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Interruptions in cardiopulmonary resuscitation (CPR) compromise defibrillation success. However, CPR must be interrupted to
analyze the rhythm because although current methods for rhythm analysis during CPR have high sensitivity for shockable rhythms,
the specificity for nonshockable rhythms is still too low. This paper introduces a new approach to rhythm analysis during CPR that
combines two strategies: a state-of-the-art CPR artifact suppression filter and a shock advice algorithm (SAA) designed to optimally
classify the filtered signal. Emphasis is on designing an algorithm with high specificity. The SAA includes a detector for low electrical
activity rhythms to increase the specificity, and a shock/no-shock decision algorithm based on a support vector machine classifier
using slope and frequency features. For this study, 1185 shockable and 6482 nonshockable 9-s segments corrupted by CPR artifacts
were obtained from 247 patients suffering out-of-hospital cardiac arrest. The segments were split into a training and a test set. For
the test set, the sensitivity and specificity for rhythm analysis during CPR were 91.0% and 96.6%, respectively. This new approach
shows an important increase in specificity without compromising the sensitivity when compared to previous studies.

1. Introduction

Out-of-hospital cardiac arrest (OHCA) is a leading cause
of mortality in the industrialized world, with an estimated
annual incidence between 28 and 55 cases per 100,000
person-years [1]. Early cardiopulmonary resuscitation (CPR)
and early defibrillation are the key interventions for survival
after cardiac arrest [2]. Defibrillation may be administered
by an automated external defibrillator (AED), which incor-
porates a shock advice algorithm (SAA) that analyzes the
ECG to detect shockable rhythms. Current CPR guidelines
emphasize the importance of high quality CPR with minimal
interruptions in chest compressions (CCs) [3]. However, CPR
must be interrupted for a reliable rhythm analysis because
CCs produce artifacts in the ECG. These interruptions
adversely affect the probability of defibrillation success and

subsequent survival [4]. Currently, CPR is interrupted every
2 minutes for rhythm reassessment on an artifact-free ECG.

Although different approaches to rhythm analysis during
CPR have been explored, for instance, algorithms that directly
diagnose the ECG corrupt with CPR artifacts [5, 6], filtering
the CPR artifact has been a major approach (see [7] for
a comprehensive review). The time-varying characteristics
of the CPR artifact and its spectral overlap with both
shockable and nonshockable cardiac arrest rhythms mandate
the use of adaptive filters [8], which use reference signals
to model the CPR artifact. Over the years, many solutions
have been proposed, including Wiener filters [9], Match-
ing Pursuit Algorithms [10], Recursive Least Squares [11],
least mean squares (LMS) [12], or Kalman filters [13, 14].
Adaptive solutions using exclusively the ECG have also been
explored [15, 16], but the results were poorer. To evaluate



the performance of these methods, researchers first filtered
the CPR artifact and then analyzed the rhythm using a
SAA to obtain the sensitivity and specificity of the method,
that is, the proportion of correctly diagnosed shockable and
nonshockable rhythms, respectively. However, the SAAs used
were originally designed to analyze artifact-free ECG instead
of the ECG after filtering.

Currently rhythm analysis during CPR is not possible
[17]. Most methods have sensitivity above 90%, the mini-
mum value recommended by the American Heart Associ-
ation (AHA) for SAA on artifact-free ECG [18]. However,
specificity rarely exceeds 85%, well below the 95% value
recommended by the AHA. A low specificity would result in
a large number of false shock diagnoses during CPR, which
would unnecessarily increase the number of interruptions
in CPR. Overall, the main cause of the low specificity is
filtering residuals in nonshockable rhythms. These residuals
frequently resemble a disorganized rhythm [10, 12] and are
often misdiagnosed as shockable by SAAs designed to analyze
artifact-free ECG. This problem is more prominent when
the electrical activity of the underlying heart rhythm is
low, particularly for asystole (ASY) [14, 16], because filtering
residuals may have amplitudes comparable or larger than
those of the underlying ECG.

In this study we explore the possibility of combining
adaptive filtering techniques with a SAA designed to opti-
mally classify the rhythm after filtering. The aim is to improve
the accuracy of current approaches and in particular to
overcome the low specificity. When compared to previous
studies, our results showed an increased specificity without
compromising the sensitivity, for a comprehensive dataset of
OHCA rhythms.

