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Abstract. We consider the quantified constraint satisfaction problem (QCSP) which is
to decide, given a structure and a first-order sentence (not assumed here to be in prenex
form) built from conjunction and quantification, whether or not the sentence is true on
the structure. We present a proof system for certifying the falsity of QCSP instances
and develop its basic theory; for instance, we provide an algorithmic interpretation of its
behavior. Our proof system places the established Q-resolution proof system in a broader
context, and also allows us to derive QCSP tractability results.

1. Introduction

Background. The study of propositional proof systems for certifying the unsatisfiability of
quantifier-free propositional formulas is supported by multiple motivations [3, 15]. First, the
desire to have an efficiently verifiable certificate of a formula’s unsatisfiability is a natural
and basic one, and indeed the field of propositional proof complexity studies, for various
proof systems, whether and when succinct proofs exist for unsatisfiable formulas. Next,
theorem provers are typically based on such proof systems, and so insight into the behavior
of proof systems can yield insight into the behavior of theorem provers. Also, algorithms
that perform search to determine the satisfiability of formulas can typically be shown to
implicitly generate proofs in a proof system, and thus lower bounds on proof size translate
to lower bounds on the running time of such algorithms. Finally, algorithms that check for
unsatisfiability proofs of various restricted forms have been shown to yield tractable cases of
the propositional satisfiability problem and related problems (see for example [1, 2]).

In recent years, increasing attention has been directed towards the study of quantified
proof systems that certify the falsity of quantified propositional formulas, which study is
also pursued with the motivations similar to those outlined for the quantifier-free case.
Indeed, the development of so-called QBF solvers, which determine the truth of quantified
propositional formulas, has become an active research theme, and the study of quantified
proof systems is pursued as a way to understand their behavior, as well as to explore the
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space of potential certificate formats for verifying their correctness on particular input
instances [14].

Q-resolution [4] is a quantified proof system that can be viewed as a quantified analog
of resolution, one of the best-known and most customarily considered propositional proof
systems. In the context of quantified propositional logic, Q-resolution is a heavily studied and
basic proof system on which others are built and to which others are routinely compared, as
well as a point of departure for the discussion of suitable certificate formats (see [11, 16, 12]
for examples).

However, the Q-resolution proof system has intrinsic shortcomings. First, it is only
applicable to quantified propositional sentences that are in prenex form, that is, where all
quantifiers appear in front. While it is certainly true that an arbitrary given quantified
propositional formula may be efficiently prenexed, the process of prenexing is not canonical:
intuitively, it involves choosing a total order of variables consistent with the partial order
given by the input formula. As argued by Egly, Seidl, and Woltran [10], this may disrupt
the original formula structure, “artificially extend” the scopes of quantifiers, and generate
dependencies among variables that were not originally present, unnecessarily increasing the
expense of solving; we refer the reader to their article for a contemporary discussion of this
issue.1 A second shortcoming of Q-resolution is that it is only defined in the propositional
setting, despite that some scenarios may be more naturally and cleanly modelled by allowing
variables to be quantified over domains of size greater than two.

Contributions. In this article, we introduce a proof system that directly overcomes both
of the identified shortcomings of Q-resolution and that, in a sense made precise, generalizes
Q-resolution.

We here define the quantified constraint satisfaction problem (QCSP) to be the problem
of deciding, given a relational structure B and a first-order sentence φ (not necessarily
in prenex form) built from the conjunction connective (∧) and the two quantifiers (∀, ∃),
whether or not the sentence is true on the structure. To permit different variables to have
different domains, we formalize the QCSP using multi-sorted first-order logic.

Our proof system (Section 3) allows for the certification of falsity of QCSP instances.
While Q-resolution provides rules for deriving clauses from a given quantified propositional
formula, our proof system provides rules for deriving what we call constraints at various
formula locations of a given QCSP instance; here, a constraint (V, F ) is a set V of variables
paired with a set F of assignments, each defined on V . A formula location i paired with a
constraint is called a judgement ; a proof in our system is a sequence of judgements where
each is derived from the previous ones via the rules.

Crucially, we formulate and prove a key lemma (Lemma 3.5) that shows (essentially)
that if a judgement (i, V, F ) is derivable from a QCSP instance (φ,B), then there exists a
formula ψ(V ) that “defines” the constraint (V, F ) over B, such that ψ(V ) can be conjoined
to the input sentence φ at location i while preserving logical equivalence. This key lemma
is then swiftly deployed to establish soundness and completeness of our proof system
(Theorem 3.6). We view the formulation of our proof system and of this key lemma as
conceptual contributions. They offer a broader, deeper, and more general perspective on
Q-resolution and what it means for a clause to be derivable by Q-resolution: we show (in
a sense made precise) that each clause derivable by Q-resolution is derivable by our proof

1Let us remark that using so-called dependency schemes is a potential way to cope with such introduced
dependencies in a prenex formula [16].
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system (see Theorem 4.4). This yields a clear and transparent proof of the soundness of
Q-resolution which, interestingly, is carried out in the setting of first-order logic, despite the
result concerning propositional logic.

In order to relate our proof system to Q-resolution, we give a proof system for certain
quantified propositional formulas (Section 4) and prove that this second proof system is
a faithful propositional interpretation of our QCSP proof system (Theorem 4.3). We also
provide an algorithmic interpretation of this second proof system. In particular, we give
a nondeterministic search algorithm such that traces of execution that result in certifying
falsity correspond to refutations in the proof system (Section 4.3). As a consequence, the
proof system yields a basis for establishing running-time lower bounds for any deterministic
algorithm which instantiates the non-deterministic choices of our search algorithm.

In the final section of the article (Section 5), we present and study a notion of consistency
for the QCSP that is naturally induced by our proof system. In the context of constraint
satisfaction, a consistency notion is a condition which is necessary for the satisfiability of
an instance and which can typically be efficiently checked. An example used in practice
is arc consistency, and understanding when various forms of consistency provide an exact
characterization of satisfiability (that is, when consistency is sufficient for satisfiability in
addition to being necessary) has been a central theme in the tractability theory of constraint
satisfaction [1, 2, 8]. Atserias, Kolaitis, and Vardi [1] showed that checking for k-consistency,
an oft-considered consistency notion, can be viewed as detecting the absence of a proof of
unsatisfiability having width at most k, in a natural proof system (the width of a proof is the
maximum number of variables appearing in a line of the proof); Kolaitis and Vardi [13] also
characterized k-consistency algebraically as whether or not Duplicator can win a natural
Spoiler-Duplicator pebble game in the spirit of Ehrenfeucht-Fräıssé games.

Inspired by these connections, we directly define a QCSP instance to be k-judge-
consistent if it has no unsatisfiability proof (in our proof system) of width at most k; and, we
then present an algebraic, Ehrenfeucht-Fräıssé-style characterization of k-judge-consistency
(Theorem 5.3). As an application of this algebraic characterization, we prove that (in a sense
made precise) any case of the QCSP that lies in the tractable regime of a recent dichotomy
theorem [7], is tractable via checking for k-judge-consistency.2 That is, within the framework
considered by that dichotomy, if a class of QCSP instances is tractable at all, it is tractable
via k-judge consistency. We remark that earlier work [6] presents algebraically a notion of
consistency for the QCSP, but no corresponding proof system was explicitly presented; the
notion of k-judgement consistency can be straightforwardly verified to imply the notion of
consistency in this earlier article.

To sum up, this article presents a proof system for non-prenex quantified formulas.
Our proof system is based on highly natural and simple rules, and its utility is witnessed
by its connections to Q-resolution and by our presentation of a consistency notion that it
induces, which allows for the establishment of tractability results. We hope that this proof
system will serve as a point of reference and foundation for the future study of solvers and
certificates for non-prenex formulas. One particular possibility for future work is to compare
this proof system to others that are defined on non-prenex formulas, such as those discussed
and studied by Egly [9].

2 Let us remark that this dichotomy theorem has since been generalized [5].
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2. Preliminaries

When f is a mapping, we use f � S to denote its restriction to a set S; we use f [s→ b] to
denote the extension of f that maps s to b. We extend this notation to sets of mappings in
the natural fashion.

