

Máster Universitario en
Ingeniería Computacional y Sistemas

Inteligentes

 
    

Konputazio Zientziak eta Adimen Artifiziala Saila –
Departamento de Ciencias de la Computación e Inteligencia Artificial

Tesis de Máster

 Título: Building a predictive
model for Kaggle's

“Home Depot Product Search Relevance”
Competition

Luis Roberto Jácome Galarza

 Tutor(a/es)

 Aitor Soroa

 Departamento de Ciencias de la Computación e Inteligencia Artificial
 Facultad de Informática

 Arantxa Otegi

Departamento de Lenguajes y Sistemas Informáticos
 Facultad de Informática

K
I
S
A

I
C
S
I

Septiembre 2016

KZAA
/CCIA

ii

Abstract

The present work analyses different techniques in order to build a predictive model that could be able to

solve the Kaggle’s competition called “Home Depot Product Search Relevance”. Several NLP methods were

used for data pre-processing like tokenization, lemmatization, extracting stop words, etc. Word overlap and

Mikolov word embeddings were used for feature extraction, Random Forest algorithm was used for applying

regression. Finally the statistical open-source R language was used for building the scripts.

The results indicate that distributed word representations are a very useful technique for many NLP

applications. Word embeddings helped to improve the accuracy of the predictive model; having this

experience it can be realized the power of this technique and its ease of use.

A big concern of the project was the long processing time of processing the word embeddings in regular

desktop/laptop computers. In order to reduce the processing time, it was necessary to extract the words

embeddings only of the words found in the datasets. Moreover, some of the datasets were split and processed

in different machines. Other possible solutions to this problem are renting cloud computing, grid computing,

parallel computing, servers, etc.

iii

Index

1. Introduction ……………………………………………………….. 1

1.1 Objectives of the thesis ……………………………………………. 1

1.2 Field of study ……………………………………………………… 1

2. Motivation ………………………………………………………….. 2

3. Theoretical Framework ……………………………………………… 3

3.1 Artificial Intelligence ……………………………………………… 3

3.2 Data Science ……………………………………………………….. 3

3.3 Data Mining ………………………………………………………. 4

3.4 Machine Learning ………………………………………………….. 4

3.5 Supervised Learning ………………………………………………. 4

3.6 Regression ………………………………………………………… 5

3.7 Feature Engineering…………….…………………………………… 5

3.8 Natural Language Processing ……………………………………… 5

3.8.1 Tokenization …………………………………………………….. 6

3.8.2 Lemmatization …..……………………………………………….. 6

3.9 Machine Learning Algorithms .…………………………………….. 6

3.9.1 Decision Trees …………………………………………………… 6

3.9.2 Random Forests ………………………………………………….. 6

3.10 Distributed word representations …………………………………. 8

4. State of the art ……………………………………………………… 14

5. Experiments ………………………………………………………… 16

5.1 Understanding the problem ………………………………………… 16

5.1.2 Datasets …………………………………………………………. 16

5.2 Software packages and algorithms ………………………………… 22

5.3 Methodology for the solution of this project ……………………….. 25

5.3.1 Data Pre-processing ……………………………………………… 26

iv

5.3.1.1 Case conversion ……………………………………………………. 26

5.3.1.2 Tokenization ……………………………………………………….. 26

5.3.1.3 Stop words …………………………………………………………. 26

5.3.1.4 Exclude punctuation marks ………………………………………… 27

5.3.1.5 Remove repeated words …………………………………………… 28

5.3.1.6 Lemmatizing ………………………………………………………. 28

5.3.2 Splitting the train dataset …………………………………………….. 28

5.3.3 Feature extraction …………………………………………………… 29

5.3.3.1 Overlap …………………………………………………………… 30

5.3.3.2 Mikolov word embeddings …………………………………………. 30

5.3.3.3 Cosine similarity …………………………………………………… 32

5.3.3.4 Predictive Features ………………………………………………… 37

5.3.4 Regression analysis ………………………………………………….. 38

5.3.4.1 Building a regression model ………………………………………… 38

5.3.4.2 Evaluating the model ………………………………………………. 38

6. Results …………………………………………………………………… 39

7. Conclusions ……………………………………………………………… 47

8. References ……………………………………………………………….. 48

1

1. Introduction

1.1 Objectives of the thesis

The main objective of the thesis is to build a predictive model that can solve the problem found in the

Kaggle’s competition called “Home Depot Product Search Relevance”.

For the accomplishment of the main objective, it is necessary to fulfil some steps like data pre-processing,

which is a very important step for cleaning the data. The feature generation step is necessary for transforming

the text data into numerical data that will be used in the next step which is the model building with a

regression algorithm.

Finally, it is also important for this project to measure the accuracy of the model; the same metrics used to

evaluate the submissions for the competition must been applied to the project’s model.

1.2 Field of study

Data Science is a powerful yet new field of Artificial Intelligence, in which large amounts of data are

transformed into valuable information. This is possible because of the explosion of Internet sites that gather

information from millions of users all over the world, companies’ databases and the increase of data storage

capacity and the improvement of computing processing.

Nowadays, data scientists are the most required IT professionals due to the necessity of companies to extract

knowledge that would bring competitive advantages and solve problems. Growing constantly, the demand of

data scientists surpasses the number of qualified available professionals; some of their most desired skills and

knowledge are Computer Programming, Statistics Analysis, Database Management, Machine Learning, Data

Mining, etc.

Kaggle [1] is an online platform where enterprises submit their data analysis problems and data scientists

compete for finding the model that bring the best solution. Most of the competitions’ results show

improvement of the existing solutions which points out that, companies will get the desired results. Kaggle is

also a way data scientists have to interact with other people with similar skills and profiles, team up to

participate in the competitions and win rewards for their data analysis works.

2

Figure 1. Kaggle [1]

The Kaggle’s “Home Depot Product Search Relevance” competition is a contest in which data scientists are

asked to create a predictive model that could give the relevance of query searches in Home Depot’s web site

[2] and the results provided by the algorithms, this information will give the programmers information of the

best settings for the search algorithms to improve the user’s experience.

This work presents a solution for the Kaggle’s “Home Depot Product Search Relevance” Competition in

which the developed model predicts the relevance of the query searches given products names, descriptions

and attributes. The Random Forest algorithm is used for data regression.

A data pre-processing work was needed in which Natural Language Processing techniques like tokenization,

lemmatizing, stemming, embedding were used. For data regression, the Random Forest algorithm was used,

R language (open-source Statistical language) was also used.

2. Motivation

The Master in Computational Engineering and Intelligent Systems of the Basque Country gives its students

the necessary skills to perform real-world data analysis works. Being Data Science a trendy discipline,

proposing a predicting model is a challenging but gratifying task, in which all the knowledge learned will be

used in a practical project.

Improving data science skills by gaining experience from a Kaggle competition is also rewarding, it is

estimated that there is in the present and there will be in the next years a shortage of IT professionals,

especially in the data science field, so building a data science career is a promising endeavour. In the other

hand, each Kaggle’s competition is very difficult and challenging because data scientists with very high

education background and experience propose their predictive models and only the model which gives the

best results wins. This fact is beneficial as well, because each competitor will improve his model over and

over again to beat other’s models.

Besides competitions, Kaggle platform allows data scientists to interact with more experienced colleagues,

share code, learn from tutorials and data sets. It is paramount important for a data scientist to participate

constantly in Kaggle for training, getting new skills, trying the latest techniques and tools, and winning

3

monetary prizes. Companies that host competitions also have benefits because they get the best solution

(made by high qualified data scientist from all over the world) for their data analysis problems which mean a

huge increase of productivity.

3. Theoretical Framework

The exponential growth of technology allows us to improve the quality of people’s life. More often,

machines are taking over control and assisting human daily activities. The explosion of data in databases and

the Internet had led to the necessity of new approaches to process and use those data. Many fields of

knowledge have contributed to this continuous and remarkable progress. The next section describes some of

the areas from which it has been extracted valuable knowledge for the present project.

3.1 Artificial Intelligence

It’s the name given to the intelligence of the machines and the software. It’s a scientific discipline that

research the methods of creation or simulation of intelligence.

