

𝛿𝑈𝑘+1 ≤ 𝑄𝑒𝑞,1𝛿𝑈


𝑗
, (33)

where 𝑄𝑒𝑞,1 is a sum of terms of the form (∏
ℎ

𝑖=1
𝑀𝑖),

(∏
𝑚

𝑗=1
𝑀𝑗)𝑁𝑖,ℓ,𝑁𝑖

1
,𝑖
2

(∏
𝑚

𝑗=1
𝑀𝑗)𝑁𝑖

3
,𝑖
4

, or (∏𝑚1
𝑗=1

𝑀𝑗)𝑁𝑖,ℓ(∏
𝑚
2

𝑗=1
𝑀𝑗)

plus the last two terms, namely, 𝑁𝑘−ℎ+1,𝑘−ℎ+1−ℓ
𝛼,𝑘−ℎ+1

and
𝑁𝑘−ℎ+1,𝑘−ℎ+1−ℓ

𝛽,𝑘−ℎ+1

. The vector 𝛿𝑈
𝑗
is defined as

𝛿𝑈


𝑘−ℎ+1
= [Max
𝑗∈𝑆
0

{

𝛿𝑢𝑘−𝑗(𝑇)


} Max
𝑗∈𝑆
0

{

𝛿𝑢𝑘−𝑗(𝑇 − 1)


} ⋅ ⋅ ⋅ Max

𝑗∈𝑆
0

{

𝛿𝑢𝑘−𝑗(0)


}]

𝑇

. (34)
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The entries of themain diagonal of the terms in𝑄𝑒𝑞,1 have the
following properties.

Property 1. Max{Diag(∏ℎ
𝑖=1

𝑀𝑘−𝑖+1)} = Max𝑡∈𝑆
𝑡,1

{‖𝐼𝑚−

Γ(𝑡)𝐷‖
ℎ−𝑎
1} where 𝑎1 ≜ Max𝑡∈[0,𝑇]{𝑛𝑚,1(𝑡)} with 𝑛𝑚,1(𝑡) being

the number of iterativemodels included in the set 𝑆
1
= {𝑘, 𝑘−

1, . . . , 𝑘−ℎ+1}which suffer a dropout at the sampling instant
𝑡 because of 𝛼𝑗,𝑗(𝑡) = 0 and/or 𝛽𝑗(𝑡) = 0 for 𝑗 ∈ 𝑆



1
and

𝑆𝑡,1 ≜ {𝑡 ∈ [0, 𝑇] | 𝑛𝑚,1(𝑡) = 𝑎1}. If 𝑎1 = ℎ means that
there is at least one sampling instant within [0, 𝑇], namely,
𝑡
∗, at which all the iterative models included in the set 𝑆

1
fail

in its actuator because of 𝛼𝑗,𝑗(𝑡
∗
) = 0 and/or its sensor; that

is, 𝛽𝑗(𝑡
∗
) = 0, with 𝑗 ∈ 𝑆



1
at such a sampling instant. If 𝑎1 = 0,

it means that there are not dropouts at any sampling instant
in the iterative models included in 𝑆



1
. When the failures are

distributed within the time interval [0, 𝑇] and among the
set of iterative models in 𝑆



1
, if a large enough integer ℎ is

considered, then 0 < 𝑎1 ≪ ℎ by taking into account that
a small number of different iterative models included in 𝑆



1

present failures at the same sampling instant.

Property 2. Property 2. All the terms of the
form (∏

𝑚

𝑗=1
𝑀𝑗)𝑁𝑖,ℓ, 𝑁𝑖

1
,𝑖
2

(∏
𝑚

𝑗=1
𝑀𝑗)𝑁𝑖

3
,𝑖
4

, or
(∏
𝑚
1

𝑗=1
𝑀𝑗)𝑁𝑖,ℓ(∏

𝑚
2

𝑗=1
𝑀𝑗) have zeros in their main diagonal

except those related to dropouts in the actuator because
𝛼𝑗,𝑗(𝑡
∗

𝛼
) = 0 for all 𝑗 ∈ 𝑆0 ∪ 𝑆



1
at the same sampling instant

𝑡
∗

𝛼
and those related to dropouts in the sensor because

𝛽𝑗(𝑡
∗

𝛽
) = 0 for all 𝑗 ∈ 𝑆0 ∪ 𝑆



1
at the same sampling instant

𝑡
∗

𝛽
. Again, all of them can be made zero if a large enough

integer ℎ is considered since a small number of different
iterative models included in 𝑆0 ∪ 𝑆



1
present failures at the

same sampling instant.