First-order logic. We assume basic familiarity with the syntax and semantics of first-order
logic. For the sake of broad applicability, in this article, we work with multi-sorted relational
first-order logic, formalized here as follows. A signature is a pair (σ,S) where S is a set
of sorts and σ is a set of relation symbols; each relation symbol R ∈ σ has an associated
arity ar(R) which is an element of S∗. Each variable v has an associated sort s(v) ∈ S; an
atom is a formula R(v1, . . . , vk) where R ∈ σ and s(v1) . . . s(vk) = ar(R). A structure B
on signature (σ,S) consists of an S-indexed family B = {Bs | s ∈ S} of sets, called the
universe of B, and, for each symbol R ∈ σ, an interpretation RB ⊆ Bar(R). Here, for a word
w = w1 . . . wk ∈ S∗, we use Bw to denote the product Bw1 × · · · × Bwk

. Suppose that V
is a set of variables where each variable v ∈ V has an associated sort s(v); by a mapping
f : V → B, we mean a mapping that sends each v ∈ V to an element f(v) ∈ Bs(v).

When φ is a formula, we use free(φ) to denote the set containing the free variables of
φ. The width of a formula φ is the maximum of |free(ψ)| over all subformulas ψ of φ. A
quantified-conjunctive formula (for short, qc-formula) is a formula over a signature built
from atoms on the signature, conjunction (∧), and the two quantifiers (∀, ∃). Note that we
permit conjunction of arbitrary arity. As expected, a qc-sentence is a qc-formula φ such
that free(φ) = ∅. We allow conjunction of arbitrary (finite) arity, in formulas. We will use >
to denote a sentence that is always true; this is considered to be a qc-sentence. A relation
P is qc-definable over a structure B if there exists a qc-formula φ(v1, . . . , vk) such that
P ⊆ Bs(v1)...s(vk) and P contains a tuple (b1, . . . , bk) if and only if B, b1, . . . , bk |= φ(v1, . . . , vk).
Note that by the notation B, b1, . . . , bk |= φ(v1, . . . , vk), we mean that the structure B and
the mapping taking each vi to bi satisfy φ. We sometimes use ≡ to indicate logical equivalence
of two formulas.

We define the QCSP to be the problem of deciding, given a QCSP instance, which is a
pair (φ,B) where φ is a qc-sentence and B is a structure that both have the same signature,
whether or not B |= φ.

3. QCSP proof system

In this section, we present our proof system for the QCSP, and establish some basic properties
thereof, including soundness and completeness. Let (φ,B) be a QCSP instance, and conceive
of φ as a tree. The proof system will allow us to derive what we call constraints at the
various nodes of the tree. To facilitate the discussion, we will assume that each qc-sentence
φ has, associated with it, a set Iφ of indices that contains one index for each subformula
occurrence of φ, that is, for each node of the tree corresponding for φ. Let us remark that
(in general) the collection of constraints derivable at an occurrence of a subformula does not
depend only on the subformula, but also on the subformula’s location in the full formula
φ. When i is an index, we use φ(i) to denote the actual subformula of the subformula
occurrence corresponding to i; we will also refer to i as a location.

Example 3.1. Consider the qc-sentence φ = ∃x∀y(E(x, y) ∧ (∃xE(x, y))). (See Figure 3.)
When viewed as a tree, this formula has 6 nodes. We may index them naturally according



BEYOND Q-RESOLUTION AND PRENEX FORM 5

ax
tvg
I7n

utl,r: b

ae--7Lr -" ,b\
% QLs) = ax gb'y)

StroelweBi
Uu', Verse l orlo'&
ee =\ (a,a) ,(n b), (ar.),

Lvrv), (c,c)l

L,e+ (6 csur*arn *{nz vnag1.

-H^atr sdtOtl ELxrg) '
tx41 * tarb,cl
m glvocr*vr2 lb.

L
Z &c*2 (L

'-\b
C.-. C

Figure 1: Formula discussed in Examples 3.1 and 3.4.

to the depth-first search order: we could take the index set {1, . . . , 6} where φ(4) = φ(6) =
E(x, y), φ(5) = ∃xφ(6), φ(3) = φ(4) ∧ φ(5), φ(2) = ∀yφ(3), and φ(1) = ∃xφ(2).

We say that an index i is a parent of an index j, and also that j is a child of i, if, in
viewing the formula φ as a tree, the root of the subformula occurrence of i is the parent of
the root of the subformula occurrence of j. Note that, when this holds, the formula φ(i)
either is of the form Qvφ(j) where Q is a quantifier and v is a variable, or is a conjunction
where φ(j) appears as a conjunct. As examples, with respect to the qc-sentence and indexing
in Example 3.1, index 3 has two children, namely, 4 and 5, and index 3 has one parent,
namely, 2.

Definition 3.2. Let (φ,B) be a QCSP instance. A constraint (on (φ,B)) is a pair (V, F )
where V is a set of variables occurring in φ, and F is a set of mappings from V to B.
A judgement (on (φ,B)) is a triple (i, V, F ) where i ∈ Iφ and (V, F ) is a constraint with
V ⊆ free(φ(i)); it is empty if F = ∅.

Here, we use the convention that (relative to a QCSP instance) there is exactly one map
e : ∅ → B defined on the empty set, so there are two constraints whose variable set is the
empty set: the constraint (∅, ∅), and the constraint (∅, {e}) where e is the aforementioned
map.

When (U1, F1), (U2, F2) are two constraints on the same QCSP instance, we define the
join of F1 and F2, denoted by F1 on F2, to be the set

{f : U1 ∪ U2 → B | (f � U1) ∈ F1, (f � U2) ∈ F2}.
When (U,F ) is a constraint and y is a variable in U , we use εyF to denote the set

{f : U \ {y} → B | for each b ∈ Bs(y), it holds that f [y → b] ∈ F}.
The operator εy will be used to eliminate a universally quantified variable y. Dually, in the
following definition, projection can be used to cope with existential quantification.

Definition 3.3. A judgement proof on (φ,B) is a finite sequence of judgements, each of
which has one of the following types:
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(atom) (i, {v1, . . . , vk}, F )

where φ(i) is an atom R(v1, . . . , vk) and
F = {f : {v1, . . . , vk} → B | (f(v1), . . . , f(vk)) ∈
RB}

(projection) (i, U, F � U)

where (i, V, F ) is a previous judgement, and U ⊆ V

(join) (i, U1 ∪ U2, F1 on F2)

where (i, U1, F1) and (i, U2, F2) are previous judge-
ments

(upward flow) (i, V, F )

where (j, V, F ) is a previous judgement and
i is the parent of j

(∀-elimination) (i, V \ {y}, εyF )

where (j, V, F ) is a previous judgement with y ∈ V ,
φ(i) = ∀yφ(j), and i is the parent of j

(downward flow) (j, V, F )

where (i, V, F ) is a previous judgement and
i is the parent of j

We say that a judgement (i, V, F ) is derivable if there exists a judgement proof that
contains the judgement.

The width of a judgement (i, V, F ) is |V |. The width of a judgement proof is the
maximum width over all of its judgements, and the length of a judgement proof is the
number of judgements that it contains.

Let us emphasize that, by definition, a judgement proof is a finite sequence of judgements,
and by definition, in order for a triple (i, V, F ) to be a judgement, it must hold that all
variables in V are free variables of φ(i). Consequently, upward flow can only be applied to a
judgement (j, V, F ) if all variables in V are free variables of φ(i), where i is the parent of j;
an analogous comment holds for downward flow.

Example 3.4. Let φ be the qc-sentence from Example 3.1 (shown in Figure 3), considered
as a sentence over signature ({E}, {e, u}) with ar(E) = eu and where s(x) = e and s(y) = u.
Define B to be a structure over this signature having universe B defined by Be = {a, b, c}
and Bu = {d, e, f}, and where EB = {(a, d), (a, e), (a, f), (b, e), (c, f)}. To offer a feel of the
proof system, we give some examples of derivable judgements.

