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Abstract

We develop a network-formation model where the quality of a link depends
on the amount invested in it and is determined by a link-formation �technology�,
an increasing strictly concave function which is the only exogenous ingredient in
the model. The revenue from the investments in links is the information that
the nodes receive through the network. Two approaches are considered. First,
assuming that the investments in links are made by a planner, the basic question
is that of the e¢ cient investments, either relative to a given infrastructure (i.e. a
set of feasible links) or in absolute terms. It is proved that e¢ cient networks be-
long to a special class of weighted nested split graph networks. Second, assuming
that links are the result of investments of the node-players involved, there is the
question of stability in the underlying network-formation game, be it restricted
to a given infrastructure or unrestricted. Necessary and su¢ cient conditions for
stability of the complete and star networks, and nested split graph networks in
general, are obtained.
JEL Classi�cation Numbers: A14, C72, D85
Key words: Network formation, E¢ ciency, Stability, Nested split graphs,

Core-periphery.
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1 Introduction

This work is a contribution to the literature on economic models of strategic network
formation. In this line of work, an increasing �ow of research has been contributed
by game-theorists and economists in general after Myerson (1977) and Aumann and
Myerson (1988).1 In the wake of these pioneer works in the �eld, two seminal and most
in�uential models of network formation are Jackson and Wolinsky�s (1996) connections
model and Bala and Goyal�s (2000a) non cooperative model. In both models, networks
are the result of creating links between pairs of individuals, be it by bilateral agreements
in the �rst model or unilateral decisions in the second, and information �ows through
the resulting network. In both models, the cost of a link and its quality (i.e. its decay
factor) are exogenously given, giving rise to two-parameter models. The simplicity of
these basic models imposes some rigidity: either necessarily bilateral formation and
compulsory equal share of the �xed cost of each link, or unilateral formation requiring
full-covering of that �xed cost by its creator; and in both cases a �xed level of quality
for the resulting link. These parameters, cost and quality of a link, are exogenously
given. The point of this work is to provide and develop a more �exible model in both
aspects: link-formation and link-performance.2.
We develop a model of network formation where links are the result of investments,

and the quality or strength of a link, i.e. the �delity-level of its transmission, is never
perfect and depends on the amount invested in it. A link-formation �technology�
determines the quality of the resulting link as a function of the investment, and is
the only exogenous ingredient in the model. Formally, a technology is assumed to
be a continuously di¤erentiable, increasing and strictly concave function whose range
is [0; 1), i.e. whatever the investment in a link, transmission is never perfect. The
revenue from the investment in links is, as in the seminal models, the information that
the nodes receive through the network that results. This model poses the following
questions that are addressed.
A �rst approach assumes that the investments in links are made by a social plan-

ner. In this scenario there are two basic questions. First, given an �infrastructure�
speci�ed by an underlying graph of feasible links, there is the question of existence
and determination of an optimal investment (i.e. maximizing the aggregate payo¤ of
the nodes connected by that infrastructure) in these links using them all. A second
question is that of e¢ ciency or, equivalently, about which infrastructures are e¢ cient
in the sense of maximizing in absolute terms the aggregate payo¤ for a given technol-
ogy for an optimal investment in their links. Necessary conditions for the existence of

1Goyal (2007), Jackson (2008) and Vega-Redondo (2007) are excellent monographs on social and
economic networks. See also Bramoullé, Rogers and Galeotti Eds. (2015).

2In Olaizola and Valenciano (2015a), costs and �ow levels for links singly-supported and doubly-
supported di¤er and three exogenous parameters specify a synthesizing model. A subsequent paper
(2015b) studies the impact of liberalizing cost-sharing in this model. In Section 2 other extensions
of the seminal models are commented and compared with the one outlined in this introduction and
developed in this paper.
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an optimal investment in an infrastructure are established by requiring the marginal
aggregate payo¤ of the investment in every link to be zero. A clear interpretation of
the resulting conditions arises from the simplicity and naturalness of the model. As
intuition suggests, the greater the amount of information that a link must convey, the
greater the investment that e¢ ciency imposes. This result is used to address the ques-
tion of e¢ ciency in general terms. First, it is proved constructively that any network
is dominated by a weighted nested split graph (NSG) structure exhibiting a strong
degree of organization beyond the hierarchical character of NSG-networks that we call
�strongly nested split graph networks�(SNSG-networks). Then, by imposing optimal-
ity conditions we further re�ne this class and prove that e¢ cient networks are either
empty or optimal connected SNSG-networks. This class includes the all-encompassing
star and complete networks exhibiting a maximal degree of symmetry as extreme cases.
A second approach assumes that links are the result of investments of the node-

players involved, whose reward from forming them is the information they receive
through the network that results. Links are formed according to a technology avail-
able to all players. In this game-theoretic scenario, there is the question of stability in
the underlying network-formation game, be it restricted by an infrastructure or unre-
stricted. Stability in the sense of Nash equilibrium if coordination is not feasible, or
pairwise stability if pairwise coordination is feasible. Necessary conditions for stability
are established by imposing the marginal bene�t of the investment of any player in
each of his/her links to be zero. Again, the conditions resulting from this classical eco-
nomic condition have a clear intuitive interpretation and allow to characterize stable
complete and star networks, and to give necessary conditions for SNSG structures to
be pairwise stable. It is shown the existence of pairwise stable SNSG-networks.
Note that the question of e¢ ciency in the game-theoretic scenario is covered by the

�rst approach, and yields the conclusion that e¢ cient structures are not stable, and
reciprocally. In addition to these basic issues, this model admits several variations and
extensions that are brie�y commented in the last section.
A remarkable outcome of this work is the emergence of nested split graph structures

from the entirely homogeneous setting laid out by a simple model -at least at its
formulation level-, where technology is the only exogenous ingredient. Core-periphery
structures, consisting of a �core�of nodes highly or completely interconnected and a
�periphery�of nodes not directly connected among them but connected to all or some in
the core appear in many di¤erent contexts and also in economics.3 For this reason, a lot
of attention has been and continues to be paid in the economic literature to the question
of how these structures emerge, and di¤erent models have been proposed to this end.4

Nested split graph networks is a class of highly hierarchical structures covering a whole
range of core-periphery degrees with di¤erent organizations of the connections of the

3See Csermely et al. (2013) for a review of core-periphery structures literature in di¤erent �elds
and a list of general open issues related to them.

4König, Tessone and Zenou (2014) includes an excellent review of this literature.
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periphery with the core, ranging from the star to the complete network.5 Since recently,
these structures are also receiving attention in the economic literature. In words of
Michael D. König, �The wider applicability of nested split networks suggests that a
network formation process that generates these graphs (...) may be of general relevance
for understanding economic and social networks.�(König, 2009, p. 69.)
The paper is organized as follows. Section 2 brie�y reviews some related literature.

Section 3 introduces basic notation and terminology. In Section 4 the model is intro-
duced. In Section 5 the question of e¢ ciency, both constrained by an infrastructure
and unconstrained, is addressed. Section 6 is devoted to stability. Finally, Section 7
summarizes brie�y the results and suggests some possible extensions of the model. All
proofs are relegated to the Appendix.

2 Related literature

Bloch and Dutta (2009) is possibly the closest model to the one introduced here in spite
of the obvious di¤erences. In their model as in ours the strength of a link depends on
the investment of the two players involved. Nevertheless, the coincidences do not go
beyond this. They assume that players have a �xed endowment, and the link strength is
an additively separable convex function of individual investments. Not surprisingly the
results are completely di¤erent. With respect to their assumption about non-decreasing
returns to investments they claim that �While this assumption may seem at odds with
the classical literature on productive investments, we strongly believe that convexity is
the right assumption to make when one discusses investments in communication links.�
(Bloch and Dutta, 2009, p. 42). In this respect, we still believe that concavity, i.e.
decreasing returns, is a reasonable assumption about link-formation technology.6 In
this point there is a similarity with several models in the networks literature, where the
payo¤ function is often assumed concave, embodying a decreasing returns assumption.
In Ballester et al. (2006), noncooperative games with linear-quadratic utilities where
each player chooses his/her e¤ort are interpreted as a network game in which payo¤s are
concave in own e¤ort, global interaction e¤ect is uniform and local complementarities
are captured by a network. In Bramoullé and Kranton (2007), where the network is
given and players choose their e¤orts, the payo¤ of each player is a strictly concave
function of the e¤orts of the player and the player�s neighbors. In Hojman and Szeidl�s

5This is brie�y discussed in Section 5.
6Our model seems a more natural extension of the basic models of Jackson and Wolinsky (1996) and

Bala and Goyal (2000a). Bloch and Dutta (2009) claim that the literature on discrete link formation
assumes an extreme form of convexity. But an echelon-function of the form

�(x) =

�
s; if x � c;
0; if x < c;

is an equally extreme (if at all) form of concavity. In fact, such function can be seen as a limit case
of one of the possible extensions of our model brie�y commented in the last section.
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(2008) model players choose their links, and a player�s payo¤ is a strictly increasing and
concave function of a weighted sum of the number players at di¤erent distances, with
weights decreasing with distance. Thus the link-formation technology is the discrete
one of the seminal models, w.r.t. which the crucial di¤erence is in the payo¤ function,
which embodies the decreasing returns assumption. The di¤erence with our model
is apparent, in it the non-discrete link-formation technology is the only exogenous
ingredient, while the logic of the rest is as in the seminal models: payo¤ = information
- cost. A comparison with Galeotti and Goyal (2010), who assume that returns from
information (which can be acquired personally or through connections) are increasing
and concave, while the costs of personally acquired information are linear, draws to a
similar conclusion. In all these models the strict concavity assumption is placed in the
payo¤ function, while in ours it is placed in the technology, which is the only exogenous
element in the model.
On the other hand, weighted nested split graphs play a most relevant role in this

work. These networks, as mentioned before, exhibit a high degree of hierarchy and
have, in their non-weighted version, recently attracted the attention of economists.7 In
a recent paper König, Tessone and Zenou (2014) develop a dynamic network formation
model to explain the observed nestedness in real-world networks and use stochastic sta-
bility to show the convergence to nested split graphs. More recently, Belhaj, Bervoets
and Deroïan (2016), address the problem of a planner looking for the e¢ cient network
when agents play a network game with local complementarities choosing their e¤ort
levels, and links are costly. They show that the e¢ cient networks in this sense are
nested split graph networks, under di¤erent cost functions. The di¤erences with the
model developed here are clear. We address the question of e¢ ciency and stability sep-
arately. In the �rst scenario, the planner chooses the weighted network, in the second,
players are the only actors. A further development of our model would address the
question of a planner �xing the infrastructure so as to maximize the social welfare in
equilibrium.
However, in our opinion, beyond the obvious di¤erences, the most remarkable dif-

ference with these more sophisticated models is the simplicity and naturalness of ours,
directly elaborating from the basic model of Jackson and Wolinsky (1996) and Bala
and Goyal (2000), by replacing a discreet cost function by a decreasing returns link-
formation technology.