Property 3. Finally, from (25),Max{Diag(𝑁𝑘−ℎ+1,𝑘−ℎ+1−ℓ
𝛼,𝑘−ℎ+1

)} =

‖Γ(𝑡𝛼,𝑘−ℎ+1)𝐷‖ and Max{Diag(𝑁𝑘−ℎ+1,𝑘−ℎ+1−ℓ
𝛽,𝑘−ℎ+1

)} =

‖Γ(𝑡𝛽,𝑘−ℎ+1)𝐷‖.
By applying recursively (33), it follows that

𝛿𝑈𝑘+1 ≤ 𝑄𝑒𝑞,1𝛿𝑈


𝑘−ℎ+1

≤ 𝑄𝑒𝑞,1𝑄𝑒𝑞,2𝛿𝑈


𝑘−2ℎ+1
≤ ⋅ ⋅ ⋅ ≤ (

𝑛
ℎ

∏

𝑖=1

𝑄𝑒𝑞,𝑖)𝛿𝑈


0
,

(35)

where 𝛿𝑈
𝑘−2ℎ+1

= [Max𝑗∈𝑆
1

{‖𝛿𝑢𝑘−𝑗(𝑇)‖} Max𝑗∈𝑆
1

{‖𝛿𝑢𝑘−𝑗(𝑇−

1)‖} ⋅ ⋅ ⋅ Max𝑗∈𝑆
1

{‖𝛿𝑢𝑘−𝑗(0)‖}]
𝑇 with 𝑆1 = {𝑘 − 2ℎ +

1, 𝑘 − 2ℎ, . . . , 𝑘 − 2ℎ + 1 − ℓ𝛼,𝑘−2ℎ+1, 𝑘 − 2ℎ + 1 −

ℓ𝛽,𝑘−2ℎ+1, 𝑘 − ℎ − ℓ𝛼,𝑘−2ℎ, 𝑘 − ℎ − ℓ𝛽,𝑘−2ℎ, . . .} and so
on until 𝛿𝑈



0
= [Max𝑗∈𝑆

∞

{‖𝛿𝑢𝑗(𝑇)‖} Max𝑗∈𝑆
∞

{‖𝛿𝑢𝑗(𝑇 −

1)‖} ⋅ ⋅ ⋅ Max𝑗∈𝑆
∞

{‖𝛿𝑢𝑗(0)‖}]
𝑇 with 𝑆∞ = {ℎ − 1, ℎ −

2, . . . , 1, 0}. Note that each 𝑄𝑒𝑞,𝑖, for ∀𝑖 ∈ {1, 2, . . . , 𝑛ℎ}, is
an upper-triangular matrix since all its nonzero terms are
upper-triangular. Moreover, its spectral radius, which is the
maximum of its diagonal entries, can be made smaller than 1
if ℎ is large enough so that Max𝑡∈𝑆

𝑡,𝑖

{‖𝐼𝑚 − Γ(𝑡)𝐷‖
ℎ−𝑎
𝑖} < 1/3

and if ‖Γ(𝑡𝛼,𝑘−𝑖ℎ+1)𝐷‖ + ‖Γ(𝑡𝛽,𝑘−𝑖ℎ+1)𝐷‖ < 2/3 where 𝑆𝑡,𝑖 and
𝑎𝑖 are defined, respectively, as 𝑆𝑡,1 and 𝑎1 were defined for

describing the features of the matrix 𝑄𝑒𝑞,1. Then, 𝛿𝑈𝑘 → 0

as 𝑘 → ∞ is deduced from (35) since 𝑛ℎ → ∞ when
𝑘 → ∞ and from the fact that Γ(𝑡) has been chosen so that
‖Γ(𝑡)𝐷‖ < 1/3 ∀𝑡 ∈ [0, 𝑇]. Thus, ‖𝛿𝑢𝑘(𝑡)‖ → 0 ∀𝑡 ∈ [0, 𝑇]

as 𝑘 → ∞. This concludes the proof of property (i).
(ii) It follows that 𝑒𝑘 = 𝐶∑

𝑡−1

𝑗=0
𝐴
𝑡−1−𝑗

𝐵×

∑
𝑘

𝑖=𝑘−𝑝+1
Δ 𝑘,𝑘−𝑖+1(𝑗)𝛿𝑢𝑖(𝑗) + 𝐷∑

𝑘

𝑖=𝑘−𝑝+1
Δ 𝑘,𝑘−𝑖+1(𝑡)𝛿𝑢𝑖(𝑡)

from (10) where the assumption (b) has been taken into
account. Then, 𝑒𝑘(𝑡) → 0 as 𝑘 → ∞ from the fact that
‖𝛿𝑢𝑘(𝑡)‖ → 0 ∀𝑡 ∈ [0, 𝑇] as property (i) is established.