Let FE be the set of assignments from {x, y} to B that satisfy E(x, y) (over B). By
(atom), we may derive the judgement (4, {x, y}, FE). By (upward flow), we may then
derive the judgement (3, {x, y}, FE). By (∀-elimination), we may then derive the judgement
(2, {x}, G), where G contains the single map that takes x to a. By applying (downward flow)
twice, we may then derive the judgement (4, {x}, G). By (atom), we may also derive the
judgement (6, {x, y}, FE). By (projection), we may then derive the judgement (6, {x}, H),
where H contains the maps taking x to a, b, and c, respectively. Let us remark that, even
though φ(4) = φ(6) and we derived the judgement (4, {x}, G), it is not possible to derive
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the judgement (6, {x}, G). (This can be verified by Lemma 3.5, to be presented next, and
the observation that B |= φ.)

We now prove soundness and completeness of our proof system; we first establish a
lemma, which indicates what it means for a judgement to be derivable.

When φ is a qc-formula with index set I, and {θi}i∈I is a family of formulas, we use
φ+θ to denote the formula obtained from φ by replacing, at each location i, the subformula
φ(i) by φ(i) ∧ θi. Formally, we define φ+θ by induction. When φ(i) is an atom, we define
φ+θ(i) = φ(i)∧ θi. When φ(i) = φ(j)∧φ(k), we define φ+θ(i) = φ+θ(j)∧φ+θ(k)∧ θi. When
φ(i) = Qvφ(j), we define φ+θ(i) = (Qvφ+θ(j)) ∧ θi. We define φ+θ to be φ+θ(r) where r is
the root index of φ (that is, where r is such that φ(r) = φ).

Lemma 3.5. Let (φ,B) be a QCSP instance. For every derivable judgement (i, V, F ), there
exists a qc-formula ψ such that

• free(ψ) = V ;
• for each f : V → B, it holds that f ∈ F if and only if B, f |= ψ; and

• for any family {θi}i∈I of formulas, it holds that φ+θ entails φ+θ[i
∧→ ψ] (and hence that

φ+θ ≡ φ+θ[i
∧→ ψ]). Here, φ+θ[i

∧→ ψ] denotes the formula where, at location i, the
subformula φ+θ(i) is replaced with φ+θ(i) ∧ ψ.

Moreover, if one has a judgement proof of width at most k, then each of the formulas ψ
produced for its judgements has width(ψ) ≤ k.

Proof. We consider the different types of judgements, and use the notation from Definition 3.3.
In each case, the claim on the width is straightforwardly verified.

In the case of (atom), we take ψ = φ(i); the formulas φ+θ and φ+θ[i
∧→ ψ] are logically

equivalent since φ(i) ≡ φ(i) ∧ φ(i).

In the case of (projection), by induction, we have that φ+θ entails φ+θ[i
∧→ ψ′] where ψ′

is the formula for the judgement (i, V, F ). We take ψ = ∃v1 . . . ∃vmψ′, where v1, . . . , vm is a

listing of the elements in V \ U . We have that φ+θ[i
∧→ ψ′] entails φ+θ[i

∧→ ψ], and hence by

transitivity of the entailment relation that φ+θ entails φ+θ[i
∧→ ψ].

In the case of (join), by induction, we have (for any family {θj}j∈I) that φ+θ entails

both φ+θ[i
∧→ ψ1] and φ+θ[i

∧→ ψ2] where ψ1 and ψ2 are the formulas corresponding to the
judgements (i, U1, F1) and (i, U2, F2). We take ψ = ψ1∧ψ2. Fix a family {θj}j∈I , and define
{θ′j}j∈I to be the family that has θ′i = θi ∧ ψ1, and is everywhere else equal to {θj}j∈I . We

have that φ+θ entails φ+θ[i
∧→ ψ1] ≡ φ+θ′ , and that φ+θ

′
entails φ+θ

′
[i
∧→ ψ2]. It follows that

φ+θ entails φ+θ
′
[i
∧→ ψ2] ≡ φ+θ[i

∧→ (ψ1 ∧ ψ2)].

In the case of (∀-elimination), by induction, we have that φ+θ entails φ+θ[j
∧→ ψ′],

where ψ′ is the formula for the judgement (j, V, F ). We take ψ = ∀yψ′. We claim that the

formula φ+θ[j
∧→ ψ′] is logically equivalent to φ+θ[i

∧→ ψ], which suffices to give that φ+θ

entails φ+θ[i
∧→ ψ]. This is because the subformula of φ+θ[j

∧→ ψ′] at location i is logically
equivalent to (∀y(φ+θ(j)∧ψ′))∧ θi which is logicically equivalent to (∀yφ+θ(j))∧ (∀yψ′)∧ θi.

In the cases of (upward flow) and (downward flow), we take ψ to be equal to the formula

that is given to us by the previous judgement. It is straightforwardly verified that φ+θ[i
∧→ ψ]

and φ+θ[j
∧→ ψ] are logically equivalent.
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Theorem 3.6. Let (φ,B) be a QCSP instance. An empty judgement on (φ,B) is derivable
if and only if B 6|= φ.

This theorem is proved in the following way. The forward direction follows immediately
from the previous lemma. For the backward direction, we show by induction that, for each
location i, there exists a derivable judgement for which the formula ψ given by the previous
lemma is equal to φ(i)!

Proof. Suppose that an empty judgement (i, V, F ) is derivable. Then by invoking the
(projection) rule, the empty judgement (i, ∅, ∅) is derivable. Define {θj}j∈I so that θj is
the true formula > for each j ∈ I; then, invoking Lemma 3.5, we have that there exists a

qc-formula ψ that is false on B (that is, B 6|= ψ) and such that φ entails φ[i
∧→ ψ]. We have

that B 6|= φ[i
∧→ ψ], and hence (since φ entails φ[i

∧→ ψ]) we have that B 6|= φ.
Suppose that B 6|= φ. We claim that for each location i, there exists a derivable

judgement (i, V, F ) where the corresponding formula ψ, given by the proof of Lemma 3.5, is
equal to φ(i). This suffices, as then the root location r has a derivable judgement (r, V, F )
such that F = ∅. We establish the claim by induction.

When φ(i) is an atom, we use the judgement given by (atom) in the proof system
(Definition 3.3). When φ(i) is a conjunction, let j and k be the children of i, so that
φ(i) = φ(j) ∧ φ(k). Let (j, Vj , Fj) and (k, Vk, Fk) be the derivable judgements given by
induction. By (upward flow) in the proof system, we have that (i, Vj , Fj) and (i, Vk, Fk)
are derivable judgements; by invoking (join), we obtain the desired judgement. When φ(i)
begins with existential quantification, let j be the child of i, and denote φ(i) = ∃xφ(j). Let
(j, V, F ) be the derivable judgement given by induction; by applying the rule (projection)
to obtain a constraint on V \ {x} and then the rule (upward flow), we obtain the desired
derivation. When φ(i) begins with universal quantification, let j be the child of i, and
denote φ(i) = ∀yφ(j). Let (j, V, F ) be the derivable judgement given by induction; by the
(∀-elimination) rule, we obtain the desired derivation.

4. Propositional proof system

In this section, we introduce a different proof system, which is a propositional interpretation
of the QCSP proof system. For differentiation, we refer to judgements and judgement proofs
as defined in the previous section as constraint judgements and constraint judgement proofs.

A literal is a propositional variable v or the negation v thereof. Two literals are
complementary if one is a variable v and the other is v; each is said to be the complement of
the other. A clause is a disjunction of literals that contains, for each variable, at most one
literal on the variable; a clause is sometimes viewed as the set of the literals that it contains.
A clause is empty if it does not contain any literals. The variables of a clause are simply the
variables that underlie the clause’s literals, and the set of variables of a clause α is denoted
by vars(α). A clause γ is a resolvent of two propositional clauses α and β if there exists a
literal L ∈ α such that its complement M is in β, and γ = (α \ {L}) ∪ (β \ {M}). A clause
γ is falsified by a propositional assignment a if a is defined on vars(γ) and each literal in γ
evalutes to false under a.