3 Preliminaries

An undirected weighted graph consists of a set of nodes N = f1; 2; :::; ng with n � 3 and
a set of links speci�ed by a symmetric adjacency matrix g = (gij)i;j2N of non-negative

7To the best of our knowledge, this is the �rst economic paper where weighted nested split graph
networks appear. In fact, we were not aware of the existence of the notion of nested split graph
network in the literature until Matthew Jackson mentioned it in a seminar at Stanford where the �rst
author presented a preliminary version of this work.
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real numbers and gii = 0. Alternatively, g can, and often will, be interpreted as a map
g : N2 ! R+, where N2 denotes the set of all subsets of N with cardinality 2; and R+
denotes the set of non-negative real numbers. In the sequel ij stands for fi; jg and gij
for g(fi; jg) for any fi; jg 2 N2.8 When gij only takes the values 0 or 1, g is said to
be non-weighted. When gij > 0 it is said that a link of weight gij connects i and j.
Nd(i; g) := fj 2 N : gij > 0g denotes the set of neighbors of node i, and its cardinality
#Nd(i; g) is the degree of i. N(i; g) denotes the set of nodes connected with i by a
path, i.e. a sequence of distinct nodes s.t. every two consecutive nodes are connected
by a link. If gij > 0, g � ij denotes the graph that results from eliminating link ij,
i.e. g � ij = g0 s.t. g0ij = 0 and g0kl = gkl for all kl 6= ij. A graph is connected if any
two nodes are connected by a path. A component of a graph is a maximal connected
subgraph. A graph has a cycle if there are two nodes connected by a link and also by
a path of length 2 or more (the length of a path is the number of links it contains, i.e.
that of nodes minus 1).
Undirected graphs, weighted or not, underlie a variety of situations were actual links

mean some sort of reciprocal connection or relationship. Such structures are commonly
referred to as networks. As behind a network there always lies a graph as a most salient
feature, we transfer the notions introduced so far for graphs to networks, identifying
them with the underlying graph and refer the new ones directly to networks.
The empty network is the one for which gij = 0 for all ij 2 N2. A complete

network is one where gij > 0 for all ij 2 N2.9 A tree is a connected network with
no cycles. An all-encompassing star consists of a network with n � 1 links in which
a node (the center) is connected with each of the remaining nodes by a link. A node
is peripheral in a network if it is involved in one link only. An important class of
networks consists of those whose underlying graph is a �nested split graph�, which
exhibit a strict hierarchical structure where nodes can be ranked by their number of
neighbors.

De�nition 1 A nested split graph (NSG) is an undirected (weighted or not) graph such
that

#Nd(i; g) � #Nd(j; g)) Nd(i; g) � Nd(j; g) [ fjg:

Networks whose underlying graph is nested split are referred to as (weighted or not)
NSG-networks. In terms of the adjacency matrix, they have a simple structure. It is a
symmetric matrix such that for a certain renumbering of the nodes, each row consists
of a sequence of non-zero entries (apart from those in the main diagonal) followed by
zeros, and the number of nonzero entries in each row is not greater than that of those

8The convenience of the distinction between ij and ij, especially as subindices, will soon be ap-
parent. With this convention gij = gji, while gij 6= gji in general.

9Note that there exist in�nite complete weighted networks, but only one non-weighted complete
network.
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in the preceding row. Nodes are then classi�ed in classes, each of them containing the
nodes with equal number of neighbors, referred to as NSG-classes10.

4 The model

The main ingredient in the model that has been brie�y sketched in the introduction is
a link-formation technology.

De�nition 2 A link-formation technology is a continuously di¤erentiable map � :
R+ ! [0; 1) s.t. �(0) = 0, and satis�es the following conditions:
(C.1) �0(c) > 0, for all c � 0, i.e. it is increasing.
(C.2) It is strictly concave.

The interpretation of this function and the assumptions are the following. If c is the
amount invested in a link to connect two nodes or players, �(c) is interpreted as the level
of �delity of the transmission of information through the link.11 More precisely, �(c) is
the fraction of information �owing through the link that remains intact.12 Flow occurs
only through links invested in (�(0) = 0), but a perfect �delity in transmission between
di¤erent nodes is never reached (0 � �(c) < 1). The smoothness of � makes the use
of di¤erential calculus possible, which allows for a relatively simple formal �marginal
analysis�without getting involved in sophisticated technical issues. Condition C.1 is
quite plausible: the quality of a link is increasing with the investment in it. C.2 is a
reasonable condition, at least �in the long run�given that �0(c) > 0 and the range of
�.13

Based on this basic ingredient we consider two di¤erent scenarios.
Scenario 1: A set N = f1; 2; :::; ng of nodes can be connected by links ac-

cording to a link-formation technology. Investments are made by a central plan-
ner. A link-investment vector is an n(n � 1)=2-vector, c = (cij)ij2N2, where cij de-
notes the investment in link ij 2 N2 through which the �delity-level is �(cij). Then
�c = (�(cij))ij2N2 denotes the resulting weighted network. For a given link-investment

10Isolated nodes, i.e. with no neighbors, form a class that plays no relevant role and is referred to
as the trivial class.
11We often prefer the term �node� to avoid a biased language. Moreover, in the �rst of the two

scenarios that we presently describe it is more appropriate to speak of nodes given their passive role.
12Nevertheless, other interpretations are possible. For instance, as a degree of reliability, as in

Bala and Goyal (2000b), or the �strength of a tie� (Granovetter, 1973), i.e. a measure of the qual-
ity/intensity/value of a relationship as e.g. in personal relationships, where quality/strength of a
�link� is a function of the �investments� of each of the two people involved. A link can also be
a means for the �ow of other goods, but we give preference here to the interpretation in terms of
information.
13It would also be reasonable to assume � to be convex up to a certain value of c, and concave

beyond an in�ection point. This and other variations of the model are considered in the concluding
section.
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vector c = (cij)ij2N2, a node i receives from another node�s value v the fraction that
reaches i through the best possible route in the weighted network �c.14 Let Pij(�c)
denote the set of paths in �c connecting i and j. For p 2 Pij(�c), let �c(p) denote the
resulting �delity-level determined by the product of the �delity-levels through each link
in that path. Then, i values information originating from j that arrives via p by v�c(p):
If information is routed via the best possible route from j to i, then i�s valuation of
the information originating from j 6= i is

Iij(�
c) = max

p2Pij(�c)
v�c(p) = v max

p2Pij(�c)
�c(p);

and i�s overall revenue from �c is

Ii(�
c) =

X
j2N(i;�c)

Iij(�
c):

The value of the network resulting from a link-investment vector c = (cij)ij2N2 is the
aggregate payo¤, i.e. the total value of the information received by the nodes minus
the cost of the network:

v(�c) :=
X
i2N

Ii(�
c)�

X
ij2N2

cij: (1)

In this setting two questions are addressed. First, the problem of determining the
link-investment vector that maximizes the aggregate value for a given �infrastructure�
speci�ed by an underlying graph of feasible links. Second, the characterization of e¢ -
cient networks/link-investment vectors that maximize the aggregate value in absolute
terms.
Scenario 2: Let N , � and v be as in Scenario 1, but now the nodes/players form

the links by investing in them. The quality of a link depends on the total amount
invested in it by the two players it connects, and it is assumed that a link-formation
technology � is available to all agents and determines the quality of a link as a function
of the investment in it. An investment pro�le is speci�ed by a matrix c = (cij)i;j2N ,
where cij � 0 (with cii = 0) is the investment of player i in the link connecting i and
j, and determines a link-investment vector c

c! c = (cij)ij2N2 s.t. cij := cij + cji:

The available link-formation technology, �, yields a weighted network for each invest-
ment pro�le c. Namely, �c := �c, where

�cij = �
c
ij = �(cij) = �(cij + cji);

14We assume homogeneity in values. A more general model would assume this value to depend on
the players.
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whenever i 6= j. Thus, i�s payo¤ is the value of the information received by i minus i�s
investment:

��i (c) = Ii(�
c)� Ci(c) = Ii(�c)�

X
j 6=i

cij: (2)

Note that a game in strategic form, where a strategy of a player is an (n�1)-vector
of investments and the payo¤ function is given by (2), is implicitly de�ned. Therefore,
the notion of Nash equilibrium can be applied: an investment pro�le is Nash stable if
no player has an incentive to change his/her investments�vector. In this context, if
pairwise coordination is feasible, the following is a natural adaptation of the notion of
pairwise stability of Jackson and Wolinsky (1996) to this setting:

De�nition 3 An investment pro�le c is pairwise stable if: (i) no player can improve
his/her payo¤ by changing the investment in any of his/her links, and (ii) for any two
players i and j, and any c0 s.t. c0kl = ckl for all kl 6= ij, c0ik = cik for all k 6= j, and
c0jk = cjk for all k 6= i:

��i (c
0) > ��i (c) ) ��j(c

0) < ��j(c):

A joint re�nement of both stability notions consists of requiring both.15

De�nition 4 An investment pro�le c is pairwise Nash stable if it is Nash stable and
pairwise stable.