Theorem 3. Assume the following.

(a) 𝑥𝑘(0) = 𝑥𝑑(0) for all 𝑘 ∈ {0, 1, 2, . . . , 𝑞 − 1}.
(b) At least one of the scalar variables 𝛼𝑘,𝑖(𝑡) and at least

one of those 𝛽𝑗(𝑡), for any 𝑖, 𝑗 ∈ {𝑘, 𝑘 − 1, . . . , 𝑘 − 𝑝+ 1}

with p being a large enough integer number, are 1 at
each sampling time instant for a large enough k.

(c) The number 𝑛𝑑(𝑘) = 𝑛𝑑,𝛼(𝑘) + 𝑛𝑑,𝛽(𝑘) of dropouts suf-
fered by each 𝑘th iterativemodel, for 𝑘 ∈ {0, 1, 2, . . . , 𝑞−

1}, because of 𝛼𝑘,𝑘(𝑡) = 0 and/or 𝛽𝑘(𝑡) = 0 within the
time interval 𝑡 ∈ [0, 𝑇] is small enough compared with
the parameter 𝑇. In other words, a small percentage of
failures occurs in the transmissions for each iterative
model within such a time interval. The expression
𝑛𝑑,𝛼(𝑘) denotes the number of the 𝑘th iterative models
because of 𝛼𝑘,𝑘(𝑡) = 0 and 𝑛𝑑,𝛽(𝑘) the number of those
because of 𝛽𝑘(𝑡) = 0 within 𝑡 ∈ [0, 𝑇].

Then,

(i) 𝛿𝑢𝑘(𝑡) ≜ 𝑢𝑑(𝑡) − 𝑢𝑘(𝑡) → 0 as 𝑘 → ∞ ∀𝑡 ∈ [0, 𝑇]

provided that Γ(𝑡) is chosen such that ‖𝐼𝑚 −Γ(𝑡)𝐷‖ < 1

and ‖Γ(𝑡)𝐷‖ < 1/(1 + 𝑛max) ∀𝑡 ∈ [0, 𝑇] where 𝑛max =

Max0≤𝑘≤𝑞−1{𝑛𝑑(𝑘)};
(ii) 𝑒𝑘(𝑡) → 0 as 𝑘 → ∞ for all 𝑡 ∈ [0, 𝑇].

Proof. (i) By following similar steps to those for the proof of
property (i) of Theorem 2, one obtains that

𝛿𝑈𝑘+1

≤ (

ℎ

∏

𝑖=1

𝑀𝑘−𝑖+1)𝛿𝑈𝑘−ℎ+1

+

ℎ−1

∑

𝑖=1

[

[

(

ℎ−1

∏

𝑗=ℎ−𝑖

𝑀𝑘+𝑗−ℎ+1)

× (

𝑛
𝑑,𝛼
(𝑘)

∑

𝑚=1

𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛼𝑚,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛼𝑚,𝑘−𝑖

+

𝑛
𝑑,𝛽
(𝑘)

∑

𝑚=1

𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛽𝑚,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛽𝑚,𝑘−𝑖

)]

]
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+

𝑛
𝑑,𝛼
(𝑘)

∑

𝑚=1

𝑁𝑘,𝑘−ℓ
𝛼𝑚,𝑘

𝛿𝑈𝑘−ℓ
𝛼𝑚,𝑘

+

𝑛
𝑑,𝛽
(𝑘)

∑

𝑚=1

𝑁𝑘,𝑘−ℓ
𝛽𝑚,𝑘

𝛿𝑈𝑘−ℓ
𝛽𝑚,𝑘

≤ (

ℎ

∏

𝑖=1

𝑀𝑘−𝑖+1)𝛿𝑈𝑘−ℎ+1

+

ℎ−1

∑

𝑖=1

[

[

(

ℎ−1

∏

𝑗=ℎ−𝑖

𝑀𝑘+𝑗−ℎ+1)

× (

𝑛
𝑑,𝛼
(𝑘)

∑

𝑚=1

𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛼𝑚,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛼𝑚,𝑘−𝑖

+

𝑛
𝑑,𝛽
(𝑘)

∑

𝑚=1

𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛽𝑚,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛽𝑚,𝑘−𝑖

)]

]