2. Materials and Methods

2.1. Data Collection. The data for this study were extracted
from a large prospective study of OHCA conducted between
2002 and 2004 in three European sites [21, 22]. CPR was
delivered by trained ambulance personnel in adherence to the
2000 resuscitation guidelines. Episodes were recorded using
modified Laerdal Heartstart 4000 defibrillators (4000SP) and
an external CPR assist pad to acquire additional reference
signals. All signals were acquired with a 500 Hz sampling rate.
The initial rhythm and all subsequent changes in rhythm were
annotated by consensus of an experienced anesthesiologist
and a biomedical engineer, both specialized in resuscitation
[21, 22]. Rhythm annotations comprised five types (see [21]
for further details): VF and fast ventricular tachycardia
(VT) in the shockable category and ASY, pulseless electrical
activity (PEA), and pulse-generating rhythm (PR) in the
nonshockable category. Intervals with chest compressions
were annotated using the compression depth (CD) obtained
from the CPR assist pad.

For this study specific records containing the ECG and
CD signals were automatically extracted from the original
episodes. First rhythm transitions were identified using the
original annotations, and then for each interval without
rhythm transitions at most one record was extracted to avoid
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bias due to data selection. Records were extracted if the
following criteria were met: duration of more than 20-s,
ongoing CCs, and the same rhythm annotation before and
after CCs. Following the AHA statement the records were
grouped into a shockable and a nonshockable category. The
amplitude thresholds adopted for coarse VF and ASY are
those accepted in the literature on SAAs [6, 18]. The following
criteria and rhythm definitions were checked in the clean
intervals before and after CCs.

Shockable Rhythms. This category includes fast VT, with rate
above 150 beats per minute (bpm), and coarse VE. Coarse VF
was defined as VF with peak-to-peak amplitude above 200 uV
and a fibrillation frequency above 2 Hz.

Nonshockable Rhythms. These rhythms were further divided
into the following:

(i) organized rhythms (ORG): all nonshockable rhythms
except ASY (PEA and PR),

(ii) asystole (ASY): rhythms with peak-to-peak ampli-
tudes below 100 uV for at least 2-s.

All signals were resampled to f; = 250 Hz, a sampling rate
similar to that used by commercial AEDs. In what follows, the
sample index and time variables are related by t = n-T, (T, =
1/f,). The ECG was band limited to 0.5-30 Hz (order 10
Butterworth filter), a typical ECG monitor bandwidth used
in AEDs [5, 6], which removes base line wander and high
frequency noise.

Following standard practice in SAA design, the rhythm
analysis method was designed to analyze three consecutive
3s windows, so it gives a diagnosis every 9s [23, 24]. A 3
window is sufficient to characterize the rhythm in terms of
rate, stability, and morphology and to make a shock (Sh)
or no-shock (NSh) decision [23]. SAA algorithms combine
several consecutive diagnoses to avoid errors due to rhythm
transitions and to avoid shock diagnoses for short bursts
of nonsustained VT. Therefore, each record was divided
into nonoverlapping 9s segments. The 9s segments were
randomly split into two separate sets, one to train the
algorithm and an independent set to test the algorithm, as
required by the AHA statement. In addition we made sure
that the patients on both sets were different (AHA statement)
and that the distribution of rhythm types was similar in both
sets.

2.2. Rhythm Analysis Method. The block diagram of the
rhythm analysis method is shown in Figure 1. First, a CPR
artifact suppression filter estimates the underlying rhythm,
that is, the filtered ECG signal, sg,. Then, a SAA diagnoses
every 3 s window of the filtered signal. The SAA is designed to
optimally classify the filtered signal and is further composed
of two sequential subalgorithms: (1) a detector of rhythms
with low electrical activity (LEA), that is, nonshockable
rhythms without distinguishable QRS complexes such as ASY
or idioventricular rhythms, and (2) a Sh/NSh algorithm that
classifies windows with electrical activity as shockable or
nonshockable.
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FIGURE 1: Block diagram of the new approach to rhythm analysis
during CPR in which an adaptive filter (LMS filter based on the CD
signal) is used in combination with a SAA designed to optimally
classify the filtered signal, sg,.