The question of stability is addressed, �rst for investment pro�les constrained by
an infrastructure and then unconstrained in general terms.
We �rst consider Scenario 1 and address the question of e¢ ciency in relative and

absolute terms. Later, the question of stability is addressed in Scenario 2. All results
assume a link-formation technology as speci�ed in De�nition 2. Thus we deal with
a model with three �parameters�: the number of nodes/players n, the value v of the
information at each node, and the link-formation technology represented by function
�:16

15This strong version of pairwise stability was suggested by Jackson and Wolinsky (1996) and
applied by Goyal and Joshi (2003) and Belle�amme and Bloch (2004) among others. See also Bloch
and Jackson (2006) for a discussion of di¤erent notions of equilibrium in network formation and
references therein.
16It can be assumed w.l.o.g. v = 1, which slightly simpli�es the presentation. Nevertheless, it is

preferable not to do so and keep explicit this otherwise hidden parameter. In Scenario 1 this value
can be interpreted as a subjective evaluation of the planner w.r.t. which the e¢ ciency objective is
speci�ed. Nevertheless, the reader may choose to ignore all occurrences of v by assuming v = 1.
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5 Scenario 1: E¢ ciency

Let c and c0 be two link-investment vectors and v(�c) and v(�c
0
) their values as de�ned

by (1). If v(�c) � v(�c0) we say that �c dominates �c0 (or that c dominates c0). Network
�c (or link-investment vector c) is said to be e¢ cient if it dominates any other.17 Thus
e¢ ciency can be seen as the goal of a planner investing in links with the objective of
maximizing the social welfare, i.e. the aggregate value received by the nodes minus
the total cost of the network. We use the following notation: for all i; j 2 N; i 6= j;
pij denotes an optimal path connecting them (note it may be not unique), i.e. one for
which the resulting �delity-level is maximal:

�c(pij) = max
p2Pij(�c)

�c(p);

where �c(p) is the product of the �delity-levels of the links forming path p for the
link-investment vector c = (cij)ij2N2, and the aggregate payo¤ for this link-investment
vector is

v(�c) =
X
i2N

Ii(�
c)�

X
ij2N2

cij = 2v
X
ij2N2

�c(pij)�
X
ij2N2

cij: (3)

Note that in principle the last expression in (3) may not be unique. This occurs if for
some pair of nodes the optimal path connecting them is not unique.
We make use of the following notation: if pkl is an optimal path connecting nodes

k and l for a link-investment vector c that contains link ij; �(pijkl) denotes the product
of �delity-levels for the path that would result from replacing in pkl the link cij by a
perfect one, i.e. by c0ij = 1: In other terms:

�(pijkl) =
�c(pkl)

�(cij)
:

Before addressing the question of e¢ ciency in absolute terms, we address the prob-
lem of maximizing the aggregate payo¤ for a given �infrastructure� speci�ed by an
underlying graph of feasible links.

De�nition 5 An infrastructure is a non-empty subset S � N2 which speci�es the set of
links which must be invested in. And a link-investment vector c = (cij)ij2N2 is optimal
for an infrastructure S if for all ij 2 N2; cij > 0 if and only if ij 2 S; and maximizes
the aggregate payo¤ given this constraint.

Then the following result establishes necessary conditions for a link-investment
vector to be optimal for an infrastructure.

17This is the �strong e¢ ciency�notion introduced by Jackson and Wolinsky (1996).
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Lemma 1 For a link-investment vector c = (cij)ij2N2 to be optimal for a given in-
frastructure S � N2, the following conditions are necessary: (i) For any two nodes
connected in S there is a unique optimal path connecting them, and (ii) For all ij 2 S;

�0(cij) =
1

2v
P

kl2N2 s:t: ij2pkl �(p
ij
kl)
: (4)

Proof. Let c = (cij)ij2N2 be a link-investment vector s.t. cij > 0 if and only if ij 2 S:
We prove �rst part (ii). Assume c = (cij)ij2N2 to be optimal for S, and ij 2 S, i.e.
cij > 0. Then link ij is part of at least one optimal path in �

c, the one connecting i
and j, otherwise c would not be optimal.18 Then, in any of the possibly di¤erent but
equivalent expressions of the right-hand side of (3), �(cij) would appear at least once,
i.e. �c(pij) = �(cij) if c is optimal, and possibly also in the product yielding �

c(pkl)
for other pairs of nodes k; l. Fix any choice of these (possibly multiple) optimal paths
for every two connected nodes, and let the aggregate payo¤ be given by the right-hand
side of (3), which is an up to n(n � 1)=2-variable function with partial derivatives.
Even if a slight modi�cation of some cij > 0 might cause a path not to be optimal, a
non-null partial derivative w.r.t. cij means that by slightly increasing (if it were > 0)
or decreasing (if it were < 0) the investment in link ij the aggregate payo¤ through
those the same paths, optimal or not but still available, would surely increase, which
contradicts c�s optimality for S. Then the partial derivative of the right-hand side of
(3) w.r.t. cij must be 0, i.e.

@

@cij
(2v

X
kl2N2

�c(pkl)�
X
kl2N2

ckl) = 2v�
0(cij)

X
kl2N2 s:t: ij2pkl

�(pijkl)� 1 = 0;

which yields (4).
(i) Assume that two nodes r and s are connected by two di¤erent optimal paths in

�c. Then there is at least one link, say ij, that is part of one of these paths but not
of the other. Then the right-hand side of (4) admits at least two di¤erent expressions:
one where the optimal path between any pair of nodes k; l is pkl, and another one where
it is qkl, and such that for any pair k; l di¤erent from pair r; s, pkl = qkl, while for r
and s the optimal path is di¤erent, i.e. prs 6= qsr; and only the �rst one contains ij. In
that case,

1

2v
P

kl2N2 s:t: ij2pkl �
c(pijkl)

6= 1

2v
P

kl2N2 s:t: ij2qkl �
c0(qijkl)

because X
kl2N2 s:t: ij2pkl

�c(pijkl)�
X

kl2N2 s:t: ij2qkl

�c
0
(qijkl) = �

c(prs) > 0;

which leads to a contradiction because (4) yields two di¤erent values for �0(cij).

18Note that �(cij) actually appears in (3) only if cij > 0:
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Comment: Part (i) establishes that in a network that results from an optimal
link-investment vector for an infrastructure any two nodes �see� each other through
a unique best path connecting them. This is a consequence of part (ii), where (4)
establishes a condition for a link-investment vector to be e¢ cient which is the result
of requiring the marginal aggregate payo¤ of the investment in every link to be zero.
The intuition behind the resulting condition (4) is also clear. The denominator of the
right-hand side of (4) is 2v times the sum of the �delity-levels through all optimal
paths of which link ij is part of (discounting link ij, i.e. divided by �(cij)). In other
words, the actual �ow of information that link ij conveys. Thus this sum can thus be
interpreted as a measure of the importance of link ij in network �c. The interpretation
of (4) is then clear: the greater this measure, the smaller �0(cij) and consequently the
greater cij, that is, the greater the investment that optimality imposes in that link.
The following result establishes necessary conditions for a link-investment vector to

be e¢ cient in absolute terms.

Proposition 1 For a link-investment vector c = (cij)ij2N2 to be e¢ cient the following
conditions are necessary: (i) For any two connected nodes there exists a unique optimal
path connecting them.
(ii) For each ij 2 N2 s.t. cij > 0, condition (4) holds.
(iii) For each ij 2 N2 s.t. cij = 0, if �0(0) > 1=2v,

2v�c(pij) � 2v�(c])� c]; (5)

where
c] = argmax(2v�(c)� c): (6)

Proof. Assume c = (cij)ij2N2 to be e¢ cient, then c must be optimal for the infrastruc-
ture S = fij 2 N2 : cij > 0g. Then (i) and (ii) follow immediately from Lemma 1.
(iii) Assume cij = 0. Then no investment in link ij can increase the aggregate

payo¤, that is, for all c > 0; 2v�c(pij) � 2v�(c) � c; otherwise investing c in link
ij would surely increase the aggregate payo¤. This yields condition (5). Note that
condition (5) has a bite only if �0(0) > 1=2v; otherwise, by the assumptions about
function �, 2v�(c)� c < 0 for all c > 0.
Comment: Parts (i) and (ii) are immediate consequences of Lemma 1. Condition

(iii) is a necessary condition for the existence of e¢ cient link-investment vectors where
some link receives no investment: no investment in that link must be pro�table for the
two nodes because it would increase the aggregate payo¤.
As a �rst step to identify the e¢ cient structures, the following key result shows that

any connected network is dominated by a particular type of weighted NSG-network
which exhibits stronger hierarchical features beyond those speci�ed by De�nition 1.
Hence, the name we have chosen for them: �strongly NSG-graphs/networks�(SNSG-
graphs/networks). As any undirected graph, a weighted NSG is completely speci�ed by

11



the triangular matrix above the main diagonal of 0-entries of its adjacency matrix for a
certain order of the nodes. In terms of this triangular submatrix, SNSG-networks can
be described as weighted NSGs where: (i) all positive entries in the �rst row are greater
or equal than any other entries, (ii) each row consists of a non-decreasing sequence of
positive entries followed by zeros, and (iii) from the second row downwards on, non-zero
entries in the same column form a non-decreasing sequence.
Formally, we have the following de�nition.

De�nition 6 A strongly nested split graph (SNSG) network is a weighted NSG-network
g such that, for a certain order of the nodes, satis�es the following conditions: (i) for all
i; j; k s.t. 1 < i < j < k; g1j � gik; (ii) for all i; j; k s.t. i < j < k; gik > 0) gij � gik;
(iii) for all i > 1; gij � gi+1;j, whenever gi+1;j 6= 0 and i+ 1 < j.

Note that, as � is strictly increasing, the adjacency matrix (gij)i;j2N , with gij =
�(cij), and matrix (cij)i;j2N have identical underlying NSG infrastructure, moreover one
is SNSG if and only if the other is. The following result is crucial for the characterizing
result.

Lemma 2 Any connected network �c, where c = (cij)ij2N2, is dominated either by the
empty network or by a connected SNSG-network.