+

𝑛
𝑑,𝛼
(𝑘)

∑

𝑚=1

𝑁𝑘,𝑘−ℓ
𝛼𝑚,𝑘

[

[

(

ℎ

∏

𝑖=ℓ
𝛼𝑚,𝑘
+2

𝑀𝑘−𝑖+1)𝛿𝑈𝑘−ℎ+1

+

ℎ−1

∑

𝑖=ℓ
𝛼𝑚,𝑘
+2

(

ℎ−1

∏

𝑗=ℎ−𝑖

𝑀𝑘+𝑗−ℎ+1)

× (𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛼𝑚,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛼𝑚,𝑘−𝑖

+ 𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛽𝑚,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛽𝑚,𝑘−𝑖

)]

]

+

𝑛
𝑑,𝛽
(𝑘)

∑

𝑚=1

𝑁𝑘,𝑘−ℓ
𝛽𝑚,𝑘

[

[

(

ℎ

∏

𝑖=ℓ
𝛽𝑚,𝑘
+2

𝑀𝑘−𝑖+1)𝛿𝑈𝑘−ℎ+1

+

ℎ−1

∑

𝑖=ℓ
𝛽𝑚,𝑘
+2

(

ℎ−1

∏

𝑗=ℎ−𝑖

𝑀𝑘+𝑗−ℎ+1)

× (𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛼𝑚,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛼𝑚,𝑘−𝑖

+ 𝑁𝑘−𝑖,𝑘−𝑖−ℓ
𝛽𝑚,𝑘−𝑖

𝛿𝑈𝑘−𝑖−ℓ
𝛽𝑚,𝑘−𝑖

)]

]

+

𝑛
𝑑,𝛼
(𝑘)

∑

𝑚=1

𝑁𝑘−ℓ
𝛼𝑚,𝑘
−1,𝑘−ℓ

𝛼𝑚,𝑘
−1−ℓ
𝛼𝑚,𝑘−ℓ𝛼𝑚,𝑘

−1

× 𝛿𝑈𝑘−ℓ
𝛼𝑚,𝑘
−1−ℓ
𝛼𝑚,𝑘−ℓ𝛼𝑚,𝑘

−1

+

𝑛
𝑑,𝛽
(𝑘)

∑

𝑚=1

𝑁𝑘−ℓ
𝛽𝑚,𝑘
−1,𝑘−ℓ

𝛽𝑚,𝑘
−1−ℓ
𝛽𝑚,𝑘−ℓ𝛽𝑚,𝑘

−1

× 𝛿𝑈𝑘−ℓ
𝛽𝑚,𝑘
−1−ℓ
𝛽𝑚,𝑘−ℓ𝛽𝑚,𝑘

−1

(36)

instead of (31). By repeating the process followed in the proof
of Theorem 2, one can obtain from (36) the following:

𝛿𝑈𝑘+1 ≤ 𝑄


𝑒𝑞,1
𝛿𝑈


𝑘−ℎ+1
, (37)

where 𝑄


𝑒𝑞,1
is a sum of terms of the form (∏

ℎ

𝑖=1
𝑀𝑖),

(∏
𝑚

𝑗=1
𝑀𝑗)𝑁𝑖,ℓ,𝑁𝑖

1
,𝑖
2

(∏
𝑚

𝑗=1
𝑀𝑗)𝑁𝑖

3
,𝑖
4

, or(∏𝑚1
𝑗=1

𝑀𝑗)𝑁𝑖,ℓ(∏
𝑚
2

𝑗=1
𝑀𝑗)

plus the last 𝑛𝑑(𝑘) terms, namely,∑𝑛𝑑,𝛼(𝑘)
𝑚=1

𝑁𝑘−ℎ+1,𝑘−ℎ+1−ℓ
𝛼𝑚,𝑘−ℎ+1

and ∑
𝑛
𝑑,𝛽
(𝑘)

𝑚=1
𝑁𝑘−ℎ+1,𝑘−ℎ+1−ℓ

𝛽𝑚,𝑘−ℎ+1

. The matrix 𝑄


𝑒𝑞,1
has similar

properties to those of 𝑄𝑒𝑞,1 if ℎ is large enough by taking
into account assumption (c). Such an assumption implies
that the number of iterative models included in a certain set
which present failures at the same sampling instants is small
compared with the cardinal of such a set if such a cardinal is
large enough. Then

