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Abstract 
 

 

 

The present work analyses different techniques in order to build a predictive model that could be able to 

solve the Kaggle’s competition called “Home Depot Product Search Relevance”. Several NLP methods were 

used for data pre-processing like tokenization, lemmatization, extracting stop words, etc. Word overlap and 

Mikolov word embeddings were used for feature extraction, Random Forest algorithm was used for applying 

regression. Finally the statistical open-source R language was used for building the scripts.  

 

The results indicate that distributed word representations are a very useful technique for many NLP 

applications. Word embeddings helped to improve the accuracy of the predictive model; having this 

experience it can be realized the power of this technique and its ease of use. 

 

A big concern of the project was the long processing time of processing the word embeddings in regular 

desktop/laptop computers. In order to reduce the processing time, it was necessary to extract the words 

embeddings only of the words found in the datasets. Moreover, some of the datasets were split and processed 

in different machines. Other possible solutions to this problem are renting cloud computing, grid computing, 

parallel computing, servers, etc. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

Index 
 

1. Introduction   ………………………………………………………..   1 

1.1 Objectives of the thesis …………………………………………….   1 

1.2 Field of study  ………………………………………………………  1 

2. Motivation   …………………………………………………………..  2   

3. Theoretical Framework ………………………………………………  3 

3.1 Artificial Intelligence  ………………………………………………  3 

3.2 Data Science  ………………………………………………………..  3 

3.3 Data Mining   ……………………………………………………….   4 

3.4 Machine Learning  …………………………………………………..  4 

3.5 Supervised Learning   ……………………………………………….  4 

3.6 Regression   …………………………………………………………  5 

3.7 Feature Engineering…………….……………………………………  5 

3.8 Natural Language Processing  ………………………………………  5 

3.8.1 Tokenization  ……………………………………………………..  6 

3.8.2 Lemmatization …..………………………………………………..  6 

3.9 Machine Learning Algorithms .……………………………………..  6 

3.9.1 Decision Trees  …………………………………………………… 6 

3.9.2 Random Forests  ………………………………………………….. 6 

3.10 Distributed word representations  …………………………………. 8 

4. State of the art  ………………………………………………………  14 

5. Experiments  …………………………………………………………  16 

5.1 Understanding the problem  ………………………………………… 16 

5.1.2 Datasets   …………………………………………………………. 16 

5.2 Software packages and algorithms   …………………………………  22 

5.3 Methodology for the solution of this project  ………………………..  25 

5.3.1 Data Pre-processing  ………………………………………………  26 



iv 

 

5.3.1.1 Case conversion  ……………………………………………………. 26 

5.3.1.2 Tokenization  ……………………………………………………….. 26 

5.3.1.3 Stop words  …………………………………………………………. 26 

5.3.1.4 Exclude punctuation marks  ………………………………………… 27 

5.3.1.5 Remove repeated words  ……………………………………………  28 

5.3.1.6 Lemmatizing   ………………………………………………………. 28 

5.3.2 Splitting the train dataset  …………………………………………….. 28 

5.3.3 Feature extraction   ……………………………………………………  29 

5.3.3.1 Overlap    ……………………………………………………………  30 

5.3.3.2 Mikolov word embeddings  ………………………………………….  30 

5.3.3.3 Cosine similarity  ……………………………………………………  32 

5.3.3.4 Predictive Features  …………………………………………………   37 

5.3.4 Regression analysis   …………………………………………………..  38 

5.3.4.1 Building a regression model …………………………………………  38 

5.3.4.2 Evaluating the model   ……………………………………………….  38 

6. Results  ……………………………………………………………………  39 

7. Conclusions  ………………………………………………………………   47 

8. References  ………………………………………………………………..  48 

 



1 

 

1. Introduction 
 

 

 

1.1 Objectives of the thesis 
 

The main objective of the thesis is to build a predictive model that can solve the problem found in the 

Kaggle’s competition called “Home Depot Product Search Relevance”.  

 

For the accomplishment of the main objective, it is necessary to fulfil some steps like data pre-processing, 

which is a very important step for cleaning the data. The feature generation step is necessary for transforming 

the text data into numerical data that will be used in the next step which is the model building with a 

regression algorithm.  

 

Finally, it is also important for this project to measure the accuracy of the model; the same metrics used to 

evaluate the submissions for the competition must been applied to the project’s model. 

 

 

 

1.2 Field of study 
 

Data Science is a powerful yet new field of Artificial Intelligence, in which large amounts of data are 

transformed into valuable information. This is possible because of the explosion of Internet sites that gather 

information from millions of users all over the world, companies’ databases and the increase of data storage 

capacity and the improvement of computing processing. 

 

Nowadays, data scientists are the most required IT professionals due to the necessity of companies to extract 

knowledge that would bring competitive advantages and solve problems. Growing constantly, the demand of 

data scientists surpasses the number of qualified available professionals; some of their most desired skills and 

knowledge are Computer Programming, Statistics Analysis, Database Management, Machine Learning, Data 

Mining, etc. 

 

Kaggle [1] is an online platform where enterprises submit their data analysis problems and data scientists 

compete for finding the model that bring the best solution. Most of the competitions’ results show 

improvement of the existing solutions which points out that, companies will get the desired results. Kaggle is 

also a way data scientists have to interact with other people with similar skills and profiles, team up to 

participate in the competitions and win rewards for their data analysis works.  
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Figure 1. Kaggle [1] 

 

 

The Kaggle’s “Home Depot Product Search Relevance” competition is a contest in which data scientists are 

asked to create a predictive model that could give the relevance of query searches in Home Depot’s web site 

[2] and the results provided by the algorithms, this information will give the programmers information of the 

best settings for the search algorithms to improve the user’s experience. 

 

This work presents a solution for the Kaggle’s “Home Depot Product Search Relevance” Competition in 

which the developed model predicts the relevance of the query searches given products names, descriptions 

and attributes. The Random Forest algorithm is used for data regression. 

 

A data pre-processing work was needed in which Natural Language Processing techniques like tokenization, 

lemmatizing, stemming, embedding were used. For data regression, the Random Forest algorithm was used, 

R language (open-source Statistical language) was also used. 

 

 

 

 

2. Motivation 
 

The Master in Computational Engineering and Intelligent Systems of the Basque Country gives its students 

the necessary skills to perform real-world data analysis works. Being Data Science a trendy discipline, 

proposing a predicting model is a challenging but gratifying task, in which all the knowledge learned will be 

used in a practical project.  

 

Improving data science skills by gaining experience from a Kaggle competition is also rewarding, it is 

estimated that there is in the present and there will be in the next years a shortage of IT professionals, 

especially in the data science field, so building a data science career is a promising endeavour. In the other 

hand, each Kaggle’s competition is very difficult and challenging because data scientists with very high 

education background and experience propose their predictive models and only the model which gives the 

best results wins. This fact is beneficial as well, because each competitor will improve his model over and 

over again to beat other’s models. 

 

Besides competitions, Kaggle platform allows data scientists to interact with more experienced colleagues, 

share code, learn from tutorials and data sets. It is paramount important for a data scientist to participate 

constantly in Kaggle for training, getting new skills, trying the latest techniques and tools, and winning 
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monetary prizes. Companies that host competitions also have benefits because they get the best solution 

(made by high qualified data scientist from all over the world) for their data analysis problems which mean a 

huge increase of productivity. 

 

 

 

 

3. Theoretical Framework 
 

The exponential growth of technology allows us to improve the quality of people’s life. More often, 

machines are taking over control and assisting human daily activities. The explosion of data in databases and 

the Internet had led to the necessity of new approaches to process and use those data. Many fields of 

knowledge have contributed to this continuous and remarkable progress. The next section describes some of 

the areas from which it has been extracted valuable knowledge for the present project. 

 

 

 

3.1 Artificial Intelligence 
 

It’s the name given to the intelligence of the machines and the software. It’s a scientific discipline that 

research the methods of creation or simulation of intelligence.  

 

The term “Artificial Intelligence” was created by John McCarthy but Alan Turing first referred with his 

article “Computing Machinery and Intelligence” in 1950. Turing also proposed the Turing Test in which it 

could be established if a machine could be defined as conscious.  

 

The application domains of the AI are: 

 Banks: with Expert Systems that evaluate the risk of give a credit to a customer (credit-scoring) 

 Military: with autonomous systems like drones, systems for decision support. 