Proof. Let c = (cij)ij2N2 be a link-investment vector such that �
c is connected, with

q links and positive aggregate payo¤ (if it were negative it would be dominated by the
empty network). Starting from c, we describe an algorithm to construct a new link-
investment vector that yields a dominant SNSG-network, c0 = (c0ij)ij2N2, as the �nal
outcome of a sequence of link-investment vectors c01; c

0
2; :::, each of them resulting from

the preceding one by adding at most one link and perhaps reassigning those introduced
so far after Step 1.
Step 1 : Let c01 be the star that results from connecting node 1 with the other n� 1

investing in each link exactly the same amount invested in each of the strongest n� 1
links in c and so that c012 � c013 � ::: � c01n�1 � c01n. And let c1 be the result of
eliminating in c the n� 1 strongest links.
Step 2 : From now on proceed as follows with the current c0t to form c

0
t+1: choose two

of the nodes, i and j, worst connected for ct, in the �rst iteration nodes 2 and 3, and 2
and 4 in the second, and later on, to avoid ambiguity in case there are multiple equally
worst connected pairs, replace any of them with the only condition of preserving the
NSG underlying infrastructure,19 and check whether the contribution to the value of
the network of the connection of i and j via node 1 in c0t can or cannot be improved
by connecting them with the worst available link, say ckl, in ct: That is, check whether
2v�(c01i)�(c

0
1j) < 2v�(ckl)� ckl. Then,

19That is, in terms of the triangular submatrix of the adjacency matrix above the main diagonal:
give priority for the replacement to any one as much as possible to the left among those in the same
row and to the uppermost among those in the same column.
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- If it means an improvement, then connect them, i.e. make c0ij := ckl, c
0
t+1 :=

c0t + c
0
ij and ct+1 := ct � ckl.
- Otherwise, by construction (available links in ct are picked in increasing

strength order) ckl is necessarily at least as good as the last link added; then replace it
by ckl and proceed similarly replacing the previous connection by the newly available
link, and so on backwards.20 This procedure leads to discarding in ct the weakest link
of the added ones, currently connecting nodes 2 and 3. Let then ct+1 be the result of
this elimination in ct, and let c0t+1 be the updated network.
In all cases, go back to Step 2 unless ct+1 is empty (i.e. there no remain any

available links), then Stop.
Obviously the process ends in 1 + q � (n � 1) = q � n + 2 iterations, when ct is

the empty network and no links remain. Then, we show that if c0 = c0m�n+2, we have
that v(�c

0
) � v(�c): As both �c and �c0 are connected, v(�c) and v(�c0) are the sum of

n(n� 1)=2 terms, one for each pair of nodes. Each of these terms corresponds to one
pair of nodes and gives the contribution to the aggregate payo¤ of the value that they
receive from each other (minus the cost of the link if they are directly connected). In
the �rst step, by organizing the n� 1 strongest links as a star, they connect all nodes:
n � 1 pairs directly and all other pairs by the maximal number ((n � 1)(n � 2)=2) of
two-link connections using these strongest links. From then on, by the way in which c0

has been formed, when an �available link�in c (in ct at stage t) of cost c is discarded
this is because its direct contribution (i.e. term 2v�(c)�c in the sum that yields v(�c))
is smaller or equal than any term in the sum giving v(�c

0
t). As after Step 1, once

the initial star has been formed, links added to form c0 are increasingly strong, one
discarded link will never be missed. As a result, the aggregate value of the resulting
network cannot be smaller than that of the initial one.
As links are added to the initial star (formed by the strongest links) in increasing

strength order and always preserving an SNSG infrastructure, new links added corre-
sponding to entries in the same row (column) in the triangular matrix are of increasing
strength rightwards (downwards). Therefore the outcome is an SNSG-network. Thus
any connected network which yields a positive aggregate payo¤ is dominated by such
a structure.

Comments: (i) This lemma is the key for the characterizing result about e¢ ciency.
The idea of the constructive proof is based on the idea of rearranging the �available
links�in any given network in a most e¢ cient way. By its interest, we outline the proof
formalized precisely in the Appendix. Given a link-investment vector, start by forming
an all-encompassing star with the strongest n � 1 links. If no links remain stop (this
occurs if m = n� 1, i.e. the starting network is a tree); otherwise, take the weakest of
the remaining available links and connect the two worst connected peripheral nodes in
this star with it if this improves the contribution to the value of the network of their

20Note for this we just need to keep track of the order in which new links have been added to the
star formed at Step 1.
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Figure 1: Construction of a dominant SNSG-network
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connection, otherwise use it to improve the new connections made so far by replacing
the last link added with it, and proceed similarly by replacing the previous connection
by the newly available link, and so on backwards. Now repeat the procedure with a
new of the weakest available links and a new pair of worst connected nodes in the
network under construction up to no available link remains. At the end of this process,
an SNSG-network which yields a greater or equal aggregate value as that of the initial
network at less or equal cost arises. Figure 1 shows this process starting from a 6-node
network with 8 links, assuming that at every stage the weakest available link actually
improves the worst connection. First, form a star with the best 4 links in decreasing
strength order: c15 � c14 � c13 � c12 (stages (a)-(d)), then, using available links in
increasing strength order, improve the weakest connection: c23 � c24 (stages (e)-(f)).
At stage (f), connect the pair worse connected, that is, 25 or 34. If it were the �rst,
i.e. if �(c15)�(c12) � �(c13)�(c14), then connect them (stage (g)). Finally, connect the
worse connected in (g), which are nodes 3 and 4 (stage (h)).
(ii) Therefore, for a certain relabeling of the nodes, a dominant SNSG-network can

be seen as consisting of a star centered at node 1 (�rst row and column of the adjacency
matrix), plus some additional links among spoke nodes of that star (nonzero entries on
the northwest of the adjacency matrix).
(iii) Although Lemma 2 assumes �c to be connected, it is clear that the procedure

described can be applied to any component of a non-connected network which yields
a positive payo¤, and yields an SNSG-network with the same number of nodes and a
grater or equal aggregate payo¤.
The following proposition narrows considerably the class of dominant weighted

NSG-networks by imposing the optimality conditions established in Lemma 1 to the
infrastructure underlying an SNSG-network. The conditions refer to the relabeling of
the nodes for which the conditions of De�nition 6 hold.

Proposition 2 Let �c be a connected SNSG-network, with c = (cij)ij2N2 ; as speci�ed
by De�nition 6. The following conditions are necessary for �c to be e¢ cient:
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(i) There may exist links not involving node 1 only if �0(0) > 1=2v, and all such links
and those connecting node 1 with nodes with as many neighbors as node 1 are invested
in the same amount c] s.t.

�0(c]) = 1=2v: (7)

(ii) If there are p > 1 non-trivial NSG-classes K1; K2; :::; Kp of cardinalities k1; k2; :::; kp
with number of neighbors n = n1 > n2 > ::: > np, the links connecting node 1 with
those in each class Ki (i 2 f2; :::; pg) must receive the same investment ci s.t.

�0(ci) =
1

2v(1 + (ki � 1)�(ci) +
P

r:p�i+1<r<p(r 6=i) kr�(cr))
(8)

if i > p� i+ 1, while if i � p� i+ 1,

�0(ci) =
1

2v(1 +
P

r:p�i+1<r<p kr�(cr))
: (9)

Proof. (i) Let �c, with c = (cij)ij2N2 ; be an SNSG-network. Assume c is e¢ cient. In
�c every pair of nodes di¤erent from 1; directly connected or not, is connected by a
2-link path of the star centered at 1. By condition (i) in De�nition 6, the links forming
this star that connects 1 with the other nodes are at least as strong as the remainder
links. E¢ ciency requires that all links are used by optimal paths and each optimal
path is unique. This entails that all links connecting pairs of nodes i; j di¤erent from
1 cannot be part of an optimal path connecting any other pair of nodes, otherwise
some link of the star would be super�uous. Then, for all these links, as �(pij) = �(cij),
�(pijij) = 1, and (4) yields �0(cij) = 1=2v, i.e. cij = c]. As to links connecting node
1 with nodes with as many neighbors as node 1, given that, as has just been proved,
all links connecting nodes di¤erent from 1 are c]-links, they must be optimal paths
themselves. Therefore the links connecting 1 with any of them must also be c]-links.
(ii) Now consider the links forming the star (i.e. links c1j, j 6= 1). Given that these

are the strongest links in �c, only the weakest among them can be of strength �(c])
(by (i), at least those connecting 1 with nodes with as many neighbors as node 1). As
to those of strength greater than �(c]), by Proposition 1, all of them must be in some
optimal path connecting pairs of players. In view of the NSG structure of �c and c, for
all j with fewer neighbors than 1, i.e. j 2 Ki for some i > 1 (note that when j � ni,
otherwise j is in one of the p� i+ 1 �rst NSG-classes):

Nd(j; �c) =

�
f1; 2; :::; nig = (K1 [K2 [ :: [Kp�i+1); if j > ni;
f1; 2; :::; nig n fjg = (K1 [K2 [ :: [Kp�i+1) n fjg, if j � ni;

(10)

and j is indirectly connected by a 2-path via node 1 with all nodes in Kp�i+2[ :::[Kp.
Therefore, by (4) in Lemma 1:

�0(c1j) =
1

2v(1 +
P

ni<k�n(k 6=j) �(c1k))
: (11)
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Note that �k 6= j� is super�uous in (11) if j � ni. Then, starting by nodes with a
minimal number of neighbors j 2 Kp, (11) becomes:

�0(c1j) =
1

2v(1 +
P

k2Kpnfjg �(c1k) +
P

r:1<r<p

P
k2Kr

�(c1k))
: (12)

We prove now that for all j; j0 2 Kp, �
0(c1j) = �0(c1j0): Assume �

0(c1j) < �0(c1j0) or,
equivalently, c1j > c1j0, which implies �(c1j) > �(c1j0), and entailsX

k2Kpnfjg
�(c1k) <

X
k2Kpnfj0g

�(c1k):

But then, by (12), it must be �0(c1j) > �0(c1j0), which contradicts �
0(c1j) < �0(c1j0).

Therefore, �0(c1j) = �
0(c1j0) for all j; j0 2 Kp. Then, (12) becomes for all j 2 Kp :

�0(c1j) =
1

2v(1 + (kp � 1)�(c1j) +
P

r:1<r<p

P
k2Kr

�(c1k))
:

Now, by repeating a similar argument for nodes in classes with an increasing number
of neighbors, we have the same conclusion: all nodes in the same class must receive
the same investment. Thus all links 1ji, with ji 2 Ki (i 2 f2; :::; pg) must receive the
same investment c1ji s.t., if i > p� i+ 1:

�0(c1j
i
) =

1

2v(1 + (ki � 1)�(ci) +
P

r:p�i+1<r<p(r 6=i) kr�(c1jr))
;

while if i � p� i+ 1:

�0(c1ji) =
1

2v(1 +
P

r:p�i+1<r<p kr�(c1jr))
;

which yield (8) and (9).