L1F - - - :
=
E
=
K
11k . . . i
L1F : : : 3
3
E
&
§:
1k . . . }
L1F

sgie (mV)
(]

_11 L
0 . . .
~ 73 -
A
o
-6 F ) ) )
0 titte 6 9 12

Time (s)

FIGURE 2: Filtering example of a 12-s segment. In the first 3 s there
is no artifact and the underlying VF is visible. The filter estimates
the artifact, Scpr> using information derived from the CC marks,
indicated by vertical lines in CD (¢, instants).

2.3. Chest Compression Artifact Filter. CPR artifacts were
suppressed using a state-of-the-art method based on an LMS
filter [12]. In this method, CC artifacts are modeled as a
quasiperiodic interference with a time-varying fundamental
frequency, f,(n), which is the instantaneous frequency of
the CCs. This frequency is derived from the t; instants, the
CC marks shown in Figure 2. The LMS algorithm adaptively
estimates the time-varying amplitudes, ¢(n), and phases,

¢r(n), of the first 5 harmonics of the artifact by fitting the
following model:

5
Sepr () = ch (n) cos (k - 2tf,, (n) - n+ ¢ (n)),
k=1 W
fon- L

for t;_, < nT < ty.
te =t

In summary, the LMS algorithm dynamically estimates the
CPR artifact by adaptively estimating its harmonic content.
For this study, we used the optimal values of the filter
parameters as described in [12, 19]. As shown in Figure 1, the
filtered signal was obtained by subtracting the estimated CPR
artifact from the corrupted ECG. Figure 2 shows those signals
for a 12-s segment with an underlying VF rhythm.

2.4. Shock Advice Algorithm. The SAA consists of a LEA
detector followed by the Sh/NSh algorithm. The LEA detector
identifies LEA windows as nonshockable; the rest of the
windows are further processed by the Sh/NSh algorithm for
a definitive diagnosis.

2.4.1. LEA Rhythm Detector. Some nonshockable rhythms
(ASY, bradyarrhythmias or idioventricular rhythms) may
not present QRS complexes in a 3s analysis window. In
these cases, filtering the CC artifact results in sg, with
low amplitudes and short intervals in which the electrical
activity is very low (see Figure 3(a)). To further improve LEA
detection sg, was high pass filtered with a 2.5Hz cut-oft
frequency using an order 5 Butterworth filter, which removed
slow fluctuations of the ECG in LEA rhythms but preserved
most frequency components of VF, as shown in Figure 3. The
resulting signal, s;z,, was used to obtain the following two
features:

(i) Pipy: energy of s, in the 3 s window:

Pipa = ZSEEA (n); 2)

(ii) L,;,: minimum of the curve lengths of s;p, for
nonoverlapping 0.5-s intervals, which measures the
minimum electrical activity in 0.5-s intervals. In
discrete form, the curve length of the kth subinterval

is [25]
(k+1)f./2
L, = Z \AsE,, (n) + T2, (3)
n=kf./2+1

where As; . is the first difference of s, .

LEA rhythms have smaller values of P, and L,;, than
shockable rhythms, as shown in Figure 3. This block was
designed as a detector; that is, it gives a NSh diagnosis if
a LEA rhythm is detected; otherwise the window is further
processed by the Sh/NSh algorithm.
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FIGURE 3: Examples of a LEA rhythm (a) and a VF (b) window after filtering the CC artifact, sg,, and preprocessed to suppress components

under 2.5 Hz, s; ;5. Vertical lines separate the 0.5 subintervals, and the one with lowest activity (L

2.4.2. Sh/NSh Algorithm. During resuscitation, ORG
rhythms with electrical activity may be very different in
terms of rate, QRS width, or QRS morphology. Furthermore,
even after CPR artifact suppression, rhythms may present
important filtering residuals that may resemble VE Four
features derived from the frequency domain and slope
analyses were defined. For rhythms with electrical activity,
these features emphasize the differences between nonshock-
able (with QRS complexes) and shockable (without QRS
complexes) rhythms.