The term “Artificial Intelligence” was created by John McCarthy but Alan Turing first referred with his

article “Computing Machinery and Intelligence” in 1950. Turing also proposed the Turing Test in which it

could be established if a machine could be defined as conscious.

The application domains of the AI are:

 Banks: with Expert Systems that evaluate the risk of give a credit to a customer (credit-scoring)

 Military: with autonomous systems like drones, systems for decision support.

 Games

 Medicine: with Expert Systems for diagnosis.

 Logistics: with heuristics approaches for solving hard mathematical problems.

 Robotics

3.2 Data Science

Data Science is the extraction of knowledge from data. It applies the techniques of many fields like Math,

Statistics, Information Theory and Information Technology, Probabilistic Models, Machine Learning,

Computer Programming, Data Engineering, Forms Recognition, etc. The main goal of Data Science is to

build methods for analysis of massive data with the objective to extract useful or potentially useful

information.

The term “Data Science” was first used in 2001 by William Cleveland in his article “Data Science: An

Action Plan for Expanding the Technical Areas of the Field of Statistics”. This discipline appears in response

of the growing complexity found in databases and the Internet with huge amounts of data available.

4

3.3 Data Mining

Data Mining consists of extracting knowledge from large amounts of data using automatic or semi-automatic

methods. Its goal is to use techniques of different disciplines like Statistics, Artificial Intelligence, and

Computer Science, to build models from data that find structures of different criteria that bring valuable

knowledge. Figure 2 describes the steps involved in Data Mining in which is remarkable to realize that the

previous treatment of the data is very important for the success of the Data Mining project; the data pre-

processing also takes an important amount of time an effort.

Figure 2. Steps in Data Mining [3]

3.4 Machine Learning

Machine Learning is a field of Artificial Intelligence which Arthur Samuel defined in 1959 as “Field of study

that gives computers the ability to learn without being explicitly programmed”; it also has been described as

algorithms that learn from data.

Applications of Machine Learning include perception of their environment (vision, object recognition,

natural languages), search engines, medical diagnosis, brain-machine interfaces, fraud detection, financial

analysis, games, robot motion, predictive analysis, etc.

Machine Learning is divided into Supervised Learning, Unsupervised Learning and Semi-supervised

Learning.

3.5 Supervised Learning

If classes are predetermined and the examples are known, the system learns to classify according to a

classification model. An expert has to label the examples and the process is done in two phases. The first

phase consists of creating a model of labelled examples (train the model), the second phase (test the model)

consists in predicting the class of a new data samples using the model. This prediction can be used as

feedback to refine the model. After the model has been trained and tested it will be able to predict the values

for new instances.

5

3.6 Regression

Regression is a statistical process for estimating the relationships among variables. In regression, most of the

cases, the target variable is continuous. To solve regression supervised learning algorithms are used.

Regression is used to make predictions, for example, regression can be used to predict the sales of a store,

given the sales of the past months. Figure 3 shows an example of regression.

Regression line

Figure 3. Regression line [4]

As mentioned before, regression treats continuous variables, while classification treats discrete values, which

means it tries to predict what class an instance is part of. In the other hand, clustering has no predefined

classes and tries to group together elements with the more similar features.

3.7 Feature Engineering

A feature is a piece of information which is potentially useful for prediction. Feature engineering is the

process of using domain knowledge of the data to create features that make Machine Learning algorithms

work.

Features are very important in predicting models, the quantity and quality of features will determine if the

model is good or not. When it comes to relevance, features could be strongly relevant, relevant, weakly

relevant or irrelevant.

3.8 Natural Language Processing

Natural Language Processing (NLP) is part of the human-computer interactions, it consists the study of

interactions between computers and human natural languages.

NLP has many research areas like:

 Automatic summarization

 Discourse analysis

 Machine translation

 Morphological segmentation

 Named entity recognition

6

 Natural language generation

 Natural language understanding

 Optical character recognition

 Part-Of-Speech Tagging

 Parsing

 Sentiment analysis

 Speech recognition

 Speech segmentation

 Word segmentation

 Information retrieval

 Information extraction

 Speech processing

3.8.1 Tokenization

Tokenization is part of the lexical analysis which consists of the process of breaking a stream of text up into

words, phrases, symbols or other meaningful elements called tokens.

3.8.2 Lemmatization

Lemmatization in linguistics consists of grouping together the different inflected forms of a word so they can

be analysed as a single item.

Examples:

The word “worse” has “bad” as its lemma

“Play” is the base form word of “playing”

3.9 Machine Learning Algorithms

3.9.1 Decision Trees

Learning by decision trees is a method that uses a decision tree as permanent predictive model that tests the

value of a feature of a system after the observation of other features of the same system.

Decision Trees have advantages like simplicity of understanding and interpretation, a few preparations of

data, they can process a large amount of data and the model could be tested by statistical functions.

3.9.2 Random Forests

The Random Forests classifier is a technique of Machine Learning that was proposed by Leo Braiman and

Adele Cutler, the algorithm combines random subspaces and bagging. It also does the learning using multiple

decision trees trained by slightly different subsets of data as shown in the figure 4.

7

Figure 4. Random selection of data in Random Forest

The decision trees are also built by a subset of the original variables, it is shown in the figure 5.

Figure 5- Random selection of variables in Random Forest

Having multiple decision trees with a subset of data and variables, the algorithm provides accurate prediction

for most parts of the data, making mistakes at different places. Finally, the prediction is made by voting for

each of the observations; this is expected to be closer to the right classification. The figure 6 describes the

implementation of the Random Forest algorithm for the train and test process.

8

Figure 6. Random Forest: multiple decision trees

3.10 Distributed word representations

Many techniques have been developed for representing the human natural language in a way in which

computers can work with. The next section describes some of them.

The Bag of Words model learns a vocabulary from all documents, after that it models each document by

counting the number of times each word appears. For example, having these 2 sentences:

s1: “The cat sat on the hat”

s2: “The dog ate the cat and the hat”

With the 2 sentences, the following vocabulary is built {the, cat, sat, on, hat, dog, ate, and}

To obtain the Bag of Words, it is necessary to count each word in the sentences and register its occurrence.

S1: {2, 1, 1, 1, 1, 0, 0, 0}

s1: {3, 1, 0, 0, 1, 1, 1, 1}

An N-gram is a sequence of N items that could be letters, words, and phonemes. It is known that certain

word or item pairs (triplets, quadruplets, etc.) are likely to occur more often than other pairs, for example the

letter Q most of the times is found in words with an U as in “queen”, “question”, “frequent”

Having enough data, it can be computed the frequency distribution of all N-grams found in the data. In the

other hand, the permutations increase greatly with N, for example, in English language, having 26 letters, it is

possible to form 26² letter pairs, 26³ letter triplets and so on, that’s why N is often taken as small number.

Google has calculated the word N-gram from its data [5].

9

N-grams are very similar to the multi-order Markov model in which the Nth. Position depends on the

previous N-1 items, and can be calculated from a data corpus. Having the N-gram data information it could

be used for suggested auto-completion of words and phrases, spelling correction, speech recognition, word

disambiguation.

A word vector is a vector of weights. In a simple 1 of N schema, every element in a vector is associated to a

word in the vocabulary. Encoding a word is just filling the numbers of the vector, having a number 1 to the

place of a word and 0 to all other places.

If having only 5 words in the vocabulary like: king, queen, man, woman and child, encoding the word

‘queen’ would be like:

Figure 7. 1-of-N encoding [6]

Word embeddings is the representation of a word using numbers. Every word or phrase from a vocabulary

is mapped in a vector of real numbers in a low-dimensional space.

In word2vec words are represented in a vector that has N dimensions. Each word is represented by weights

in the vector, so instead of a 1 to 1 mapping between a value in the vector and a word, the word is represented

by all the values in the vector, and each element of the vector contributes to the definition of the word [6].

The following example describes how word vectors are created. In this case, a small domain is taken,

columns represent the words of the vocabulary and rows are the different criteria used to describe those

words. Each word has a numerical vector that corresponds to the weights of that word in specific criteria. The

figure 8 describes this example.

Figure 8. Word2vec example [6]

By examining a large corpus, it’s possible to build word vectors that are able to capture the relationships of

the words in a very expressive way. These vectors can also be used as input of neural networks.