Comments: (i) Note that condition (7) is equivalent to (6), which has a direct
interpretation. In an e¢ cient network every link must be part of an optimal path
connecting two nodes. If the only optimal path a link is part of is the link itself, then
the investment c must maximize 2v�(c)� c:
(ii) Proposition 2 follows from (4) in Lemma 1. As it establishes optimality condi-

tions for an SNSG-network, we refer to any such network satisfying them as an optimal
SNSG-network. These conditions narrow considerably the class of SNSGs that can be
optimal. First, all links not involving central node 1 and those connecting node 1 with
nodes with as many neighbors as node 1 must be c]-links. Second, there are as many
levels of investments in stronger links involving node 1 as NSG-classes are. In terms of
the adjacency matrix, the main features of the pattern that the link-investment matrix
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of an optimal SNSG-network must follow is represented in Figure 2, where there are 5
NSG-classes with fewer neighbors than node 1, and c] < c < c0 < c00 < c000 < civ.

1 2 3 4 5 6 7 8 9 10 11 12
1 0 c] c c0 c00 c00 c000 c000 c000 civ civ civ

2 c] 0 c] c] c] c] c] c] c] c] c] c]

3 c c] 0 c] c] c] c] c] c] 0 0 0
4 c0 c] c] 0 c] c] 0 0 0 0 0 0
5 c00 c] c] c] 0 0 0 0 0 0 0 0
6 c00 c] c] c] 0 0 0 0 0 0 0 0
7 c000 c] c] 0 0 0 0 0 0 0 0 0
8 c000 c] c] 0 0 0 0 0 0 0 0 0
9 c000 c] c] 0 0 0 0 0 0 0 0 0
10 civ c] 0 0 0 0 0 0 0 0 0 0
11 civ c] 0 0 0 0 0 0 0 0 0 0
12 civ c] 0 0 0 0 0 0 0 0 0 0

Figure 2: Link-investment of a connected optimal SNSG-network

(iii) As argued in the introduction, NSG-networks can be seen as �imperfect�core-
periphery structures. To be precise, we use the following weak and strong versions of
the core-periphery notion. A network is core-periphery if its nodes admit a partition
into two sets of nodes, C (core) and P (periphery), s.t. (i) the nodes in C form a
complete subnetwork; (ii) every node in P is connected with at least one node in C;
(iii) every node in C is connected with at least one node in P , and (iv) no pair of nodes
in P is connected by a link. A perfect core-periphery network is a network that admits
a core-periphery partition s.t. conditions (ii) and (iii) are satis�ed in this strongest
form: every node in P is connected with all nodes in C.21

Actual networks in real world seldom meet even the weak version, but often exhibit
a conspicuous rough core-periphery aspect. It follows from their de�nition that for any
connected optimal SNSG-network, nodes can be partitioned into two sets C and P ,
where C is the class of nodes with n � 1 neighbors and P = N n C. However, this
partition may fail to be a core-periphery partition because, in general, it may be the
case that some pair of nodes in P are connected by a link. Alternatively, sometimes a
di¤erent partition may avoid this.22 The following example illustrates this and helps
highlighting some features of optimal SNSG-networks.
Example 1: Figure 3 represents the link-investment matrix of an optimal SNSG-

21Goyal and Joshi (2003) identify core-periphery networks with these perfect core-periphery network,
in other words, with NSG-networks where nodes are divided into two classes according to the number
of neighbors.
22Sometimes at the cost of breaching condition (iii).
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network with 8 nodes.

1 2 3 4 5 6 7 8
1 0 c] c] c c0 c0 c00 c00

2 c] 0 c] c] c] c] c] c]

3 c] c] 0 c] c] c] c] c]

4 c c] c] 0 c] c] 0 0
5 c0 c] c] c] 0 0 0 0
6 c0 c] c] c] 0 0 0 0
7 c00 c] c] 0 0 0 0 0
8 c00 c] c] 0 0 0 0 0

Figure 3: An optimal SNSG-network�s link-investment

Figure 4: An 8-node optimal SNSG-network
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Where by (8) and (9):

�0(c00) = 1
2v(1+�(c00)+2�(c0)+�(c)) ; �

0(c0) = 1
2v(1+2�(c00)+�(c0)) ;

�0(c) = 1
2v(1+2�(c00)) ; �

0(c]) = 1
2v
:

If C = f1; 2; 3g and P = f4; 5; 6; 7; 8g, this is not a core-periphery partition because
node 4 is connected with 5 and 6, and condition (iv) is not satis�ed. But if node 4
joins C, then core-periphery conditions (i)-(iv) hold. Figure 4 displays the graph of
the network in two di¤erent and equivalent pictures. Figure 4-(a) shows its SNSG
nature, where the strength of a link is represented by its thickness: the thinnest ones
are c]-links and links connecting central node 1 with nodes 5; 6; 7 and 8 are of three
di¤erent strengths. Figure 4-(b) shows its core-periphery nature (non-perfect because
links 47 and 48 are missing).
A salient peculiarity of optimal SNSG-networks is the prominent role of a distin-

guished node, node 1, which is the node that receives the maximal amount of informa-
tion.
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The next proposition, whose easy proof is omitted, establishes further necessary
conditions for an SNSG-network to be e¢ cient.

Proposition 3 Let c be an investment pro�le s.t. �c is an SNSG-network satisfying
the necessary conditions for �c to be e¢ cient established in Proposition 2. Then the
following conditions are also necessary to be e¢ cient:
(i) The less pro�table link must be good enough to make it worth keeping it. That is,

c] � 2vminf�(c])� �(c1i)�(c1j) : cij 6= 0g: (13)

(ii) The weakest optimal indirect connection must be good enough to make its replace-
ment by a c]-link not pro�table. That is,

c] � 2vmaxf�(c])� �(c1i)�(c1j) : cij = 0g: (14)

In the seminal works of Jackson and Wolinsky (1996) and Bala and Goyal (2000)
and also in di¤erent extensions and contexts, the complete network and the star emerge
as e¢ cient structures. Note that, weighted NSG-networks include as extreme cases the
complete networks (all entries > 0) and the all-encompassing stars (non-zero entries in
the �rst row and column, and no more non-zero entries, except those forming the main
diagonal). Note also that, as is immediate to conclude, a weighted NSG is connected
if and only if at least one node is connected with all the others. In the current model,
from the results obtained so far, we derive necessary conditions for the e¢ ciency of each
of these structures. This will be of use to establish the existence of optimal SNSGs
and characterize e¢ cient networks.

Proposition 4 For a complete network to be e¢ cient the following conditions are
necessary:
(i) �0(0) > 1=2v and all links are invested in the same amount c] > 0 s.t. �0(c]) = 1=2v:
(ii) The following relation holds: 2v�(c])2 � 2v�(c])� c]:

Proof. Assume c to be e¢ cient and complete, i.e. cij > 0 for all ij 2 N2. (i) In view
of Lemma 2 and Proposition 2, �c must be an optimal SNSG-network and all links
connecting nodes di¤erent from the central node must be c]-links, s.t. �0(c]) = 1=2v.
But as all nodes have the same number of neighbors, the same must be true for those
involving the central node. Condition �0(c]) = 1=2v is feasible only if �0(0) > 1=2v:
(ii) Follows from Proposition 3-(i).

We now establish necessary conditions for an all-encompassing star network to be
e¢ cient.

Proposition 5 For an all-encompassing star to be e¢ cient the following conditions
are necessary:
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(i) All links are invested in the same amount c�n s.t.

�0(c�n ) =
1

2v(1 + (n� 2)� (c�n ))
: (15)

(ii) Additionally, if �0(0) > 1=2v,

2v�(c�n )
2 � 2v�(c])� c]; (16)

with c] determined by (7):

Proof. (i) An all-encompassing star is an SNSG-network where the only links are
those connecting a central node with all the others. Then only part (ii) of Proposition
2 applies and yields (15).
(ii) (16) follows from Proposition 3-(ii), and holds trivially if �0(0) � 1=2v.
Note that, unlike c], c�n depends on the number of nodes, hence the subindex.
The question of the feasibility of condition (15) arises. The following lemma shows

that the existence of c�n such that (15) holds is guaranteed if �
0(0) > 1=2v whatever

the number of nodes, and for n big enough if �0(0) � 1=2v.

Lemma 3 Whatever the number of nodes, if �0(0) > 1=2v, then it is sure to exist
c�n such that (15) holds, and also when �

0(0) � 1=2v for n su¢ ciently large. On the
contrary, for a �xed n, no such c�n exists if �

0(0) � 1
2v(1+(n�2)�(1)) ; where �(1) denotes

limc!1 �(c).

Proof. Assume �0(0) > 1=2v; and let ' be the function '(c) := 1
2v(1+(n�2)�(c)) : We

prove that '(c) = �0(c) holds necessarily for some c > 0: Note that, as �(0) = 0; '(0) =
1=2v < �0(0): On the other hand, '(c) = 1

2v(1+(n�2)�(c)) >
1

2v(1+(n�2)�(1)) , for all c > 0.
Thus, '(c) is a decreasing function whose value is always greater than 1

2v(1+(n�2)�(1))
and it is 1=2v at 0, while �0(c) is a decreasing function s.t. �0(0) > 1=2v = '(0).
Moreover, by the assumptions on function �, limc!1 �

0(c) = 0. Therefore, as both
functions are continuous, at some point necessarily '(c) = �0(c), i.e. (15) holds.
Now assume �0(0) � 1=2v. We prove that for n su¢ ciently big there exists c > 0 s.t.

'(c) < �0(c); for which it is su¢ cient to prove that for n su¢ ciently big '(1) � �0(1):
But it is easy to check that this is equivalent to

n� 2 � 1� 2v�0(1)
2v�(1)�0(1)

;

which is sure to hold for n big enough.
Finally, if for a �xed n inequality �0(0) � 1

2v(1+(n�2)�(1)) holds, then the graphs of
'(c) and �0(c) do not intersect, because

'(c) =
1

2v(1 + (n� 2)�(c)) >
1

2v(1 + (n� 2)�(1)) � �
0(0) > �0(c)
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for all c. Note that there is no contradiction with the preceding result: whatever the
value of �0(0), for n big enough �0(0) > 1

2v(1+(n�2)�(1)) .

This permits to extend the existence result to any NSG infrastructure.23

Proposition 6 If �0(0) > 1=2v, there exists an optimal investment satisfying the con-
ditions of Proposition 2 for any NSG infrastructure.