 Games 

 Medicine: with Expert Systems for diagnosis. 

 Logistics: with heuristics approaches for solving hard mathematical problems. 

 Robotics 

 

 

 

3.2 Data Science 
 

Data Science is the extraction of knowledge from data. It applies the techniques of many fields like Math, 

Statistics, Information Theory and Information Technology, Probabilistic Models, Machine Learning, 

Computer Programming, Data Engineering, Forms Recognition, etc. The main goal of Data Science is to 

build methods for analysis of massive data with the objective to extract useful or potentially useful 

information. 

 

The term “Data Science” was first used in 2001 by William Cleveland in his article “Data Science: An 

Action Plan for Expanding the Technical Areas of the Field of Statistics”. This discipline appears in response 

of the growing complexity found in databases and the Internet with huge amounts of data available. 
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3.3 Data Mining 
 

Data Mining consists of extracting knowledge from large amounts of data using automatic or semi-automatic 

methods. Its goal is to use techniques of different disciplines like Statistics, Artificial Intelligence, and 

Computer Science, to build models from data that find structures of different criteria that bring valuable 

knowledge. Figure 2 describes the steps involved in Data Mining in which is remarkable to realize that the 

previous treatment of the data is very important for the success of the Data Mining project; the data pre-

processing also takes an important amount of time an effort. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Steps in Data Mining [3] 

 

 

 

3.4 Machine Learning 
 

Machine Learning is a field of Artificial Intelligence which Arthur Samuel defined in 1959 as “Field of study 

that gives computers the ability to learn without being explicitly programmed”; it also has been described as 

algorithms that learn from data. 

 

Applications of Machine Learning include perception of their environment (vision, object recognition, 

natural languages), search engines, medical diagnosis, brain-machine interfaces, fraud detection, financial 

analysis, games, robot motion, predictive analysis, etc. 

 

Machine Learning is divided into Supervised Learning, Unsupervised Learning and Semi-supervised 

Learning. 

 

3.5 Supervised Learning 
 

If classes are predetermined and the examples are known, the system learns to classify according to a 

classification model. An expert has to label the examples and the process is done in two phases. The first 

phase consists of creating a model of labelled examples (train the model), the second phase (test the model) 

consists in predicting the class of a new data samples using the model. This prediction can be used as 

feedback to refine the model. After the model has been trained and tested it will be able to predict the values 

for new instances. 

 

 

 

 



5 

 

3.6 Regression  
 

Regression is a statistical process for estimating the relationships among variables. In regression, most of the 

cases, the target variable is continuous. To solve regression supervised learning algorithms are used. 

Regression is used to make predictions, for example, regression can be used to predict the sales of a store, 

given the sales of the past months. Figure 3 shows an example of regression. 

 

 

 

 

 

 

 

 

 

 

Regression line 

 
 

 

 

 

 
Figure 3. Regression line [4] 

 

As mentioned before, regression treats continuous variables, while classification treats discrete values, which 

means it tries to predict what class an instance is part of. In the other hand, clustering has no predefined 

classes and tries to group together elements with the more similar features. 

 

 

 

3.7 Feature Engineering 
 

A feature is a piece of information which is potentially useful for prediction. Feature engineering is the 

process of using domain knowledge of the data to create features that make Machine Learning algorithms 

work. 

 

Features are very important in predicting models, the quantity and quality of features will determine if the 

model is good or not. When it comes to relevance, features could be strongly relevant, relevant, weakly 

relevant or irrelevant. 

 

 

 

3.8 Natural Language Processing 
 

Natural Language Processing (NLP) is part of the human-computer interactions, it consists the study of 

interactions between computers and human natural languages.  

 

NLP has many research areas like: 

 

 Automatic summarization 

 Discourse analysis 

 Machine translation 

 Morphological segmentation 

 Named entity recognition 
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 Natural language generation 

 Natural language understanding 

 Optical character recognition 

 Part-Of-Speech Tagging 

 Parsing 

 Sentiment analysis 

 Speech recognition 

 Speech segmentation 

 Word segmentation 

 Information retrieval 

 Information extraction 

 Speech processing 

 

 

3.8.1 Tokenization 
 

Tokenization is part of the lexical analysis which consists of the process of breaking a stream of text up into 

words, phrases, symbols or other meaningful elements called tokens.  

 

 

 

3.8.2 Lemmatization 
 

Lemmatization in linguistics consists of grouping together the different inflected forms of a word so they can 

be analysed as a single item. 

 

Examples: 

 

The word “worse” has “bad” as its lemma 

“Play” is the base form word of “playing” 

 

 

 

3.9 Machine Learning Algorithms 
 

 

3.9.1 Decision Trees 
 

Learning by decision trees is a method that uses a decision tree as permanent predictive model that tests the 

value of a feature of a system after the observation of other features of the same system. 

 

Decision Trees have advantages like simplicity of understanding and interpretation, a few preparations of 

data, they can process a large amount of data and the model could be tested by statistical functions. 

 

 

 

3.9.2 Random Forests 
 

The Random Forests classifier is a technique of Machine Learning that was proposed by Leo Braiman and 

Adele Cutler, the algorithm combines random subspaces and bagging. It also does the learning using multiple 

decision trees trained by slightly different subsets of data as shown in the figure 4. 
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Figure 4. Random selection of data in Random Forest 

 

 

The decision trees are also built by a subset of the original variables, it is shown in the figure 5. 

 

 
Figure 5- Random selection of variables in Random Forest 

 

 

Having multiple decision trees with a subset of data and variables, the algorithm provides accurate prediction 

for most parts of the data, making mistakes at different places. Finally, the prediction is made by voting for 

each of the observations; this is expected to be closer to the right classification. The figure 6 describes the 

implementation of the Random Forest algorithm for the train and test process. 
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Figure 6. Random Forest: multiple decision trees 

 

 

 

3.10 Distributed word representations 
 

 

Many techniques have been developed for representing the human natural language in a way in which 

computers can work with. The next section describes some of them. 

 

The Bag of Words model learns a vocabulary from all documents, after that it models each document by 

counting the number of times each word appears. For example, having these 2 sentences: 

 

s1: “The cat sat on the hat” 

s2: “The dog ate the cat and the hat” 

 

With the 2 sentences, the following vocabulary is built {the, cat, sat, on, hat, dog, ate, and} 

 

To obtain the Bag of Words, it is necessary to count each word in the sentences and register its occurrence. 

 

S1: {2, 1, 1, 1, 1, 0, 0, 0} 

s1: {3, 1, 0, 0, 1, 1, 1, 1} 

 

An N-gram is a sequence of N items that could be letters, words, and phonemes. It is known that certain 

word or item pairs (triplets, quadruplets, etc.) are likely to occur more often than other pairs, for example the 

letter Q most of the times is found in words with an U as in “queen”, “question”, “frequent” 

 

Having enough data, it can be computed the frequency distribution of all N-grams found in the data. In the 

other hand, the permutations increase greatly with N, for example, in English language, having 26 letters, it is 

possible to form 26² letter pairs, 26³ letter triplets and so on, that’s why N is often taken as small number. 

Google has calculated the word N-gram from its data [5]. 
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N-grams are very similar to the multi-order Markov model in which the Nth. Position depends on the 

previous N-1 items, and can be calculated from a data corpus. Having the N-gram data information it could 

be used for suggested auto-completion of words and phrases, spelling correction, speech recognition, word 

disambiguation. 

 

A word vector is a vector of weights. In a simple 1 of N schema, every element in a vector is associated to a 

word in the vocabulary. Encoding a word is just filling the numbers of the vector, having a number 1 to the 

place of a word and 0 to all other places. 

 

If having only 5 words in the vocabulary like: king, queen, man, woman and child, encoding the word 

‘queen’ would be like: 

 

 
 

Figure 7. 1-of-N encoding [6] 

 

 

Word embeddings is the representation of a word using numbers. Every word or phrase from a vocabulary 

is mapped in a vector of real numbers in a low-dimensional space.  

 

In word2vec words are represented in a vector that has N dimensions. Each word is represented by weights 

in the vector, so instead of a 1 to 1 mapping between a value in the vector and a word, the word is represented 

by all the values in the vector, and each element of the vector contributes to the definition of the word [6]. 