10

The figure 9 represents a 2-dimentinal word vectors.

Figure 9. Word Vectors [6]

Vectors are also a very useful tool for answering analogy questions, using a simple vector offset method

based on cosine distance. Some examples are:

man is to a woman as uncle is to? ….. aunt

Vector composition also finds relations like:

king – man + woman = ? …. queen

Figure 10 describes an example of word vector Composition.

Figure 10. Word Vector Composition [6]

Word representations are very powerful because they can describe meaningful syntactic and semantic

patterns in a very simple way. Regularities are found as constant vector offsets between pairs of words

sharing a particular relationship. If a word vector is denoted by xi for the i-word it could be obtained the

following relationships:

11

xapple – xapples ≈ xcar – xcars

xapple – xapples ≈ xfamiliy – xfamilies

As it can be seen, the vectors can find the relationship between singular/plural words.

These examples show that word vectors with semantic relationships could improve many Natural Language

applications like Machine Translation, Information Retrieval, Question Answering Systems, etc.

More examples of semantic and syntactic word relations are shown in table 1.

Type of relationship Word Pair 1 Word Pair 2

Common capital city Athens Greece Oslo Norway

All capital cities Astana Kazakhstan Harare Zimbabwe

Currency Angola Kwanza Iran rial

City-in-state Chicago Illinois Stockton California

Man-Woman Brother Sister Grandson Granddaughter

Adjective to adverb Apparent Apparently Rapid Rapidly

Opposite Possibly Impossibly Ethical Unethical

Comparative Great Greater Tough Tougher

Superlative Easy Easiest Lucky Luckiest

Present Participle Think Thinking Read Reading

Nationality adjective Switzerland Swiss Cambodia Cambodian

Past tense Walking Walked Swimming Swam

Plural nouns Mouse Mice Dollar Dollars

Plural verbs Work Works Speak Speaks

Table 1..Examples of types of semantic and syntactic word relations [7]

Accuracy is quite good when using word vectors, more interesting outcomes can be found playing with the

vectors like: Paris – France + Italy = Rome.

The table 2 shows more outstanding examples:

Relationship Example 1 Example 2 Example 3

France – Paris

big – bigger

Miami – Florida

Einstein – scientist

Sarkozy – France

copper – Cu

Berlusconi – Silvio

Microsoft – Windows

Microsoft – Ballmer

Japan – sushi

Italy: Rome

small: larger

Baltimore: Maryland

Messi: midfielder

Berlusconi: Italy

zinc: Zn

Sarkozy: Nicolas

Google: Android

Google: Yahoo

Germany: bratwurst

Japan: Tokyo

cold: colder

Dallas: Texas

Mozart: violinist

Merkel: Germany

gold: Au

Putin: Medvedev

IBM: Linux

IBM: McNealy

France: tapas

Florida: Tallahassee

quick: quicker

Kona: Hawaii

Picasso: painter

Koizumi: Japan

uranium: plutonium

Obama: Barack

Apple: iPhone

Apple: Jobs

USA: pizza

Table 2. Examples of the word pair relationships [7]

12

Cosine similarity

In order to measure the properties between word embeddings, the cosine similarity metric is used.

The cosine similarity between two vectors (or two documents on the Vector Space) is a measure that

calculates the cosine of the angle between them [8]. This metric is a measurement of orientation and not

magnitude.

The formula 1 represents the dot product operation of vectors.

Formula 1. Dot product between 2 vectors [8].

Considering formula 2, the formula of the Cosine similarity can be obtained (formula 2).

Formula 2. Cosine similarity between 2 vectors [8].

It can be seen in figure 11 that 2 vectors with a small angle of deviation are very similar between them; the

cosine similarity score is near 1. Two vectors with an angle of 90 degrees are unrelated; the cosine similarity

is 0. Two vectors with opposite directions (near 180 degrees) are opposite; the cosine similarity score is near

-1.

Figure 11. Pairs of word vectors with different cosine similarity [8].

It can be demonstrated the properties of word embeddings with practical cases. The following example shows

the implementation of word vectors in R language

In order to use the Cosine similarity operation, the lsa package was needed. The cosine function is used to

calculate the cosine similarity. First, a basic example was executed. The cosine similarity was calculated

between 2 numeric vectors.

13

> vec1 = c(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
> vec2 = c(0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0)
> cosine(vec1,vec2)
 [,1]
[1,] 0.2357023

For further experimentation, the vectors and values of the word2vec example of the figure 8 were taken into

consideration. Five words were considered; their values were filled in the criteria “royalty”, “masculinity”,

“femininity” and “age”.

> king = c(0.99, 0.99, 0.05, 0.7)
> queen = c(0.99, 0.05, 0.93, 0.6)
> woman = c(0.02, 0.01, 0.999, 0.5)
> princess = c(0.98, 0.02, 0.94, 0.1)
> prince = c(0.99, 0.99, 0.05, 0.1)

The following results were obtained for the cosine similarity between the words, were a value of zero means

no similarity and a value of one means completely similar.

> cosine(king, queen)
 [,1]
[1,] 0.6429661
> cosine(king, woman)
 [,1]
[1,] 0.2455264
> cosine(queen, woman)
 [,1]
[1,] 0.7525689

Queen and princess have a lot of similarity:

> cosine(queen, princess)
 [,1]
[1,] 0.9417467
> cosine(king, princess)
 [,1]
[1,] 0.5190673
> cosine(princess, woman)
 [,1]
[1,] 0.6630324

As expected, the result of the following operation of vectors was true:

King – queen + princess = prince

> cosine(prince, (king-queen+princess))
 [,1]
[1,] 0.9972254

The cosine function gave a score of 0.9972254 which means that there is a very high similarity between the 2

vectors. More similar examples explained in the theory can be successfully obtained.

Deep Learning and word2vec

Deep Learning is a field of Machine Learning that attempts to model high-level abstractions in data by using

a deep graph with multiple processing layers. Deep learning is considered a development of Neural

Networks; they have more layers than traditional models and are trained in higher orders of magnitude than

was available before [9].

14

In Deep Learning systems, algorithms can automatically learn feature hierarchies. Some researchers consider

word2vec as Deep Learning because it is a two layer neural network that processes text; while word2vec is

not a deep neural network, it turns text into numerical form that deep nets can understand.

4. State of the art

Distributed word representations are a valuable resource for many Natural Language Processing applications.

This section describes state to the art applications for word representations.

In [7], Mikolov et al. studied the quality of vector representations of words using various models and applied

to different syntactic and semantic tasks. It is explained that it is possible to train high quality word vectors

using very simple model architectures having much lower computational complexity.

In [10], bilingual word embeddings are introduced to improve Machine Translation; they help to match the

semantic similarities between languages. Experiments are done with English and Chinese languages.

Semantic hierarchy constructions uses hypernym-hyponym relations (“is a”) to build structures of concepts.

For example, the words “dog” and “canine” are connected directly, “canine” is a hypernym of “dog” and

“dog” is a hyponym of “canine”. In [11], a new method of hierarchy constructions using word embeddings is

presented, which is used to measure the semantic relationships between words. The model identifies if a word

pair has a hypernym-hyponym using semantic projection based on word embeddings.

Figure 12. An example of semantic hierarchy construction [11]

In [12], they show an analysis of the contribution of word embeddings to Natural Language Processing

applications. It remarks its importance for semantic analysis, and studies the variation of the number of

dimensions. The following tasks have been performed to evaluate different sets of embeddings:

Sentiment polarity: create sets of words that have positive or negative connotations.

Noun gender: To compile a list of masculine and negative words. Names that frequently appear with he/she

words respectively are categorized as masculine/feminine.

15

Plurality: to extract nouns in the singular and plural forms.

Synonyms and antonyms: extract synonym and antonym pairs.

Regional spelling: collecting words that differ in spelling between UK English and American English.

In [13], an analysis is presented in which supervised NLP systems’ accuracy is improved by using

unsupervised word representations. Moreover, combining different word representations can improve

accuracy further. Word features can be learned in advance in an unsupervised task. Once learned, word

features can be easily shared with other researchers and integrated into supervised NLP applications.