2.4.3. Slope Analysis Features. QRS complexes were enhanced
in sg, by computing the moving average of the square of its
first difference (its slope):

N-1
o () = 1 3" (ln =R = s (1= k= DY (@
k=0

where N corresponds to the number of samples in a 100 ms
interval. Then, dg, was divided by its maximum value in the
analysis window to obtain dg,. As shown in Figure 4, in ORG
rhythms dj, is large only around QRS complexes and very

small otherwise, whereas in VF the values of dg, are more
evenly distributed and present many peaks. Two features were
defined to measure these differences:

(i) bS: slope baseline, a measure of how concentrated
slope values are around small values (baseline), com-

puted as the 10th percentile of dg,
(ii) nP: number of peaks above a fixed threshold in Eh

Shockable rhythms will present larger values of bS and nP as
shown in Figure 4.

2.4.4. Frequency Domain Features. For the frequency anal-
ysis, a Hamming window was applied to sg, and its zero
padded 1024-point FFT was computed. The power spectral

) is shown in red.

min

density was estimated as the square of the magnitude of the
FFT and normalized to total power of one to give P,(f).
As shown in Figure 5, VF concentrates most of its power
around the fibrillation frequency, whereas ORG rhythms may
have important power content at higher frequencies, on the
harmonics of the heart rate. Two discrimination features
were defined, with limiting frequencies in line with the
characteristics of human VF [26, 27]:

(i) Pgp: power proportion around the VEF-fibrillation
band (2.5-7.5 Hz),

(ii) P,: power proportion in the high spectral bands
(above 12 Hz).

Shockable rhythms have larger values of Py, but lower values
of P, (see Figure 5).

2.4.5. Support Vector Machine (SVM) Classifier. The Sh/NSh
algorithm classified windows using a SVM with a Gaussian
kernel [28]. First, features were standardized to zero mean
and unit variance using the data in the training set. These
x; vectors of four normalized features were arranged as
(x5 1505 (X, ¥} € R*x{+1}, where y; = 1for shockable
and y; = -1 for nonshockable windows. After training, the
discriminant function for a window with feature vector x is

NS
f@ = Yayep(ylx-xl)+b O

i=1

where x; are the support vectors, N, is the number of
support vectors, and o; and b are coefficients estimated during
training. Windows were classified as shockable for f(x) > 0
or nonshockable for f(x) < 0. Selecting an optimal SVM
model for the classification problem involves selecting two
parameters: C and yp. The width of the Gaussian kernel,
y, determines the flexibility of the decision boundary [28].
The soft margin parameter, C, is used exclusively in the
optimization process and is a tradeoff between classification
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FIGURE 4: Example of the slope analysis for VF (a) and an ORG (b) window. During VF the slope, dgy,» is irregular with many peaks, whereas
ORG rhythms are regular with fewer peaks and concentrate most dg, values around the baseline.
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FIGURE 5: Example of the frequency domain analysis for VF (a) and an ORG (b) window. VF concentrates most of its power around the
fibrillation band (blue). ORG rhythms have a spectrum with many harmonics of the heart rate and thus larger P, (in green).

errors in training data and separating the rest of the training
data with maximum margin [28].

2.5. Data Analysis and Algorithm Optimization. The rate and
depth characteristics of CPR in our data were analyzed for
each 9s segment. The distributions for rate and depth did
not pass the Kolmogorov-Smirnov test for normality and are
reported as median and 5-95 percentiles.

For each discrimination feature of the SAA, statistical
differences in medians between the targeted classification
groups of each subalgorithm were measured using the Mann-
Whitney U test. The optimization process was carried out for
the 3 s windows of the training set in two sequential steps.

(1) LEA Detector. ASY and shockable rhythms were used.
The detection thresholds were determined through a
greedy search on the two-dimensional feature space

to jointly maximize the number of detected ASY
and minimize the number of shockable windows
incorrectly detected as nonshockable. An additional
restriction was imposed: at maximum 5% of shock-
able windows could be incorrectly classified.

(2) Sh/NSh Algorithm. Shockable and ORG windows not

detected as NSh by the LEA detector were used to
optimize the SVM classifier. To avoid overfitting the
SVM to the training set, C and y were selected using
5-fold crossvalidation [29] to optimize the balanced
error rate (BER):

1
BER =1~ 3 (TPR + TNR), (6)

where the true positive rate (TPR) and the true
negative rate (TNR) are the capacity of the SVM
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TABLE 1: Number of segments (patients in parenthesis) and characteristics of the CC rate and depth for the training and test datasets. Values
for CC rate and depth are presented as median with 5-95 percentiles in parenthesis.