The following example describes how word vectors are created. In this case, a small domain is taken, 

columns represent the words of the vocabulary and rows are the different criteria used to describe those 

words. Each word has a numerical vector that corresponds to the weights of that word in specific criteria. The 

figure 8 describes this example. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Word2vec example [6] 

 

 

By examining a large corpus, it’s possible to build word vectors that are able to capture the relationships of 

the words in a very expressive way. These vectors can also be used as input of neural networks. 
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The figure 9 represents a 2-dimentinal word vectors. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 
Figure 9. Word Vectors [6] 

 

 

Vectors are also a very useful tool for answering analogy questions, using a simple vector offset method 

based on cosine distance. Some examples are: 

  

man is to a woman as uncle is to?  ….. aunt 

 

 

Vector composition also finds relations like: 

 

king – man + woman = ?     ….  queen 

 

 

Figure 10 describes an example of word vector Composition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 10. Word Vector Composition [6] 

 

 

Word representations are very powerful because they can describe meaningful syntactic and semantic 

patterns in a very simple way. Regularities are found as constant vector offsets between pairs of words 

sharing a particular relationship. If a word vector is denoted by xi for the i-word it could be obtained the 

following relationships: 
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xapple – xapples  ≈  xcar – xcars 

 

xapple – xapples  ≈  xfamiliy – xfamilies 

 

 

 

As it can be seen, the vectors can find the relationship between singular/plural words. 

 

These examples show that word vectors with semantic relationships could improve many Natural Language 

applications like Machine Translation, Information Retrieval, Question Answering Systems, etc. 

 

More examples of semantic and syntactic word relations are shown in table 1. 

 

Type of relationship Word Pair 1 Word Pair 2 

Common capital city Athens Greece Oslo Norway 

All capital cities Astana Kazakhstan Harare Zimbabwe 

Currency Angola Kwanza Iran rial 

City-in-state Chicago Illinois Stockton California 

Man-Woman Brother Sister Grandson Granddaughter 

     

Adjective to adverb Apparent Apparently Rapid Rapidly 

Opposite Possibly Impossibly Ethical Unethical 

Comparative Great Greater Tough Tougher 

Superlative Easy Easiest Lucky Luckiest 

Present Participle Think Thinking Read Reading 

Nationality adjective Switzerland Swiss Cambodia Cambodian 

Past tense Walking Walked Swimming Swam 

Plural nouns Mouse Mice Dollar Dollars 

Plural verbs Work Works Speak Speaks 
 

Table 1..Examples of types of semantic and syntactic word relations [7] 

 

Accuracy is quite good when using word vectors, more interesting outcomes can be found playing with the 

vectors like: Paris – France + Italy = Rome. 

 

The table 2 shows more outstanding examples:  

 

 

Relationship Example 1 Example 2 Example 3 

France – Paris 

big – bigger 

Miami – Florida 

Einstein – scientist 

Sarkozy – France 

copper – Cu 

Berlusconi – Silvio 

Microsoft – Windows 

Microsoft – Ballmer 

Japan – sushi 

Italy: Rome 

small: larger 

Baltimore: Maryland 

Messi: midfielder 

Berlusconi: Italy 

zinc: Zn 

Sarkozy: Nicolas 

Google: Android 

Google: Yahoo 

Germany: bratwurst 

Japan: Tokyo 

cold: colder 

Dallas: Texas 

Mozart: violinist 

Merkel: Germany 

gold: Au 

Putin: Medvedev 

IBM: Linux 

IBM: McNealy 

France: tapas 

Florida: Tallahassee 

quick: quicker 

Kona: Hawaii 

Picasso: painter 

Koizumi: Japan 

uranium: plutonium 

Obama: Barack 

Apple: iPhone 

Apple: Jobs 

USA: pizza 

 
 

Table 2. Examples of the word pair relationships [7] 
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Cosine similarity 

 

In order to measure the properties between word embeddings, the cosine similarity metric is used.  

 

The cosine similarity between two vectors (or two documents on the Vector Space) is a measure that 

calculates the cosine of the angle between them [8]. This metric is a measurement of orientation and not 

magnitude. 

 

The formula 1 represents the dot product operation of vectors. 

 
Formula 1. Dot product between 2 vectors [8]. 

 

 

Considering formula 2, the formula of the Cosine similarity can be obtained (formula 2). 

 
Formula 2. Cosine similarity between 2 vectors [8]. 

 

 

It can be seen in figure 11 that 2 vectors with a small angle of deviation are very similar between them; the 

cosine similarity score is near 1. Two vectors with an angle of 90 degrees are unrelated; the cosine similarity 

is 0. Two vectors with opposite directions (near 180 degrees) are opposite; the cosine similarity score is near 

-1.  

 

 
 

Figure 11. Pairs of word vectors with different cosine similarity [8]. 

 

 

It can be demonstrated the properties of word embeddings with practical cases. The following example shows 

the implementation of word vectors in R language 

 

In order to use the Cosine similarity operation, the lsa package was needed. The cosine function is used to 

calculate the cosine similarity. First, a basic example was executed. The cosine similarity was calculated 

between 2 numeric vectors. 
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> vec1 = c( 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ) 
> vec2 = c( 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0 ) 
> cosine(vec1,vec2) 
          [,1] 
[1,] 0.2357023 
 

For further experimentation, the vectors and values of the word2vec example of the figure 8 were taken into 

consideration. Five words were considered; their values were filled in the criteria “royalty”, “masculinity”, 

“femininity” and “age”. 

 
> king = c(0.99, 0.99, 0.05, 0.7) 
> queen = c(0.99, 0.05, 0.93, 0.6) 
> woman = c(0.02, 0.01, 0.999, 0.5) 
> princess = c(0.98, 0.02, 0.94, 0.1) 
> prince = c(0.99, 0.99, 0.05, 0.1) 
 
The following results were obtained for the cosine similarity between the words, were a value of zero means 

no similarity and a value of one means completely similar. 
 
> cosine(king, queen) 
          [,1] 
[1,] 0.6429661 
> cosine(king, woman) 
          [,1] 
[1,] 0.2455264 
> cosine(queen, woman) 
          [,1] 
[1,] 0.7525689 
 
Queen and princess have a lot of similarity: 
 
> cosine(queen, princess) 
          [,1] 
[1,] 0.9417467 
> cosine(king, princess) 
          [,1] 
[1,] 0.5190673 
> cosine(princess, woman) 
          [,1] 
[1,] 0.6630324 
 
As expected, the result of the following operation of vectors was true: 

 

King – queen + princess = prince 

 
 
> cosine(prince, (king-queen+princess)) 
          [,1] 
[1,] 0.9972254 
 

The cosine function gave a score of 0.9972254 which means that there is a very high similarity between the 2 

vectors. More similar examples explained in the theory can be successfully obtained. 

 

 

Deep Learning and word2vec 

 

Deep Learning is a field of Machine Learning that attempts to model high-level abstractions in data by using 

a deep graph with multiple processing layers. Deep learning is considered a development of Neural 

Networks; they have more layers than traditional models and are trained in higher orders of magnitude than 

was available before [9]. 
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In Deep Learning systems, algorithms can automatically learn feature hierarchies. Some researchers consider 

word2vec as Deep Learning because it is a two layer neural network that processes text; while word2vec is 

not a deep neural network, it turns text into numerical form that deep nets can understand. 

 

 

 

4. State of the art 
 

Distributed word representations are a valuable resource for many Natural Language Processing applications. 

This section describes state to the art applications for word representations. 

 

In [7], Mikolov et al. studied the quality of vector representations of words using various models and applied 

to different syntactic and semantic tasks. It is explained that it is possible to train high quality word vectors 

using very simple model architectures having much lower computational complexity. 

 

 

In [10], bilingual word embeddings are introduced to improve Machine Translation; they help to match the 

semantic similarities between languages. Experiments are done with English and Chinese languages.  

 

Semantic hierarchy constructions uses hypernym-hyponym relations (“is a”) to build structures of concepts. 

For example, the words “dog” and “canine” are connected directly, “canine” is a hypernym of “dog” and 

“dog” is a hyponym of “canine”. In [11], a new method of hierarchy constructions using word embeddings is 

presented, which is used to measure the semantic relationships between words. The model identifies if a word 

pair has a hypernym-hyponym using semantic projection based on word embeddings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. An example of semantic hierarchy construction [11] 

 

 

In [12], they show an analysis of the contribution of word embeddings to Natural Language Processing 

applications. It remarks its importance for semantic analysis, and studies the variation of the number of 

dimensions. The following tasks have been performed to evaluate different sets of embeddings: 

 

Sentiment polarity: create sets of words that have positive or negative connotations. 

