
	 1	

EVALUATION	OF	MULTI-ECHO	ICA	DENOISING	FOR	TASK	BASED	1	
FMRI	STUDIES:	BLOCK	DESIGNS,	RAPID	EVENT-RELATED	2	

DESIGNS,	AND	CARDIAC-GATED	FMRI	3	
	4	
1Javier	 Gonzalez-Castillo,	 1Puja	 Panwar,	 1Laura	 C.	 Buchanan,	 2Cesar	 Caballero-5	
Gaudes,	1Daniel	A.	Handwerker,	 1David	C.	 Jangraw,	3Valentinos	Zachariou,	4Souheil	6	
Inati,	4Vinai	Roopchansingh,	4John	A.	Derbyshire,	1,4Peter	A.	Bandettini.	7	
	8	
1Section	on	Functional	Imaging	Methods,	Laboratory	of	Brain	and	Cognition,	National	Institute	of	Mental	Health,	9	
National	Institutes	of	Health,	Bethesda,	MD.	10	
2Basque	Center	on	Cognition,	Brain	and	Language,	San	Sebastian,	Spain.	11	
3Laboratory	of	Brain	and	Cognition,	National	Institute	of	Mental	Health,	National	Institutes	of	Health,	Bethesda,	12	
MD.	13	
4Functional	MRI	Core,	National	Institute	of	Mental	Health,	National	Institutes	of	Health,	Bethesda,	MD.	14	