Proof. If �0(0) > 1=2v, it is sure to exist c] s.t. �0(c]) = 1=2v, and by Lemma 3
c�n s.t. (15). Let S be an NSG infrastructure, with p > 1 non-trivial NSG-classes
K1; K2; :::; Kp, of cardinalities k1; k2; :::; kp, with number of neighbors n = n1 > n2 >
::: > np. Then, let 
 = [c]; c�n ]

p, and de�ne map � : 
 �! 
;

(c1; :::; cp) 7! �(c1; :::; cp) = (�i(c1; :::; cp))i=1;:::;p

as follows. First, de�ne

Di(c1; :::; cp) :=
1

2v(1 +
P

r:p�i+1<r<p kr�(cr))

if i � p � i + 1 (otherwise use (8) similarly). In general, �0(ci) 6= Di(c1; :::; cp), but
�0(c]) � �0(ci) � �0(c�n ) is sure to hold. For i = 1; :::; p de�ne:

�i(c1; :::; cp) :=
ci + �

0�1(Di(c1; :::; cp))

2
:

Then � : 
 �! 
 is a continuous function and 
 is compact and convex. Brower�s
theorem guarantees the existence of a �xed point, or equivalently c1; :::; cp, s.t. �

0(ci) =
Di(c1; :::; cp) for all i; i.e. (8) and (9) hold for all i = 1; :::; p.

Conditions in Proposition 4-(ii) and Proposition 5-(ii), necessary for the optimal
complete network and the star to be e¢ cient, are:

2v�(c])2 � 2v�(c])� c] � 2v�(c�n )2:

The �rst inequality ensures that by deleting a link in an optimal complete network the
aggregate payo¤ does not increase, while the second guarantees that connecting by a
c]-link two nodes connected by a two c�n -links path does not increase the aggregate
payo¤. Observe that these conditions determine an interval for c]

2v(�(c])� �(c�n )2) � c] � 2v(�(c])� �(c])2);

where both conditions hold. As it turns out, outside this interval the only non-empty
e¢ cient structures are either the optimal complete or the optimal all-encompassing
star, while inside connected optimal SNSG-networks are the only possible e¢ cient.
Then we have the following characterizing result.

23An infrastructure S is a non-weighted non-directed graph, which as such can be NSG according
to De�nition 1.
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Proposition 7 The only e¢ cient structures are connected optimal SNSG-networks
and the empty network. More precisely:
(i) If �0(0) > 1=2v and c] < 2v(�(c])��(c�n )2) the only e¢ cient structure is the optimal
complete network (described in Proposition 4).
(ii) If �0(0) > 1=2v and c] > 2v(�(c])��(c])2) the only e¢ cient structure is the optimal
all-encompassing star (described in Proposition 5).
(iii) If �0(0) > 1=2v and 2v(�(c])� �(c�n )2) � c] � 2v(�(c])� �(c])2) the only e¢ cient
structures are connected optimal weighted SNSG-networks (described in Propositions 2
and 4):
(iv) If �0(0) � 1

2v(1+(n�2)�(1)) the only e¢ cient structure is the empty network, while
if 1

2v(1+(n�2)�(1)) < �0(0) � 1=2v the only e¢ cient structure for n big enough is the
optimal all-encompassing star, where �(1) = limc!1 �(c):

Proof. Let �c be any network, with c = (cij)ij2N2 nonempty and yielding a positive
aggregate payo¤. If �c is connected, in view of Lemma 2 and Propositions 2 and 3,
it is dominated by an optimal SNSG-network. Otherwise, if �c is not connected, then
as pointed out above, Lemma 2 and Propositions 2 and 3 can be applied to each of
its components which yield a positive payo¤. Let S  N be the set of nodes in the
component for which the aggregate payo¤ of the dominant network resulting is the
greatest. Then, either it contains some c]-link and then connecting by a c]-link a node
in S with a node in another component will increase the aggregate payo¤; or it is an
optimal star �S-encompassing�and adding spoke nodes can only increase it. Therefore,
it must be connected.
Now, assuming �0(0) > 1=2v, there are the following possibilities:
(i) If c] < 2v�(c]) � 2v�(c�n )2, i.e. 2v�(c�n )2 < 2v�(c]) � c], with c�n given by (15),

then by connecting any two peripheral nodes in an all-encompassing star satisfying
optimality condition (15) with a c]-link the aggregate payo¤ would increase. But
then the same must occur for any two nodes not directly connected in �c, because
�(c�n ) > �(c1i), for all i 6= 1 s.t. c1i > c], given that �0(c�n ) < �0(c1i). In other words,
the only e¢ cient structure is the optimal complete network .
(ii) By Proposition 3-(i), if any two nodes, i and j; are connected by a c]-link, c] �

2v(�(c]) � �(c1i)�(c1j)) � 2v(�(c]) � �(c])2), which contradicts c] > 2v(�(c]) � �(c])2).
Therefore all existing links are invested in more than c], which means that the �c is
actually an all-encompassing star.
(iii) If 2v(�(c]) � �(c�n )2) � c] � 2v(�(c]) � �(c])2), none of the two preceding

conclusions applies, but some connected optimal SNSG-network is sure to be e¢ cient.
Which one depends on the technology.
(iv) Now assume �0(0) � 1=2v: By Lemma 3, if �0(0) � 1

2v(1+(n�2)�(1)) the only
e¢ cient structure is the empty network, while if 1

2v(1+(n�2)�(1)) < �
0(0) � 1=2v the only

e¢ cient structure for n big enough is the optimal all-encompassing star.
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6 Scenario 2: Stability

Consider now the second scenario described in Section 4, where nodes are players
who form links by investing in them. An investment pro�le, speci�ed by a matrix
c = (cij)i;j2N , where cij � 0 (with cii = 0) is the investment of player i in the link
connecting i and j, determines a link-investment vector c

c! c = (cij)ij2N2, with cij := cij + cji:

The available link-formation technology, �, yields a weighted network for each invest-
ment pro�le c. Namely, �c := �c, where

�cij = �
c
ij = �(cij) = �(cij + cji);

and payo¤s are given by (2), i.e.

��i (c) =
X

j2N(i;�c)

Iij(�
c)�

X
j2Nd(i;�c)

cij = v
X

j2N(i;�c)

�c(pij)�
X

j2Nd(i;�c)

cij: (17)

This scenario poses the question of stability. We address here the stability of the
structures that have emerged as e¢ cient: the empty network and the SNSG-networks,
and among them the complete and the star networks. Although properly speaking one
should refer to stability of investment pro�les, we often express our results in terms of
the resulting networks. Thus a Nash or pairwise �stable network�should be read as a
weighted network that results from a Nash or pairwise stable investment pro�le. The
following result establishes a necessary and su¢ cient condition for the empty network
to be stable.

Proposition 8 The empty network is
(i) A Nash network if and only if �0(0) � 1=v.
(ii) A pairwise stable network if and only if �0(0) � 1=2v.

Proof. (i) Let �0 be the empty network, i.e. cij = 0 for all i; j 2 N . In these conditions
a player has an incentive to invest c > 0 in a link with another (or any number of them)
only if v�(c)�c > 0. But by the assumptions on technology �, if �0(0) � 1=v and c > 0;
then �(c) < c�0(0) � c=v: Assume now that �0(0) > 1=v. Then, there exists c > 0 s.t.
�(c) > c=v, and it is advantageous to invest c in a link with another player. Therefore
(i) is proved.
(ii) If pairwise coordination is feasible two players may form a link by jointly invest-

ing c by investing c=2 each. If �0(0) � 1=2v; then �(c) < c�0(0) � c=2v: On the contrary,
if �0(0) > 1=2v, then there exists c > 0 s.t. �(c) > c=2v, and it is advantageous to any
two players to invest c=2 each in a link connecting them.

Comments: (i) Thus, it all depends on the technology � and v, namely on the
marginal �delity-level at 0 investment: the empty network is Nash (pairwise) stable if
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and only if this marginal �delity-level is equal or less than 1=v (1=2v). Thus, the greater
the value of the information at each player, the smaller this marginal �delity-level must
be for the empty network to be stable. When pairwise coordination is feasible stability
is more demanding.
(ii) Therefore the empty network is Nash stable being surely ine¢ cient (when

1=2v < �0(0) � 1=v) or possibly ine¢ cient (when �0(0) � 1=2v), and is pairwise stable
only in the latter case.
The following result, similar to Lemma 1, establishes necessary conditions for an

investment pro�le to be stable for a given infrastructure in the following sense.

De�nition 7 An investment pro�le c = (cij)i;j2N is Nash (pairwise) stable for an
infrastructure S if: (i) cij > 0 if and only if ij 2 S; and (ii) it is Nash (pairwise) stable
in the strategic network formation game that results when the strategies of players are
constrained to invest only in links in S.

Lemma 4 For an investment pro�le c = (cij)i;j2N to be Nash or pairwise stable for
a given infrastructure S � N2, the following conditions are necessary: (i) If a player
invests in two di¤erent links, the sets of players connected by optimal paths containing
each of them are nonempty and disjoint.

(ii) For all ij 2 S s.t. cij > 0 :

�0(cij) =
1

v
P

k2N(i;�c) s:t: ij2pik �(p
ij
ik)
: (18)

(iii) For all ij 2 S s.t. cij = 0 :

�0(cij) �
1

v
P

k2N(i;�c) s:t: ij2pik �(p
ij
ik)
: (19)

Proof. Let c = (cij)ij2N2 be the link-investment vector determined by investment
pro�le c; s.t. cij > 0 if and only if ij 2 S: We prove �rst parts (ii) and (iii).
(ii) Assume c to be Nash or pairwise stable for S, and ij 2 S. Then i and/or j, at

least one of them, say i, invests cij > 0. Then link ij is part of at least one optimal
path in �c for i�s information, the one connecting i and j, otherwise i would withdraw
support to it. Then, in any of the possibly di¤erent but equivalent expressions of the
right-hand side of (17), �(cij) would appear at least once, �

c(pij) = �(cij) if c is stable,
and possibly also in the product yielding �c(pik) for other nodes k. Fix any choice of
these (possibly multiple) optimal paths connecting i with every other node with whom
i is connected and let i�s payo¤be given by the right-hand side of (17). The right-hand
side is an up to n(n� 1)-variable function with partial derivatives. A non-null partial
derivative w.r.t. cij of this expression means that by slightly increasing (if it were > 0)
or decreasing (if it were < 0) the investment of i in link ij would increase i�s payo¤
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(through the same available paths), which contradicts c�s stability for S. Then the
partial derivative of the right-hand side of (17) w.r.t. cij must be 0, i.e., using the same
notation as in Section 4,

@

@cij
(v

X
k2N(i;�c)

�c(pik)�
X

k2Nd(i;�c)

cik) = v�
0(cij)

X
k2N(i;�c) s:t: ij2pik

�(pijik)� 1 = 0;

which yields (18).24

(iii) Assume now that cij > 0 and cij = 0: A similar argument to the one used to
prove part (ii) leads in this case to the conclusion that

v�0(cij)
X

k2N(i;�c) s:t: ij2pik

�(pijik)� 1 � 0;

otherwise player i would have an incentive to invest in link ij, which yields (19).
(i) Assume that player i invests in links with two nodes j and k, cij > 0 and cik > 0;

and for some player l there are two di¤erent optimal paths pil and p
0
il such that ij 2 pil

and ik 2 p0il. Then the right-hand side of (18) admits at least two di¤erent expressions
where the optimal path connecting i and any other player but l is the same, but one
uses pil and the other uses p

0
il. In that case, (18) yields two di¤erent values for �

0(cij),
which is a contradiction.