 

Noun gender: To compile a list of masculine and negative words. Names that frequently appear with he/she 

words respectively are categorized as masculine/feminine. 
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Plurality: to extract nouns in the singular and plural forms. 

 

Synonyms and antonyms: extract synonym and antonym pairs. 

 

Regional spelling: collecting words that differ in spelling between UK English and American English. 

 

In [13], an analysis is presented in which supervised NLP systems’ accuracy is improved by using 

unsupervised word representations. Moreover, combining different word representations can improve 

accuracy further. Word features can be learned in advance in an unsupervised task. Once learned, word 

features can be easily shared with other researchers and integrated into supervised NLP applications.  

 

In [14], a paper is presented in which word embeddings are trained for more than 100 languages using their 

corresponding Wikipedia; Moreover, it is explained that using word embeddings in conjunction with 

traditional NLP methods can improve NLP tasks; for this reason and many other applications, distributed 

word representations are a valuable resource for any language. It is claimed that the embeddings will be 

released for public use at www.cs.stonybrook.edu. 

 

In [15], it is highlighted that words with different meaning (polysemous), can be represented by different 

embedding vectors. However, due to the large amount of parameters to train, this method is not practical. 

Considering that fact, a probabilistic model is proposed in which the continuous Skip-gram model is 

integrated with the embedding vectors, as a result, there are less parameters to train and it leads to better 

results. 

 

In [16], a new model for Speech Recognition is proposed in which words are projected into continuous 

embedding space where words that sound alike are scored nearby. It is shown that embeddings allow words 

that are not in the training dictionary have also a score. The table 3 shows some examples of words and their 

nearest neighbour in the embedding space: 

 

 

Words Neighbours 

Heart hart, heart’s, iheart, hearth, hearted, art 

Please Pleased, pleas, pleases, pleaser, plea 

Plug plugs, plugged, slug, pug, pluck 

Chareety sharity,  hare, cheri, tyree, charice, charities 

 
Table 3. Nearest neighbour examples in the acoustically similar embedding space 

 

In [17], the Skip-gram model of Mikolov et al. [7] is extended by taking visual information into 

consideration. The model builds word representation using vectors and also is exposed to visual 

representations of the objects it denotes, and must predict linguistic and visual features jointly. Having 

propagating visual information to words, it has been used to improve image labelling and retrieval.  

 

In [18], it analyses the use of skip-grams when trying to model all possible combinations of words extracted 

from large text corpus. The results show that skip-grams are highly valuable to model context; moreover, the 

use of skip-grams is explained to be a better option than increasing the size of text corpus that would require 

more computing processing. 

 

 

 

 

 

http://www.cs.stonybrook.edu/
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5. Experiments 
 

 

 

5.1 Understanding the problem 
 

In the Kaggle’s “Home Depot Product Search Relevance” competition, it is asked to build a predictive model 

that could give the relevance of search queries of Home Depot’s web site users and the results given by the 

search algorithm.  

 

Understanding the context, in Home Depot’s web site [2], buyers go online to buy the products and find 

solutions to their necessities of home improvement. It is very important the accuracy and the speed of the 

searches in order to give customers the best user experience. Currently, in Home Depot, human evaluators 

analyse the impact of potential changes to parameters of the search algorithms, which is a slow and 

subjective process. By removing or minimizing human intervention, it is expected that it will be increased the 

number of interactions of changing the search algorithms parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 13. Home Depot [2] 

 

 

 

 

5.1.2 Datasets 
 

The provided datasets have a considerable number of search terms of products and their correspondent 

results, product titles, descriptions and attributes. 

 

In order to create “ground truth” labels (precision in the training dataset), Home Depot has given “search 

term/product” pairs to multiple human evaluators. Relevance is denoted with a real number between 1 (no 
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relevant) and 3 (highly relevant). For example, a search query “AA battery”, would be considered highly 

relevant for the product “AA battery package” (relevance = 3), medially relevant for the product “battery for 

wireless drill” (relevance = 2) and no relevant for “snow shovels” (relevance = 1) 

 

Each pair was evaluated at least 3 times; the final evaluation value is the average of all evaluations. The task 

is to predict the relevance of each pair of the test dataset. 

 

Datasets descriptions 

• train.csv: The training dataset, it contains products ids, searches and relevance value. 

• test.csv: It is the test dataset, it contains products ids, searches, but the relevance of search has to be 

predicted. 

• product_descriptions.csv: It contains descriptive text for each product. Using the product_id it is possible 

to link this dataset with train.csv and test.csv. 

• attributes.csv: It provides additional information about a subset of products (typically technical details), 

not every product has this attributes. 

• sample_submission.csv: This file shows the right format for submission. 

 

The fields found in the datasets are: 

• id: A unique field identifier that represents a pair search_term/product_uid. 

• product_uid: The identifier of the products. 

• product_title: The title of the product. 

• product_description: The description of the product, (it could contain HTML content). 

• search_term: The search query typed by users. 

• relevance: It is the average of relevance evaluation for a pair search_term/product. 

• name: The name of the attribute. (attributes.csv) 

• value: The value of the attribute. (attributes.csv) 

 

The following R command shows the structure of the train dataset. 

 
> str(train) 
‘data.frame’: 74067 obs. Of  5 variables: 
 $ id           : int  2 3 9 16 17 18 20 21 23 27 … 
 $ product_uid  : int  100001 100001 100002 100005 100005 100006 100006 
100006 100007 100009 … 
 $ product_title: Factor w/ 53489 levels “# 62 Sweetheart 14 in. Low 
Angle Jack Plane”,..: 44305 44305 5530 12404 12404 51748 51748 51748 
30638 25364 … 
 $ search_term  : Factor w/ 11795 levels “$ hole saw”,”. Exterior floor 
stain”,..: 1952 6411 3752 8652 9528 3499 7146 7148 4417 7026 … 
 $ relevance    : num  3 2.5 3 2.33 2.67 3 2.67 3 2.67 3 … 
 

 

 

The figure 14 displays some fields and instances of the train dataset. 
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Figure 14. Train dataset 74067 rows. 

 

 

The structure of the test dataset is shown below. 

 
> str(test) 
'data.frame': 166693 obs. of  4 variables: 
 $ id           : int  1 4 5 6 7 8 10 11 12 13 ... 
 $ product_uid  : int  100001 100001 100001 100001 100001 100001 100003 
100003 100003 100004 ... 
 $ product_title: Factor w/ 94731 levels "#10-24 Coarse Zinc-Plated Steel 
Cap Nuts (4-Pack)",..: 78732 78732 78732 78732 78732 78732 82350 82350 
82350 37014 ... 
 $ search_term  : Factor w/ 22427 levels "'1-3/4' tap wrench",..: 3274 
13720 18407 18409 18411 22101 4351 4357 14639 18817 ... 
 

 

 

The figure 15 shows the firsts instances of the test dataset. 

 

 

 
 

Figure 15. Test dataset 166693 rows. 
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The structure of the product_description dataset is shown below 

 
> str(product_descriptions) 
'data.frame': 124428 obs. of  2 variables: 
 $ product_uid        : int  100001 100002 100003 100004 100005 100006  
100007 100008 100009 100010 ... 
 $ product_description: Factor w/ 110128 levels "\"Building Outdoor 
Structures\" offers practical, easy-to-follow instructions on enhancing 
any home's front and backyard with t"| __truncated__,..: 37430 8184 11605 
66590 102940 3044 78451 84019 24867 104547 ... 
 

 

The figure 16 shows the first instances of the product_description dataset. 

 

 
 

Figure 16. Product_description dataset 124428 rows. 

 

 

 

 

 

The structure of the attributes dataset is show below. 

 
> str(attributes) 
'data.frame': 2044803 obs. of  3 variables: 
 $ product_uid: int  100001 100001 100001 100001 100001 100001 100001 
100001 100001 100001 ... 
 $ name       : Factor w/ 5411 levels "","# of Line Wires",..: 595 596 
597 598 599 600 601 1932 2684 2933 ... 
 $ value      : Factor w/ 307591 levels "","'U.S Patented'",..: 296931 
272215 168106 120013 200857 157944 185144 15553 157982 260160 ... 
 