ABSTRACT	15	
	16	

Multi-echo	 fMRI,	 particularly	 the	 multi-echo	 independent	 component	 analysis	 (ME-17	
ICA)	 algorithm,	 has	 previously	 proven	 useful	 for	 increasing	 the	 sensitivity	 and	18	
reducing	 false	 positives	 for	 functional	 MRI	 (fMRI)	 based	 resting	 state	 connectivity	19	
studies.	Less	 is	known	about	 its	efficacy	 for	 task-based	 fMRI,	especially	at	 the	single	20	
subject	 level.	 This	 work,	 which	 focuses	 exclusively	 on	 individual	 subject	 results,	21	
compares	ME-ICA	 to	 single-echo	 fMRI	and	a	voxel-wise	T2*	weighted	combination	of	22	
multi-echo	 data	 for	 task-based	 fMRI	 under	 the	 following	 scenarios:	 cardiac-gated	23	
block	 designs,	 constant	 repetition	 time	 (TR)	 block	 designs,	 and	 constant	 TR	 rapid	24	
event-related	designs.	Performance	is	evaluated	primarily	in	terms	of	sensitivity	(i.e.,	25	
activation	 extent,	 activation	 magnitude,	 percent	 detected	 trials	 and	 effect	 size	26	
estimates)	 using	 five	 different	 tasks	 expected	 to	 evoke	 neuronal	 activity	 in	 a	27	
distributed	set	of	regions.	The	ME-ICA	algorithm	significantly	outperformed	all	other	28	
evaluated	 processing	 alternatives	 in	 all	 scenarios.	 Largest	 improvements	 were	29	
observed	for	the	cardiac-gated	dataset,	where	ME-ICA	was	able	to	reliably	detect	and	30	
remove	 non-neural	 T1	 signal	 fluctuations	 caused	 by	 non-constant	 repetition	 times.	31	
Although	ME-ICA	also	outperformed	the	other	options	in	terms	of	percent	detection	of	32	
individual	 trials	 for	 rapid	 event-related	 experiments,	 only	 46%	 of	 all	 events	 were	33	
detected	after	ME-ICA;	suggesting	additional	improvements	in	sensitivity	are	required	34	
to	 reliably	 detect	 individual	 short	 event	 occurrences.	 We	 conclude	 the	 manuscript	35	
with	 a	detailed	 evaluation	of	ME-ICA	outcomes	and	a	discussion	of	how	 the	ME-ICA	36	
algorithm	 could	 be	 further	 improved.	 Overall,	 our	 results	 suggest	 that	 ME-ICA	37	
constitutes	a	versatile,	powerful	approach	for	advanced	denoising	of	task-based	fMRI,	38	
not	just	resting-state	data.	39	
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INTRODUCTION	43	
	44	
Even	 with	 advances	 in	 hardware	 (e.g.,	 higher	 field	 systems)	 and	 acquisition	45	
technology	 (e.g.,	 multichannel	 receiver,	 surface	 coils,	 etc.),	 in	 functional	 magnetic	46	
resonance	imaging	(fMRI)	there	exists	a	continual	need	for	a	greater	signal-to-noise	47	
ratio,	especially	at	the	single	subject	level.	In	addition	to	the	signal	of	interest—T2*	48	
fluctuations	 of	 a	 neuronal	 origin—fMRI	 time	 series	 contain	 fluctuations	 due	 to	49	
thermal	 noise,	 hardware	 instabilities,	 subject	 head	 motion,	 cardiac	 function	 and	50	
respiration	(see	(Greve	et	al.,	2013)	for	a	detailed	review).	In	some	instances,	these	51	
nuisance	 sources	 can	 account	 for	 up	 to	 82%	 of	 the	 variance	 at	 the	 voxel	 level	52	
(Bianciardi	 et	 al.,	 2009).	 Insufficiently	 accounting	 for	 these	 undesired	 sources	 of	53	
fluctuation	 during	 analyses	 translates	 into	 reduced	 sensitivity	 to	 true	 neuronal	54	
responses	(Gonzalez-Castillo	et	al.,	2012b),	lower	test-retest	reproducibility,	biased	55	
results	 across	 populations,	 and	 ultimately	 obstructs	 the	 interpretability	 of	 the	56	
results	and	diminishes	their	potential	scientific	and	clinical	value.		57	
	58	
To	reduce	noise	in	fMRI	data,	complex	pre-processing	pipelines	precede	activation	59	
and	 connectivity	 analysis.	 For	 example,	 slow	 signal	 drifts	 are	 often	 modeled	 via	60	
Legendre	polynomials	or	sinusoidal	basis	sets	(see	(Tanabe	et	al.,	2002)	for	details).	61	
All	 fMRI	 analysis	 packages	 include	 tools	 to	 estimate	 and	 minimize	 artifacts	 from	62	
head	motion	 (e.g.,	3dvolreg	 in	AFNI,	mcflirt	 in	 FSL).	 Several	 algorithms	have	 been	63	
proposed	to	also	moderate	signal	variance	due	to	cardiac	and	respiratory	function	64	
(e.g.,	RETROICOR	(Glover	et	al.,	2000),	RVT	(Birn	et	al.,	2008),	HR	variation	(Chang	65	
et	 al.,	 2009)).	 Spatially	 uncorrelated	 noise	 is	 often	 lowered	 by	 means	 of	 spatial	66	
smoothing.	 Finally,	 gains	 in	 signal-to-noise	 ratio	 can	 be	 obtained	 by	 averaging	67	
across	 runs	 and	 subjects.	 	 More	 advanced	 denoising	 methods	 include	 the	 use	 of	68	
multivariate	 decomposition	 approaches,	 such	 as	 principal	 component	 analysis	69	
(PCA)	 or	 independent	 component	 analysis	 (ICA),	 to	 identify	 and	 subsequently	70	
remove	artifactual	 (i.e.,	 non-neuronal)	 signals	 specific	 to	each	dataset.	 In	 the	past,	71	
these	 procedures	 have	 relied	 on	 the	 expertise	 of	 well-trained	 fMRI	 specialists	 to	72	
manually	 identify	 noise	 components.	 For	 ICA,	 automatic	 classification	 of	 nuisance	73	
ICA	components	based	on	different	combinations	of	spatial,	 temporal	and	spectral	74	
characteristics	 of	 the	 components	 have	 been	 recently	 proposed—namely	 FIX	75	
(Salimi-Khorshidi	 et	 al.,	 2014)	 and	AROMA	 (Pruim	 et	 al.,	 2015))—yet,	 they	 either	76	
require	a	study-specific	data-intensive	training	phase	(i.e.,	FIX)	or	focus	solely	on	a	77	
subset	of	noise	sources	(i.e.,	AROMA	deals	primarily	with	motion-related	artifacts).		78	
	79	
An	 alternative	way	 to	 improve	 the	 sensitivity	 to	 the	 BOLD	 response,	 and	 in	 turn	80	
improve	the	contrast-to-noise	of	fMRI	experiments,	is	to	acquire	the	data	differently,	81	
by	using	multi-echo	acquisition	 schemes(Gowland	and	Bowtell,	 2007;	Poser	 et	 al.,	82	
2006;	Posse,	2012;	Posse	et	al.,	1999;	Speck	and	Hennig,	1998).	In	single-echo	fMRI,	83	
data	 is	 acquired	 at	 a	 unique	 echo	 time	 (TE)	 close	 to	 the	 average	 grey	matter	T2*	84	
inside	 regions	 targeted	 by	 the	 study.	 Conversely,	 in	 multi-echo	 (ME)	 fMRI,	 the	85	
scanner	outputs	Ne	 time	series	per	voxel,	 each	of	 them	acquired	at	 a	different	TE,	86	
and	 all	 of	 them	 following	 a	 single	 excitation	 pulse.	 Crucially,	 these	Ne	 time	 series	87	
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differ	from	each	other	in	terms	of	T2*	weighting	and	thermal	noise,	but	not	in	terms	88	
of	 T1	 weighting.	 These	 specific	 properties	 of	 ME-fMRI	 data	 can	 be	 exploited	 in	89	
several	manners	 for	 denoising	 purposes.	 For	 example,	 different	 voxel-wise	 linear	90	
weighted	 combination	 schemes	 of	 ME	 time	 series	 have	 been	 demonstrated	 to	91	
improve	sensitivity	for	task	and	resting	experiments	at	1.5T	(Posse	et	al.,	1999),	3T	92	
(Poser	et	al.,	2006)	and	7T	(Poser	and	Norris,	2009);	primarily	by	reducing	thermal	93	
noise	and	susceptibility	artifacts.	In	addition,	other	groups	have	proposed	dual-echo	94	
approaches	where	 signal	 fluctuations	 recorded	 at	 a	 short	 echo	 (assumed	 to	 have	95	
minimal	T2*	weighing)	are	regressed	out	 from	the	 time	series	acquired	at	a	 longer	96	
echo	 time	 optimized	 for	 BOLD	 weighting	 (Bright	 and	 Murphy,	 2013;	 Buur	 et	 al.,	97	
2009).	One	such	example	is	the	work	of	Bright	and	Murphy	(2013)	who	evaluated	98	
how	 regressing	 out	 data	 acquired	 at	 TE=3.3	 ms	 (expected	 to	 have	 minimal	 T2*	99	
weighting)	 from	that	acquired	at	TE=35	ms	(a	common	TE	for	experiments	at	3T)	100	
could	 help	 reduce	 motion-related	 effects	 and	 physiological	 noise.	 This	 approach	101	
showed	 improvements	 in	 connectivity	 estimations,	 but	 resulted	 in	 reduced	102	
activation	 extent	 and	 magnitude;	 therefore	 demonstrating	 that	 activity	 and	103	
connectivity	 studies	 may	 benefit	 differently	 from	 similar	 ME-based	 denoising	104	
schemes.		105	
		106	
Kundu	et	al.	(2012)	recently	proposed	a	ME-based	denoising	technique	named	ME-107	
ICA	 (Multi-Echo	 Independent	 Component	 Analysis);	which	 takes	 advantage	 of	 the	108	
distinct	TE-dependence	profiles	of	BOLD-like	(linear	dependence	with	TE)	and	non-109	
BOLD-like	 fluctuations	 (no	 dependence	 with	 TE)	 to	 automatically	 classify	 ICA	110	
components	as	signal	(BOLD-like)	or	noise	(non-BOLD-like).	The	ME-ICA	algorithm	111	
proceeds	 as	 follows.	 First,	 voxel-wise	 estimates	 of	 T2*	 are	 obtained.	 These	 are	112	
subsequently	 used	 to	 linearly	mix	 all	 echoes	 and	 create	 a	 new	 single,	 “Optimally	113	
Combined”,	 time	 series	 per	 voxel	 (the	 OC	 time	 series)	 optimized	 for	 functional	114	
contrast	(Poser	et	al.,	2006;	Posse	et	al.,	1999).	This	OC	time	series	constitutes	the	115	
input	to	a	subsequent	ICA	that	extracts	spatially	independent	signals	in	the	data.	The	116	
overall	 TE-dependence	 profile	 of	 each	 ICA	 component	 is	 then	 characterized	 using	117	
two	 summary	metrics:	 kappa	 (κ)	 and	 rho	 (ρ),	 respectively	 representing	 the	BOLD	118	
signal	and	 the	spin-density	or	 inflow	signal.	A	combination	of	 low	kappa	and	high	119	
rho	indicates	the	component	has	a	 low	dependence	on	TE	and	a	high	 likelihood	of	120	
being	 noise	 (i.e.,	 non-BOLD).	 In	 its	 last	 step,	 ME-ICA	 uses	 kappa,	 rho,	 explained	121	
variance	and	additional	metrics	that	further	characterize	the	TE-dependence	profile	122	
of	each	component	to	automatically	identify	and	regress	out	from	the	data	those	ICA	123	
components	that	constitute	noise.	(Kundu	et	al.,	2012)	and	Appendix	A	in	Olafsson	124	
et	al.	(2015)	provide	a	detailed	description	of	the	ME-ICA	algorithm.			125	
	126	
Several	 studies	 have	 already	 established	 experimentally	 how	 ME-ICA	 can	 help	127	
improve	the	quality	of	fMRI	results,	but	often	focused	on	connectivity	analyses.	For	128	
example,	ME-ICA	has	been	shown	to	improve	network	detection	over	conventional	129	
single-echo	 fMRI	 both	 in	 humans	 at	 3T	 (Kundu	 et	 al.,	 2012)	 and	 rats	 at	 11.7T	130	
(Kundu	et	al.,	2014).	Olafsson	and	colleagues	(2015)	have	also	shown	how	ME-ICA	131	
can	reliably	 identify	and	remove	artifacts	unique	to	novel	simultaneous	multi-slice	132	
acquisition	 techniques	 (Feinberg	 et	 al.,	 2010)	 during	 rest	 scans.	 In	 addition,	 ME-133	
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ICA’s	ability	to	differentiate	artifactual	slow	signal	drifts	from	those	of	a	BOLD	origin	134	
has	also	been	demonstrated	with	long	(	>	1	min)	blocks	of	visual	stimulation	(Evans	135	
et	 al.,	 2015).	 However,	 little	 is	 known	 about	 the	 performance	 of	 ME-ICA	 for	136	
conventional	task	experimental	designs.	To	the	best	of	our	knowledge,	only	one	non	137	
peer-reviewed	 study	 to	 date	 has	 evaluated	 ME-ICA	 for	 regular	 task-based	 fMRI	138	
(Lombardo	et	al.,	2015).	That	study	focused	solely	on	sensitivity	for	block	designs	at	139	
the	group	level,	concluding	that	ME-ICA	outperforms	single-echo	fMRI	and	optimal	140	
combination	of	ME	datasets	in	this	particular	scenario.	Here,	we	attempt	to	address	141	
this	gap	by	evaluating	the	performance	of	ME-ICA	for	task-based	fMRI	at	the	single-142	
subject	 level.	We	 decided	 to	 focus	 on	 single-subject	 results,	 as	 this	 is	where	 fMRI	143	
holds	potential	clinical	value,	and	where	fMRI	strives	the	most	for	improvements	in	144	
signal-to-noise.		145	
	146	
Here	we	evaluate	ME-ICA	with	respect	to	single-echo	fMRI	and	OC	using	both	block	147	
and	 rapid	 event-related	 designs.	 For	 the	 block	 design	 evaluation	 we	 used	 an	148	
auditory	 task	 and	 two	 different	 acquisition	 strategies:	 constant-TR,	 and	 cardiac-149	
gated	 (i.e.,	 non-constant	 TR)	 acquisitions.	 Cardiac-gated	 fMRI	 constitutes	 an	150	
interesting	 test	 case	 for	 ME-ICA,	 as	 it	 produces	 data	 strongly	 contaminated	 by	151	
baseline	 signal	 fluctuations	of	T1	 origin	 (due	 to	 the	non-constant	TR)	 that	ME-ICA	152	
should	be	able	to	reliably	correct.	For	this	particular	scenario,	we	also	evaluate	ME-153	
ICA	against	two	additional	processing	strategies	(Beissner	et	al.,	2010;	Guimares	et	154	
al.,	1998)	previously	shown	to	benefit	in	the	analysis	cardiac-gated	datasets.			155	
	156	
For	the	rapid	event-related	evaluation	we	acquired	data	for	five	different	tasks	(e.g.,	157	
motor,	 auditory,	 reading,	 and	 two	 visual	 identification	 tasks),	 so	 that	 we	 could	158	
evaluate,	to	a	given	extent,	the	generality	of	ME-ICA	performance	across	tasks.	In	all	159	
instances,	 we	 evaluate	 performance	 in	 terms	 of	 activation	 extent,	 activation	160	
magnitude,	and	effect	size.	We	also	investigate	how	ME-ICA	can	help	detect	activity	161	
for	 individual	 instances	of	 tasks	 (i.e.,	 individual	 trials).	Our	 results	 show	how	ME-162	
ICA	significantly	outperforms	the	single-echo	fMRI	and	OC	pipelines	in	all	scenarios,	163	
suggesting	 that	 task-based	 fMRI	 can	 benefit	 from	 the	 ME-ICA	 approach	 just	 as	164	
resting-state	connectivity	analyses	have	done	in	the	past.		165	