Max{Diag(

ℎ

∏

𝑖=1

𝑀𝑘−𝑖+1)}

= Max
𝑡∈𝑆
𝑡,1

{
𝐼𝑚 − Γ(𝑡)𝐷


ℎ−𝑎
1

} <
1

𝑛max + 1

(38)

is satisfied if ℎ is large enough so that ℎ − 𝑎1 is large enough
to satisfy (38). The difference with the same property related
to 𝑄𝑒𝑞,1 is that each matrix 𝑀𝑗, for 𝑗 ∈ 𝑆



1
, can present a

number of 1 in its diagonal entries equal to 𝑛𝑑(𝑗) instead of
2. The second property is also valid since a large number of
the models included in 𝑆0 ∪ 𝑆



1
does not present a dropout at

the same time instant under the assumption (c). Finally,

Max
{

{

{

𝑛
𝑑,𝛼
(𝑘)

∑

𝑚=1

𝑁𝑘−ℎ+1,𝑘−ℎ+1−ℓ
𝛼𝑚,𝑘−ℎ+1

+

𝑛
𝑑,𝛽
(𝑘)

∑

𝑚=1

𝑁𝑘−ℎ+1,𝑘−ℎ+1−ℓ
𝛽𝑚,𝑘−ℎ+1

}

}

}

≤ 𝑛𝑑 (𝑘) Max
𝑡∈[0,𝑇]

{‖Γ (𝑡)𝐷‖}

≤ 𝑛maxMax
𝑡∈[0,𝑇]

{‖Γ (𝑡)𝐷‖} ≤
𝑛max

1 + 𝑛max
.

(39)

Such properties imply that all the main diagonal entries
of 𝑄
𝑒𝑞,1

can be made smaller than 1 if ℎ is large enough and
assumption (c) is fulfilled. By similar steps to those of proof
of Theorem 2, one also obtains that

𝛿𝑈𝑘+1 ≤ 𝑄


𝑒𝑞,1
𝛿𝑈


𝑘−ℎ+1

≤ 𝑄


𝑒𝑞,1
𝑄


𝑒𝑞,2
𝛿𝑈


𝑘−2ℎ+1

≤ ⋅ ⋅ ⋅ ≤ (

𝑛
ℎ

∏

𝑖=1

𝑄


𝑒𝑞,𝑖
)𝛿𝑈


0
,

(40)



Mathematical Problems in Engineering 13

where each of the 𝑄


𝑒𝑞,𝑖
, ∀𝑖 ∈ {1, 2, . . . , 𝑛ℎ}, satisfies similar

properties to those of 𝑄𝑒𝑞,1. Moreover, 𝛿𝑈


𝑘−2ℎ+1
=

[Max𝑗∈𝑆
1

{‖𝛿𝑢𝑘−𝑗(𝑇)‖} Max𝑗∈𝑆
1

{‖𝛿𝑢𝑘−𝑗(𝑇 − 1)‖} ⋅ ⋅ ⋅

Max𝑗∈𝑆
1

{‖𝛿𝑢𝑘−𝑗(0)‖}]
𝑇 with 𝑆1 = {𝑘 − 2ℎ + 1, 𝑘 −

2ℎ, . . . , 𝑘 − 2ℎ + 1 − ℓ𝛼,𝑘−2ℎ+1, 𝑘 − 2ℎ + 1 − ℓ𝛽,𝑘−2ℎ+1, 𝑘 −

ℎ − ℓ𝛼,𝑘−2ℎ, 𝑘 − ℎ − ℓ𝛽,𝑘−2ℎ, . . .} and so on until 𝛿𝑈


0
=

[Max𝑗∈𝑆
∞

{‖𝛿𝑢𝑗(𝑇)‖} Max𝑗∈𝑆
∞

{‖𝛿𝑢𝑗(𝑇 − 1)‖} ⋅ ⋅ ⋅

Max𝑗∈𝑆
∞

{‖𝛿𝑢𝑗(0)‖}]
𝑇 with 𝑆∞ = {ℎ − 1, ℎ − 2, . . . , 1, 0}.