We define a QCBF instance to be a propositional formula not having free variables
that is built from clauses, conjunction, and universal and existential quantification over
propositional variables. As with QCSP instance, we assume that each QCBF instance ψ has
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an associated index set that contains an index for each subformula of ψ. Note that a clause
is not considered to have any subformulas, other than itself. As an example, consider the
QCBF instance ∃x∀y∃z((y ∨ z) ∧ (y ∨ z ∨ x)). This formula would have 6 indices: one for
each of the two clauses, one for the conjunction of the two clauses, and one for each of the
quantifiers.

Let ψ be a QCBF instance. A clause judgement (on ψ) is a pair (i, α) where i ∈ Iψ and
α is a clause with vars(α) ⊆ free(ψ(i)); a clause judgement (i, α) is empty if α is empty.

Definition 4.1. A clause judgement proof on a QCBF instance ψ is a finite sequence of
clause judgements, each of which has one of the following types:

(clause) (i, α)

where φ(i) is the clause α

(resolve) (i, γ)

where (i, α) and (i, β) are previous clause judge-
ments, and γ is a resolvent of α and β

(upward flow) (i, α)

where (j, α) is a previous clause judgement and
i is the parent of j

(∀-removal) (i, α \ {y, y})
where (j, α) is a previous clause judgement,
φ(i) = ∀yφ(j), and i is the parent of j

(downward flow) (j, α)

where (i, α) is a previous clause judgement and
i is the parent of j

We say that a clause judgement (i, α) is derivable if there exists a clause judgement
proof that contains the clause judgement.

The width of a clause judgement (i, α) is |vars(α)|. The width of a clause judgement proof
is the maximum width over all of its clause judgements; the length of a clause judgement
proof is the number of judgements that it contains. In a clause judgement proof, we refer to
judgements that are not derived by the rules (upward flow) and (downward flow) as non-flow
judgements.

Let us emphasize that we allow resolution over both existential and universal variables,
and the resolvent must be non-tautological, because it must be a clause (for our definition
of clause).

4.1. Relationship to the QCSP proof system. We now define the notion of a QCSP
translation of a QCBF instance ψ, which intuitively is a QCSP instance that behaves just like
ψ. When discussing QCSP translations, we will be concerned with structures B that have
just one sort s with Bs = {0, 1}; we slightly abuse notation and simply write B = {0, 1}.

Definition 4.2. When ψ is a QCBF instance, define a QCSP translation of ψ to be a QCSP
instance (φ,B) where B is a one-sorted structure with B = {0, 1} and where φ is obtainable
from ψ by replacing each clause γ having variables v1, . . . , vk with an atom R(v1, . . . , vk)
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such that

RB = {(f(v1), . . . , f(vk)) | f : {v1, . . . , vk} → {0, 1} satisfies γ};
we typically assume that Iφ = Iψ and that each subformula of φ has the same index as the
natural corresponding subformula of ψ.

Note that when ψ is a QCBF instance and (φ,B) is a QCSP translation thereof, it can
be immediately verified, by induction, that for each index i, an assignment g to {0, 1} that
is defined on free(ψ(i)) = free(φ(i)) satisfies ψ(i) if and only if it satisfies φ(i). In particular,
we have that ψ is true if and only if φ is true on B.

We prove that our clause judgement proof system is a faithful interpretation of our
QCSP proof system, as made precise by the following theorem.

Theorem 4.3. Let ψ be a QCBF instance and let (φ,B) be a QCSP translation of ψ. For
each clause judgement (i, α) that is derivable from ψ, there exists a constraint judgement
(i, vars(α), F ) derivable from (φ,B) such that the unique g : vars(α)→ {0, 1} that does not
satisfy α is not in F . The other way around, for each constraint judgement (i, V, F ) that is
derivable from (φ,B), and for each mapping g : V → {0, 1} with g /∈ F , there exists a clause
judgement (i, α) derivable from ψ where vars(α) ⊆ V and g does not satisfy α. Consequently,
an empty clause judgement is derivable from ψ if and only if an empty constraint judgement
is derivable from (φ,B).

The proof of this theorem is provided in Section A.

4.2. Simulation of Q-resolution. We now show that our clause judgement proof system
simulates Q-resolution [4], as made precise by the following theorem.

Theorem 4.4. Let ψ be a QCBF instance in prenex form, whose quantifier-free part is a
conjunction of clauses with index c. If a clause γ is derivable from ψ by Q-resolution, then
the clause judgement (c, γ) is derivable from ψ by the clause judgement proof system.

Proof. It is straightforwardly verified that each clause derivable by Q-resolution from ψ is
contained in the smallest set C of clauses satisfying the following recursive definition:

• Each clause α appearing in ψ is in C.
• C is closed under taking resolvents.
• If α ∈ C and y ∈ vars(α) is universally quantified and is the first variable in vars(α) to be

quantified on the unique path from c to the root of ψ, then α \ {y, y} is in C.
It suffices to show, then, that for each α ∈ C, the clause judgement (c, α) is derivable. We
consider the three types of clauses according to the just-given recursive definition. For each
clause α appearing in ψ, the clause judgement (c, α) is derivable by applying the (clause)
rule at the location of α, followed by one application of the (upward flow) rule. For a clause
that is a resolvent of two other clauses, one can simply apply the (resolve) rule. Finally,
suppose that (c, α) is derivable and that y ∈ vars(α) satisfies the described condition. We
need to show that α \ {y, y} is derivable. Let j be the first location where y is quantified
when walking from c to the root, and let K be the set of nodes appearing on the unique
path from c to the child of j (inclusive). By the definition of C, no variable in vars(α) is
quantified at a location in K and vars(α) ⊆ free(ψ(k)) for each k ∈ K; hence, (upward flow)
can be applied repeatedly to derive (k, α) for each k ∈ K. By applying (∀-removal) at the
child of j, we obtain (j, α \ {y, y}; then, (downward flow) can be applied repeatedly to derive
(c, α \ {y, y}.
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The soundness of Q-resolution (derivability of an empty clause implies falsehood) is
thus a consequence of this theorem, Theorem 4.3, and Theorem 3.6.

4.3. Algorithmic interpretation. We define the following notions relative to a QCBF
instance ψ. We view ψ as a rooted tree. When i, j ∈ Iψ, we write i ≤ψ j if i is an ancestor
of j, that is, if i occurs on the unique path from j to the root; we write i <ψ j if i ≤ψ j and
i 6= j. We define a located variable to be a pair (i, u) where i ∈ Iψ is an index, and u is a
variable that is quantified at location i; this pair is a ∀-located variable if u is universally
quantified at location i. We say that index j ∈ Iψ follows a located variable (i, u) if i <ψ j
and for each index k ∈ Iψ with i <ψ k ≤ψ j, it holds that u ∈ free(φ(k)). We say that a
located variable (j, v) follows a located variable (i, u) if j follows (i, u). We say that an
index j or a located variable (j, v) follows a set S of located variables if j follows each
located variable in S. A set S of located variables is coherent if for any two distinct elements
(i, u), (j, v) ∈ S, one follows the other (that is, either (i, u) follows (j, v) or (j, v) follows
(i, u)). When S is a set of located variables, we use vars(S) to denote the set of variables
occurring in the located variables in S. Observe that when a set S of located variables is
coherent, no variable occurs in two distinct located variables in S, and so |S| = |vars(S)|.