METHODS	166	
	167	
We	acquired	two	different	datasets	for	this	study.	First,	we	collected	fMRI	data	from	168	
five	 individuals	using	an	auditory	block-design	paradigm.	For	this	 first	dataset,	we	169	
acquired	data	in	two	ways:	constant	repetition	time	(non-gated)	and	cardiac-gated.	170	
Second,	we	collected	fMRI	data	from	ten	additional	subjects	using	a	multi-task	rapid	171	
event-related	 paradigm.	 This	 second	 dataset	 was	 acquired	 using	 a	 constant	172	
repetition	 time	 only.	 Acquisition	 details,	 analytical	 procedures	 and	 experimental	173	
goals	for	both	datasets	are	described	below.	174	

Block	Design	Experiments	175	
	176	
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Subjects.	Five	subjects	(2	males,	3	females,	mean	±	SD	age	=	25	±	2	y.o.)	participated	177	
in	 these	 experiments	 after	 giving	 informed	 consent	 in	 compliance	 with	 the	 NIH	178	
Combined	Neuroscience	 Institutional	Review	Board-approved	protocol	93-M-0170	179	
in	Bethesda,	MD.		180	
	181	
Experimental	Paradigm.	All	 functional	scans	(cardiac-gated	and	non-gated)	were	182	
acquired	using	 the	 same	block	design	paradigm.	An	 initial	 20	 seconds	period	was	183	
followed	by	 5	 repetitions	 of	 the	 following	 sequence	 of	 blocks:	 listen	 block	 (20	 s);	184	
and	rest	block	(40	s).	An	additional	20	seconds	of	rest	were	added	at	the	end	of	each	185	
functional	 run.	This	 resulted	 in	340-second	runs.	During	 the	rest	periods,	 subjects	186	
were	instructed	to	remain	still	and	focus	their	attention	on	a	crosshair	at	the	center	187	
of	 the	 screen.	 During	 the	 listen	 blocks	 subjects	 were	 presented	 with	 20	 s	 of	188	
instrumental	music	via	MRI	compatible	headphones.	Subjects	had	been	previously	189	
instructed	 to	 attentively	 listen	 to	 the	music	when	present.	 The	PsychoPy	 software	190	
(Peirce,	2008)	was	used	for	stimuli	delivery.	191	
	192	
Data	Acquisition.	 Imaging	was	performed	on	a	General	Electric	 (GE)	3	Tesla	750	193	
MRI	scanner	(Waukesha,	WI).	The	scanner's	body	coil	was	used	for	RF	transmission,	194	
and	 a	 32-channel	 receive-only	 head	 coil	 (GE,	Waukesha,	WI)	 was	 used	 for	 signal	195	
reception.	 Functional	 scans	 were	 acquired	 with	 a	 multi-echo	 EPI	 sequence	 (flip	196	
angle=60°,	 TEs=13.9/31.7/49.5	 ms,	 33	 oblique	 slices,	 slice	 thickness=3	 mm,	 in-197	
plane	 resolution=3x3	 mm2,	 FOV	 216	 mm,	 acceleration	 factor	 2,	 number	 of	198	
acquisitions	 =	 136,	 bottom/up	 sequential	 acquisitions).	 For	 each	 participant	 we	199	
acquired	 two	 non-gated	 functional	 scans	 and	 two	 cardiac-gated	 functional	 scans.	200	
The	 order	 of	 the	 scans	 was	 randomized	 across	 subjects.	 Non-gated	 scans	 were	201	
acquired	 using	 a	 constant	 repetition	 time	 (TR)	 of	 2.5	 seconds.	 Cardiac-gated	202	
acquisitions	were	time-locked	to	the	first	peak	of	the	cardiac	cycle,	recorded	on	a	GE	203	
optical	pulse	oximeter	attached	to	one	of	the	subject’s	fingers,	 following	a	nominal	204	
TR	of	2.5s.	This	resulted	in	a	non-constant	TR	of	mean	±	SD	=	3.12	±	0.15	seconds	205	
across	the	whole	dataset.	At	the	end	of	each	cardiac-gated	scan,	the	system	saved	a	206	
text	 file	 with	 information	 about	 the	 actual	 repetition	 time	 between	 successive	207	
acquisitions.	 Evaluation	 of	 cardiac	 traces	 and	 triggering	 files	 confirmed	 reliable	208	
detection	 of	 cardiac	 cycle	 events,	 and	 correct	 synchronization	 of	 fMRI	 triggering	209	
events	with	the	peak	of	the	cardiac	cycle.		210	
	211	
In	 addition,	 T1-weighted	 Magnetization-Prepared	 Rapid	 Gradient-Echo	 (MPRAGE)	212	
and	Proton	Density	(PD)	sequences	were	acquired	 for	presentation	and	alignment	213	
purposes	(axial	prescription,	number	of	slices	per	slab,	176;	slice	thickness,	1	mm;	214	
square	FOV,	256	mm;	image	matrix,	256	×	256).	215	
	216	
Data	Pre-Processing.	Data	were	pre-processed	with	the	AFNI	software	(Cox,	1996).	217	
Three	different	pre-processing	pipelines	were	used	 in	 these	 experiments,	 namely:	218	
single-echo	 (1E)	 pipeline,	 OC	 pipeline,	 and	 ME-ICA	 pipeline.	 	 In	 addition,	 for	 the	219	
cardiac-gated	 dataset,	 data	 were	 pre-processed	 with	 an	 additional	 single-echo	220	
pipeline	 that	 included	 a	model-based	 correction	 of	T1	 baseline	 signal	 fluctuations	221	
associated	with	non-constant	TRs	following	the	procedures	previously	described	by	222	
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Guimares	et	al.	(1998).	This	additional	cardiac-gated	only	pipeline	is	referred	to	as	223	
the	1E-T1C	(after	T1	Correction)	pipeline	throughout	the	manuscript.		224	
	225	
1E	Pipeline.	 Only	 one	 time	 series,	 that	 for	 TE=31.7	 ms,	 enters	 this	 pipeline,	 in	 a	226	
manner	similar	to	how	single-echo	fMRI	is	commonly	analyzed	in	conventional	fMRI	227	
studies.	 The	 pre-processing	 steps	 in	 the	 1E	 pipeline	 are:	 (1)	 discard	 initial	 10	228	
seconds	of	data	to	achieve	steady-state,	 (2)	 time-shift	correction,	(3)	estimation	of	229	
head	motion	(AFNI	program	3dvolreg)	and	transformations	to	MNI	space	using	the	230	
MPRAGE	 and	 PD	 scans	 following	 procedures	 previously	 described	 in	 (Gonzalez-231	
Castillo	 et	 al.,	 2012a),	 (4)	 spatial	 smoothing	 (FWHM	 =	 6	 mm;	 AFNI	 program	232	
3dBlurInMask),	and	(5)	voxel-wise	intensity	normalization	to	percent	signal	change	233	
units.		234	
	235	
For	 non-gated	 data,	 the	 time-shift	 correction	 step	 was	 performed	 with	 AFNI	236	
program	3dTshift,	which	 interpolates	data	 in	 time	 so	 that	 all	 slices	have	 the	 same	237	
temporal	 reference.	 To	 accomplish	 this,	3dTshift	 takes	 as	 input	 information	 about	238	
slice	acquisition	order.	For	cardiac-gated	data,	time-shift	correction	was	performed	239	
with	 AFNI	 program	 3dTRfix,	 which	 not	 only	 corrects	 inter-slice	 timing,	 but	 also	240	
brings	 non-constant	 TR	 datasets	 into	 a	 regular	 temporal	 grid;	 also	 via	 linear	241	
interpolation	in	time.	3dTRfix	takes	as	inputs	not	only	the	slice	acquisition	order,	but	242	
also	the	onsets	of	each	volume	acquisition.	These	two	ways	to	time-shift	correct	the	243	
data	are	common	across	all	other	pre-processing	pipelines	described	below.	244	
	245	
1E-T1C	Pipeline.	This	pipeline	also	takes	only	the	second	echo	(TE=31.7	ms)	as	input.	246	
The	 only	 difference	 from	 the	 1E	 pipeline,	 is	 that	 a	 model-based	 T1	 baseline	 shift	247	
correction	following	procedures	previously	described	by	Guimares	et	al.	(1998)	was	248	
performed	after	discarding	the	initial	10	seconds	of	data,	and	prior	to	all	other	pre-249	
processing	steps.	No	other	differences	exist	between	the	1E	and	1E-T1C	pipelines.		250	
	251	
T2*	Estimation	Pipeline.	This	pipeline	uses	the	last	two	echoes	(31.7ms	and	49.5ms)	252	
and	 follows	methods	 previously	 proposed	 by	 Beissner	 et	 al.	 (2011,	 2010)	 for	 the	253	
analysis	of	non-constant	TR	fMRI	datasets.	Pre-processing	steps	include:	(1)	discard	254	
initial	 10	 seconds	 of	 data,	 (2)	 time-shift	 correction	 (3dTshift	 or	 3dTRfix),	 (3)	255	
estimation	of	head	motion	and	transformation	to	MNI	space	using	the	MPRAGE	and	256	
PD	 scans	 following	 procedures	 previously	 described	 in	 (Gonzalez-Castillo	 et	 al.,	257	
2012a),	 (4)	 spatial	 smoothing	 (FWHM	=	6mm),	 (5)	 computation	of	T2*	 time	series	258	
using	 Eq.	 1,	 and	 (6)	 voxel-wise	 intensity	 normalization	 to	 signal	 percent	 change	259	
units.	260	
	261	