Each one of the matrices 𝑄


𝑒𝑞,𝑖
is an upper-triangular

matrix since all its nonzero terms are upper-triangular.
Moreover, its spectral radius, which is the maximum
of its diagonal entries, can be made smaller than 1 if
ℎ is large enough so that Max𝑡∈𝑆

𝑡,𝑖

{‖𝐼𝑚 − Γ(𝑡)𝐷‖
ℎ−𝑎
𝑖} <

1/(𝑛max + 1) and if Max{∑𝑛𝑑,𝛼(𝑘)
𝑚=1

𝑁𝑘−𝑖ℎ+1,𝑘−𝑖ℎ+1−ℓ
𝛼𝑚,𝑘−𝑖ℎ+1

+

∑
𝑛
𝑑,𝛽
(𝑘)

𝑚=1
𝑁𝑘−𝑖ℎ+1,𝑘−𝑖ℎ+1−ℓ

𝛽𝑚,𝑘−𝑖ℎ+1

} < 𝑛max/(𝑛max + 1) where 𝑆𝑡,𝑖

and 𝑎𝑖 are defined, respectively, as 𝑆𝑡,1 and 𝑎1 were defined
for describing the features of the matrix 𝑄𝑒𝑞,1 in Theorem 2.
Then, 𝛿𝑈𝑘 → 0 as 𝑘 → ∞ is deduced from (40) since
𝑛ℎ → ∞ when 𝑘 → ∞ and from the fact that Γ(𝑡) has
been chosen so that ‖Γ(𝑡)𝐷‖ < 1/𝑛max ∀𝑡 ∈ [0, 𝑇]. Thus,
‖𝛿𝑢𝑘(𝑡)‖ → 0 ∀𝑡 ∈ [0, 𝑇] as 𝑘 → ∞. This concludes the
proof of property (i).

(ii)Theproof of property (ii) is equal to that ofTheorem 2.

Remark 4. If 𝐷 = 0, that is, the iterative models and the
reference one are strictly proper, the same results as those
of Theorem 3 are achieved by replacing the ILC law (3) by
𝑢𝑘+1(𝑡) = 𝑢𝑘(𝑡) + Γ(𝑡)𝑒𝑘(𝑡 + 1) and the conditions for the gain
Γ(𝑡), namely, ‖𝐼𝑚 − Γ(𝑡)𝐷‖ < 1 and ‖Γ(𝑡)𝐷‖ < 1/(1 + 𝑛max),
by ‖𝐼𝑚 − Γ(𝑡)𝐶𝐵‖ < 1 and ‖Γ(𝑡)𝐶𝐵‖ < 1/(1 + 𝑛max),
respectively. The steps of the corresponding proof are
similar to those described above. Note that it is necessary
to consider 𝑒𝑘(𝑡 + 1) instead of 𝑒𝑘(𝑡) in the control law
to achieve the same convergence results. Note also that
the matrices 𝑀𝑘 and 𝑁𝑘,𝑘−𝑖, for 𝑖 ∈ {0, 1, 2, . . . , 𝑘 + 1},
in (17) are modified. Concretely, the entries of the form
‖𝐼𝑚 − 𝑚𝑘,𝑘(𝑡, 𝑡)Γ(𝑡)𝐷‖ in the main diagonal of 𝑀𝑘 are
replaced by ‖𝐼𝑚 − 𝑚𝑘,𝑘(𝑡, 𝑡)Γ(𝑡)𝐶𝐵‖ ∀𝑡 ∈ [0, 𝑇] and those of
the form 𝑛𝑘,𝑘−𝑖(𝑡, 𝑡)‖Γ(𝑡)𝐷‖ in the main diagonal of 𝑁𝑘,𝑘−𝑖 are
replaced by 𝑛𝑘,𝑘−𝑖(𝑡, 𝑡)‖Γ(𝑡)𝐶𝐵‖.

Remark 5. If 𝐷 = 0 and the iterative models are unstable
or critically stable, that is, the matrix 𝐴 possesses at least an
eigenvalue outside the open unit circle, but stabilizable, then
the same scheme can be used to compensate the dropouts.
In such a case the matrix 𝐴 of the respective models has
to be replaced by 𝐴𝑐 = 𝐴 − 𝐵𝐾

𝑇 where 𝐾
𝑇 is a matrix

designed such that the eigenvalues of 𝐴𝑐 = 𝐴 − 𝐵𝐾
𝑇 are

all located inside the open unit circle via a state variables
feedback control law given by 𝑢(𝑡) = 𝑟(𝑡) − 𝐾

𝑇
𝑥(𝑡) with 𝑟(𝑡)

being an external input.

4. Simulation Example
Some simulation results illustrate the performance of the
proposed algorithm to compensate the dropouts in the

communication channels. Such results are compared with
those obtained if the algorithm proposed in [11] is used and
with those obtained without using dropout compensation. A
set of 𝑞 = 200 iterative models are considered in the ILC
system.Thematrices of the state space representation of each
of them are

𝐴 = [

[

−0.0537 −0.5518 −0.1382

0.0384 0.3623 −0.2155

0.0599 0.6874 0.8868

]

]

;

𝐵 = [

[

0.0384

0.0599

0.0314

]

]

; 𝐶
𝑇

= [

[

−42.5088

−33.5232

−11.232

]

]

; 𝐷 = 5.32.