We now present a nondeterministic, recursive algorithm that, in a sense to be made
precise, corresponds to the proof system. At each point in time, the algorithm maintains a
set S of coherent variables; actions it may perform include branching on a located variable
(i, u) such that adding (i, u) to S is still coherent, and, nondeterministically setting a ∀-
located variable (i, y) that follows S. The algorithm returns either the false value F or the
indeterminate value ⊥. On these two values, we define the operation ∨ by F ∨ F = F and
⊥∨ F = F ∨⊥ = ⊥∨⊥ = ⊥. Intuitively speaking, the algorithm returns the indeterminate
value ⊥ when a nondeterministically selected action cannot be carried out. We assume that
when the algorithm is first invoked on a given QCBF instance, the set S is initially assigned
to the empty set.
Algorithm Detect_Falsity( QCBF instance ψ, coherent set S,

assignment a : vars(S)→ {0, 1})
{

Select nondeterministically and perform one of the following:

(falsify) check if there exists a location i following S
such that ψ(i) is a clause falsified by a with vars(ψ(i)) = vars(S);
if so, return F, else return ⊥;

(Q-branch) check if there exists a located variable (i, u) /∈ S
such that S ∪ {(i, u)} is coherent; if not, return ⊥, else:

- nondeterministically select such a located variable (i, u);
- nondeterministically pick subsets S0, S1 ⊆ S with S0 ∪ S1 = S;
- return Detect-Falsity(ψ, S0 ∪ {(i, u)}, (a � vars(S0))[u→ 0]) ∨

Detect-Falsity(ψ, S1 ∪ {(i, u)}, (a � vars(S1))[u→ 1])

(∀-branch) check if there exists a ∀-located variable (i, y)
that follows S; if not, return ⊥, else:

- nondeterministically select such a ∀-located variable (i, y);
- nondeterministically pick a value b ∈ {0, 1};
- return Detect-Falsity(ψ, S ∪ {(i, y)}, a[y → b])

}
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Relative to a clause judgement proof, we employ the following terminology. A clause
judgement (j, β) that is derived using a previous judgement (i, α) is said to be a successor of
(i, α); also, (i, α) is said to be a predecessor of (j, β). So, a clause judgement derived using the
(clause) rule has 0 predecessors, one derived using the (resolve) rule has 2 predecessors, and
one derived using one of the other rules has 1 predecessor. We say that a clause judgement
proof is tree-like if each clause judgement has at most one successor; in this case, each clause
judgement (i, α) naturally induces a tree (defined recursively) where: each node is labelled
with a clause judgement; the root is labelled with (i, α); and, for each predecessor of the
clause judgement (i, α), the root has a child which is the tree of the predecessor.

We formalize the notion of a trace of the nondeterministic algorithm. A trace of a QCBF
instance ψ is a rooted tree where:

• each node has a label (S, a) where S is a coherent set of located variables and a : vars(S)→
{0, 1} is an assignment;
• each node has 0, 1, or 2 children;
• when a node has 2 children and label (S, a), the labels of the two children could be

generated by the (Q-branch) step from (S, a);
• when a node has 1 child and label (S, a), the label of the child could be generated by the

(∀-branch) step from (S, a);
• when a node has 0 children and label (S, a), the node has an associated index i that

follows S and such that ψ(i) is a clause falsified by a with vars(ψ(i)) = vars(S).

We take it as evident that this notion of trace properly formalizes the recursion trees that
the algorithm generates.

Let e denote the unique assignment from ∅ to {0, 1}. We now show that, up to
polynomial-time computable translations, tree-like clause judgement proofs of an empty
clause correspond precisely to traces having root label (∅, e).

Theorem 4.5. Let ψ be a QCBF instance; let n ≥ 1. There exists a tree-like clause
judgement proof P (viewed as a tree) of an empty clause with n non-flow judgements if
and only if there exists a trace T whose root has label (∅, e) and having n nodes. Moreover,
both implied translations (from proof to trace, and from trace to proof) can be computed in
polynomial time.

The proof of this theorem is provided in Section B.

5. Algebraic characterization of k-judge-consistency

We will assume that all structures under discussion in this section are finite, in that each
structure’s universe is finite.

Definition 5.1. Let k ≥ 1. A QCSP instance (φ,B) is k-judge-consistent if there does not
exist a judgement proof of width less than or equal to k that contains an empty judgement.

Definition 5.2. Let (φ,B) be a QCSP instance, where φ is a qc-formula with index set I,
and let k ≥ 1. A k-constraint system P provides, for each i ∈ I and each V ⊆ free(φ(i))
with |V | ≤ k, a non-empty set P [i, V ] of maps from V to B satisfying the following four
properties:

• (α) If φ(i) is an atom R(v1, . . . , vm) with V = {v1, . . . , vm}, then
P [i, {v1, . . . , vm}] ⊆ {f : {v1, . . . , vm} → B | (f(v1), . . . , f(vm)) ∈ RB}
• (π) If U ⊆ V , then P [i, U ] = (P [i, V ] � U).
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• (λ) If j is a child of i and V ⊆ free(φ(j)), then P [i, V ] = P [j, V ].
• (ε) If j is a child of i, φ(i) = ∀yφ(j), U is a subset of free(φ(j)) with |U | ≤ k and y ∈ U ,

and V = U \ {y}, then P [i, V ] ⊆ εy(P [j, U ]).

We show that the existence of a k-constraint system characterizes k-judge consistency.

Theorem 5.3. Let (φ,B) be a QCSP instance. There exists a k-constraint system P for
the instance if and only if the instance is k-judge-consistent.

A proof of this theorem can be found in Section C.

Theorem 5.4. For each k ≥ 1, there exists a polynomial-time algorithm that, given a QCSP
instance (φ,B), decides if the instance is k-judge-consistent.

Proof. We begin by describing the algorithm, which decides, given a QCSP instance (φ,B),
whether or not there exists a k-constraint system (this property is equivalent to k-judge-
consistency by Theorem 5.3). Throughout, i and j will always denote indices from Iφ.

For each i ∈ Iφ and V ⊆ free(φ(i)) with |V | ≤ k, the algorithm initializes Q[i, V ] to

be {f : {v1, . . . , vm} → B | (f(v1), . . . , f(vm)) ∈ RB} in the case that φ(i) is an atom
R(v1, . . . , vm) and V = {v1, . . . , vm}, and otherwise initializes Q[i, V ] to be the set of all
maps from V to B. The algorithm then iteratively performs the following rules (which
parallel properties (π), (λ), and (ε) in the definition of k-constraint system) until no changes
can be made to Q:

• When i is an index and U ⊆ V ⊆ free(φ(i)) with |V | ≤ k, assign to Q[i, U ] the value
Q[i, U ]∩(Q[i, V ] � U) and then assign to Q[i, V ] the value {f ∈ Q[i, V ] | (f � U) ∈ Q[i, U ]}.
• If j is a child of i, V ⊆ free(φ(i)) ∩ free(φ(j)), and |V | ≤ k, assign to each of Q[i, V ],
Q[j, V ] the value Q[i, V ] ∩Q[j, V ].
• If j is a child of i, φ(i) = ∀yφ(j), and U is a set of variables with y ∈ U ⊆ free(φ(j)) and
|U | ≤ k, then assign to Q[i, U \ {y}] the value Q[i, U \ {y}] ∩ εy(P [j, U ]).

This algorithm runs in polynomial time: there are polynomially many pairs (i, V ) for which
Q[i, V ] is initialized and used, and each Q[i, V ] contains (at most) polynomially many
maps: when |V | ≤ k, the number of maps from V to B is polynomial. (Here, when we say
polynomial, we mean as a function of the input length.) Applying the three given rules can
be done in polynomial time; each time they are applied, the sets Q[i, V ] may only decrease in
size. Hence, the process of repeatedly applying the three rules until no changes are possible
terminates in polynomial time.

We now explain why the instance is k-judge-consistent if and only if no set Q[i, V ]
is empty, which suffices to give the theorem. It is straightforward to verify that, for any
k-constraint-system P , the invariant P [i, V ] ⊆ Q[i, V ] is maintained by the algorithm. Hence,
when the algorithm terminates, if any set Q[i, V ] is empty, then there does not exist a k-
constraint system P . It is also straightforward to verify that, when the algorithm terminates,
the four properties in the definition of k-constraint system hold on Q. (As an example,
consider property (λ). Suppose that j is a child of i and that V ⊆ free(φ(i)) ∩ free(φ(j)).
When the algorithm terminates, since the second rule can no longer be applied it must hold
that Q[i, V ] = Q[j, V ] = Q[i, V ] ∩Q[j, V ].) Hence, if the algorithm terminates without any
empty set Q[i, V ], it holds that Q is a k-constraint system.