𝑇"∗ 𝑖, 𝑛 = ()*+(),
-. /, 0,. /* 0,.

	(Eq.	1)	262	
	263	
In	Eq.	1	(originally	derived	in	(Beissner	et	al.,	2010)),	index	i	represents	voxel,	index	264	
n	represents	time,	TE2	and	TE3	refer	to	the	two	experimental	echo	times,	S2	refers	to	265	
the	time	series	for	TE2=31.7ms,	and	S3	refers	to	the	time	series	for	TE3=49.5ms.	266	
	267	
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OC	Pipeline.	All	three	echoes	are	used	in	this	pipeline.	Pre-processing	steps	include:	268	
(1)	 discard	 initial	 10	 seconds	 of	 data,	 (2)	 time-shift	 correction,	 (3)	 estimation	 of	269	
head	motion	 and	 transformations	 to	MNI	 space	 using	 the	MPRAGE	 and	 PD	 scans	270	
following	 procedures	 previously	 described	 in	 (Gonzalez-Castillo	 et	 al.,	 2012a),	 (4)	271	
voxel-wise	 linear	 weighted	 combination	 of	 echoes	 optimized	 for	T2*	 (Poser	 et	 al.,	272	
2006;	Posse	et	al.,	1999)	with	AFNI	program	tedana.py	(a	component	of	the	ME-ICA	273	
software;	version	2.5-beta11;	https://bitbucket.org/prantikk/me-ica#f5d52a6),	(5)	274	
spatial	 smoothing	 (FWHM	=	6	mm),	 and	 (6)	voxel-wise	 intensity	normalization	 to	275	
signal	percent	change	units.		276	
	277	
The	voxel-wise	weights	for	the	OC	time	series	are	given	by	278	
	279	

𝑤0,2 = 𝑇𝐸0 ∙ 𝑒
+()6

(,∗ 		(Eq.	2)	280	
	281	
where	 i=1..3	 refers	 to	 echo,	 v	 refers	 to	 voxel,	 and	𝑇"∗	corresponds	 to	 voxel-wise	282	
estimates	of	T2*	obtained	via	a	log-linear	firs	to	the	multi-echo	dataset.		283	
	284	
ME-ICA	Pipeline.	All	 three	echoes	are	used	 in	 this	pipeline.	This	pipeline	builds	on	285	
top	 of	 the	 OC	 pipeline.	 Following	 step	 (4)	 of	 the	 OC	 pipeline,	 we	 use	 the	 AFNI	286	
program	tedana.py	(version	2.5,	beta	11)	to	perform	ME-ICA	denoising	(Kundu	et	al.,	287	
2012).	The	denoised	time	series	output	by	ME-ICA	are	then	submitted	to	(5)	spatial	288	
smoothing	(FWHM	=	6	mm),	and	(6)	voxel-wise	intensity	normalization	steps,	as	in	289	
the	1E	and	OC	pipelines.	290	
	291	
Activation	Analyses.	 Following	 each	 pre-processing	 pipeline,	 activation	maps	 for	292	
the	 contrast	 task	 vs.	 rest	 were	 obtained	 separately	 for	 each	 subject	 using	 both	293	
functional	runs	as	input	to	AFNI	program	3dREMLFit.	Motion	parameters,	their	first	294	
derivatives	and	Legendre	polynomials	up	to	3rd	order	were	used	as	covariates	of	no	295	
interest.		All	activation	maps	were	thresholded	at	pFDR<0.05.	296	
	297	
For	 the	 ME-ICA	 pipeline,	 degrees	 of	 freedom	 were	 adjusted	 to	 account	 for	 the	298	
number	 of	 removed	 components	 when	 computing	 statistical	 significance	 for	 this	299	
particular	pipeline.		One	degree	of	freedom	is	subtracted	for	each	component	being	300	
removed	(Kundu	et	al.,	2012).	301	
	302	
Target	 Regions	 of	 Interest	 (ROI).	 Performance	 metrics	 for	 this	 first	 set	 of	303	
experiments	were	computed	using	two	different	sets	of	ROIs:		(1)	ROIs	derived	from	304	
the	reverse	 inference	map	generated	by	 the	Neurosynth	 tool	 (Yarkoni	et	al.,	2011)	305	
for	 the	 concept	 “music”;	 and	 (2)	 bilateral	 inferior	 colliculus	 (IC)	 ROIs	 based	 on	306	
previously	published	coordinates	(described	below).		307	
	308	

[INSERT	FIGURE	1	APROX.	HERE]	309	
	310	
The	Neurosynth-derived	ROIs	(Fig.	1.A)	 include	4	ROIs	covering	primarily	bilateral	311	
superior	temporal	cortex	and	bilateral	pre-central	gyrus.	The	IC	ROIs	(Fig.	1.B)	are	5	312	
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mm	radius	spherical	ROIs	centered	at	reference	MNI	coordinates	for	this	particular	313	
anatomical	 structure	 ([x,y,z]=[±6,-33,-9])	 taken	 from	 (Parsons	 et	 al.,	 2014).	 We	314	
decided	to	evaluate	the	IC	region,	as	it	 is	a	well	established	processing	node	of	the	315	
ascending	 auditory	pathway	 in	which	detection	 of	 activity	 is	 difficult	 due	 to	 large	316	
amounts	of	pulsatile	noise	(Guimares	et	al.,	1998).		317	
	318	
Performance	 Metrics.	 The	 different	 pre-processing	 pipelines	 are	 evaluated	 in	319	
terms	of	activation	extent,	T-statistic	magnitude,	and	estimated	effect	size.		320	
	321	
Activation	extent	was	measured	as	the	number	of	significantly	active	voxels	 inside	322	
each	set	of	target	ROIs	(e.g.,	Neurosynth	and	IC	ROIs).	Activation	extent	measures	for	323	
each	 pipeline	 were	 included	 in	 a	 2-way	mixed-effects	 ANOVA	 [A=Subject|Random;	324	
B=Pipeline|Fixed]	 in	 MATLAB	 to	 elucidate	 if	 pre-processing	 pipelines	 had	 a	325	
significant	effect	on	activation	extent.	This	omnibus	 test	was	 followed	by	post-hoc	326	
paired	T-tests	to	discover	significant	pair-wise	differences	across	pipelines.	For	non-327	
gated	data	we	only	compared	 three	pipelines—namely	1E,	OC	and	ME-ICA—while	328	
all	4	pipelines	were	compared	using	cardiac-gated	data.	329	
	330	
T-statistic	magnitudes	were	used	as	a	proxy	for	contrast-to-noise	for	the	condition	331	
of	 interest.	 Average	 T-statistic	 values	 were	 computed	 within	 significantly	 active	332	
voxels	 inside	 target	 ROIs.	 For	 all	 pipelines,	we	 computed	 averages	 using	 only	 the	333	
voxels	 that	were	significant	during	the	1E	pipeline	to	ensure	consistency	of	voxels	334	
contributing	to	the	averages.	 	Similar	to	activation	extent,	average	T-statistics	were	335	
submitted	 to	 an	 ANOVA.	 When	 a	 main	 effect	 was	 found,	 post-hoc	 paired	 T-tests	336	
across	pipelines	were	conducted.		337	
	338	
Finally,	 effect	 size	 was	 evaluated	 in	 terms	 of	 average	 coefficient	 fits	 (i.e.,	 beta	339	
weights)	 within	 significantly	 active	 voxels	 inside	 the	 target	 ROIs.	 The	 same	340	
statistical	 tests	 used	 for	 the	 other	 two	 metrics	 were	 also	 used	 for	 effect	 size	341	
measures.		342	
	343	
Estimates	 of	 T1	 baseline	 fluctuations	 in	 cardiac-gated	 data.	 To	 evaluate	 how	344	
well	 ME-ICA	 identifies	 this	 artifact	 specific	 to	 the	 cardiac-gated	 dataset,	 we	345	
computed	 the	 temporal	 Pearson	 correlation	 between	 time	 series	 of	 components	346	
marked	as	noise	by	the	ME-ICA	algorithm	and	estimates	of	T1-related	baseline	shift	347	
estimated	using	the	following	equation:	348	
	349	