 

Figure 17 shows the first instances of the attributes dataset. 
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Figure 17. Attributes dataset 2044803 rows. 

 

 

 

In order to have an idea of the searches made by users, the R’s worldcloud and tm packages were used to 

generate the word cloud image for the search_term field of the train dataset. Figure 18 shows the word 

cloud. 

 

 
 

Figure 18. Word Cloud of search_term field of train dataset. 

 

The figure 19 shows the resulting word cloud with the most frequent words found in product_title of the 

train dataset. 
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Figure 19. Word Cloud of product_title field of train dataset. 

 

 

 
Putting an eye to the relevance field in the train dataset, the following histogram is obtained: 

 

 

 
 

Figure 20. Histogram of relevance field of train dataset 

 

 

Taking into account the number of instances of the train and test datasets, it can be seen that the train 

dataset is small compared to the predictive test dataset. The figure 21 shows this comparison: 
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Figure 21. Comparison between the number of instances of train and test datasets 

 

 

 

 

5.2 Software packages and algorithms 
 

Many software tools can be used for building predictive models. Each of them has advantages and 

disadvantages; the most popular are Python, R, SAS, Matlab or even spreadsheets like Microsoft Excel. The 

figure 22 shows the use of different statistical programming languages in Kaggle’s competitions: 

 

 

 
 

Figure 22. Tools used by Kaggle’s competitors [1] 
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Among many options, the software chosen for this project is the R language which is a powerful, easy to use,  

open-source, statistical software. R’s large and active community develops packages for a variety of topics. 

Moreover, been a multi-platform software it allows working with machines running GNU Linux and 

Microsoft Windows operating systems. 

 

 

 

 

 

 

 
Figure 23. R language logo 

 

 

R packages 

 

Many R packages were used in this project to perform specialized tasks; these packages helped to overcome 

complex problems. The table 4 describes the use of R packages in the present project. 

 

Package Description 

NLP It is a package for Natural Language Processing. It enables to do tasks as tokenizing. 

data.table It enables to have data structures and functions for storing large amounts of data. 

Stringr It is a package for working with strings in matrix and arrays. 

randomForest It is used for applying the Random Forest algorithm. 

RmySQL  It is a package for connecting to the MySQL database; it allows reading and writing 

data to tables. 

Lsa It was used to calculate the cosine similarity operation. 

Tm It is used for building text corpus and NLP tasks. 

snowballC It is a base package for using with tm and wordcloud packages. 

wordcloud It was used for building the word cloud of relevant datasets 

googleVis It allows using the google API to generate graphic reports. 

 
Table 4. Summary of R packages used in the project 

 

 

Regression algorithms 

 

Many algorithms and techniques can be applied for prediction; most of them are available in R packages. The 

figure 24 shows the comparison of use of algorithms by Data Scientists. 
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Figure 24.  KDNuggets’ poll : Top 10 Algorithms used by Data Scientists [19] 

 

Besides the academic use of Data Science algorithms, it is important to consider the use of those algorithms 

in real world problems. The figure 25 shows the use of Data Science algorithms taking into consideration the 

industry vs. academic fields.                                

 
 

Figure 25. KDNuggets’ poll: Top 10 Algorithms used by Data Scientists. Industry vs. Academy [19] 
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As it was mentioned before, a regression algorithm will be used for prediction in the present project because 

it has numerical continuous data. The algorithm considered for applying regression is Random Forest due to 

its good performance and precision. 

 

 
 

5.3 Methodology for the solution of this project 
 

This project is a Machine Learning problem in which the model will learn to predict values from thousands 

of known examples. It falls in the category of supervised learning, because the algorithm has to learn from a 

dataset (train dataset) that has examples of correct values. Once the model has learned by the implementation 

of a regression algorithm, the model will be tested with the instances stored in the test dataset. The accuracy 

of the model will be measured and after refining its parameters it will be ready for predicting new instances. 

 

 

For building the predictive model some steps have to be taken. First of all, a data pre-processing step is 

necessary to prepare and clean the data. After that, a Feature Extraction step will be conducted in which it 

will be got the most relevant features that can be applied in a regression algorithm, since regression 

algorithms need numerical data, it is necessary to generate numerical features from the text attributes; 

moreover overlap and distributed word embeddings are calculated. The random forest algorithm is used for 

supervised learning and obtaining the prediction variable. Finally an error metric has to be applied to measure 

the accuracy of the predicting model. The figure 26 describes the methodology used in the present project: 
 

 

 

 

Figure 26. Prediction model overview 

 
 

 

 

 

Experimenting with the train dataset 

 

All the experiments use the train dataset because the test dataset will only be used at the end of the project 

for doing the final evaluation of the model. The train dataset is split randomly in 3 parts, so it will be 

possible to do the training and testing processes during the experimentation. 

 

The algorithm considered for applying regression is Random Forest; to get the best results several 

experiments will be conducted to find the optimal Random Forest’s hyper-parameters.  

 

The experiments will also use different features in order to get those which give the most accurate results. 

These features are combinations of the following forms: 
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Form of feature Explanation Operation 

Original words Original words Overlap 

Word lemmas Canonical form, dictionary form of the words, for example: 

run, runs, running, ran have run as their lemma. 

Overlap 

Distributed word 

embeddings 

Numerical vectors representing the similarity of the words Cosine similarity 

Table 5. Form of features used in the experiments 

 

 

Once the optimal parameters have been found the model will be evaluated with the instances of the test 

dataset. 
 

 
 

5.3.1 Data Pre-processing 

 
Data pre-processing is a very important step for the success of the project. In real world problems, data is not 

found in a structured form; besides a lot of data cleaning work is necessary, there are incomplete, redundant, 

not relevant values. Data pre-processing may take most of the time and effort in a project but it will ease the 

process to a well-done work. 

 
In the present project many steps of data pre-processing were done, the following section describes 

them in detail. 

 
5.3.1.1 Case conversion 
 

Case conversion in R is very easy, the tolower function converts text to lower case; the following code 

converts to lower case the third and fourth columns of the train data.frame. 

 

train[,3] = tolower(train[,3])   #minusculas 

train[,4] = tolower(train[,4]) 

 

 

5.3.1.2 Tokenization 

 

In order to perform tokenization, it was necessary to install the R package NLP, this package has many 

Natural Language Processing algorithms; the following functions are used for tokenization: 

 

blankline_tokenizer(): the separator are any blank lines. 

 

whitespace_tokenizer(): the whitespace is the separator. 

 

wordpunct_tokenizer(): tokenizes by finding patters of sequence of alphabetic characters and sequences of 

non-alphabetic characters (non-whitespaces). 

 

 

5.3.1.3 Stop words 
 

The stop words are the ones which are filtered out before or after processing of natural language data. There 

are lists of stop words in many languages.  

 

In this project, it was necessary to download a list of stop words of the English language [20], and load them 

to the R environment, these words were loaded to a vector that was used to compare to the texts of the 

datasets. The following code was used to load the stop words into a vector and clean the data of the vector. 
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stop <- read.csv("stop.txt", header=FALSE) 
dim(stop) 
 
words <- NULL 
for (i in 1:dim(stop)){ 
    texto=stop[[1]][i] 
    texto=paste(texto, " ") 
    index=str_locate(texto, " ")       
 
    texto2=substr(texto, 1, index[[1]][1])     
    t3=str_replace_all(texto2, " ", "") 
    if (t3 !="") words <- c(words, t3)      
} 
 
Despite being found frequently in a language, the stop words are considered irrelevant for text analysis; the 

following R’s command shows the stop words for the English language: 