We can upper bound the number of iterations that the algorithm performs on an
instance (φ,B) in the following way. Let n be the maximum number of free variables, over
all subformulas of φ. For each index i of φ, the algorithm maintains, for each V ⊆ free(φ(i))
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with |V | ≤ k, a set of mappings from V to B. The size of such a set is at most |B||V |. In
each iteration, each such set of mappings can only have mappings deleted from it. The
number of iterations is thus upper bounded by the number of mappings that can occur in
such sets of mappings, which is |Iφ|(

(
n
k

)
|B|k +

(
n
k−1
)
|B|k−1 + · · ·+

(
n
0

)
|B|0).

We now show that checking for k-judge-consistency gives a way to decide a set of prenex
qc-sentences that is tractable via the dichotomy theorem on so-called prefixed graphs [7].
In particular, we prove this in the setting where relation symbols have bounded arity. Let
us refer to the width notion defined in that previous work [7] as elimination width. Define
the Q-width of a prenex qc-sentence φ to be the maximum of its elimination width and
maxR |ar(R)| (where this maximum ranges over all relation symbols R appearing in φ).

Theorem 5.5. Let k ≥ 1. Suppose that φ is a prenex qc-sentence with Q-width k (or less).
For any finite structure B, it holds that (φ,B) is k-judge-consistent if and only if B |= φ.
(Intuitively, this says that checking for k-judge consistency is a decision procedure for QCSP
instances involving φ.)

This theorem, in conjunction with Theorem 5.4, immediately implies that for any set Φ
of qc-sentences having Q-width bounded by a constant k, checking for k-judge-consistency is
a uniform polynomial-time procedure that decides any QCSP instance (φ,B) where φ ∈ Φ
and B is finite. Hence, in the setting of bounded arity, checking for k-judge-consistency is a
generic reasoning procedure that correctly decides the tractable cases of QCSP identified by
the work on elimination width.

In order to establish this theorem, we first prove a lemma.

Lemma 5.6. Suppose that the QCSP instance (θ,B) is k-judge-consistent, that B is a finite
structure, and that θ′ is a qc-sentence obtained from θ by applying one of the following three
syntactic transformations to a subformula of θ:

(1)
∧
i∈I φi  (

∧
j∈J φj) ∧ (

∧
k∈K φk), where I is the disjoint union of J and K

(2) Qv(φ ∧ ψ) (Qvφ) ∧ ψ where v /∈ free(ψ)
(3) ∀y

∧
i∈I φi  

∧
i∈I(∀yφi)

Then, the QCSP instance (θ′,B) is k-judge-consistent.

Proof. By Theorem 5.3, it suffices to show that if (θ,B) has a k-constraint system P , then
(θ′,B) does as well. We consider each of the three cases.

Case (1): We define a k-constraint system P ′ for (θ′,B) in the following way. Relative
to the transformation, let i denote the index of φi in both θ and θ′; let c denote the index
of
∧
i∈I φi in θ and of (

∧
j∈J φj) ∧ (

∧
k∈K φk) in θ′; let a be the index of

∧
j∈J φj in θ′; and

let b be the index of
∧
k∈K φk in θ′. For each other subformula occurrence in θ′, there is

a corresponding subformula occurrence in θ; we will assume that these two corresponding
subformula occurrences share the same index.

We now describe how to define P ′. Whenever discussing P ′[d, V ], it will hold that d is
an index of θ′, and we assume that V ⊆ free(θ′(d)) and |V | ≤ k. We define P ′[i, V ] as P [i, V ].
We define P ′[c, V ] as P [c, V ]. We define P ′[a, V ] as P [c, V ], and similarly we define P ′[b, V ]
as P [c, V ]. For each other index ` of θ′, we define P ′[`, V ] as P [`, V ]. It is straightforward
to verify that P ′ is a k-constraint system.

Case (2): We proceed as in the previous case; we define a k-constraint system P ′ for
(θ′,B). Relative to the transformation, let a denote the index of Qv(φ ∧ ψ) in θ; let b
denote the index of the subformula Qvφ in θ′. We define P ′[b, V ] as P [a, V ]. For each
other subformula occurrence of θ′ with index `, there exists a corresponding subformula
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occurrence of θ which we assume to also have index `. We define P ′[`, V ] as P [`, V ]. It is
straightforward to verify that P ′ is a k-constraint system.

Case (3): We proceed as in the previous cases; we define a k-constraint system P ′ for
(θ′,B). Let d denote the index of ∀y

∧
i∈I φi in θ, and also the index of

∧
i∈I(∀yφi) in θ′.

Let i denote the index of φi in both θ and θ′. Let c denote the index of
∧
i∈I φi in θ, and

let i′ denote the index of ∀yφi in θ′. For each V ⊆ free(∀yφi) with |V | ≤ k, define P ′[i′, V ]
to be P [d, V ]. Elsewhere, define P ′ to be equal to P (each other index of θ′ corresponds
to an index of θ). It is straightforward to verify that P ′ is a k-constraint system. In the
region of interest, the property (ε) can be verified as follows. Suppose that U ⊆ free(φ(i))
has |U | ≤ k and y ∈ U , and that V = U \ {y}. Then P [d, V ] ⊆ εy(P [c, U ]) = εy(P [i, U ])
since P is a k-constraint system. As P ′[i′, V ] = P [d, V ] by our definition of P ′, it follows
that P ′[i′, V ] ⊆ εy(P [i, U ]).

Proof. (Theorem 5.5) Suppose that the instance (φ,B) is not k-judge-consistent. Then, by
definition, there exists a judgement proof for the instance containing an empty judgement,
implying that B 6|= φ by Theorem 3.6.

For the other direction, suppose that B 6|= φ. From the definition of elimination width
(defined as width in [7]), it can straightforwardly be verified by induction on the number
of variables in φ that φ can be transformed to a sentence φ′ having width less than or
equal to k, via the three syntactic transformations of Lemma 5.6. As these three syntactic
transformations preserve logical equivalence, we have B 6|= φ′. By Theorem 3.6, an empty
judgement is derivable; by the proof of this theorem, there is a judgement proof with the
empty judgement whose width is equal to the width of φ′. Since the width of φ′ is less
than or equal to k, we thus obtain a judgement proof of the empty judgement having width
less than or equal to k, so by definition, (φ′,B) is not k-judge-consistent. By appeal to
Lemma 5.6, (φ,B) is not k-judge-consistent.
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Appendix A. Proof of Theorem 4.3

The theorem follows directly from the following two theorems.

Theorem A.1. Let ψ be a QCBF instance and let (φ,B) be a QCSP translation of ψ. For
each clause judgement proof of ψ having length s and width w, there exists a constraint
judgement proof of (φ,B) having length ≤ 2s and width ≤ w + 1 such that: each clause
judgement (i, α) appearing in the first proof has the entailment property that there exists a
constraint judgement in the second proof of the form (i, vars(α), F ) such that each f ∈ F
satisfies α (equivalently, the unique g : vars(α)→ {0, 1} that does not satisfy α is not in F ).

A direct consequence of this theorem is that if the original clause judgement proof
contains an empty clause, then the produced constraint judgement proof contains an empty
constraint.

Proof. We prove this by induction on s. Given a clause judgement proof P of length s+ 1
we create a constraint judgement proof in the following way. Apply induction to the clause
judgement proof consisting of the first s judgements in P ; this gives a constraint judgement
proof P ′. We then need to show how to augment P ′. We consider cases, depending on the
rule used to derive the last judgement of P . We use the notation of Definition 4.1.

• In the case of (clause) deriving (i, α), apply (atom) at location i.
• In the case of (resolve) deriving (i, γ) from (i, α) and (i, β), let v be the variable underlying

the complementary literals that are eliminated from α and β to obtain γ. The rule (join)
is applied to the constraint judgements corresponding to (i, α) and (i, β) to obtain a
new judgement, and then (projection) is used to remove the variable v from that new
judgement.
• In the case of (upward flow) or (downward flow), the same rule is applied to the corre-

sponding constraint judgement.
• In the case of (∀-removal), the rule (∀-elimination) is applied to the corresponding

constraint judgement.