Rhythm type Training Testing

9-s seg. Rate (cpm) Depth (mm) 9-s seg. Rate (cpm) Depth (mm)
Shockable 563 (35) 116 (92-143) 38 (25-47) 622 (34) 113 (89-157) 35 (20-50)
Nonshockable 3132 (110) 116 (88-155) 36 (20-51) 3350 (109) 116 (84-159) 35 (21-57)
AS 1173 (66) 118 (92-164) 35 (18-52) 1309 (60) 117 (89-151) 34 (21-52)
ORG 1959 (66) 114 (86-149) 37 (23-51) 2041 (76) 116 (79-164) 35 (21-59)
Total 3695 (123) 116 (89-151) 36 (21-51) 3972 (124) 116 (86-159) 35 (21-58)

classifier to detect shockable and ORG windows,
respectively. Weights were assigned to each class to
resolve the unbalance in the number of instances per
class [28]. The best SVMs using one, two, or three
features were compared to the optimal four-feature
SVM using McNemar’s test.

The performance of the algorithm was measured in the
test set in terms of sensitivity and specificity. Since both 3s
windows and 9's segments correspond to consecutive anal-
yses within a record, the sensitivities, specificities, and their
90% low one-sided confidence intervals (CI) were adjusted
for clustering (longitudinal data) within each record, using
a longitudinal logistic model fit by generalized estimating
equations (GEE) [30, 31]. The analysis was carried out in
R using the geepack library [32]. Finally, the algorithm
was programmed in MATLAB R2013a (Mathworks Inc.) for
Windows and processing time performance tests were carried
out on a 2.9 GHz Intel i7 with 4 GB of RAM.

3. Results

3.1. Database Description. Our data comprise 7667 9s seg-
ments within 1396 records extracted from 247 OHCA patient
episodes. The median number of 9 s segments per record was
3 (1-19, range 1-44). Table 1 shows the number of 9 s segments
and the rate and depth of CCs for those segments in the
training and test sets. The median CC rate and depth were
116 (88-156) compressions per minute (cpm) and 36 (21-53)
mm, respectively.

3.2. Shock Advice Algorithm

3.2.1. Training. Figures 6(a) and 6(b) show the values of P,
and L, ;, for the ASY and shockable rhythms which presented
significant differences between the two groups (P < 0.001).
The optimal detection thresholds of the LEA detector were

Pgp <044 or L, <0.63. 7)

The LEA detector identified as NSh 72.1% of the ASY (true
detections) and 0.9% of the shockable (false detections)
windows. In addition, 38.8% of the ORG windows were
correctly identified as NSh; these rhythms corresponded to
very low rate and low electrical activity intervals of ORG
rhythms.

Figures 6(c)-6(f) show the values of the features used in
the SVM classifier; these values were statistically different for

the ORG and shockable rhythms (P < 0.001). The SVM based
on four features showed a significantly better performance
when compared to the SVMs based on the best single, pair,
or triplet of features (McNemar’s test y* > 10, P < 0.001, in
all three cases). The optimal working point of the four-feature
SVM was (C = 8.5,y = 0.1), which produced a BER = 0.064,
TPR = 0.927, and TNR = 0.944 for the SVM classifier.
The receiver operating characteristics analysis on the SVM
features resulted in the following area under the curve (AUC)
values: 0.948, 0.928, 0.807, and 0.733 for bS, nP, Py, and P,
respectively. When combined in the SVM the resulting AUC
was 0.971, which reveals the robustness of the classifier.

3.2.2. Test. The optimized SAA was used to classify the 3s
windows in the test set; Table 2 shows a summary of the
results. The overall sensitivity and specificity were 89.7%
(low one-sided 90% CI, 85.5) and 95.1% (low 90% CI,
94.3), respectively. The 9 s segments were diagnosed using a
majority criterion on three consecutive window analyses, this
increased the overall sensitivity and specificity to 91.0% (low
90% CI, 86.6) and 96.6% (low 90% CI, 95.9), respectively, and
AHA recommendations were met for all rhythm types (see
Table 2).