In [14], a paper is presented in which word embeddings are trained for more than 100 languages using their

corresponding Wikipedia; Moreover, it is explained that using word embeddings in conjunction with

traditional NLP methods can improve NLP tasks; for this reason and many other applications, distributed

word representations are a valuable resource for any language. It is claimed that the embeddings will be

released for public use at www.cs.stonybrook.edu.

In [15], it is highlighted that words with different meaning (polysemous), can be represented by different

embedding vectors. However, due to the large amount of parameters to train, this method is not practical.

Considering that fact, a probabilistic model is proposed in which the continuous Skip-gram model is

integrated with the embedding vectors, as a result, there are less parameters to train and it leads to better

results.

In [16], a new model for Speech Recognition is proposed in which words are projected into continuous

embedding space where words that sound alike are scored nearby. It is shown that embeddings allow words

that are not in the training dictionary have also a score. The table 3 shows some examples of words and their

nearest neighbour in the embedding space:

Words Neighbours

Heart hart, heart’s, iheart, hearth, hearted, art

Please Pleased, pleas, pleases, pleaser, plea

Plug plugs, plugged, slug, pug, pluck

Chareety sharity, hare, cheri, tyree, charice, charities

Table 3. Nearest neighbour examples in the acoustically similar embedding space

In [17], the Skip-gram model of Mikolov et al. [7] is extended by taking visual information into

consideration. The model builds word representation using vectors and also is exposed to visual

representations of the objects it denotes, and must predict linguistic and visual features jointly. Having

propagating visual information to words, it has been used to improve image labelling and retrieval.

In [18], it analyses the use of skip-grams when trying to model all possible combinations of words extracted

from large text corpus. The results show that skip-grams are highly valuable to model context; moreover, the

use of skip-grams is explained to be a better option than increasing the size of text corpus that would require

more computing processing.

http://www.cs.stonybrook.edu/

16

5. Experiments

5.1 Understanding the problem

In the Kaggle’s “Home Depot Product Search Relevance” competition, it is asked to build a predictive model

that could give the relevance of search queries of Home Depot’s web site users and the results given by the

search algorithm.

Understanding the context, in Home Depot’s web site [2], buyers go online to buy the products and find

solutions to their necessities of home improvement. It is very important the accuracy and the speed of the

searches in order to give customers the best user experience. Currently, in Home Depot, human evaluators

analyse the impact of potential changes to parameters of the search algorithms, which is a slow and

subjective process. By removing or minimizing human intervention, it is expected that it will be increased the

number of interactions of changing the search algorithms parameters.

Figure 13. Home Depot [2]

5.1.2 Datasets

The provided datasets have a considerable number of search terms of products and their correspondent

results, product titles, descriptions and attributes.

In order to create “ground truth” labels (precision in the training dataset), Home Depot has given “search

term/product” pairs to multiple human evaluators. Relevance is denoted with a real number between 1 (no

17

relevant) and 3 (highly relevant). For example, a search query “AA battery”, would be considered highly

relevant for the product “AA battery package” (relevance = 3), medially relevant for the product “battery for

wireless drill” (relevance = 2) and no relevant for “snow shovels” (relevance = 1)

Each pair was evaluated at least 3 times; the final evaluation value is the average of all evaluations. The task

is to predict the relevance of each pair of the test dataset.

Datasets descriptions

• train.csv: The training dataset, it contains products ids, searches and relevance value.

• test.csv: It is the test dataset, it contains products ids, searches, but the relevance of search has to be

predicted.

• product_descriptions.csv: It contains descriptive text for each product. Using the product_id it is possible

to link this dataset with train.csv and test.csv.

• attributes.csv: It provides additional information about a subset of products (typically technical details),

not every product has this attributes.

• sample_submission.csv: This file shows the right format for submission.

The fields found in the datasets are:

• id: A unique field identifier that represents a pair search_term/product_uid.

• product_uid: The identifier of the products.

• product_title: The title of the product.

• product_description: The description of the product, (it could contain HTML content).

• search_term: The search query typed by users.

• relevance: It is the average of relevance evaluation for a pair search_term/product.

• name: The name of the attribute. (attributes.csv)

• value: The value of the attribute. (attributes.csv)

The following R command shows the structure of the train dataset.

> str(train)
‘data.frame’: 74067 obs. Of 5 variables:
 $ id : int 2 3 9 16 17 18 20 21 23 27 …
 $ product_uid : int 100001 100001 100002 100005 100005 100006 100006
100006 100007 100009 …
 $ product_title: Factor w/ 53489 levels “# 62 Sweetheart 14 in. Low
Angle Jack Plane”,..: 44305 44305 5530 12404 12404 51748 51748 51748
30638 25364 …
 $ search_term : Factor w/ 11795 levels “$ hole saw”,”. Exterior floor
stain”,..: 1952 6411 3752 8652 9528 3499 7146 7148 4417 7026 …
 $ relevance : num 3 2.5 3 2.33 2.67 3 2.67 3 2.67 3 …

The figure 14 displays some fields and instances of the train dataset.

18

Figure 14. Train dataset 74067 rows.

The structure of the test dataset is shown below.

> str(test)
'data.frame': 166693 obs. of 4 variables:
 $ id : int 1 4 5 6 7 8 10 11 12 13 ...
 $ product_uid : int 100001 100001 100001 100001 100001 100001 100003
100003 100003 100004 ...
 $ product_title: Factor w/ 94731 levels "#10-24 Coarse Zinc-Plated Steel
Cap Nuts (4-Pack)",..: 78732 78732 78732 78732 78732 78732 82350 82350
82350 37014 ...
 $ search_term : Factor w/ 22427 levels "'1-3/4' tap wrench",..: 3274
13720 18407 18409 18411 22101 4351 4357 14639 18817 ...

The figure 15 shows the firsts instances of the test dataset.

Figure 15. Test dataset 166693 rows.

19

The structure of the product_description dataset is shown below

> str(product_descriptions)
'data.frame': 124428 obs. of 2 variables:
 $ product_uid : int 100001 100002 100003 100004 100005 100006
100007 100008 100009 100010 ...
 $ product_description: Factor w/ 110128 levels "\"Building Outdoor
Structures\" offers practical, easy-to-follow instructions on enhancing
any home's front and backyard with t"| __truncated__,..: 37430 8184 11605
66590 102940 3044 78451 84019 24867 104547 ...

The figure 16 shows the first instances of the product_description dataset.

Figure 16. Product_description dataset 124428 rows.

The structure of the attributes dataset is show below.

> str(attributes)
'data.frame': 2044803 obs. of 3 variables:
 $ product_uid: int 100001 100001 100001 100001 100001 100001 100001
100001 100001 100001 ...
 $ name : Factor w/ 5411 levels "","# of Line Wires",..: 595 596
597 598 599 600 601 1932 2684 2933 ...
 $ value : Factor w/ 307591 levels "","'U.S Patented'",..: 296931
272215 168106 120013 200857 157944 185144 15553 157982 260160 ...

Figure 17 shows the first instances of the attributes dataset.

20

Figure 17. Attributes dataset 2044803 rows.

In order to have an idea of the searches made by users, the R’s worldcloud and tm packages were used to

generate the word cloud image for the search_term field of the train dataset. Figure 18 shows the word

cloud.

Figure 18. Word Cloud of search_term field of train dataset.

The figure 19 shows the resulting word cloud with the most frequent words found in product_title of the

train dataset.

21

Figure 19. Word Cloud of product_title field of train dataset.

Putting an eye to the relevance field in the train dataset, the following histogram is obtained:

Figure 20. Histogram of relevance field of train dataset

Taking into account the number of instances of the train and test datasets, it can be seen that the train

dataset is small compared to the predictive test dataset. The figure 21 shows this comparison:

22

Figure 21. Comparison between the number of instances of train and test datasets

5.2 Software packages and algorithms

Many software tools can be used for building predictive models. Each of them has advantages and

disadvantages; the most popular are Python, R, SAS, Matlab or even spreadsheets like Microsoft Excel. The

figure 22 shows the use of different statistical programming languages in Kaggle’s competitions:

Figure 22. Tools used by Kaggle’s competitors [1]

23

Among many options, the software chosen for this project is the R language which is a powerful, easy to use,

open-source, statistical software. R’s large and active community develops packages for a variety of topics.

Moreover, been a multi-platform software it allows working with machines running GNU Linux and

Microsoft Windows operating systems.