𝑇7𝑆ℎ𝑖𝑓𝑡 𝑡 = 1 − 𝑒+(> ? (@ 		(Eq.	3)	350	
	351	
where	TR(t)	refers	to	the	time	between	onsets	of	consecutive	volume	acquisitions;	352	
and	T1	was	set	to	1331	ms,	according	to	previous	estimates	of	T1	for	grey	matter	at	353	
3T	published	by	Wansapura	et	al.	(1999).	This	equation	is	equivalent	to	equation	1	354	
in	Guimares	et	al.	(1998).		355	
	356	
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BOLD	 Contrast	 Simulation.	 To	 understand	 how	 OC	 affects	 effect	 size	 estimates	357	
(i.e.,	 BOLD	 contrast	 estimates),	 we	 generated	 theoretical	 BOLD	 contrast	 and	 OC	358	
weight	curves	for	TEs	ranging	from	0ms	to	200ms	(Fig.	2.A).	OC	weight	curves	were	359	
generated	using	Eq.	2	above.	BOLD	contrast	curves	were	generated	using	equation	3	360	
from	Posse	et	al.	(1999),	reproduced	here:	361	
	362	

Δ𝑆 𝑇𝐸0 = 𝑆B
()6
(,∗
𝑒 +()6 (,∗ C(,∗

(,∗
	(Eq.	4)	363	

	364	
where	 i	 indexes	 echo	 time,	 So	 is	 the	 average	 initial	 signal	 amplitude,	 T2*	 is	 the	365	
average	 transverse	 relaxation	 time	 due	 to	 spin-spin	 interactions	 and	 static	 field	366	
inhomogeneities,	and	ΔT2*	 is	the	stimulus	dependent	change	in	T2*	relaxation	time.	367	
So	 and	 T2*	 were	 estimated	 directly	 from	 the	 data	 using	 AFNI	 program	 tedana.py	368	
(version	2.5,	beta	11),	which	generates	voxel-wise	estimates	of	So	and	T2*.	For	 the	369	
purpose	of	these	simulations,	we	computed	a	single	So	and	T2*	value	as	the	average	370	
of	the	corresponding	voxel-wise	maps	within	significantly	active	voxels	for	the	non-371	
gated	 block-design	 experiments	 across	 all	 subjects	 (T2*=	 44.3	 ±	 3.6;	 So=	 1978	 ±	372	
109).	BOLD	contrast	curves	were	generated	for	three	different	ΔT2*	scenarios:	1,	3	373	
and	7	percent	changes	in	T2*.	374	
	375	
Once	these	curves	were	available,	we	extracted	estimates	of	BOLD	contrast	(ΔS)	and	376	
OC	weights	 (wi)	 for	our	 three	experimental	TEs.	These	were	subsequently	used	 to	377	
compute	 theoretical	 estimates	 of	 BOLD	 contrast	 for	 the	 OC	 approach.	 Figure	 2.B	378	
shows	 the	estimated	BOLD	contrast	 for	 the	middle	echo	(red	bars)	and	OC	(green	379	
bars)	for	the	different	ΔT2*	scenarios.	In	all	instances,	the	OC	BOLD	contrast	is	lower	380	
than	the	middle	echo	BOLD	contrast;	which	predicts	a	decrease	in	estimates	of	effect	381	
size	 for	 the	 OC	 pipeline	 relative	 to	 the	 1E	 pipeline	 should	 be	 observed	 in	 the	382	
experimental	results.		383	
	384	

[INSERT	FIGURE	2	APROX.	HERE]	385	
	386	

Rapid	Event-related	Experiments	387	
	388	
Subjects.	Ten	subjects	(5	males,	5	females,	mean	±	SD	age	=	25	±	3	y.o.)	participated	389	
in	 these	 experiments	 after	 giving	 informed	 consent	 in	 compliance	 with	 the	 NIH	390	
Combined	Neuroscience	 Institutional	Review	Board-approved	protocol	93-M-0170	391	
in	Bethesda,	MD.		392	
	393	
Experimental	 Paradigm.	 The	 PsychoPy	 software	 (Peirce,	 2008)	 was	 used	 for	394	
stimulus	delivery.	Eye	tracking	data	were	collected	to	check	subject’s	performance	395	
(see	below	for	further	description).	Subjects	were	instructed	on	five	different	tasks	396	
prior	to	entering	the	scanner	room.	The	purpose	of	using	five	distinct	tasks	was	to	397	
engage	multiple	cognitive	systems	in	a	single	event-related	study	to	make	sure	the	398	
effects	of	pre-processing	choices	were	not	 restricted	 to	specific	brain	regions.	The	399	
tasks	used	in	these	experiments	are:	400	
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	401	
[INSERT	FIGURE	3	APROX.	HERE]	402	

	403	
• Motor	(MOTOR).	Subjects	were	instructed	to	intermittently	press	one	button	of	a	404	

response	box	with	a	single	finger	at	a	fixed	rate	of	approximately	0.5Hz.	By	using	405	
the	 response	 box	we	were	 able	 to	 objectively	 evaluate	 subject	 compliance	 for	406	
this	 task.	 Motor	 task	 trials	 always	 lasted	 4	 seconds.	 During	 these	 trials,	 three	407	
items	were	presented	on	a	 screen	 (Figure	3.A):	 a	 central	 crosshair	 to	 aid	with	408	
fixation,	 a	 left	 pointing	 arrow	 that	 didn’t	 relate	 to	 task	 instructions,	 and	 an	409	
integer	counter	to	help	subjects	press	the	button	at	a	constant	rate.	All	subjects	410	
performed	 this	 task	 with	 the	 left	 hand	 except	 two,	 who	 were	 inadvertently	411	
provided	with	 the	response	box	on	their	right	hand.	The	hand	used	during	 the	412	
task	was	taken	into	account	during	the	analyses.	413	

	414	
• Biological	Motion	Observation	(BMOT).	Subjects	were	instructed	to	observe	short	415	

4-second	publicly	available	videos	of	dot	patterns	resembling	biological	motion	416	
such	 as	 walking,	 jumping,	 dancing,	 drinking	 and	 climbing	 steps.	 During	417	
biological	motion	 task	 trials,	 the	 crosshair	 disappeared	 from	 the	 center	 of	 the	418	
screen	 and	 the	 corresponding	 video	 appeared	 on	 one	 of	 the	 two	 visual	 hemi-419	
fields	 (right	 or	 left;	 Figure	 3.B).	 The	 position	 of	 the	 videos	 was	 randomized	420	
across	trials	to	aid	with	eye	tracking	data	analysis.	421	

		422	
• Passive	Viewing	of	Houses	(HOUSES).	Subjects	were	instructed	to	attentively	look	423	

at	a	 succession	of	pictures	of	houses	 that	appeared	 in	 the	 center	of	 the	 screen	424	
(Figure	3.C).	Each	house	task	trial	lasted	4	seconds,	during	which	subjects	were	425	
presented	with	six	different	houses.	Each	house	appears	for	approximately	170	426	
milliseconds	with	a	gap	of	approximately	500	milliseconds	 in	between	totaling	427	
to	the	4	seconds	per	trial.	428	

	429	
• Listening	to	Music	(MUSIC).	 Subjects	were	 instructed	 to	 attentively	 listen	 to	 4-430	

second	recordings	of	music	clips	played	by	a	single	instrument—namely	violin,	431	
piano	 or	 drums—and	 to	 direct	 their	 gaze	 to	 the	 picture	 representing	 the	432	
instrument	 being	 played	 as	 soon	 as	 they	 had	 identified	 it.	 During	 each	music	433	
trial,	 in	 addition	 to	 the	 auditory	 stimuli,	 subjects	 were	 presented	 with	 three	434	
pictures	(one	per	instrument)	located	in	a	triangular	arrangement	on	the	screen	435	
(Figure	3.D).	436	