(41)

The initial condition of the iterative models and that of the
reference model are 𝑥𝑘(0) = 𝑥𝑑(0) = [0 0 1]

𝑇 for all
𝑘 ∈ {0, 1, 2, . . . , 𝑞 − 1}. The input signal of the reference
model is 𝑢𝑑(𝑡) = 10 sin(300𝑡) and a horizon size of 𝑇 =

50 is used. The learning gain of the ILC is Γ(𝑡) = 0.1 for
all 𝑡 ∈ [0, 𝑇] and the control input 𝑢0(𝑡) = 𝑢𝑑(𝑡) for the
0th iterative model is used to initialize the ILC algorithm at
each sampling instant. The structure shown in Figure 1 with
𝑝 = 4 transmission channels between the controller and the
actuator of the 𝑘th iterativemodel for all 𝑘 ∈ {3, 4, 5, . . . , 𝑞−1}

is used while there are 1, 2, and 3 transmission channels
between the controller and the actuators of the 0th, 1th, and
2th iterative models, respectively (see Remark 1). All models
are susceptible to suffer failures in their transmissions from
sensors to the controller and/or from the controller to the
actuators. Such failures are randomly distributed among the
iterative models as well as within 𝑡 ∈ [0, 𝑇]. In this context, a
set of two randomnumbers are generated, the first one within
the domain [0, 𝑇] and the second onewithin [0, 994].The first
value indicates the sampling time at which a failure occurs
and the second one the transmission which suffers such a
failure at such a sampling instant. In this sense, 994 is the
number of transmission at each sampling instant 𝑡 ∈ [0, 𝑇].
In a first simulation, a set of 2534 pair of numbers, each
pair representing a failure during the time interval [0, 𝑇], is
created. Such a quantity is 4.86% with respect to the total
number of transmissions 𝑛𝑡 = 50694 (see Remark 1). In the
context of the algorithm proposed in [11] the parameter 𝑝 is
2 instead of 4 since each actuator receives 2 control signals,
except the 0th estimators which only receives 1, so that the
total number of transmissions is 30549 instead of 50694while
the failures in the actuators are less than 2534 (since those
corresponding to transmissions of 𝑢𝑘−2(𝑡) as those of 𝑢𝑘−3(𝑡)
has not to be taken into account). Finally, if any technique
of compensation dropout is not applied, then each actuator
only receives a signal from the controller so the number of
transmissions during a simulation is 2𝑞(𝑇 + 1) = 20400 so
the number of failures is also less than 2534.

Figure 2 displays the sum of the absolute values of the
measurement errors during the simulation for each iterative
model, that is, 𝐹(𝑘) = ∑

𝑇

𝑡=0
|𝑒𝑘(𝑡)|, if our proposed algorithm

(with 𝑝 = 4) is used and such a result is compared with that
obtained by using the algorithm proposed in [11] (equivalent
to our proposed algorithm with 𝑝 = 2).
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With the proposed compensation algorithm with p = 4
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Figure 2: (a) Sum of the measurement errors for each iterative model during a simulation with 4.86% of failures when the proposed
compensation algorithm with 𝑝 = 4 is used and (b) comparison of the performance displayed in (a) with those obtained if the algorithm
designed in [11] is used or if no compensation algorithm is used for the same simulation.

The results in Figure 2 show that 𝐹(𝑘) presents a transient
behavior from 𝑘 = 0 to 𝑘 = 20 approximately where
𝐹(𝑘) decreases monotony until it reaches a stationary value
practically zero for the rest of the iterative models if our
proposed algorithm to compensate the data dropouts is
used. On the contrary, the use of the algorithm proposed in
[11] shows that there is a set of iterative models with 𝐹(𝑘)

practically zero but they are not the last ones. Then, the
convergence to zero as 𝑘 → ∞ is not achieved. In fact,
there are several iterative models from the 53th one to the
199th one (the last one) which present a nonzero value for
𝐹(𝑘)when it seemed like the convergence of 𝐹(𝑘) to zero had
been achieved for the models from the 20 th one to the 52
th as it can be seen in Figure 2(b). Such a defect is corrected
by considering the compensation algorithm developed in this
paper as it can be seen in Figure 2(a). Finally, the accumulated
measurement errors are notable for all the iterative models if
no compensation algorithm is used.