Figure 23. R language logo

R packages

Many R packages were used in this project to perform specialized tasks; these packages helped to overcome

complex problems. The table 4 describes the use of R packages in the present project.

Package Description

NLP It is a package for Natural Language Processing. It enables to do tasks as tokenizing.

data.table It enables to have data structures and functions for storing large amounts of data.

Stringr It is a package for working with strings in matrix and arrays.

randomForest It is used for applying the Random Forest algorithm.

RmySQL It is a package for connecting to the MySQL database; it allows reading and writing

data to tables.

Lsa It was used to calculate the cosine similarity operation.

Tm It is used for building text corpus and NLP tasks.

snowballC It is a base package for using with tm and wordcloud packages.

wordcloud It was used for building the word cloud of relevant datasets

googleVis It allows using the google API to generate graphic reports.

Table 4. Summary of R packages used in the project

Regression algorithms

Many algorithms and techniques can be applied for prediction; most of them are available in R packages. The

figure 24 shows the comparison of use of algorithms by Data Scientists.

24

Figure 24. KDNuggets’ poll : Top 10 Algorithms used by Data Scientists [19]

Besides the academic use of Data Science algorithms, it is important to consider the use of those algorithms

in real world problems. The figure 25 shows the use of Data Science algorithms taking into consideration the

industry vs. academic fields.

Figure 25. KDNuggets’ poll: Top 10 Algorithms used by Data Scientists. Industry vs. Academy [19]

25

As it was mentioned before, a regression algorithm will be used for prediction in the present project because

it has numerical continuous data. The algorithm considered for applying regression is Random Forest due to

its good performance and precision.

5.3 Methodology for the solution of this project

This project is a Machine Learning problem in which the model will learn to predict values from thousands

of known examples. It falls in the category of supervised learning, because the algorithm has to learn from a

dataset (train dataset) that has examples of correct values. Once the model has learned by the implementation

of a regression algorithm, the model will be tested with the instances stored in the test dataset. The accuracy

of the model will be measured and after refining its parameters it will be ready for predicting new instances.

For building the predictive model some steps have to be taken. First of all, a data pre-processing step is

necessary to prepare and clean the data. After that, a Feature Extraction step will be conducted in which it

will be got the most relevant features that can be applied in a regression algorithm, since regression

algorithms need numerical data, it is necessary to generate numerical features from the text attributes;

moreover overlap and distributed word embeddings are calculated. The random forest algorithm is used for

supervised learning and obtaining the prediction variable. Finally an error metric has to be applied to measure

the accuracy of the predicting model. The figure 26 describes the methodology used in the present project:

Figure 26. Prediction model overview

Experimenting with the train dataset

All the experiments use the train dataset because the test dataset will only be used at the end of the project

for doing the final evaluation of the model. The train dataset is split randomly in 3 parts, so it will be

possible to do the training and testing processes during the experimentation.

The algorithm considered for applying regression is Random Forest; to get the best results several

experiments will be conducted to find the optimal Random Forest’s hyper-parameters.

The experiments will also use different features in order to get those which give the most accurate results.

These features are combinations of the following forms:

26

Form of feature Explanation Operation

Original words Original words Overlap

Word lemmas Canonical form, dictionary form of the words, for example:

run, runs, running, ran have run as their lemma.

Overlap

Distributed word

embeddings

Numerical vectors representing the similarity of the words Cosine similarity

Table 5. Form of features used in the experiments

Once the optimal parameters have been found the model will be evaluated with the instances of the test

dataset.

5.3.1 Data Pre-processing

Data pre-processing is a very important step for the success of the project. In real world problems, data is not

found in a structured form; besides a lot of data cleaning work is necessary, there are incomplete, redundant,

not relevant values. Data pre-processing may take most of the time and effort in a project but it will ease the

process to a well-done work.

In the present project many steps of data pre-processing were done, the following section describes

them in detail.

5.3.1.1 Case conversion

Case conversion in R is very easy, the tolower function converts text to lower case; the following code

converts to lower case the third and fourth columns of the train data.frame.

train[,3] = tolower(train[,3]) #minusculas

train[,4] = tolower(train[,4])

5.3.1.2 Tokenization

In order to perform tokenization, it was necessary to install the R package NLP, this package has many

Natural Language Processing algorithms; the following functions are used for tokenization:

blankline_tokenizer(): the separator are any blank lines.

whitespace_tokenizer(): the whitespace is the separator.

wordpunct_tokenizer(): tokenizes by finding patters of sequence of alphabetic characters and sequences of

non-alphabetic characters (non-whitespaces).

5.3.1.3 Stop words

The stop words are the ones which are filtered out before or after processing of natural language data. There

are lists of stop words in many languages.

In this project, it was necessary to download a list of stop words of the English language [20], and load them

to the R environment, these words were loaded to a vector that was used to compare to the texts of the

datasets. The following code was used to load the stop words into a vector and clean the data of the vector.

27

stop <- read.csv("stop.txt", header=FALSE)
dim(stop)

words <- NULL
for (i in 1:dim(stop)){
 texto=stop[[1]][i]
 texto=paste(texto, " ")
 index=str_locate(texto, " ")

 texto2=substr(texto, 1, index[[1]][1])
 t3=str_replace_all(texto2, " ", "")
 if (t3 !="") words <- c(words, t3)
}

Despite being found frequently in a language, the stop words are considered irrelevant for text analysis; the

following R’s command shows the stop words for the English language:

> stopwords('english')
 [1] "i" "me" "my" "myself" "we"
 [6] "our" "ours" "ourselves" "you" "your"
 [11] "yours" "yourself" "yourselves" "he" "him"
 [16] "his" "himself" "she" "her" "hers"
 [21] "herself" "it" "its" "itself" "they"
 [26] "them" "their" "theirs" "themselves" "what"
 [31] "which" "who" "whom" "this" "that"
 [36] "these" "those" "am" "is" "are"
 [41] "was" "were" "be" "been" "being"
 [46] "have" "has" "had" "having" "do"
 [51] "does" "did" "doing" "would" "should"
 [56] "could" "ought" "i'm" "you're" "he's"
 [61] "she's" "it's" "we're" "they're" "i've"
 [66] "you've" "we've" "they've" "i'd" "you'd"
 [71] "he'd" "she'd" "we'd" "they'd" "i'll"
 [76] "you'll" "he'll" "she'll" "we'll" "they'll"
 [81] "isn't" "aren't" "wasn't" "weren't" "hasn't"
 [86] "haven't" "hadn't" "doesn't" "don't" "didn't"
 [91] "won't" "wouldn't" "shan't" "shouldn't" "can't"
 [96] "cannot" "couldn't" "mustn't" "let's" "that's"
[101] "who's" "what's" "here's" "there's" "when's"
[106] "where's" "why's" "how's" "a" "an"
[111] "the" "and" "but" "if" "or"
[116] "because" "as" "until" "while" "of"
[121] "at" "by" "for" "with" "about"
[126] "against" "between" "into" "through" "during"
[131] "before" "after" "above" "below" "to"
[136] "from" "up" "down" "in" "out"
[141] "on" "off" "over" "under" "again"
[146] "further" "then" "once" "here" "there"
[151] "when" "where" "why" "how" "all"
[156] "any" "both" "each" "few" "more"
[161] "most" "other" "some" "such" "no"
[166] "nor" "not" "only" "own" "same"
[171] "so" "than" "too" "very"

5.3.1.4 Exclude punctuation marks

A vector with the most frequent punctuation marks was defined in the pre-processing stage; these symbols

were omitted from the text of the datasets. The following line of code shows the vector.

28

punctuation <- c(",", ".", "(", ")", "-", ";", "[", "]", "/", "+",
 "#", "%", "$", "*", "=", "'", "?")

At the beginning, the question mark symbol “?” was not considered for exclusion with the punctuation

marks, but when the scripts were run, there were errors caused by this symbol, so it was necessary to exclude

it from the text.

5.3.1.5 Remove repeated words

In order to increase the accuracy of the model, the repeated words in an instance were omitted, to accomplish

this, it was necessary to write a function that was used in the pre-processing stage for all the string fields of

the datasets. Installing R packages like “stringr” was also necessary.