	437	
• Sentence	Reading	(READ).	 Subjects	 were	 instructed	 to	 covertly	 read	 sentences	438	

presented	on	 the	screen	one	word	at	a	 time	(Figure	3.E).	For	each	 trial,	words	439	
were	presented	in	one	of	the	two	hemifields	(right	or	left)	to	aid	with	analysis	of	440	
eye	tracking	data.	All	words	of	a	trial	appeared	on	the	same	hemifield.	Each	word	441	
was	presented	for	approximately	250	milliseconds,	with	gaps	of	approximately	442	
100	 milliseconds	 in	 between.	 Sentences	 ranged	 in	 length	 between	 10	 and	 11	443	
words,	so	each	trial	lasted	either	3400	or	3750	milliseconds.	444	

	445	
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All	functional	runs	lasted	440	seconds	and	contained	a	total	of	30	task	trials,	six	per	446	
task	 type.	 Onset	 times	 for	 trials	 were	 obtained	 with	 Freesurfer	 program	 optseq2	447	
(https://surfer.nmr.mgh.harvard.edu/optseq/),	which	is	designed	to	optimize	timing	448	
of	 events	 for	 event-related	 experiments.	 	 Three	 different	 schedules	 (onset	 times)	449	
were	 randomly	 used	 in	 these	 experiments.	 For	 all	 three	 schedules	 the	 minimum	450	
inter-stimulus	interval	(ISI)	was	10	s.	Mean	and	standard	deviation	ISIs	for	the	three	451	
different	schedules	were:	13	±	24,	13	±	18	and	13	±	15	seconds.	452	
	453	
MRI	Data	Acquisition.	 Imaging	was	performed	on	a	General	Electric	 (GE)	3	Tesla	454	
750	 MRI	 scanner	 (Waukesha,	 WI).	 The	 scanner's	 body	 coil	 was	 used	 for	 RF	455	
transmission,	and	a	32-channel	receive-only	head	coil	(GE,	Waukesha,	WI)	was	used	456	
for	signal	reception.	Functional	scans	were	acquired	with	a	multi-echo	EPI	sequence	457	
(flip	angle=70°	for	9	subjects,	 flip	angle=60°	for	1	subject,	TEs=16.3/32.2/48.1	ms,	458	
TR=2	s,	30	axial	slices,	slice	thickness=4	mm,	in-plane	resolution=3x3	mm2,	FOV	192	459	
mm,	 acceleration	 factor	 2,	 number	 of	 acquisitions	 =	 220,	 bottom/up	 sequential	460	
acquisitions).	 For	 one	 subject,	 acquisitions	were	 interleaved,	 instead	of	 sequential	461	
due	 to	 an	 operator	 error.	 Two	 functional	 runs	were	 acquired	 in	 six	 subjects,	 and	462	
only	one	in	the	remaining	four	due	to	scanning	time	constraints.		463	
	464	
In	 addition,	 MPRAGE	 and	 PD	 sequences	 were	 acquired	 for	 presentation	 and	465	
anatomical	alignment	purposes	(axial	prescription;	number	of	slices	per	slab,	176;	466	
slice	thickness,	1	mm;	square	FOV,	256	mm;	image	matrix,	256	×	256).	467	
	468	
MRI	Data	Pre-processing.	 Data	were	 also	 pre-processed	with	 the	AFNI	 software	469	
(Cox,	1996)	using	the	three	main	pipelines	described	above:	1E	pipeline,	OC	pipeline	470	
and	 ME-ICA	 pipeline.	 All	 runs	 in	 this	 second	 experiment	 were	 acquired	 using	 a	471	
constant	TR,	therefore	the	slice	time	correction	step	is	always	performed	with	AFNI	472	
program	3dTshift.		473	
	474	
Activation	Analysis.	For	this	second	experiment,	each	functional	run	was	analyzed	475	
separately.	Two	different	statistical	analyses	were	conducted	to	generate	activation	476	
maps.	First,	we	computed	activation	maps	per	task-type,	taking	into	account	all	30	477	
trials	 in	 a	 run.	 Second,	 we	 attempted	 detection	 of	 individual	 trials,	 generating	478	
activation	maps	for	each	trial	independently.		479	
	480	
For	 the	 ME-ICA	 pipeline,	 degrees	 of	 freedom	 were	 adjusted	 to	 account	 for	 the	481	
number	 of	 removed	 components	 when	 computing	 statistical	 significance	 for	 this	482	
particular	pipeline.		483	
	484	
Per-Task	Activation	Maps.	 	Following	each	pre-processing	pipeline,	activation	maps	485	
for	the	five	contrasts	of	interest	(e.g.,	music	vs.	rest,	read	vs.	rest,	etc.)	were	obtained	486	
separately	 for	 each	 run	 and	 subject	 using	 AFNI	 program	 3dREMLFit.	 Motion	487	
parameters,	 their	 first	derivatives	and	Legendre	polynomials	up	 to	3rd	order	were	488	
used	as	covariates	of	no	interest.	All	activation	maps	were	thresholded	at	pFDR<0.05.	489	
	490	
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Per-Trial	Activation	Maps.	 	Following	each	pre-processing	pipeline,	activation	maps	491	
for	 each	 individual	 trial	 of	 each	 task	 were	 also	 computed	 with	 AFNI	 program	492	
3dREMLFit,	using	 the	 individual	modulation	option	 (-stim_times_IM)	 that	 instructs	493	
the	 program	 to	 generate	 a	 separate	 regressor	 per	 individual	 trial	 so	 that	 it	 can	494	
compute	statistics	(i.e.,	effect	size	and	T-stat)	for	each	individual	task	event.	Motion	495	
parameters,	 their	 first	derivatives	and	Legendre	polynomials	up	 to	3rd	order	were	496	
used	as	covariates	of	no	interest.	All	activation	maps	were	thresholded	at	pFDR<0.05.	497	
	498	
Target	Regions	of	Interest.	Five	different	target	ROI	sets,	one	per	task	type,	were	499	
used	 in	 this	 second	 experiment.	 Three	 ROI	 sets	 (i.e.,	 HOUSES,	 MUSIC	 and	 READ)	500	
were	obtained	using	the	Neurosynth	tool	(Yarkoni	et	al.,	2011)	and	two	(i.e.,	MOTOR	501	
and	 BMOT)	 using	 cytoarchitectural	 maximum	 probability	 maps	 distributed	 with	502	
AFNI.	503	
	504	
• MOTOR	ROIs.	 Voxels	 with	 a	 probability	 of	 being	 in	 task-contralateral	 anterior	505	

and	posterior	Brodmann	Area	4	greater	than	70%	according	to	cytoarchitectural	506	
maximum	 probability	 maps	 for	 these	 regions	 (Geyer	 et	 al.,	 1996)	 distributed	507	
with	AFNI	(Figure	4.A).	508	

		509	
• BMOT	 ROIs.	 Voxels	 inside	 bilateral	 human	 occipital	 visual	 area	 5	 (hOC5)	510	

according	 to	 cytoarchitectural	 maximum	 probability	 maps	 for	 this	 region	511	
(Malikovic	et	al.,	2006)	distributed	with	AFNI	(Figure	4.B).	512	

	513	
• HOUSES	ROIs.	Voxels	inside	reverse	inference	maps	generated	by	the	Neurosynth	514	

tool	for	the	concept	“place”	covering	bilateral	place	parahippocampal	region	and	515	
bilateral	posterior	cingulate	cortex	(Figure	4.C).	No	map	 for	concept	 “house”	 is	516	
currently	available	at	Neurosynth.			517	

	518	
• MUSIC	ROIs.	These	are	the	same	ROIs	derived	from	Neurosynth	used	in	519	

experiment	one.	520	
	521	

• READ	ROIs.	 Voxels	 inside	 reverse	 inference	maps	 generated	by	 the	Neurosynth	522	
tool	 for	 the	 concept	 “reading”	 covering	primarily	 large	portions	of	 left	 inferior	523	
and	 middle	 frontal	 gyrus,	 the	 left	 posterior	 superior	 temporal	 gyrus,	 the	 left	524	
fusiform	gyrus	 (e.g.,	 visual	word	 form	area)	and	bilateral	higher	visual	 regions		525	
(Figure	4.D).	526	