In the case (resolve), two new constraint judgements are produced, and in all other cases, one
new constraint judgement is produced; hence, the claim on the length is correct. In the case
(resolve), the width of the first constraint judgement produced is one more than the width
of the corresponding clause judgement, and the width of the second constraint judgement
produced is equal to the width of the corresponding clause judgement; in all other cases,
the new constraint judgement produced has width equal to that of the corresponding clause
judgement. Hence, the claim on the width is correct. In each case, it is straightforward to
verify the claimed entailment property.

As an example, we verify the claimed entailment property in the case of (resolve).
Suppose that (resolve) derives (i, γ) from (i, α) and (i, β). Let gα : vars(α) → {0, 1},
gβ : vars(β) → {0, 1}, and gγ : vars(γ) → {0, 1} be assignments not satisfying α, β, and
γ, respectively. Let v be the variable such that vars(γ) = (vars(α) ∪ vars(β)) \ {v}. We
assume without loss of generality that gα(v) = 0 and that gβ(v) = 1. Let (i, vars(α), Fα)
and (i, vars(β), Fβ) be the constraint judgements for (i, α) and (i, β), respectively; we have
gα /∈ Fα and gβ /∈ Fβ. Consider the constraint judgement (i, vars(α) ∪ vars(β), Fα on Fβ)
obtained by applying (join) to these two constraint judgements. By definition of the join on,
neither gα not gβ has an extension defined on vars(α)∪ vars(β) that is contained in Fα on Fβ .
Next, consider the constraint judgement (i, vars(γ), (Fα on Fβ) � vars(γ)) obtained from the
previous one by applying (projection). We claim that gγ /∈ (Fα on Fβ) � vars(γ). Suppose not,
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for a contradiction; then there exists an extension g′γ of gγ which is contained in Fα on Fβ . If
g′γ(v) = 0, then g′γ is an extension of gα, but g′γ ∈ Fα on Fβ contradicts gα /∈ Fα; analogously,
If g′γ(v) = 1, then g′γ is an extension of gβ, but g′γ ∈ Fα on Fβ contradicts gβ /∈ Fβ.

Theorem A.2. Let ψ be a QCBF instance and let (φ,B) be a QCSP translation of ψ.
For each constraint judgement proof of (φ,B) having length s and width w, there exists a
clause judgement proof of ψ of length ≤ s ·max(w2w−1, 1) and width ≤ w such that: each
constraint judgement (i, V, F ) appearing in the first proof has the entailment property that,
for each mapping g : V → {0, 1} with g /∈ F , there exists a clause judgement (i, α) with
vars(α) ⊆ V in the second proof where α is not satisfied by g.

A direct consequence of this theorem is that if a constraint judgement proof of (φ,B)
having length s and width w contains an empty constraint, it may be augmented by one
constraint judgement to contain an empty constraint of the form (i, ∅, ∅), and then the
theorem yields that there is a clause judgement proof having an empty clause of length
≤ (s+ 1) ·max(w2w−1, 1) and width ≤ w.

Proof. We proceed as in the proof of the previous theorem. We prove this by induction on s.
Given a constraint judgement proof P of length s+ 1, we create a clause judgement proof P ′

by applying induction to P with the last constraint judgement removed; we then explain how
to augment the resulting clause judgement proof P ′ so that the last constraint judgement of
P has a corresponding clause judgement with the properties given in the theorem statement.
We consider cases depending on the rule used to derive the last constraint judgement of P ;
we use the notation of Definition 3.3.

• In the case of (atom) deriving (i, V, F ), apply (clause) at location i.
• In the case of (projection) deriving (i, U, F � U) from (i, V, F ), we first explain how to

obtain the clause judgements in the case that |V | = |U |+ 1. Let v be the variable such
that U ∪{v} = V . For each clause judgement (i, α) with vars(α) ⊆ U that can be obtained
by resolving two clause judgements in P ′ on the variable v, include the clause judgement
in the proof. The maximum number of clause judgements that we can add in this fashion
is the number of clauses on (w − 1) variables, that is, 2w−1.

In the general case where U ⊆ V , we may proceed by applying the described procedure
|V | − |U | many times. Since |V | − |U | ≤ w, the total number of clause judgements that
will be added can be upper bounded by w2w−1.
• In the case of (join), no clause judgement needs to be added. This is because of the

following. Suppose the constraint judgement (i, U1 ∪ U2, F1 on F2) is obtained by applying
(join) to (i, U1, F1) and (i, U2, F2). For each mapping g : U1∪U2 → {0, 1} with g /∈ F1 on F2,
it holds (by definition of on) that either g � U1 /∈ F1 or g � U2 /∈ F2.
• In the case of (∀-elimination) deriving (i, V \ {y}, εyF ) from (j, V, F ), take all clause

judgements (j, α) where y ∈ vars(α) ⊆ V , and apply (∀-removal) to each of these clause
judgements.
• In the case of (upward flow) or (downward flow), the same rule is applied to the corre-

sponding clause judgement.

In each case, the clause judgements produced have width less than or equal to w. We now
consider the number of clause judgements produced in each case. This number is 1 in the
cases (atom), (upward flow), and (downward flow), and is 0 in the case (join). In the case
of (projection), we argued that this number is less than or equal to w2w−1. In the case of
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(∀-elimination), since this rule can only be applied if w ≥ 1 and at most 2w−1 clauses are
generated, we can also bound this number by w2w−1.

In each case, it is straightforward to verify the claimed entailment property.

Appendix B. Proof of Theorem 4.5

The theorem follows directly from the following two theorems.

Theorem B.1. Let ψ be a QCBF instance. Given a tree-like clause judgement proof P
(viewed as a tree) of an empty clause, there exists a trace E whose root has label (∅, e) and
where the number of nodes in E is equal to the number of non-flow judgements in P . (Here,
we use e to denote the unique assignment from ∅ to {0, 1}.) Also, the translation from P to
E is polynomial-time computable.

Proof. We prove the following result, which yields the theorem. Suppose that P is a tree-like
clause judgement proof, viewed as a tree; using (i, α) to denote the clause judgement at the
root of P , there exists a trace E whose number of nodes is equal to the number of non-flow
judgements in P , and whose root has label (S, a), such that the following two conditions
hold:

(1) For each v ∈ vars(α), the set S contains the located variable (j, v) where j is the first
location above i where v is quantified.

(2) The assignment a is the unique assignment on vars(α) that falsifies α.

We prove this result by induction on the structure of P , describing directly how to construct
E.

We consider cases depending on how the clause judgement at the root of P was derived;
we use the notation of Definition 4.1.

In the case of (clause), let E consist of a single node having label (S, a), where (S, a) is
the unique pair satisfying the two conditions.

In the case of (resolve), suppose that (i, γ) is the clause judgement at the root of P and
that (i, γ) is derived as a resolvent of α and β via clause judgements (i, α) and (i, β). Suppose
that v ∈ α and v ∈ β are the complementary literals such that γ = (α \ {v}) ∪ (β \ {v}).
Take the trace whose root has label (U, c) where U is the union of S and T but without the
located variable containing v, and where c is the unique assignment on vars(U) = vars(γ)
that falsifies γ. Since i follows S and i follows T , we have that i follows U , and we have
that (S, a) and (T, b) could be generated from (U, c) via a (Q-branch) step.

In the case of (∀-removal), suppose that the clause judgement at the root of P has the
form (i, α \{y, y}) and is derived from (j, α) where φ(i) = ∀yφ(j). If α∩{y, y} = ∅, then the
trace E can be taken to be the trace given by induction. Otherwise, take the trace for (j, α)
given by induction, and let (T, a) denote its root node label. Set S to be T , but with the
located variable for y removed. We have that (T, a) could be derived from (S, a � vars(S))
by a (∀-branch) step; hence, we may take the trace obtained from the trace for (j, α) by
adding on the top a new root node with label (S, a � vars(S)).