5.3.1.6 Lemmatizing

Lemmatizing the entire dataset is a key part of this project, for doing it, it was used the ixa-pipe.pos tool

which is a Part of Speech tagger and Lemmatizer that support several languages.

After running the ixa-pipe.pos tools [21], new files were created, these files contain the dataset's lemmas. The

_pos suffix was used to identify the .csv files.

"train_pos.csv"

"test_pos.csv"

"product_descriptions_pos.csv"

“attributes_pos.csv”

5.3.2 Splitting the train dataset

In order to test the model in early stages and before using the test dataset, it was considered to split randomly

the train dataset in 3 parts as it follows:

- 50% for development

- 30% for training

- 20% for testing

The following code was used for splitting the train dataset in 3 parts. The sample function was used for

generating randomness and the argument replace=FALSE guaranteed no repetition of values.

#extraer porcentajes
tamano <- dim(train)[1]

indices <- sample(tamano, tamano, replace=FALSE)
indices
indices50 <- indices[1:as.integer(tamano*.5)]
indices30 <- indices[as.integer(tamano*.5+1):as.integer(tamano*.8)]
indices20 <- indices[as.integer(tamano*.8+1):as.integer(tamano)]

The number of instances of each resulting dataset is shown in table 6.

29

Dataset # of instances Percentage

Train 37033 50%

Development 14814 20%

Test 22220 30%

TToottaall 7744006677 110000%%

Table 6. Number of instances of the resulting datasets after splitting the train dataset

Figure 27 represents the percentage of the split of the train dataset.

Figure 27. Splitting train dataset into 3 groups

5.3.3 Feature extraction

Since the data of the datasets are text values, it is necessary to convert text data into numeric data in order to

be able to perform analysis of that data and building a predictive model. For generating numerical features it

will be applied two operations: overlap and distributed word embeddings.

There are 2 main datasets the train and test datasets that contain a search_term field. The train dataset also

contains the relevance field which will be used with the model for training. The product_description field of

the product_descriptions dataset also will be used for feature generating.

The attributes.csv dataset contains additional information of the products, but not every product is in this

dataset. The following code shows the value field of the attributes:

> attributes[,2]
 [9995] Bullet04
 [9996] Bullet05
 [9997] Bullet06
 [9998] Certifications and Listings
 [9999] Detection Range (ft.)
[10000] Dusk to Dawn
 [reached getOption("max.print") -- omitted 2034803 entries]

30

5411 Levels: 15 Gauge Finish Nailer Included ... Zone-specific Sounds

It can be seen that there is 5411 Levels for the name field of the attributes dataset, among them, 2 attribute

names were mainly considered, “Material” and “Brand”, which were taken as features for prediction. The rest

of the levels were group in a single prediction feature called “others”. The table 7 shows the presence of

features in the datasets.

Attribute name Frequency

Product title Every instance

Product description Every instance

Material Some

Brand Some

Others: Bullet01, Bullet02, Gauge, etc. Some

Table 7. Comparison of the presence of features in the train and test datasets

The main idea is to predict the relevance of the search according to the similarity of the search query with the

product's description and attributes. The following fields have been considered as predicting features:

 Product title

 Product description

 Material

 Brand

 Others: Bullet01, Bullet02, Gauge, “Deck use”, …

5.3.3.1 Overlap

Overlap is a technique is which it is calculated the percentage of words present in the query that are found in

an attribute. The formula 3 represents the overlap.

 Words in “search query” found in “product's attribute”

Overlap = __

 Length of the search query

Formula 3. Overlap

Overlap will be used between the search_query field of the train and test datasets against the product_title

(train and test datasets), product_description (product_descriptions dataset), value (attributes dataset)

fields.

5.3.3.2 Mikolov word embeddings

The most difficult part of the project was the use of Mikolov word embedding [22] because its calculation

requires large amount of computer processing and time. The embeddings are free to download from the

Internet in different sources; In this project the Mikolov word embeddings are formed by 2 files. The table 8

describes the files containing the Mikolov word embeddings

31

File name Size in bytes Number of instances

Emb-CorCBgoog-S300W5SS1e-5HS0NG3.txt 8,564,012,821 3,000,000

VocabGoogle.txt 44,258,510 3,000,000

Table 8. Features of word embedding files

With the files provided in table 8, it was necessary to build a word vector for each instance of the datasets,

after doing that it will be possible to build a predictive model using word embeddings.

It can be seen in the table 8 that the Emb-CorCBgoog-S300W5SS1e-5HS0NG3.txt file has 3 million

instances and also has 300 numerical columns; each of them represents a word vector. The size of the file is

near 9 GB. To perform the pre-processing of data, it was used a laptop computer with the following features:

Brand/model: Dell Inspiron 14.

Processor: Intel Core i5 1.80 GHz x 4.

Memory: 6 GB RAM.

O.S.: Linux Ubuntu 15.10.

After some attempts of building the word vector for the instances of the datasets with the machine described

above, it started to lose processing speed because the machine started to run out of memory, getting crashes

like the error shown in figure 28.

Figure 28. R Studio error message got while calculating the word embeddings

In a second attempt of building the vector, the idea was to store the results in a MySQL database, for doing

this, it was necessary to install the RmySQL package. This approach looked good but the processing still

took a lot of time for all the datasets.

32

Finally, another improvement was made, in which the embeddings were reduced only to the words present in

the datasets; the resulting files are described in the table 9.

File name Size in bytes Number of instances

EmbKKaggle.txt 82,467,194 28897

VocabKaggle.txt 234,417 28897

Table 9. Features of word embeddings files after applying the reduction to the words present in datasets

It is described in the table 9 that the new EmbKKaggle.txt file has only 28897 instances and its size is just

over 82 MB. Generating these files enables working with a normal desktop or laptop computer; less computer

processing is needed and less time will be taken to get results.

With the considerable reduction of words it was possible to start building the vector with the available

hardware. The processing time needed for calculating the word vectors for all datasets is shown in the table

10.

Dataset file Field # of instances Processing time

Train.csv Product Title 74067 15 hours

Train.csv Search query 74067 7 hours

Test.csv Product Title 166693 1 day 5 hours

Test.csv Search query 166693 20 hours

Product_descriptions product_description 124429 5 days 2 hours

Attributes.csv Value 2044804 7 days 18 hours

Table 10. Processing time for datasets applying Mikolov word embeddings

As it can be seen, the product_descriptions and attributes datasets took long time to be processed and had to

be split in 2 parts in order to process them in 2 different computers.

5.3.3.3 Cosine similarity

To calculate the cosine similarity between the embeddings of the search_term field and the embeddings

attributes of the products, the R’s lsa package was used.

The following figures show the results of applying the cosine similarity to the datasets.

In figure 29 a box plot graphic represents the scores of cosine similarity applied to the embeddings of the

search_term and product_title fields of the train dataset. It can be seen that the first quartile is above 0.4

which means most of the values have a significant cosine similarity score. Some values are between 0 and 0.2

having little value of cosine similarity. There is 1 outlier that has a 1 of score meaning complete similitude

between instances.

33

Figure 29. Boxplot of cosine similarity between search_term and product_title fields of the train dataset

Figure 30 shows the histogram of scores of cosine similarity between the search_term and product_title

fields of the train dataset. The graphic looks pretty much like a normal distribution.

Figure 30. Histogram of cosine similarity between search_term and product_title fields of the train dataset

Figure 31 represents a box plot of scores of cosine similarity between the search_term and product_desc

fields of the train dataset. It can be seen some values with a value near zero or below 0. There is an outlier

with score of 1.

34

Figure 31. Boxplot of cosine similarity between search_term and product_desc fields of the train dataset

Figure 32 shows the histogram of scores of cosine similarity between the search_term and product_desc

fields of the train dataset. The graphic looks also like a normal distribution.

Figure 32. Histogram of cosine similarity between search_term and product_desc fields of the train dataset

Based in the information shown in the histograms, it can be said that the cosine similarity of the embeddings of
product_title and product_desc fields are going to be very important for prediction.

Figure 33 shows the histogram of scores of cosine similarity between the search_term and value fields of

the train and attributes dataset; it is considered the brand feature. The graphic show that many instances

have a score of 0; this could be explained because many products don’t have the brand attribute.