	527	
[INSERT	FIGURE	4	APROX.	HERE]	528	

	529	
Performance	Metrics.	Similarly	to	the	block-design	experiments,	we	evaluated	the	530	
different	 pre-processing	 pipelines	 in	 terms	 of	 activation	 extent,	 T-statistic	531	
magnitude	and	effect	size	using	the	per-task	activation	maps	and	task-specific	target	532	
ROIs.	We	computed	the	three	metrics	for	each	task,	and	then	evaluated	if	there	was	533	
any	 significant	 difference	 across	 pre-processing	 pipelines	 using	 a	 3-way	 mixed-534	
effects	 ANOVA	 [A=Subject|Random;	 B=Pipeline|Fixed;	 C=Task|Fixed]	 in	 MATLAB.	535	
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Post-hoc	 paired	 T-tests	 between	 pre-processing	 pipelines	 were	 also	 conducted	 to	536	
detect	significant	differences	between	pairs	of	pipelines.	537	
	538	
For	 the	 per-trial	 analysis,	 we	 evaluated	 the	 performance	 of	 the	 different	 pre-539	
processing	pipelines	in	terms	of	the	percentage	of	detected	trials.	Each	run	contains	540	
30	trials	(6	per	task)	leading	to	a	total	of	480	trials	(6	subjects	x	2	runs	x	5	tasks	x	6	541	
events	+	4	subjects	x	1	run	x	5	tasks	x	6	events)	in	these	experiments.		Subjects	were	542	
actively	engaged	in	473	of	them	according	to	behavioral	and	eye	tracking	data	(see	543	
details	below).	 	For	each	attended	trial,	we	evaluated	 its	 fMRI	activation	map,	and	544	
marked	 the	 trial	 as	 “detected”	 if	 its	 associated	 activation	 map	 had	 at	 least	 10	545	
significantly	active	voxels	(pFDR	<	0.05)	inside	the	appropriate	target	ROI	set.	Finally,	546	
percent	of	detected	trials	per	task/per	subject	were	computed	and	input	to	a	3-way	547	
mixed	effect	ANOVA	and	subsequent	post-hoc	paired	T-tests	in	a	manner	similar	to	all	548	
other	performance	metrics.	549	

Temporal	Signal-To-Noise	Ratio	(TSNR).	To	evaluate	how	much	the	percentage	of	550	
detected	 events	 correlates	with	 initial	 data	 quality,	 we	 computed	 the	 TSNR	 of	 all	551	
scans.	TSNR	is	defined	voxel-wise	as	the	ratio	of	the	temporal	average	of	the	signal	552	
for	 a	 given	 voxel	 divided	by	 the	 temporal	 standard	deviation	 of	 the	 signal	 in	 that	553	
same	 voxel (Parrish et al., 2000).	 Voxel-wise	 TSNR	 values	 are	 often	 averaged	 across	554	
voxels	for	reporting	purposes.		555	

Here	we	first	computed	voxel-wise	TSNR	maps	for	each	echo	separately	right	after	556	
discarding	 non-steady	 state	 volumes.	 A	 single	 TSNR	 value	 per	 echo	 (e)	 and	557	
functional	 run	 (r)	 was	 computed	 as	 the	 average	 of	 TSNR	 values	 across	 all	 intra-558	
cranial	voxels	 in	 the	 imaging	 field	of	view.	Additionally	an	overall	 (across	echoes)	559	
TSNR	value	per	functional	run	(r)	was	computed	using	the	following	equation:	560	

𝑇𝑆𝑁𝑅F =
()G×(/I>J,G*

GK@
()G*

GK@
		(Eq.	5) 561	

Eye	Tracker	Data	Acquisition.	 An	MRI	 compatible	 infrared	 eye	 tracking	 system,	562	
consisting	of	an	 infrared	source	and	camera,	mounted	on	 top	of	 the	head	coil	was	563	
used	to	track	the	right	eye’s	gaze	position	during	functional	scans	(Avotec	Real	Eye	564	
Model	RE-5701;	Avotec	Inc.,	Stuart,	FL).	The	eye-gaze	position	was	sampled	at	a	rate	565	
of	60Hz	using	the	SMI	iViewX	software.	The	PsychoPy	software,	in	conjunction	with	566	
home	 developed	 python	 add-ons	 for	 integration	 with	 iViewX	567	
(https://github.com/djangraw/PsychoPyParadigms),	was	used	 for	running	 the	13-568	
point	 eye	 tracker	 calibration	 protocol,	 as	 well	 as	 for	 synchronizing	 eye	 tracker	569	
recordings	with	stimulus	presentation	during	functional	scans.		570	

Eye	 Tracking/Behavioral	 Data	 Analysis.	 The	 eye-tracking	 data	 were	 analyzed	571	
using	 the	 Open	 Gaze	 And	 Mouse	 Analyzer	 package	 (OGAMA;	 (Vosskühler	 et	 al.,	572	
2008)).	 Visual	 field	 areas	 of	 interest	 (AOI)	 specific	 to	 each	 task	 (Supplementary	573	
Figure	 1)	 were	 first	 defined	 using	 OGAMA’s	 AOI	 tool.	 We	 then	 used	 the	 OGAMA	574	
Statistics	Module	 to	 compute	 fixation	 time	and	percent	 time	 inside	 target	AOIs	 for	575	
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each	 trial.	 We	 declared	 events	 as	 “valid”	 (e.g.,	 subjects	 attended	 to	 them)	 if	 the	576	
subject’s	total	gaze	duration	inside	the	target	AOI	was	equal	or	greater	than	75%	of	577	
the	trial’s	duration.	This	cutoff	at	75%	was	used	to	account	for	inherent	jitter	in	the	578	
eye	tracker	and	for	blinking	periods.	For	trials	with	large	jitter,	we	used	the	OGAMA	579	
Replay	Module	 to	 ensure	 the	 eye	 path	 showed	 a	 focus	 on	 the	 target	 AOI	 prior	 to	580	
assigning	a	definitive	“valid”	label.		581	

For	MOTOR	trials,	an	event	was	declared	“valid”	only	 if	 in	addition	to	fulfilling	the	582	
above-mentioned	 eye-tracking	 criteria,	 a	 minimum	 of	 4	 button	 presses	 (half	 the	583	
number	of	expected	presses)	was	 logged	by	 the	response	box	during	 the	 trial.	For	584	
four	functional	scans	button	box	responses	were	not	recorded	due	to	an	operator’s	585	
error.	Only	the	eye-tracking	criterion	was	applied	to	these	subjects.		586	

For	MUSIC	 trials,	 an	 event	was	declared	 “valid”	 only	 if	 in	 addition	 to	 fulfilling	 the	587	
above-mentioned	 eye-tracking	 criteria,	 subjects	 directed	 their	 gaze	 towards	 the	588	
instrument	picture	 that	 corresponds	 to	 the	actual	 instrument	being	played	during	589	
that	specific	trial.	590	

RESULTS	591	

Block	Design	Experiments	592	
	593	

[INSERT	FIGURE	5	APROX.	HERE]	594	
	595	
Figure	5	 shows	probabilistic	maps	of	 activation	 (i.e.,	 the	 color	of	 a	voxel	 indicates	596	
the	 percentage	 of	 subjects	 for	 which	 that	 voxel	 was	 marked	 as	 statistically	597	
significant	 at	 pFDR<0.05)	 for	 the	 music	 vs.	 rest	 contrast	 for	 all	 pre-processing	598	
pipelines	 evaluated	 using	 the	 block-design	 dataset.	 Target	ROIs	 are	 shown	with	 a	599	
black	contour.	In	all	instances,	strong	activation	was	present	in	bilateral	portions	of	600	
the	superior	temporal	gyrus,	including,	but	not	limited	to,	primary	auditory	cortex.	601	
Activity	was	 present	 in	 additional	 regions	 only	 for	 a	 subset	 of	 the	 subjects.	 In	 all	602	
instances,	 ME-ICA	 produced	 the	 highest	 number	 of	 significantly	 active	 voxels	603	
(Figure	 6.A).	 Regarding	 the	 IC,	 only	 the	 ME-ICA	 pipeline	 detected	 activity	 in	 this	604	
structure	using	 cardiac-gated	datasets	 (Table	1.A),	 and	 it	 did	 so	 for	 all	 5	 subjects.	605	
For	non-gated	data,	although	activity	could	be	detected	 in	some	instances,	ME-ICA	606	
had	the	best	sensitivity	(Table	1.B).		607	
	608	