 
> stopwords('english') 
  [1] "i"          "me"         "my"         "myself"     "we"         
  [6] "our"        "ours"       "ourselves"  "you"        "your"       
 [11] "yours"      "yourself"   "yourselves" "he"         "him"        
 [16] "his"        "himself"    "she"        "her"        "hers"       
 [21] "herself"    "it"         "its"        "itself"     "they"       
 [26] "them"       "their"      "theirs"     "themselves" "what"       
 [31] "which"      "who"        "whom"       "this"       "that"       
 [36] "these"      "those"      "am"         "is"         "are"        
 [41] "was"        "were"       "be"         "been"       "being"      
 [46] "have"       "has"        "had"        "having"     "do"         
 [51] "does"       "did"        "doing"      "would"      "should"     
 [56] "could"      "ought"      "i'm"        "you're"     "he's"       
 [61] "she's"      "it's"       "we're"      "they're"    "i've"       
 [66] "you've"     "we've"      "they've"    "i'd"        "you'd"      
 [71] "he'd"       "she'd"      "we'd"       "they'd"     "i'll"       
 [76] "you'll"     "he'll"      "she'll"     "we'll"      "they'll"    
 [81] "isn't"      "aren't"     "wasn't"     "weren't"    "hasn't"     
 [86] "haven't"    "hadn't"     "doesn't"    "don't"      "didn't"     
 [91] "won't"      "wouldn't"   "shan't"     "shouldn't"  "can't"      
 [96] "cannot"     "couldn't"   "mustn't"    "let's"      "that's"     
[101] "who's"      "what's"     "here's"     "there's"    "when's"     
[106] "where's"    "why's"      "how's"      "a"          "an"         
[111] "the"        "and"        "but"        "if"         "or"         
[116] "because"    "as"         "until"      "while"      "of"         
[121] "at"         "by"         "for"        "with"       "about"      
[126] "against"    "between"    "into"       "through"    "during"     
[131] "before"     "after"      "above"      "below"      "to"         
[136] "from"       "up"         "down"       "in"         "out"        
[141] "on"         "off"        "over"       "under"      "again"      
[146] "further"    "then"       "once"       "here"       "there"      
[151] "when"       "where"      "why"        "how"        "all"        
[156] "any"        "both"       "each"       "few"        "more"       
[161] "most"       "other"      "some"       "such"       "no"         
[166] "nor"        "not"        "only"       "own"        "same"       
[171] "so"         "than"       "too"        "very" 
 
 
5.3.1.4 Exclude punctuation marks 

 

A vector with the most frequent punctuation marks was defined in the pre-processing stage; these symbols 

were omitted from the text of the datasets. The following line of code shows the vector. 
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punctuation <- c(",", ".", "(", ")", "-", ";", "[", "]", "/", "+",  
                "#", "%", "$", "*", "=", "'", "?") 
 
At the beginning, the question mark symbol “?” was not considered for exclusion with the punctuation 

marks, but when the scripts were run, there were errors caused by this symbol, so it was necessary to exclude 

it from the text. 

 

 

5.3.1.5 Remove repeated words 

 

In order to increase the accuracy of the model, the repeated words in an instance were omitted, to accomplish 

this, it was necessary to write a function that was used in the pre-processing stage for all the string fields of 

the datasets. Installing R packages like “stringr” was also necessary. 

 

 

5.3.1.6 Lemmatizing 
 

Lemmatizing the entire dataset is a key part of this project, for doing it, it was used the ixa-pipe.pos tool 

which is a Part of Speech tagger and Lemmatizer that support several languages. 

 

After running the ixa-pipe.pos tools [21], new files were created, these files contain the dataset's lemmas. The 

_pos suffix was used to identify the .csv files. 

 

"train_pos.csv" 

"test_pos.csv"  

"product_descriptions_pos.csv" 

“attributes_pos.csv” 

 

 

 

5.3.2 Splitting the train dataset 
 

In order to test the model in early stages and before using the test dataset, it was considered to split randomly 

the train dataset in 3 parts as it follows: 

 

- 50% for development 

- 30% for training 

- 20% for testing 

 

The following code was used for splitting the train dataset in 3 parts. The sample function was used for 

generating randomness and the argument replace=FALSE guaranteed no repetition of values. 

 
#extraer porcentajes 
tamano <- dim(train)[1] 
 
indices <- sample(tamano, tamano, replace=FALSE) 
indices 
indices50 <- indices[1:as.integer(tamano*.5)] 
indices30 <- indices[as.integer(tamano*.5+1):as.integer(tamano*.8)] 
indices20 <- indices[as.integer(tamano*.8+1):as.integer(tamano)] 
 
The number of instances of each resulting dataset is shown in table 6. 
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Dataset # of instances Percentage 

Train 37033 50% 

Development 14814 20% 

Test 22220 30% 

TToottaall 7744006677 110000%% 

 
Table 6. Number of instances of the resulting datasets after splitting the train dataset 

 

 

Figure 27 represents the percentage of the split of the train dataset. 

 

 
 

Figure 27. Splitting train dataset into 3 groups  

 

5.3.3 Feature extraction 

 

Since the data of the datasets are text values, it is necessary to convert text data into numeric data in order to 

be able to perform analysis of that data and building a predictive model. For generating numerical features it 

will be applied two operations: overlap and distributed word embeddings. 

 

There are 2 main datasets the train and test datasets that contain a search_term field. The train dataset also 

contains the relevance field which will be used with the model for training. The product_description field of 

the product_descriptions dataset also will be used for feature generating. 

 

The attributes.csv dataset contains additional information of the products, but not every product is in this 

dataset. The following code shows the value field of the attributes: 

 
> attributes[,2] 
 [9995] Bullet04                                           
 [9996] Bullet05                                           
 [9997] Bullet06                                           
 [9998] Certifications and Listings                        
 [9999] Detection Range (ft.)                              
[10000] Dusk to Dawn                                       
 [ reached getOption("max.print") -- omitted 2034803 entries ] 
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5411 Levels:  15 Gauge Finish Nailer Included ... Zone-specific Sounds 
 
It can be seen that there is 5411 Levels for the name field of the attributes dataset, among them, 2 attribute 

names were mainly considered, “Material” and “Brand”, which were taken as features for prediction. The rest 

of the levels were group in a single prediction feature called “others”. The table 7 shows the presence of 

features in the datasets. 

 

Attribute name Frequency 

Product title Every instance 

Product description Every instance 

Material Some 

Brand Some 

Others: Bullet01, Bullet02, Gauge, etc. Some 

 
Table 7. Comparison of the presence of features in the train and test datasets 

 

The main idea is to predict the relevance of the search according to the similarity of the search query with the 

product's description and attributes. The following fields have been considered as predicting features: 

 

 Product title 

 Product description 

 Material  

 Brand  

 Others: Bullet01, Bullet02, Gauge, “Deck use”, … 

 

5.3.3.1 Overlap 

 

Overlap is a technique is which it is calculated the percentage of words present in the query that are found in 

an attribute. The formula 3 represents the overlap. 

 

 

                             Words in “search query” found in “product's attribute”  

Overlap   =     ______________________________________________________ 

                                                  Length of the search query   

 
Formula 3. Overlap 

 

 

Overlap will be used between the search_query field of the train and test datasets against the product_title 

(train and test datasets), product_description (product_descriptions dataset), value (attributes dataset) 

fields. 

 

 

 

5.3.3.2 Mikolov word embeddings 

 

The most difficult part of the project was the use of Mikolov word embedding [22] because its calculation 

requires large amount of computer processing and time. The embeddings are free to download from the 

Internet in different sources; In this project the Mikolov word embeddings are formed by 2 files. The table 8 

describes the files containing the Mikolov word embeddings 
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File name Size in bytes Number of instances 

Emb-CorCBgoog-S300W5SS1e-5HS0NG3.txt 8,564,012,821 3,000,000 

VocabGoogle.txt 44,258,510 3,000,000 

 
Table 8. Features of word embedding files 

 

With the files provided in table 8, it was necessary to build a word vector for each instance of the datasets, 

after doing that it will be possible to build a predictive model using word embeddings.  

 

It can be seen in the table 8 that the Emb-CorCBgoog-S300W5SS1e-5HS0NG3.txt file has 3 million 

instances and also has 300 numerical columns; each of them represents a word vector. The size of the file is 

near 9 GB. To perform the pre-processing of data, it was used a laptop computer with the following features:  

 

Brand/model: Dell Inspiron 14.  

Processor: Intel Core i5 1.80 GHz x 4. 

Memory: 6 GB RAM. 

O.S.: Linux Ubuntu 15.10. 

 

After some attempts of building the word vector for the instances of the datasets with the machine described 

above, it started to lose processing speed because the machine started to run out of memory, getting crashes 

like the error shown in figure 28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28.  R Studio error message got while calculating the word embeddings 

 

 

 

In a second attempt of building the vector, the idea was to store the results in a MySQL database, for doing 

this, it was necessary to install the RmySQL package. This approach looked good but the processing still 

took a lot of time for all the datasets. 
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Finally, another improvement was made, in which the embeddings were reduced only to the words present in 

the datasets; the resulting files are described in the table 9. 