35

Figure 33. Histogram of cosine similarity between search_term and attribute: brand. Train dataset

Figure 34 shows the histogram of scores of cosine similarity between the search_term and value fields of

the train and attributes dataset; it is considered the material feature. Likewise figure 33, the graphic show

that many instances have a score of 0; as it was explained for the brand feature, many products don’t have the

material attribute.

Figure 34. Histogram of cosine similarity between search_term and attribute: material. Train dataset

Figure 35 shows the histogram of scores of cosine similarity between the search_term and value fields of

the train and attributes dataset; it is considered the others feature. The graphic looks like a normal

distribution and it can be said that the “others” attribute has very high importance to the model because most

of the instances have a good level of similarity when comparing with this feature. In the other hand, it can be

seen that the attributes “brand” and “material” have much less influence and similarity.

36

Figure 35. Histogram of cosine similarity between search_term and attribute: others. Train dataset

The following figures show the histograms of the cosine similarity found for the test dataset.

Figure 36 shows the histogram of scores of cosine similarity between the search_term and product_desc

fields of the test dataset. It can be seen that many instances have a strong cosine similarity score.

Figure 36. Histogram of cosine similarity between search_term and product_title fields of the test dataset

Figure 37 shows the histogram of scores of cosine similarity between the search_term and product_desc

fields of the test dataset. The graphic looks also like a normal distribution.

37

Figure 37. Histogram cosine similarity between search_term and product_desc fields of the test dataset

It can be seen that the effect of the cosine similarity operation is similar in train and test datasets and it will

be relevant for the predictive model.

Due to the amount of data generated by the cosine similarity operation, it was necessary to store the values in

the hard drive. The table 11 shows the files used to store the cosine similarity results.

File Content

cos.test.atr.bra.sea.csv Cosine similarity of search_term (test) – attribute brand

cos.test.atr.mat.sea.csv Cosine similarity of search_term (test) – attribute material

cos.test.atr.oth.sea.csv Cosine similarity of search_term (test) – attribute others

cos.test.prod.desc.sea.csv Cosine similarity of search_term (test) – product description

cos.test.sea.tit.csv Cosine similarity of search_term (test) – product title

cos.train.atr.bra.sea.csv Cosine similarity of search_term (train) – attribute brand

cos.train.atr.mat.sea.csv Cosine similarity of search_term (train) – attribute material

cos.train.atr.oth.sea.csv Cosine similarity of search_term (train) – attribute others

cos.train.prod.desc.sea.csv Cosine similarity of search_term (train) – product description

cos.train.sea.tit.csv Cosine similarity of search_term (train) – product title
Table 11. Cosine similarity files.

5.3.3.4 Predictive Features

After combining all the feature extraction techniques, the resulting predictive features are obtained.

 F1: overlap(query, description):

 F2: overlap(query, title)

 F3: overlap(query, Brand)

 F4: overlap(query, Material)

 F5: overlap(query, Others)

 F6: overlap(query_lemma, description_lema):

 F7: overlap(query_lemma, title_lema)

 F8: overlap(query_lemma, Brand_lema)

 F9: overlap(query_lemma, Material_lemma)

38

 F10: overlap(query_lemma, Others_lemma)

 F11: cosine_similarity(embeddings_query, embeddings_desc)

 F12: cosine_similarity (embeddings_query, embeddings_title)

 F13: cosine_similarity (embeddings_query, embeddings_brand)

 F14: cosine_similarity (embeddings_query, embeddings_material)

 F15: cosine_similarity (embeddings_query, embeddings_others)

5.3.4 Regression analysis

5.3.4.1 Building a regression model

As it has been mentioned the dataset values have been converted to numerical and continuous values. That is

the reason why the prediction model of the present project uses a regression analysis method.

The regression analysis will be conducted between the relevance field of the train dataset and the numerical

features that have been generated from the products’ attributes fields.

In order to generate the prediction results, using R language, the randomForest package was used. As its

name says, it allows the use the Random Forest algorithm for prediction. Given the data, it generates a

predicted relevance column.

5.3.4.2 Evaluating the model

To evaluate the results, the RMSE metric is used [23]. The Root Mean Squared Error is largely used for

numerical predictions. The formula 4 describes RMSE.

Formula 4. RMSE [23]

The following line of code gets the RMSE metric using the R language

RMSE <- sqrt(mean((y-y_pred)^2))

Where y is a vector that has the real values of the relevance field, and the y_pred is a vector that has the

predicted values of the relevance. The variable n is the number of instances in the dataset.

39

6. Results

To evaluate the results using different scenarios, a script was written in which the hyper-parameters of the

Random Forest algorithm were changed. Several experiments will be conducted in order to find the best

hyper-parameters for the predicting model. The Random Forest algorithm has mainly 2 hyper-parameters to

setup, the number of decision trees that will be used for training and the number of variables that also will be

used for evaluating with those trees.

Another important factor is what features will be used, besides the overlap of the original attributes of the

products, more features were generated; the overlap of lemmas of the attributes and the cosine similarity of

word embeddings of the attributes. It is important to find the combination of features that give the best

results.

All the experiments will be applied to the train dataset. As it was explained before, the train dataset was

split into 3 subsets. The train subset will be used for training the Random Forest algorithm and the

development subset will be used for testing during development. The combination of features with better

results will be implemented in the test subset. (All these experiments are conducted in the train dataset).

Once the best combination of features and parameters have been found there will be a final experiment

applied to the test dataset.

Experiment #1

For the experiment #1 the overlap of the words were used (F1 – F5); it was calculated the overlap between

the search_term field (what the user typed) and the attributes of the product. The parameter number of trees

takes the values 400, 500, 600, 700 and the parameter number of variables takes the values 2, 3, 4, 5. The

figure 38 shows the values of the error metric RMSE in the experiment #1.

Figure 38. Graphic of RMSE in experiment #1.

40

Best result: 0.500501398386279
of trees: 400
of variables: 2

Experiment #2

The features considered for this experiment are F6 to F10 which are the overlap of the lemmas of the words

of datasets. The overlap of the search_term and the attributes was calculated. The parameter number of

trees takes the values 400, 500, 600, 700, 800, 900, 1000, 1100 and the parameter number of variables takes

the values 2, 3, 4, 5. The figure 39 shows the values of the error metric RMSE in the experiment #2.

Figure 39. Graphic of RMSE in experiment #2

Best result: 0.501264829445384

of trees: 400
of variables: 2

Experiment #3

In the experiment #3 it is combined both the overlap of original words and the lemmas of the words (F1 –

F10); the overlap of the search_term and attributes was calculated. The parameter number of trees takes the

values 400, 500, 600, 700, 800, 900, 1000 and 1100. The parameter number of variables takes the values 2,

3, 4, 5, 6, 7, 8, 9, 10. The figure 40 shows the values of the error metric RMSE in the experiment #3.

41

Figure 40. Graphic of RMSE in experiment #3

Best result: 0.501183172761222
of trees: 1100

of variables: 2

Experiment #4

The experiment # 4 uses the cosine similarity between the word embeddings of the datasets. The features are

F11 – F15. The features represent the same the differences between the search_term field with the attributes

of the product. The parameter number of trees takes the values 400, 500, 600, 700, 800, 900, 1000, and

1100. The parameter number of variables takes the values 2, 3, 4, 5. The figure 41 shows the values of the

error metric RMSE in the experiment #4.

Figure 41. Graphic of RMSE in experiment #4

42

Best result: 0.515549996800693
of trees: 800

of variables: 2

Experiment #5

The experiment # 5 considers all the features (F1 – F15), it is the combination of overlap of words and

lemmas of words, plus the cosine similarity of word embeddings of the datasets. All 3 categories of features

represent the differences between the search_term field and the attributes of the products. The parameter

number of trees takes the values 400, 500, 600, 700. The parameter number of variables takes the values

12, 13, 14, 15. The figure 42 shows the values of the error metric RMSE in the experiment #5.

Figure 42. Graphic of RMSE in experiment #5

Best result: 0.489859605277241
of trees: 700

of variables: 12

The figure 43 shows the comparison of the results of the 5 experiments.

43

Figure 43. Comparison of the results of the 5 experiments.