Comment: Part (i) establishes that what any player �sees�through di¤erent links
in which he/she invests in a stable pro�le do not overlap: if i sees l through an optimal
path that contains ij, it cannot be the case that i sees l through another optimal path
that contains ik 6= ij: Note the similarity and the di¤erence with part (i) in Lemma
1. As it occurs in Lemma 1, (i) is a consequence of (ii), which here is the result of
requiring the marginal bene�t of the investment of any player in each of his/her links
to be zero. The resulting condition (18) has also a clear interpretation. If player i
invests in a link with j, the denominator of the fraction in formula (18) that yields
�0(cij) is v times the sum of the �delity-levels through all optimal paths containing
link ij (discounting that of link ij) through which player i receives information. In
other words, the actual amount of information that reaches j on its optimal way to i.
Thus this sum is a measure of the importance of link ij to player i: the greater this
amount, the smaller �0(cij), i.e. the greater cij and �(cij). Note here the similarity and
di¤erence with the meaning of similar expression (4) for an e¢ cient link-investment
vector: there, it was the overall importance of the link for the �ow of information,
while here it is the importance for a player who invests in it.
As with e¢ ciency, we have immediate consequences for stability in general:

24Just note that by the chain rule

@

@cij
(�(cij + cji)) = �

0(cij + cji) � 1 = �0(cij):
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Proposition 9 For an investment pro�le c = (cij)i;j2N to be Nash or pairwise stable
conditions (i)-(iii) are necessary: (i) If a player invests in two di¤erent links, the sets
of players connected by optimal paths that contain each of them are nonempty and
disjoint.
(ii) For each ij 2 N2 s.t. cij > 0; condition (18) holds.
(iii) For each ij 2 N2 s.t. cij > 0 and cij = 0; condition (19) holds.
(iv) To be Nash stable, it is also necessary that for each ij 2 N2 s.t. cij = 0, if
�0(0) > 1=v,

v�c(pij) � v�(c#)� c#; (20)

where c# = argmaxc>0(v�(c)� c):
(v) To be pairwise stable, condition (20) must be replaced by

2v�c(pij) � 2v�(c#)� c#: (21)

Proof. Assume c = (cij)i;j2N to be Nash (pairwise) stable, then c must be Nash
(pairwise) stable for the infrastructure S = fij 2 N2 : cij > 0g. Then (i), (ii) and (iii)
follow immediately from Lemma 4.
(iv) Assume cij = 0. Then no investment in link ij from i can increase i�s payo¤,

that is, for all c > 0; v�c(pij) � v�(c) � c; otherwise investing c in link ij would
surely increase i�s payo¤. This yields condition (20). Note that if �0(0) � 1=v, then
v�(c)� c < 0 for all c > 0.
(v) If pairwise coordination is feasible and 2v�c(pij) < 2v�(c

#)� c#, players i and
j have an incentive to invest c#=2 each on link ij.

Parts (i)-(iii) follow directly from Lemma 4, while parts (iv) and (v) refer to links
not invested in and impose necessary conditions for Nash and pairwise stability, which
amount to lack of incentives to invest in them when coordination is or not unfeasible.
A direct consequence of Proposition 9 is the following.

Corollary 1 If two players are connected by a link in the network resulting from a
Nash or pairwise stable investment pro�le and do not bene�t equally from the link, the
investment in that link is made entirely by the player who bene�ts the most from the
existence of the link.

Proof. Let c be a Nash or pairwise stable investment pro�le and assume cij > 0. Then
if both invest in link ij, condition (18) must hold for i and j, which are compatible
only if the denominator in the right-hand side of equation (18) are equal for i and j. In
other words, only if both players bene�t equally from the existence of the link. If they
bene�t di¤erently from it, both conditions are incompatible, and stability is possible
only if the player who bene�ts the most covers entirely the investment. In this way
both conditions (18) and (19) hold.

As it has been established in the preceding section, the only e¢ cient networks
are optimal connected SNSG-networks. This raises the question about the stability
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conditions for SNSG-networks or investment pro�les for NSG infrastructures. The
following lemma provides a shortcut to answer this question.25 As has been commented,
necessary conditions (4) for e¢ ciency and those for stability (18) are similar but di¤er.
Nevertheless, when the maximal distance between nodes is 2 condition (4) imposes for
e¢ ciency exactly the same that condition (18) imposes for stability when parameter
v doubles its value. So far, parameter v has been excluded form the notation for
unnecessary. Now we need to make it explicit and include it and write �cv or �

c
v instead

of �c or �c.

Lemma 5 Let c be an investment pro�le in an infrastructure S where the maximal
distance between any two nodes is 2; then, �cv satis�es condition (4) of Lemma 1 for
e¢ ciency if and only if �c2v satis�es condition (18) of Lemma 4 for stability.

Proof. Let S be an infrastructure where the maximal distance between any two nodes
is 2. Then if two nodes, i; j are directly connected by a link, this link is the only optimal
path it is part of. Thus, (4) yields �0(cij) = 1=2v, while (18) yields �0(cij) = 1=v; so
that both coincide if in the latter context the individual value doubles that in the �rst.
Now consider a node i at distance 2 of some node and any link ij part of an optimal
path of length 2, then (4) yields

�0(cij) =
1

2v
P

kl2N2 s:t: ij2pkl �(p
ij
kl)
=

1

2v(1 +
P

l2Nd(j;�cv)nfig �(cjl))
;

while (18) when parameter v doubles its value yields

�0(cij) =
1

2v
P

k2N(i;�c) s:t: ij2pik �(p
ij
ik)
=

1

2v(1 +
P

l2Nd(j;�cv)nfig �(cjl))
:

As is well known, one of the properties of connected NSG networks is their �small
world�character: no two connected nodes are at a distance greater than 2. Therefore,
Lemma 5 can be applied to connected NSG-networks. Thus, from Proposition 2 and
Lemma 5, along with Corollary 1, we have:

Proposition 10 Let c be an investment pro�le s.t. �c is a connected SNSG-network.
The following conditions are necessary for �c to be Nash or pairwise stable:
(i) There may exist links not involving node 1 only if �0(0) > 1=v, and all such links,
and those connecting node 1 with nodes with as many neighbors as node 1 are invested
in the same amount c# s.t.

�0(c#) = 1=v: (22)

25The results about stability that follow, stemming from Lemma 5, can also be derived directly
from Lemma 4.
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(ii) If there are p > 1 non-trivial NSG-classes K1; K2; :::; Kp of cardinalities k1; k2; :::; kp
with number of neighbors n = n1 > n2 > ::: > np, the links connecting node 1 with
those in each class Ki (i 2 f2; :::; pg) must receive the same investment ci s.t.

�0(ci) =
1

v(1 + (ki � 1)�(ci) +
P

r:p�i+1<r<p(r 6=i) kr�(cr))
; (23)

if i > p� i+ 1, while if i � p� i+ 1,

�0(ci) =
1

v(1 +
P

r:p�i+1<r<p kr�(cr))
: (24)

and must be entirely covered by the player in Ki.

The following proposition, whose easy proof is omitted, establishes further necessary
conditions for stability.

Proposition 11 Let c be an investment pro�le s.t. �c is an SNSG-network satisfying
the necessary conditions for �c to be stable established in Proposition 10. Then the
following conditions are also necessary to be Nash or pairwise stable:
(i) To be stable in either sense the less pro�table link must be good enough to make it
worth keeping it. That is, for all i; j s.t. cij = c#:

cij � v(�(c#)� �(c1i)�(c1j)); (25)

which entails
c# � 2vminf�(c#)� �(c1i)�(c1j) : cij = c#g: (26)

(ii) To be Nash stable, the weakest optimal indirect connection must be good enough to
make its replacement by a c#-link not pro�table. That is,

c# � vmaxf�(c#)� �(c1i)�(c1j) : cij = 0g: (27)

(iii) To be pairwise stable, condition (27) must be replaced by

c#=2 � vmaxf�(c#)� �(c1i)�(c1j) : cij = 0g: (28)

Now we turn our attention to complete and all-encompassing star networks. The
latter are SNSG-networks, but the following result shows that the only stable complete
network is also an SNSG-network.

Proposition 12 Let c be an investment pro�le such that �c is complete, then �c is a
Nash/pairwise stable network if and only if the following conditions hold:
(i) �0(0) > 1=v and all links receive the same joint investment c# > 0, such that
�0(c#) = 1=v.
(ii) c# � 2v(�(c#)� �(c#)2):
(iii) For all i; j (i 6= j) : cij � v(�(c#)� �(c#)2):
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Proof. (Necessity) Assume �c is complete, i.e. cij + cji > 0 for all i; j 2 N (i 6= j),
and stable. Then from Proposition 9-(i)-(ii) follows that each link itself is the only
optimal path it belongs to and �0(cij + cij) = 1=v. Finally, for �c to be pairwise or
Nash stable no player must have an incentive to withdraw support to a link, i.e. for
all i; j (i 6= j) : �(c#)v � cij � �(c#)2v, which yields (iii), which notice is compatible
with cij + cji = c# if and only if (ii) holds.
(Su¢ ciency) If these conditions hold no player has an incentive to change his/her

investments. And, as all pairs of players are directly connected, pairwise coordination
does not give new options.