In a second simulation, a set of 4816 pairs of random
numbers is created which represent 9.5% with respect to the
total number of transmissions. Figure 3 displays the same
results, as those in Figure 2, for this second simulation where
there are more failures than in the first simulation distributed
among the iterative models within the time interval [0, 𝑇].

The difference in the performance when one compares
the proposed algorithm with that of [11] or with a simulation
without compensation algorithm is clearer as the percentage
of failures increases. Furthermore, the accumulated mea-
surement error is larger for the majority of the iterative
models when the number of failures increases if the algorithm
proposed in [11] is used. The same fact occurs if no compen-
sation algorithm is used. However, the proposed algorithm
maintains the convergence to zero of the accumulated mea-
surement error of the iterative models as 𝑘 → ∞. One can
see in Figure 3(a) that the accumulated measurement error

presents a peak for the 120th iterative model. Such a nonzero
measurement error makes that the subsequent models until
the 130th one, approximately, present nonzero errors. Such
nonzero errors can be avoided by considering a larger value
for 𝑝. As a consequence, the number 𝑝 has to be chosen by
taking into account the percentage of failures in the system.
The higher such a percentage, the greater the number 𝑝 has
to be chosen.

Figure 4 displays the time evolution of the absolute values
of the sum of the measurement error of the last model of
the ILC scheme, that is, 𝑓199(𝑡) = ∑

𝑡

𝑖=0
|𝑒199(𝑖)|, during

the simulation if the proposed algorithm is used for the
two simulations, that with 4.86% of failures and that with
9.5%. Such results are compared with those obtained if the
algorithm proposed in [11] is used and if no compensation
techniques are considered for both simulations.The accumu-
lated error is practically zero for such amodel if the proposed
algorithm is used for both simulations. Moreover, one can
see that the performance deteriorates when the algorithm
proposed in [11] is used if the number of failures increases by
comparing both Figures 4(a) and 4(b). Such a deterioration
is also appreciable when no compensation algorithm is
used.

Figure 5 displays the time evolution of the output error
of the 199th model with the two data dropout compensation
algorithms and without using any compensation for both
simulations. Both figures show that the proposed algorithm
guarantees a perfect tracking of the reference trajectory by
the last iterative model for all sampling instants irrespective
of whether the percentage of failures is 4.86% or 9.5%. Such
a performance is not achieved if the algorithm proposed in
[11] is used or if no compensation techniques are considered.
Moreover the performance goes deteriorating if the number
of failures increases if the algorithm of [11] is used or if no one
is applied.



Mathematical Problems in Engineering 15

With the proposed compensation algorithm with p = 4
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Figure 3: (a) Sum of the measurement errors for each iterative model during a simulation with 9.5% of failures when the proposed
compensation algorithm with 𝑝 = 4 is used and (b) comparison of the performance displayed in (a) with those obtained if the algorithm
designed in [11] is used or if no compensation algorithm is used for the same simulation.
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Figure 4: Sumof the absolute values of the output error of the 199-thmodel during (a) a simulationwith 4.86% of failures and (b) a simulation
with 9.5% of failures.

In summary, the presented results in Figures 2–5 illustrate
the improvement in the performance if one uses the proposed
algorithm instead of using that proposed in [11] and if no
one is applied to compensate the data dropouts. Such an
improvement is more perceptible as the percentage of failures
in the transmissions increases (see Figure 4). In this sense,
the algorithm proposed in [11] deteriorates its performance
when such a percentage increases while that proposed in the
present paper maintains the performance if an appropriate
value for the parameter 𝑝 (number of transmission channels
from the controller to the actuators) is chosen. In this context,
if the percentage of failures increases, then the number 𝑝

used to design the dropouts compensation algorithm has to

be increased in order to guarantee a good performance of
the system. However, a threshold between the performance
and the number 𝑝 has to be taken into account since the
increasing of𝑝 implies the use ofmore transmission channels
which increases the economic cost of the system.

5. Concluding Remarks

This paper proposes an algorithm to compensate data
dropouts in the transmission channels between a remote
controller, sensors, and actuators within an ILC system with
stable and linear iterative models subject to the presence
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Figure 5: Time evolution of the output error of the 199th model
during the both simulations, one with 4.86% of failures (a) and the
other with 9.5% of failures (b).

of dropouts. The convergence to zero of the output errors
vectors is established. Several simulation results prove the
improvement in the performance of the proposed algorithm
comparedwith that obtained if the algorithmproposed in [11]
is used or if no compensation techniques are used. Future
foreseen researches will expand this technique to ILC with
unstable linear and/or nonlinear models.
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