Where

Exp.1 = Overlap of words

Exp.2 = Overlap of lemmas of words

Exp.3 = Overlap of words + Overlap of lemmas of words

Exp.4 = Cosine similarity of word embeddings

Exp.5 = Overlap of words + Overlap of lemmas of words + Cosine similarity of word embeddings

It can be seen that the use of NLP techniques like word lemmas (Exp.2) and the cosine similarity of word

embeddings (Exp.4) gave a similar results (but not better) of prediction that using the overlap of words

(Exp.1).

In the other hand, the best results were obtained by combining all the features: Overlap of words + Overlap of

lemmas of words + Cosine similarity of word embeddings (Exp.5) which means that the word lemmas and the

word embeddings helped to improve the predictive model.

Working with the test dataset

After finding the best hyper-parameters for the 5 experiments, those optimal values are used to repeat the

experiments in the test subset; it will help to analyze the results in different data. The figure 44 shows the

results for the test subset.

44

Figure 44. Comparison of the results of the optimal hyper-parameters for the 5 experiments in the test subset.

It can be seen that the word embeddings alone gave the worst result, but in combination with the overlap of

words and the overlap of lemmas of words, they gave the best results improving the accuracy in 2.72%. The

table 12 shows the optimal hyper-parameters of the predictive model.

Predictive Features: F1 – F15

Number of decision trees: 900

Number of variables: 12

Table 12. Optimal hyper-parameters of the predictive model.

After finding the optimal hyper-parameters, the final step is to use the predictive model with the test dataset.

The table 13 shows the results of the predictive model with test dataset.

Predictive Features: F1 – F15

Number of decision trees: 900

Number of variables: 12

RMSE: 0.495369701916983

Table 13. Results of the predictive model with the test dataset.

According to the leader board of the Kaggle’s competition the winner of the competition got a score of

0.43294; our predictive model with a score of 0.495369701916983 would have got the 1490th place out of

2125 teams. The figure 45 shows part of the leader board of the Home Depot Search Relevance Competition

at the Kaggle web site.

45

Figure 45. Part of the leader board of the Home Depot Search Relevance Competition at the Kaggle web site.

The figure 46 shows the importance of the predictive features of the model applied to the test dataset.

Figure 46. Comparison of the importance of the predictive features of the model applied to the test dataset.

46

Figure 47 shows the dendogram of the result of the Random Forest algorithm applied to the test dataset.

Figure 47. Dendogram of the Random Forest algorithm with 900 decision trees and 12 variables applied to the test

dataset.

47

7. Conclusions

 The combination of NLP techniques like word lemmas and the distributed word embeddings

contributed to improve the accuracy of the predictive model for the present project.

 Word2vec is a promising technology that can improve Natural Language applications like sentiment

analysis, word prediction, translation, etc. It helps to describe syntactic and semantic relationships

between words and phrases in a simple way, yet a lot of computing power is needed.

 The success of a project depends in the quality of data. Data pre-processing is a key part of building

a predictive model, despite it takes effort and it is time consuming, it is a mandatory step. There are

many actions that can be taken in this stage like case conversion, tokenization, lemmatization,

selection of variables, word spell correction.

 Data Science is a trendy topic nowadays. IT professionals can benefit from data analysis, because of

the vast amounts of data that is available in the Internet, the increase of computing power and data

storage. Data Science also gives contributions to companies that solve their problems and take

advantage of useful knowledge.

 Regression analysis is a powerful statistical tool for prediction; it can be used in many fields having

accurate results.

 Natural Language Processing is an important field of Artificial Intelligence which allows humans

and computers to interact in easier ways, its development will bring outstanding applications in the

next years.

 Augmented Intelligence is a new term which says that machines will give humans more intelligence

and will empower them to evolve and improve their quality of life. The original term Artificial

Intelligence was thought to give machines the ability to simulate human intelligence, but actually the

Artificial Intelligence of machines has surpassed human intelligence in many fields.

 Among other applications, R language is a useful tool for Data Science, packages like “tm” and

“NLP” allow us to do complex tasks like tokenizing, removing stop words and punctuation,

stemming, etc. Likewise R’s Machine Learning packages help us building a predictive model.

 Kaggle.com is an outstanding platform for Data Science practitioners; its competitions promote the

use of Data Science, solving real-world problems. It's also a good place for learning Data Science,

networking and promoting Data Science careers.

48

8. References

[1] Kaggle. Your Home for Data Science.

www.kaggle.com

[2] Home Depot. Products and Services

www.homedepot.com

[3] Prithvi Raj, Vineesha, Varun, Swaroop: Data Mining Process

http://www.slideshare.net/prithviness/data-mining-process

[4] BioMed SpaceStat. 2014

https://www.biomedware.com/files/documentation/spacestat/Statistics/Multivariate_Modeling/Regression/Ab

out_Aspatial_Linear_Regression.htm

[5] Google Books Ngram Viewer

https://books.google.com/ngrams

[6] Adrian Colyer: The amazing power of word vectors, the morning paper blog, April 2016.

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

[7] Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean: Efficient Estimation of Word Representations in

Vector Space, arXiv:1301.3781v3, 2013

[8] Christian S. Perone: Terra Incognita blog.

http://blog.christianperone.com/2013/09/machine-learning-cosine-similarity-for-vector-space-models-part-iii/

[9] Machine Learning Mastery Blog

http://machinelearningmastery.com/start-here/

[10] Will Y. Zou, Richard Socher, Daniel Cer, Christopher D. Manning: Bilingual Word Embeddings for

Phrase-Based Machine Translation, Department of Electrical Engineering and Computer Science Department

Stanford University, Stanford, CA 94305, USA

[11] Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng Wang, Ting Liu: Learning Semantic Hierarchies

via Word Embeddings, Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics, pages 1199–1209, Baltimore, Maryland, USA, June 23-25 2014.

[12] Yanqing Chen, Bryan Perozzi, Rami Al-Rfou’, Steven Skiena: The Expressive Power of Word

Embeddings, arxiv.org/abs/1301.3226v4, 2013.

[13] Joseph Turian, Lev Ratinov, Yoshua Bengio: Word representations: A simple and general method for

semi-supervised learning, Proceedings of the 48th Annual Meeting of the Association for Computational

Linguistics, pages 384–394, Uppsala, Sweden, 11-16 July 2010.

[14] Rami Al-Rfou, Bryan Perozzi, Steven Skiena: Polyglot: Distributed Word Representations for

Multilingual NLP, arxiv.org/abs/1307.1662v2, 2014

[15] Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, Tie-Yan Liu: A Probabilistic

Model for Learning Multi-Prototype Word Embeddings, Proceedings of COLING 2014, the 25th

International Conference on Computational Linguistics: Technical Papers, pages 151–160, Dublin, Ireland,

August 23-29 2014.

49

[16] Samy Bengio, Georg Heigold: Word Embeddings for Speech Recognition, Proceedings of the 15th

Conference of the International Speech Communication Association, Interspeech (2014)

[17] Angeliki Lazaridou, Nghia The Pham, Marco Baroni: Combining Language and Vision with a

Multimodal Skip-gram Model, arXiv:1501.02598v3 [cs.CL] 12 Mar 2015.

[18] David Guthrie, Ben Allison, Wei Liu, Louise Guthrie, Yorick Wilks: A Closer Look at Skip-gram

Modelling, NLP Research Group, Department of Computer Science, University of Sheffield

[19] KDNuggets. Data Mining, Analytics, Big Data and Data Science

www.kdnuggets.com

[20] Snowball Stop words

http://snowball.tartarus.org/algorithms/english/stop.txt

[21] Ixa-pipe tools for tokenizing

https://github.com/ixa-ehu/ixa-pipe-tok

[22] Mikolov word embeddings

https://docs.google.com/open?id=0B7XkCwpI5KDYNlNUTTlSS21pQmM

[23] Metric used for evaluating the predictive model. Root Mean Squared Error.

https://www.kaggle.com/wiki/RootMeanSquaredError

https://research.google.com/pubs/bengio.html
https://research.google.com/pubs/GeorgHeigold.html
http://snowball.tartarus.org/algorithms/english/stop.txt
https://github.com/ixa-ehu/ixa-pipe-tok
https://docs.google.com/open?id=0B7XkCwpI5KDYNlNUTTlSS21pQmM