Figure 7 shows two examples (Figures 7(a) and 7(c)) of
correctly diagnosed segments and two examples (Figures 7(b)
and 7(d)) of incorrectly diagnosed segments. The examples
(Figures 7(a) and 7(c)) show that the algorithm works
robustly even in the presence of important filtering resid-
uals. However, there were some instances of misdiagnosed
segments as shown in Figures 7(b) and 7(d). Errors were
generally caused by spiky filtering residuals in shockable
rhythms (Figure 7(b)) or large filtering residuals during ASY
(Figure 7(d)).

Processing time for the complete algorithm, CPR sup-
pression filter based on the LMS filter followed by the SAA,
was on average 8.7 ms per 3 s segment. Processing time was
broken down into 5.8 ms for the LMS filter and 2.9 ms for
the SAA. For decisions taken by the LEA detector the SAA
required only 1.8 ms, and for windows in which the LEA
detector and the SVM were used it increased to 4.1ms. In
the worst case scenario processing time for the complete
algorithm was under 10 ms.

4. Discussion

This study presents the first attempt to combine two
approaches for rhythm analysis during CPR: adaptive filters
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TABLE 2: Final classification for the 3-s windows and 9-s segments of the test set compared to the AHA performance goals. Sensitivities,
specificities and low one-sided 90% ClIs (in parenthesis) were obtained using GEE to adjust for clustering.

Rhythm type 3-s window 9-s segment AHA goal [18]
n Se/Sp n Se/Sp

Shockable 1866 89.7 (85.5) 622 91.0 (86.6) >90 (for VF)

Nonshockable 10050 95.1(94.3) 3350 96.6 (95.9) >95

AS 3927 94.3 (93.1) 1309 96.5 (95.2) >95

ORG 6123 95.6 (94.6) 2041 96.7 (95.8) >95

TaBLE 3: Comparative assessment in terms of accuracy and the composition of the databases (% of ASY in nonshockable rhythm in
parenthesis) between the method proposed in this study and previous methods tested on OHCA rhythms.

Authors Method Accuracy Testing datasets
Se (%) Sp (%) Sh NSh

Eilevstjonn et al. [10] MC-RAMP 96.7 79.9 92 174 (30%)
Aramendi et al. [19] LMS filter 95.4 86.3 87 285 (31%)
Tan et al. [20] ART filter 92.1 90.5 114 4155 (NA)
Lietal. [5] Direct analysis 93.3 88.6 1256 964 (4%)
Krasteva et al. [6] Direct analysis 90.1 86.1 172 721 (46%)
Proposed method Filtering + SAA 91.0 96.6 622 3350 (39%)

to suppress the CPR artifact and an SAA optimized to analyze
the rhythm after filtering. Our objective was to increase the
specificity, because the low specificity of current methods
has restrained their implementation in current defibrillators.
Our results indicate that our new design approach might
contribute to a substantial increase of the accuracy of rhythm
analysis methods during CPR, with results that marginally
meet AHA performance goals.

The design efforts were focused on obtaining a high speci-
ficity during CPR to allow CCs to continue uninterrupted
until the method gives a shock advice. The positive predictive
value (PPV) of the algorithm, that is, the confidence in a
shock diagnosis, must be kept high to avoid unnecessary
CPR interruptions if the underlying rhythm is nonshockable.
Since VF is the positive class, the PPV depends on the
sensitivity/specificity of the algorithm and on the prevalence
of VE P,, in the following way:

Vi

TP

PPV (%) = 100 X ———
TP + FP 8
Se - Pvf ( )

=100 .
“Se-Py+(1-8p)-(1-By)

The exact prevalence of VF (reported for the initially
observed rhythm as stated in [33]) is unknown and varies
among OHCA studies, with figures in the range of 23% to
67% [34, 35]. For the original OHCA studies from which our
datasets originated the prevalences of VF were 43% [21] and
41% [22], within the previous range. For the limits of the VF
prevalence range, the PPV of our algorithm is high, in the
88.9% to 98.2% range. Furthermore, since the PPV depends
on the prevalences, algorithms must be trained to optimize
sensitivity/specificity, with emphasis on a large specificity (a
specificity of 100% would result in a PPV of 100% regardless
of the prevalences).