 

File name Size in bytes Number of instances 

EmbKKaggle.txt 82,467,194 28897 

VocabKaggle.txt 234,417 28897 

 
Table 9. Features of word embeddings files after applying the reduction to the words present in datasets 

 

It is described in the table 9 that the new EmbKKaggle.txt file has only 28897 instances and its size is just 

over 82 MB. Generating these files enables working with a normal desktop or laptop computer; less computer 

processing is needed and less time will be taken to get results. 

 

With the considerable reduction of words it was possible to start building the vector with the available 

hardware. The processing time needed for calculating the word vectors for all datasets is shown in the table 

10. 

 

 

Dataset file Field # of instances Processing time 

Train.csv Product Title 74067 15 hours 

Train.csv Search query 74067 7 hours 

Test.csv Product Title 166693 1 day 5 hours 

Test.csv Search query 166693 20 hours 

Product_descriptions product_description 124429 5 days 2 hours 

Attributes.csv Value 2044804 7 days 18 hours 

 
Table 10. Processing time for datasets applying Mikolov word embeddings 

 

  

As it can be seen, the product_descriptions and attributes datasets took long time to be processed and had to 

be split in 2 parts in order to process them in 2 different computers. 

 

 

5.3.3.3 Cosine similarity 

 

To calculate the cosine similarity between the embeddings of the search_term field and the embeddings 

attributes of the products, the R’s lsa package was used.  

 

The following figures show the results of applying the cosine similarity to the datasets. 

 

In figure 29 a box plot graphic represents the scores of cosine similarity applied to the embeddings of the 

search_term and product_title fields of the train dataset. It can be seen that the first quartile is above 0.4 

which means most of the values have a significant cosine similarity score. Some values are between 0 and 0.2 

having little value of cosine similarity. There is 1 outlier that has a 1 of score meaning complete similitude 

between instances. 
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Figure 29. Boxplot of cosine similarity between search_term and product_title fields of the train dataset 
 
 

Figure 30 shows the histogram of scores of cosine similarity between the search_term and product_title 

fields of the train dataset. The graphic looks pretty much like a normal distribution. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 30. Histogram of cosine similarity between search_term and product_title fields of the train dataset 
 
 
 

Figure 31 represents a box plot of scores of cosine similarity between the search_term and product_desc 

fields of the train dataset. It can be seen some values with a value near zero or below 0. There is an outlier 

with score of 1. 
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Figure 31. Boxplot of cosine similarity between search_term and product_desc fields of the train dataset 
 
 
 

Figure 32 shows the histogram of scores of cosine similarity between the search_term and product_desc 

fields of the train dataset. The graphic looks also like a normal distribution. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 32. Histogram of cosine similarity between search_term and product_desc fields of the train dataset 
 
 

Based in the information shown in the histograms, it can be said that the cosine similarity of the embeddings of 
product_title and product_desc fields are going to be very important for prediction. 

 
Figure 33 shows the histogram of scores of cosine similarity between the search_term and value fields of 

the train and attributes dataset; it is considered the brand feature. The graphic show that many instances 

have a score of 0; this could be explained because many products don’t have the brand attribute. 
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Figure 33. Histogram of cosine similarity between search_term and attribute: brand. Train dataset 

 

 

Figure 34 shows the histogram of scores of cosine similarity between the search_term and value fields of 

the train and attributes dataset; it is considered the material feature. Likewise figure 33, the graphic show 

that many instances have a score of 0; as it was explained for the brand feature, many products don’t have the 

material attribute. 

 

                           
 

Figure 34. Histogram of cosine similarity between search_term and attribute: material. Train dataset 

 

 

Figure 35 shows the histogram of scores of cosine similarity between the search_term and value fields of 

the train and attributes dataset; it is considered the others feature. The graphic looks like a normal 

distribution and it can be said that the “others” attribute has very high importance to the model because most 

of the instances have a good level of similarity when comparing with this feature. In the other hand, it can be 

seen that the attributes “brand” and “material” have much less influence and similarity.  
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Figure 35. Histogram of cosine similarity between search_term and attribute: others. Train dataset 

 

 

 

The following figures show the histograms of the cosine similarity found for the test dataset. 

 

Figure 36 shows the histogram of scores of cosine similarity between the search_term and product_desc 

fields of the test dataset. It can be seen that many instances have a strong cosine similarity score. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 36. Histogram of cosine similarity between search_term and product_title fields of the test dataset 

 

 

Figure 37 shows the histogram of scores of cosine similarity between the search_term and product_desc 

fields of the test dataset. The graphic looks also like a normal distribution.  
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Figure 37. Histogram cosine similarity between search_term and product_desc fields of the test dataset 
 

It can be seen that the effect of the cosine similarity operation is similar in train and test datasets and it will 

be relevant for the predictive model. 

 

Due to the amount of data generated by the cosine similarity operation, it was necessary to store the values in 

the hard drive. The table 11 shows the files used to store the cosine similarity results. 

 

File Content 

cos.test.atr.bra.sea.csv Cosine similarity of search_term (test) – attribute brand 

cos.test.atr.mat.sea.csv Cosine similarity of search_term (test) – attribute material 

cos.test.atr.oth.sea.csv Cosine similarity of search_term (test) – attribute others 

cos.test.prod.desc.sea.csv Cosine similarity of search_term (test) – product description 

cos.test.sea.tit.csv Cosine similarity of search_term (test) – product title 

cos.train.atr.bra.sea.csv Cosine similarity of search_term (train) – attribute brand 

cos.train.atr.mat.sea.csv Cosine similarity of search_term (train) – attribute material 

cos.train.atr.oth.sea.csv Cosine similarity of search_term (train) – attribute others 

cos.train.prod.desc.sea.csv Cosine similarity of search_term (train) – product description 

cos.train.sea.tit.csv Cosine similarity of search_term (train) – product title 
Table 11. Cosine similarity files. 

 

 

 

5.3.3.4 Predictive Features 
 

After combining all the feature extraction techniques, the resulting predictive features are obtained.  

 

 F1: overlap(query, description): 

 F2: overlap(query, title) 

 F3: overlap(query, Brand) 

 F4: overlap(query, Material) 

 F5: overlap(query, Others) 

 F6: overlap(query_lemma, description_lema): 

 F7: overlap(query_lemma, title_lema) 

 F8: overlap(query_lemma, Brand_lema) 

 F9: overlap(query_lemma, Material_lemma) 
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 F10: overlap(query_lemma, Others_lemma) 

 F11: cosine_similarity(embeddings_query, embeddings_desc) 

 F12: cosine_similarity (embeddings_query, embeddings_title) 

 F13: cosine_similarity (embeddings_query, embeddings_brand) 

 F14: cosine_similarity (embeddings_query, embeddings_material) 

 F15: cosine_similarity (embeddings_query, embeddings_others) 

 

 

 

5.3.4 Regression analysis 
 

 

5.3.4.1 Building a regression model 

 

As it has been mentioned the dataset values have been converted to numerical and continuous values. That is 

the reason why the prediction model of the present project uses a regression analysis method. 

 

The regression analysis will be conducted between the relevance field of the train dataset and the numerical 

features that have been generated from the products’ attributes fields. 

 

In order to generate the prediction results, using R language, the randomForest package was used. As its 

name says, it allows the use the Random Forest algorithm for prediction. Given the data, it generates a 

predicted relevance column.  

 

 

5.3.4.2 Evaluating the model 

 

To evaluate the results, the RMSE metric is used [23]. The Root Mean Squared Error is largely used for 

numerical predictions. The formula 4 describes RMSE. 

 

  

 

 

 

 

 

 

 
Formula 4. RMSE [23] 

 

The following line of code gets the RMSE metric using the R language 

 
RMSE <- sqrt(mean((y-y_pred)^2)) 
 
Where y is a vector that has the real values of the relevance field, and the y_pred is a vector that has the 

predicted values of the relevance. The variable n is the number of instances in the dataset. 
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6. Results 
 

 

 

To evaluate the results using different scenarios, a script was written in which the hyper-parameters of the 

Random Forest algorithm were changed. Several experiments will be conducted in order to find the best 

hyper-parameters for the predicting model. The Random Forest algorithm has mainly 2 hyper-parameters to 

setup, the number of decision trees that will be used for training and the number of variables that also will be 

used for evaluating with those trees.  