Comments: (i) Note that the only complete network that can satisfy these condi-
tions is the extreme case of SNSG-network satisfying conditions established in Propo-
sition 10, and that in that case it is both Nash and pairwise stable.
(ii) The �rst two conditions concern �, c# and v, while only (iii) concerns directly

the way in which the cost of the link is shared by setting an upper bound to the invest-
ment of each player. That is, if conditions (i)-(ii) hold, complete networks supported
by any investment pro�le satisfying (iii) are Nash stable. As �0(0) > 1=v guarantees
the existence of a unique c# s.t. �0(c#) = 1=v, the stability of complete networks hinges
upon condition (iii).
As any star is an extreme case of SNSG-network, Lemma 5 can be applied and used

to obtain the following characterization.

Proposition 13 Let c be an investment pro�le such that �c is an all-encompassing
star, then �c is a Nash network if and only if (i) and (ii) hold:
(i) �c is a periphery-sponsored star where all peripheral players invest the same amount
c�n in the only link in which each of them is involved, such that:

�0(c�n) =
1

v(1 + (n� 2)�(c�n))
: (29)

(ii) Additionally, if �0(0) > 1=v;

v�(c�n)
2 � v�(c#)� c#: (30)

(iii) �c is a pairwise stable network if and only if (29) and

2v�(c�n)
2 � max

c>0
(2v�(c)� c) = 2v�(c#)� c#: (31)

Proof. (Necessity) Part (i) follows directly from Proposition 10: (23) becomes equa-
tion (29), while (30) and (31) follow from (27) and (28) in Proposition 11.
(Su¢ ciency) If conditions (i) and (ii) hold, peripheral players�s investments are opti-
mal and no spoke node has an incentive to invest unilaterally in a link with another
spoke node. Remains to be checked that it is worth for any peripheral player to invest
c�n, i.e. that

c�n � �(c�n)(1 + (n� 2)�(c�n))v:
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But if (29) holds, this is equivalent to check that c�n � �(c�n)=�0(c�n) or, equivalently that

�0(c�n) � �(c�n)=c�n

which follows from the smoothness and concavity of �. As to the center, as

(�(c�n + c)� �(c�n))=c < �0(c�n) < �0(c#) = 1=v;

for all c > 0, then v�(c�n+ c)� c � v�(c�n) and consequently the center has no incentive
to invest in a link (or any number of them). Similarly, conditions (i) and (iii) preclude
any improvement of spoke nodes and the center even if pairwise coordination is possible.

The following lemma, entirely similar to Lemma 3 and whose proof is omitted for
this reason, gives a su¢ cient condition for (29) to hold for some c�n:

Lemma 6 Whatever the number of nodes, if �0(0) > 1=v, then it is sure to exist c�n such
that (29) holds, and also when �0(0) � 1=v for n su¢ ciently large. On the contrary, for
a �xed n, no such c�n exists if �

0(0) � 1
v(1+(n�2)�(1)) ; where �(1) denotes limc!1 �(c).

Now, the existence result of Proposition 6 can be easily translated to stability as
follows.

Proposition 14 If �0(0) > 1=v, there exists an investment pro�le satisfying the con-
ditions of Proposition 10 for any NSG infrastructure.

The following example shows that there actually exist SNSG-networks pairwise
stable di¤erent from the complete and the star.

Example 2: Assume n = 12; v = 2. Let c be an investment pro�le yielding an
optimal SNSG-network where the central player 1 is directly connected with all the
others but player 2 by c1i-links (i 2 K = f3; :::12g), and player 2 is linked with all other
players by c#-links. That is, in terms of Proposition 10 there is only one class K (those
nodes with 2 neighbors) apart from the NSG-class with 11 neighbors, formed by nodes 1
and 2. Assume c# = 0:2; �(c#) = 0:75; �0(c#) = 0:5; c1i = 1; and �(c1i) = �(c�11) = 0:85
and consequently (Proposition 10-(ii))

�0(c1i) = �
0(c�11) =

1

v(1 + (k � 1)�(c�11))
=

1

2(1 + 9(0:85))
= 0:0578:

Further, players�investments are as follows: every player i 2 K fully covers the invest-
ments in its links with players 1 and 2, i.e. ci2 = c# and ci1 = ci1 = 1; and 1 and 2,
share in any way the joint investment c# in their link.
Conditions (28) and (26) of Proposition 11 hold, i.e.

2v(�(c#)� �(ci1)2) � c# � 2v(�(c#)� �(c#)�(ci1));
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4(0:75� 0:852) = 0:11 � 0:2 � 0:45 = 4(0:75� 0:75(0:85)):
Any player i 2 K is willing to pay for a c#-link with player 2, given that c# is the
optimal investment according to Proposition 10, and severing it would mean a loss:

c# = 0:2 � v(�(c#)� �(c#)�(cipp�)) = 2(0:75� 0:75(0:85)) = 0:225:

All links connecting player 1 with players in K receive the investments necessary for
equilibrium (Proposition 10-(ii)), and no i 2 K has an incentive to sever his/her link
with player 1 he/she is paying for because �i(c) � �i(c� i1) :

�i(c) = v(1 + (k � 1)�(ci1))�(ci1) + v�(c#)� ci1 � c#

= 2(1 + 9 (0:85))0:85 + 2 (0:75)� 1� 0:2 = 15:005
�i(c� i1) = v

�
1 + p�(c#)

�
�(c#)� c#

= 2(1 + 10 (0:75) )0:75� 0:2 = 12:55:

Whatever player 2 is paying for his/her link with player 1, there is no incentive for
him/her to invest optimally in a link with player 1 so as to see everything through the
resulting star, i.e. c021 such that

�0(c021) =
1

2(1 + 10 (0:85))
= 0:05263;

if
(1 + 10 (0:85))�(c021)� c021 � 11 (0:75)� c

#
21:

Now if c021 = 1:185 and �(c
0
21) = 0:86; this expression yields:

9:5 (0:86)� 1:185 � 8:25� c#21 , c#21 � 1:265;

which surely holds whatever player 2�s share c#21 of c
# = 0:2:

Investments c#21 and c
#
12 must also be s.t. c

#
21 + c

#
12 = c

# and by Proposition 11-(i)

maxfc#21; c
#
12g � v�(c#)� �(c#)�(ci1)v = 2(0:75)� 0:75(0:85)2 = 0:225;

which surely holds whatever players 1 and 2�s share of c# = 0:2:
Finally, let us see that the slope of �(c) at c#; ci1 and c021 are consistent and compatible
with the assumptions on the technology:26

26Given the strict concavity of �, for all a; b (0 < a < b), conditions

�0(a) >
�(b)� �(a)
b� a > �0(b)

must hold.
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�0(c#) = 0:5 >
�(ci1)� �(c#)
ci1 � c#

= 0:125 > �0(ci1) = 0:0578;

�0(ci1) = 0:0578 >
�(c021)� �(ci1)
c021 � ci1

= 0:05405 4 > �0(c021) = 0:05263;

�0(c021) = 0:05263 < 0:111 68 =
�(c21)� �(c#)
c21 � c#

:

As to the payo¤s we have:

�i(c) = v�(ci1)(1 + 9�(ci1)) + v�(c
#)� ci1 � c# = 15:005;

�2(c) = 11v�(c#)� c21 = 16:5� c21;
�1(c) = 10v�(ci1) + v�(c

#)� c12 = 18:5� c12;

where c12 + c21 = c# = 0:2; therefore, whatever the shares of players 1 and 2 of the
cost of their link, we have

�1(c) > �2(c) > �i(c):

Thus player 1 receives the greatest payo¤, followed by the other node in the core and
those in the periphery. It is worth remarking that by adding any number of players
connected with 1 and 2 and among themselves by c#-links the network remains pairwise
stable.

7 Concluding remarks

We have developed a simple �marginalist�network formation model which is a natural
extension of the seminal discrete models of Jackson and Wolinsky (1996) and Bala and
Goyal (2000a). The basic logic is the same, payo¤ = information � investment, but
based on a non-discrete decreasing returns link-formation technology, which is the only
exogenous ingredient in the model.
The characterization of e¢ cient networks is basically supported by crucial Lemma

2, proving constructively the dominance of strongly nested split graph networks, and
Lemma 1 giving optimality conditions for investments in an infrastructure which allow
to re�ne the conclusion of Lemma 2, and lead to Proposition 2, and �nally to Proposi-
tion 7, establishing that e¢ cient structures must be connected optimal SNSG-networks
or empty. Similarly, Lemma 4, giving necessary conditions for Nash and pairwise sta-
bility for the game associated for an infrastructure, is crucial for the results relative
to stability. Necessary and su¢ cient conditions for complete networks and stars to be
stable in either sense, and necessary conditions for SNSG networks to be stable, which
have been shown to be pairwise stable for certain technologies.
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A comparison of the results obtained for e¢ ciency and those for stability show
a great parallelism. This is particularly so for the necessary conditions for optimal-
ity (Lemma 1) and for stability (Lemma 4), which entail further parallelisms. In
this respect, the most remarkable is the fact that both imposing e¢ ciency to an link-
investment that yields an SNSG network (Proposition 2) and imposing stability (Propo-
sition 10) lead to an entirely similar re�nement of SNSG structures.27 However, these
conditions are di¤erent. In fact, from Lemmas 1 and 4, it follows that e¢ ciency and
stability are incompatible except in the case of the empty network. The reason is clear,
a nonempty e¢ cient network requires link-investments which are not stable because
they give players the opportunity of free riding by taking advantage of the externalities.
Both similarity and di¤erence stem from the same source. Conditions for optimality
and stability are based on the same economic principle: imposing zero marginal bene�t,
social bene�t for e¢ ciency, individual bene�t for stability.
As already emphasized in the introduction, a remarkable result is the emergence

of these weighted nested split graph structures from a simple model based on a single
exogenous ingredient.
Apart from further exploring the model, there are a number of extensions worth

investigating. These are some of them:
(i) Exploring the impact of assuming heterogeneity, technological and/or in indi-

vidual values.
(ii) Exploring some variants of the technology function, as the following ones:

- Assuming �(c) > 0 only for c > c, i.e. setting a �threshold�or minimal joint
investment for a link to admit �ow (translating the assumptions about � to a map
� : [c;1)! [0; 1), with �(c) = 0 for 0 � c � c).

- Assuming � convex up to an in�ection point, then concave. This is intuitively
appealing and would yield as limiting cases Jackson and Wolinsky�s (1996) connections
model and Bala and Goyal�s (2000a) two-way �ow model.

- Assuming � a strictly concave continuously di¤erentiable map � : R+�R+ !
[0; 1) increasing in both arguments, i.e. both players�investments.
(iii) Enriching the model, the basic one or any of its extensions, introducing dy-

namics.
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