To this date most methods for rhythm analysis during
CPR have focused on the accurate detection of shockable
rhythms, resulting in higher values for sensitivity than for
specificity. Table 3 compares the accuracy of our method to
that of five well-known methods tested on OHCA data that
represent the two most successful strategies for rhythm analy-
sis during CPR. Three of those methods are based on adaptive
filters [10, 12, 20], and the other two are algorithms designed
to directly diagnose the corrupt ECG [5, 6]. Although the
sensitivity of our method is up to 4 points below that reported
by methods based on adaptive filters, it is still above the value
recommended by the AHA, which ensures the detection of a
high proportion of shockable rhythms. The higher sensitivity
of methods based on adaptive filters may be explained by
the fact that filtering residuals are frequently diagnosed as
shockable by SAA designed to diagnose artifact-free ECG
[14]. In contrast, the 96.6% specificity of our approach is an
important improvement with respect to previous approaches
in which the specificity was below 91%. We showed that
combining the strong points of both approaches may result
in an increased accuracy.

The characteristics of the OHCA data used in these
studies may affect the sensitivity/specificity results, and in
particular the characteristics of CPR, the selection criteria
for VE and the proportion of ASY among nonshockable
rhythms. Rate and depth values of CPR in our data are
similar to those reported in the original studies [21, 22] and
represent the wide range of CPR characteristics found in the
field. In particular, the CC rates are high (around 120 cpm),
the spectral overlap with OHCA rhythms is therefore large,
and suppressing the CPR artifact in our data should be
challenging [8]. The CC depth was low even according to
the 2000 resuscitation guidelines and lower than the 5cm
recommended in current guidelines [36]. However, no clear
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correlation between depth and larger artifacts has been
demonstrated to date on human data. Our database only
included VF annotated as coarse, as stated in the AHA
statement. The three-phase model of cardiac arrest suggests
that fine VF occurs when VF transitions from the electric
phase into the circulatory or metabolic phases [37]. There
is no conclusive evidence that immediate defibrillation is
the optimal treatment in these latter phases of VF [38], so
from a SAA design perspective it is a sound decision to only
include coarse VE On the other hand, our database has a large
proportion of ASY among nonshockable rhythms (39%),
in agreement with the fact that ASY is the most frequent
nonshockable OHCA rhythm [39]. The high specificity of our
method for ASY is particularly important because ASY is the
most difficult nonshockable rhythm to detect during CPR
(14,16].

Our study shows that combining adaptive filtering with
special SAAs that optimally diagnose the filtered ECG may
result in an increased overall accuracy. In addition, the
computational cost of the algorithm is low, as shown by the
processing time analysis. The SAA algorithm computes at
most six ECG features, and implementing our SVM in an
AED requires only a few kilobytes of memory for the support
vectors and the computation of the discriminant function
(see equation (5)). The LMS algorithm using 5 harmonics
involves only 10 coefficients [12], which substantially simpli-
fies the filter. In any case, incorporating a CPR artifact filter
to current AEDs is more complex than using algorithms that
directly analyze the corrupt ECG [5, 6]. Filtering techniques
based on the CD signal require the use of external CPR
quality devices [40, 41] or modified defibrillation pads [42,
43] to record the acceleration signal. Alternatively other
reference signals can be used, such as the thoracic impedance
recorded through the defibrillation pads [19]. CPR artifact
filters increase the complexity of the software and signal
processing units of the AED and may even demand changes
in its hardware to acquire reference signals.

Finally, several studies need to be completed before
any method could be safely taken to the field. First, more
conclusive results require testing the algorithm on data
recorded by equipment different from those used for this
study and with CPR delivered according to the latest 2010
CPR guidelines. In addition, retrospective studies based on
complete resuscitation episodes should be conducted. In
this way, the impact of using the method on CPR admin-
istration could be evaluated. This involves, among other
things, a statistical evaluation of whether the method avoids
unnecessary CPR interruptions in nonshockable rhythms
and unnecessary CPR prolongations in shockable rhythms
[36]. The methodology for such an evaluation has recently
been developed [44].

5. Conclusions

This work introduces a new method for rhythm analysis
during CPR with a novel design approach aimed at obtaining
a high specificity. The method combines an adaptive LMS

filter to suppress the CPR artifact with a new shock/no-
shock classification method based on the analysis of the
filtered ECG. The method resulted in an increased specificity
of 96.6% without compromising the sensitivity, with overall
performance figures that met AHA requirements.
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