In the case of (upward flow) or (downward flow), we simply take the trace given by
induction. This preserves condition (1): if i is the parent of j in φ and (i, α) and (j, α) are
clause judgements in P , then vars(α) ⊆ free(ψ(i)) ∩ free(ψ(j)) and so no variable in vars(α)
is quantified at location i (nor j).
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Theorem B.2. Let ψ be a QCBF instance. Given a trace T with root node label (∅, e),
there exists a tree-like clause judgement proof P of an empty clause where the number of
non-flow nodes in P (viewed as a tree) is equal to the number of nodes in T . Also, the
translation from T to P is polynomial-time computable.

Proof. We prove the following result which implies the theorem: for any trace T with root
node label (S, a), there exists a tree-like clause judgement proof P ending in (i, α) where
the number of nodes in P and T are related as in the theorem statement, and such that the
following two conditions hold:

(1) i follows S.
(2) vars(S) = vars(α) and a is the unique assignment on vars(α) that falsifies α.

We prove the result by induction; we consider cases depending on the type of the root node
of T , that is, depending on how many children the root node of T has.

If the root node of T is a leaf, the result is clear from the definition of trace.
If the root node of T has one child, let (S ∪ {(j, y)}, a[y → b]) be the label of the child

of the root node. By induction, there exists a tree-like clause judgement proof ending with
(k, β) where k follows S ∪ {(j, y)} and a[y → b] is the unique assignment on vars(β) that
falsifies β. Since (j, y) follows S and k follows (j, y), by applying (upward flow), we may
obtain a tree-like clause judgement proof ending with (c, β) where c is the child of j. Then,
as ψ(j) = ∀yψ(c), we can apply (∀-removal) to (c, β) to obtain the desired clause judgement
proof.

If the root node of T has two children, let (S0 ∪ {(j, u)}, (a � vars(S0))[u → a0]) and
(S1∪{(j, u)}, (a � vars(S1))[u→ a1]) be the labels of the children; we have a0, a1 ∈ {0, 1} and
a0 6= a1. By induction, we have tree-like clause judgement proofs ending with (k0, β0) and
(k1, β1) where k0 follows S0 ∪ {(j, u)} and (a � vars(S0))[u→ a0] is the unique assignment
on vars(β0) that falsifies β0; and similarly, k1 follows S1 ∪ {(j, u)} and (a � vars(S1))[u→ a1]
is the unique assignment on vars(β1) that falsifies β1. By applying (upward flow), we obtain
tree-like clause judgement proofs ending with (`0, β0) and (`1, β1) where `0 is the child of
the lowest location in S0 ∪ {(j, u)}, and `1 is the child of the lowest location in S1 ∪ {(j, u)}.
Let m be the child of the lowest location in S ∪ {(j, u)}. At least one of `0, `1 is equal to
m (since S0 ∪ S1 = S). If one of `0, `1 is not equal to m, say `b, we may apply (downward
flow) to obtain a clause judgement proof (m,βb); this is because vars(βb) is free in every
location between m and `b (inclusive), as S ∪ {(j, u)} is coherent. We hence obtain clause
judgement proofs for (m,β0) and for (m,β1). Apply (resolve) to these to obtain the desired
clause judgement proof.

Appendix C. Proof of Theorem 5.3

Theorem 5.3 follows immediately from the two lemmas presented in this section.

Lemma C.1. Let (φ,B) be a QCSP instance. If there exists a k-constraint system P for
the instance, then the instance is k-judge-consistent.

Proof. We show, by induction on the proof structure, that if (i, V, F ) with |V | ≤ k is a
derivable judgement, then P [i, V ] ⊆ F . We consider cases based on which rule was used to
derive (i, V, F ).

In the case of (atom), we have P [i, V ] ⊆ F by property (α).
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In the case of (projection), we suppose that (i, V, F ) is a previous judgement with
P [i, V ] ⊆ F , and that the judgement of interest has the form (i, U, F � U), where U ⊆ V .
We have P [i, U ] = (P [i, V ] � U) ⊆ (F � U), where the equality holds by property (π).

In the case of (join), we suppose that (i, U1, F1) and (i, U2, F2) are previous judgements
with P [i, U1] ⊆ F1 and P [i, U2] ⊆ F2, and that the judgement of interest is (i, U1 ∪ U2, F1 on
F2). By property (π), we have that P [i, U1 ∪ U2] � U1 = P [i, U1] and P [i, U1 ∪ U2] � U2 =
P [i, U2]. It follows that P [i, U1 ∪ U2] ⊆ P [i, U1] on P [i, U2] ⊆ F1 on F2.

The cases of (upward flow) and (downward flow) follow immediately from property (λ).
In the case of (∀-elimination), we suppose that (j, V, F ) is a previous judgement with

P [j, V ] ⊆ F , and that the judgement of interest is (i, V \ {y}, εyF ) where i is the parent of j,
and φ(i) = ∀yφ(j). We have P [i, V \{y}] ⊆ εy(P [j, V ]) ⊆ εy(F ), where the first containment
holds by property (ε).

Definition C.2. Let k ≥ 1. A structure B is k-behaved if for each i with 1 ≤ i ≤ k, there
are finitely many relations of arity i that are qc-definable over B.

Lemma C.3. Let k ≥ 1. Let (φ,B) be a QCSP instance where B is k-behaved. If the
instance is k-judge-consistent, then then there exists a k-constraint system P for the instance.

Proof. Relative to a QCSP instance, we say that a judgement is k-derivable if there exists a
judgement proof of width less than or equal to k that contains the judgement.

Let I be an index set for φ. Let us say that a k-derivable judgement (i, V, F ) is minimal
if for all sets G such that the judgement (i, V,G) is k-derivable, it holds that G ⊆ F implies
G = F . We claim that, when i ∈ I and V ⊆ free(φ(i)) with |V | ≤ k, there is a unique
minimal k-derivable judgement (i, V, F ). The existence of a minimal k-derivable judgement
follows from Lemma 3.5 and the k-behavedness of B. To establish uniqueness, suppose for
a contradiction that (i, V, F1) and (i, V, F2) are both minimal k-derivable judgements and
F1 6= F2. By the definition of minimal, we have F1 6⊆ F2 and F2 6⊆ F1, so F1 ∪ F2 6⊆ F1 and
F1 ∪ F2 6⊆ F2. By the (join) rule, the judgement (i, V, F1 on F2) is k-derivable; since here
F1 on F2 = F1 ∩ F2, we obtain a contradiction.

For all i ∈ I and V ⊆ free(φ(i)), we define P [i, V ] so that (i, V, P [i, V ]) is the unique
minimal k-derivable judgement involving i and V . We confirm that P is a k-constraint
system by verifying that it satisfies each of the four properties of the definition of k-constraint
system. In discussing each of the properties, we use the notation of Definition 5.2.

Property (α) follows immediately from the (atom) rule.
For property (π), suppose that U ⊆ V . We have that (i, U, P [i, U ]) and (i, V, P [i, V ]) are

k-derivable. It follows that (i, V, FV ) and (i, U, FU ) are k-derivable, where FV = P [i, U ] on
P [i, V ] and FU = FV � U . We have FV ⊆ P [i, V ] and FU ⊆ P [i, U ]; it follows, by definition of
P , that FV = P [i, V ] and FU = P [i, U ]. Since FU = FV � U , we have P [i, U ] = P [i, V ] � U .

For property (λ), suppose that j is a child of i with V ⊆ free(φ(j)). We have that
(i, V, P [i, V ]) and (j, V, P [j, V ]) are k-derivable. By the (downward flow) and (upward flow)
rules, we obtain that (i, V, P [j, V ]) and (j, V, P [i, V ]) are k-derivable. By definition of P , we
obtain that P [i, V ] ⊆ P [j, V ] and P [j, V ] ⊆ P [i, V ] and hence P [i, V ] = P [j, V ].

For property (ε), suppose that j is a child of i, φ(i) = ∀yφ(j), U is a subset of free(φ(j))
with |U | ≤ k and y ∈ U , and V = U \ {y}. That P [i, V ] ⊆ εy(P [j, U ]) follows immediately
from applying the (∀-elimination) rule to the k-derivable judgement (j, U, P [j, U ]).
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