 

Another important factor is what features will be used, besides the overlap of the original attributes of the 

products, more features were generated; the overlap of lemmas of the attributes and the cosine similarity of 

word embeddings of the attributes. It is important to find the combination of features that give the best 

results. 

 

All the experiments will be applied to the train dataset. As it was explained before, the train dataset was 

split into 3 subsets. The train subset will be used for training the Random Forest algorithm and the 

development subset will be used for testing during development. The combination of features with better 

results will be implemented in the test subset. (All these experiments are conducted in the train dataset). 

 

Once the best combination of features and parameters have been found there will be a final experiment 

applied to the test dataset. 

 

 

Experiment #1 
 

For the experiment #1 the overlap of the words were used (F1 – F5); it was calculated the overlap between 

the search_term field (what the user typed) and the attributes of the product. The parameter number of trees 

takes the values 400, 500, 600, 700 and the parameter number of variables takes the values 2, 3, 4, 5. The 

figure 38 shows the values of the error metric RMSE in the experiment #1. 

 

 

 

 
 

Figure 38.  Graphic of RMSE in experiment #1. 
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Best result: 0.500501398386279 
# of trees: 400 
# of variables: 2 

 

 

Experiment #2 
 

The features considered for this experiment are F6 to F10 which are the overlap of the lemmas of the words 

of datasets. The overlap of the search_term and the attributes was calculated. The parameter number of 

trees takes the values 400, 500, 600, 700, 800, 900, 1000, 1100 and the parameter number of variables takes 

the values 2, 3, 4, 5. The figure 39 shows the values of the error metric RMSE in the experiment #2. 

 

 

 
 

Figure 39.  Graphic of RMSE in experiment #2 
 

Best result: 0.501264829445384 

# of trees: 400 
# of variables: 2 

 

 

Experiment #3 
 

In the experiment #3 it is combined both the overlap of original words and the lemmas of the words (F1 – 

F10); the overlap of the search_term and attributes was calculated. The parameter number of trees takes the 

values 400, 500, 600, 700, 800, 900, 1000 and 1100. The parameter number of variables takes the values 2, 

3, 4, 5, 6, 7, 8, 9, 10. The figure 40 shows the values of the error metric RMSE in the experiment #3. 
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Figure 40.  Graphic of RMSE in experiment #3 

 

Best result: 0.501183172761222 
# of trees: 1100 

# of variables: 2 

 

 

Experiment #4 
 

The experiment # 4 uses the cosine similarity between the word embeddings of the datasets. The features are 

F11 – F15. The features represent the same the differences between the search_term field with the attributes 

of the product. The parameter number of trees takes the values 400, 500, 600, 700, 800, 900, 1000, and 

1100. The parameter number of variables takes the values 2, 3, 4, 5. The figure 41 shows the values of the 

error metric RMSE in the experiment #4. 

 

 

 
Figure 41.  Graphic of RMSE in experiment #4 
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Best result: 0.515549996800693 
# of trees: 800 

# of variables: 2 

 

 

Experiment #5 
 

The experiment # 5 considers all the features (F1 – F15), it is the combination of overlap of words and 

lemmas of words, plus the cosine similarity of word embeddings of the datasets. All 3 categories of features 

represent the differences between the search_term field and the attributes of the products. The parameter 

number of trees takes the values 400, 500, 600, 700. The parameter number of variables takes the values 

12, 13, 14, 15. The figure 42 shows the values of the error metric RMSE in the experiment #5. 

 

 

 
 

Figure 42.  Graphic of RMSE in experiment #5 

 

 

Best result: 0.489859605277241 
# of trees: 700 

# of variables: 12 

 

 

The figure 43 shows the comparison of the results of the 5 experiments. 
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Figure 43.  Comparison of the results of the 5 experiments. 

 

 

Where 

 

Exp.1 = Overlap of words 

Exp.2 = Overlap of lemmas of words 

Exp.3 = Overlap of words + Overlap of lemmas of words 

Exp.4 = Cosine similarity of word embeddings 

Exp.5 = Overlap of words + Overlap of lemmas of words + Cosine similarity of word embeddings 

 

 

It can be seen that the use of NLP techniques like word lemmas (Exp.2) and the cosine similarity of word 

embeddings (Exp.4) gave a similar results (but not better) of prediction that using the overlap of words 

(Exp.1). 

 

In the other hand, the best results were obtained by combining all the features: Overlap of words + Overlap of 

lemmas of words + Cosine similarity of word embeddings (Exp.5) which means that the word lemmas and the 

word embeddings helped to improve the predictive model. 

 

 

Working with the test dataset 

 
After finding the best hyper-parameters for the 5 experiments, those optimal values are used to repeat the 

experiments in the test subset; it will help to analyze the results in different data. The figure 44 shows the 

results for the test subset. 



44 

 

 
 

Figure 44. Comparison of the results of the optimal hyper-parameters for the 5 experiments in the test subset. 

 

 

 

It can be seen that the word embeddings alone gave the worst result, but in combination with the overlap of 

words and the overlap of lemmas of words, they gave the best results improving the accuracy in 2.72%. The 

table 12 shows the optimal hyper-parameters of the predictive model. 

 

 

Predictive Features: F1 – F15 

Number of decision trees: 900 

Number of variables: 12 
 

Table 12. Optimal hyper-parameters of the predictive model. 

 

 

After finding the optimal hyper-parameters, the final step is to use the predictive model with the test dataset. 

The table 13 shows the results of the predictive model with test dataset. 

 

 

Predictive Features: F1 – F15 

Number of decision trees: 900 

Number of variables: 12 

RMSE: 0.495369701916983 
 

Table 13. Results of the predictive model with the test dataset. 

 

 

According to the leader board of the Kaggle’s competition the winner of the competition got a score of 

0.43294; our predictive model with a score of 0.495369701916983 would have got the 1490th place out of 

2125 teams. The figure 45 shows part of the leader board of the Home Depot Search Relevance Competition 

at the Kaggle web site. 
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Figure 45. Part of the leader board of the Home Depot Search Relevance Competition at the Kaggle web site. 

 

 

 

The figure 46 shows the importance of the predictive features of the model applied to the test dataset. 

 

          
Figure 46. Comparison of the importance of the predictive features of the model applied to the test dataset. 
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Figure 47 shows the dendogram of the result of the Random Forest algorithm applied to the test dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 47. Dendogram of the Random Forest algorithm with 900 decision trees and 12 variables applied to the test 

dataset. 
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7. Conclusions 
 

 

  

 The combination of NLP techniques like word lemmas and the distributed word embeddings 

contributed to improve the accuracy of the predictive model for the present project. 

 

 Word2vec is a promising technology that can improve Natural Language applications like sentiment 

analysis, word prediction, translation, etc. It helps to describe syntactic and semantic relationships 

between words and phrases in a simple way, yet a lot of computing power is needed.  

 

 The success of a project depends in the quality of data. Data pre-processing is a key part of building 

a predictive model, despite it takes effort and it is time consuming, it is a mandatory step. There are 

many actions that can be taken in this stage like case conversion, tokenization, lemmatization, 

selection of variables, word spell correction. 

 

 Data Science is a trendy topic nowadays. IT professionals can benefit from data analysis, because of 

the vast amounts of data that is available in the Internet, the increase of computing power and data 

storage. Data Science also gives contributions to companies that solve their problems and take 

advantage of useful knowledge. 

 

 Regression analysis is a powerful statistical tool for prediction; it can be used in many fields having 

accurate results.  

 

 Natural Language Processing is an important field of Artificial Intelligence which allows humans 

and computers to interact in easier ways, its development will bring outstanding applications in the 

next years. 

 

 Augmented Intelligence is a new term which says that machines will give humans more intelligence 

and will empower them to evolve and improve their quality of life. The original term Artificial 

Intelligence was thought to give machines the ability to simulate human intelligence, but actually the 

Artificial Intelligence of machines has surpassed human intelligence in many fields. 

 

 Among other applications, R language is a useful tool for Data Science, packages like “tm” and 

“NLP” allow us to do complex tasks like tokenizing, removing stop words and punctuation, 

stemming, etc. Likewise R’s Machine Learning packages help us building a predictive model.  

 

 Kaggle.com is an outstanding platform for Data Science practitioners; its competitions promote the 

use of Data Science, solving real-world problems. It's also a good place for learning Data Science, 

networking and promoting Data Science careers.  
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