[INSERT	TABLE	1	APROX.	HERE]	609	
	610	
Figure	6	shows	quantitative	results	from	the	performance	analyses	conducted	in	the	611	
block-design	 datasets	 using	 the	 Neurosynth-derived	 target	 ROI	 set.	 A	 significant	612	
effect	for	the	“pipeline”	factor	was	found	during	the	ANOVA	analyses	for	activation	613	
extent	 (F=82.15;	p<0.05),	T-statistic	magnitude	 (F=104.75;	p<0.05)	 and	 effect	 size	614	
(F=6.12;	p<0.05)	for	the	non-gated	data	(top	row	in	Figure	6).	Subsequent	paired	T-615	
tests	 between	 pairs	 of	 pipelines	 revealed	 that	 ME-ICA	 produced	 maps	 with	616	
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significantly	more	 activation	 extent	 and	 higher	T-statistic	 than	 all	 other	 pipelines	617	
(marked	with	an	asterisk	in	Figure	6).	For	effect	size,	both	OC	and	ME-ICA	produced	618	
significantly	smaller	estimates	than	the	1E	pipeline.	In	the	case	of	cardiac-gated	data	619	
(bottom	row	in	Figure	6),	we	also	 included	in	the	comparison	the	1E-T1C	pipeline	620	
(orange	 bars).	 For	 cardiac-gated	 data,	 we	 also	 found	 a	 significant	main	 effect	 for	621	
pipeline	 in	 activation	 extent	 (F=89.6;	 p<0.05)	 and	 activation	 magnitude	 (F=74.2;	622	
p<0.05),	but	not	in	effect	size	(F=2.4;	p=0.11).	ME-ICA	significantly	outperforms	all	623	
other	pipelines	in	terms	of	activation	extent	and	activation	magnitude,	according	to	624	
post-hoc	 paired	 T-tests	 (asterisks	 in	 Figure	 6).	 In	 addition,	 the	 1E-T1C	 pipeline	625	
resulted	in	significantly	higher	activation	extent	and	T-stat	than	the	1E	pipeline,	but	626	
significantly	less	than	ME-ICA.	627	
	628	
Finally,	both	for	gated	and	non-gated	data,	the	T2*	pipeline	(yellow	bars)	resulted	in	629	
significantly	 lower	 activation	 extent	 and	magnitude	 than	 both	 the	 1E	 and	ME-ICA	630	
pipelines	marked	with	asterisks	in	Figure	6.		631	

ME-ICA	reliably	corrects	T1	baseline	shifts	in	cardiac-gated	datasets	632	
	633	
Performance	 analyses	 for	 the	 cardiac-gated	 data	 suggest	 that	ME-ICA	was	 able	 to	634	
effectively	identify	and	remove	nuisance	T1-related	baseline	fluctuations	associated	635	
with	 the	 non-constant	 TR.	 Figure	 6	 shows,	 for	 each	 subject,	 the	 one	 ME-ICA	636	
component	with	 the	 highest	 rho	 (i.e.,	 non-BOLD	 index).	 Such	 a	 component,	which	637	
was	always	marked	as	noise	by	 the	 algorithm,	had	 in	 all	 cases	 an	associated	 time	638	
series	 that	 correlated	 well	 (r	 =	 0.84	 ±	 0.16)	 with	 estimates	 of	 T1	 baseline	 signal	639	
fluctuations	obtained	with	Eq.	1	(red	traces	 in	the	Figure	7).	Moreover,	 the	spatial	640	
maps	of	these	components	(right	of	Figure	7)	resemble	anatomical-like	scans	with	641	
good	 contrast	 between	 tissue	 compartments	 (e.g.,	 grey	 matter,	 white	 matter	 and	642	
CSF).	 These	 are	 substantially	 different	 from	 the	 spatial	 maps	 of	 typical	 noise	643	
components	 associated	 with	 motion	 or	 scanner	 artifacts,	 as	 well	 as,	 from	 spatial	644	
maps	 typical	 of	 BOLD-like	 components	 (see	 Supplementary	 Figure	 2	 for	645	
representative	components	of	each	type).		646	

Event	Related	Experiments	647	
	648	
Figure	8	shows	probabilistic	maps	of	activation	across	runs	for	the	per-task	analyses	649	
in	all	 five	tasks	for	the	three	main	pipelines	under	evaluation	(1E,	OC	and	MEICA).	650	
The	color	of	a	voxel	 in	 these	maps	 indicates	 the	percentage	of	runs	 for	which	that	651	
voxel	was	marked	as	significant	(pFDR<0.05).	Per-task	target	ROI	sets	are	shown	as	652	
black	 contours.	 For	 all	 tasks,	 there	 is	 an	 increase	 in	 the	 extent	 of	 areas	 of	 high	653	
probability	of	activation	(red	arrows)	going	from	left	(1E	pipeline)	to	right	(ME-ICA	654	
pipeline).	Such	increases	are	not	constrained	solely	to	the	target	ROIs	for	each	task,	655	
but	 also	 happen	 outside	 them	 (e.g.,	 medial	 supplementary	 motor	 cortex	 for	 the	656	
motor	 task).	 In	 addition,	 figure	8	 shows	how	 there	 is	 an	 increase	 in	 the	 extent	 of	657	
significantly	active	regions	for	the	multi-echo	pipelines,	especially	for	ME-ICA.	This	658	
is	particularly	true	for	subcortical	regions	(black	arrows).	659	
	660	
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Figure	 9	 shows	 the	 results	 for	 the	 different	 performance	metrics	 for	 the	 per-task	661	
analyses.	Similar	to	the	block-design	results,	we	observed	an	increase	in	activation	662	
extent	and	T-statistic	magnitude	for	the	ME-ICA	pipeline	with	respect	to	OC	and	1E	663	
pipelines.	 Conversely,	 the	 effect	 size	 estimate	 decreased	 for	 the	 OC	 and	 ME-ICA	664	
pipelines	compared	to	the	1E	pipeline.	This	is	true	for	all	five	tasks.	ANOVA	revealed	665	
a	main	 effect	 for	 pipeline	 in	 all	 three	metrics:	 activation	 extent	 (F=90.3;	 p<0.05),	666	
activation	 magnitude	 (F=40.4;	 p<0.05),	 and	 effect	 size	 (F=86.9;	 p<0.05).	 Post-hoc	667	
paired	T-tests	revealed	significant	pair-wise	differences	between	all	pipelines	for	all	668	
tasks	 in	 terms	 of	 activation	 extent	 (marked	 with	 asterisks	 in	 Figure	 9).	 For	669	
activation	magnitude	 and	 effect	 size,	 a	 significant	 difference	 between	ME-ICA	 and	670	
the	1E	pipeline	was	detected	in	all	instances.	These	results	are	consistent	with	those	671	
from	 the	 block	 design	 experiments	 and	 suggest	 that	 ME-ICA	 helps	 improve	 the	672	
sensitivity	of	rapid	event-related	experiments	for	a	variety	of	tasks.	673	
	674	
Finally,	figure	10.A	shows	the	percent	of	detected	trials	(pFDR	<	0.05)	for	all	pipelines	675	
and	 tasks	 coming	 out	 of	 the	 per-trial	 analyses.	 The	 fraction	 of	 detected	 trials	 is	676	
below	 50%	 for	 the	 MOTOR,	 BMOT	 and	 READING	 task	 in	 all	 instances.	 Only	 the	677	
HOUSES	and	MUSIC	tasks	reach	levels	above	50%	for	the	ME-ICA	pipeline.	In	fact,	in	678	
all	cases,	ME-ICA	produced	on	average	a	larger	percent	of	detected	events	than	the	679	
other	two	pipelines	(except	for	the	reading	task,	where	the	OC	and	ME-ICA	pipeline	680	
have	 similar	 results).	 The	 ANOVA	 on	 this	 metric	 also	 showed	 a	 significant	 main	681	
effect	 for	 the	 factor	 “pipeline”	 (F=10.3;	 p<0.05),	 yet	 post-hoc	 paired	 T-tests	 only	682	
revealed	a	significant	difference	in	percent	of	detected	trials	for	the	ME-ICA	pipeline	683	
for	the	MOTOR,	HOUSES	and	MUSIC	tasks.	When	a	less	restrictive	threshold	(Figure	684	
10.B,	 pUnc	 <	 0.001)	 is	 used,	 the	 number	 of	 detected	 events	 increases,	 yet	 the	685	
relationships	between	pipelines	described	above	remain.		686	
	687	
Detailed	 evaluation	 of	 individual	 subject	 results	 revealed	 substantial	 inter-subject	688	
differences	in	the	percent	of	detected	trials.	While	some	subjects	had	relatively	high	689	
detection	percent	for	most	tasks	(e.g.,	above	50%),	others	had	low	detection	percent	690	
(e.g.,	 below	20%)	 for	 all	 tasks.	 Low	detectability	 for	 individual	 events	 is	 expected	691	
given	limitations	in	statistical	power	when	attempting	their	detection	on	a	trial-by-692	
trial	 basis;	 yet	 to	 better	 understand	 such	 inter-subject	 differences,	 we	 computed	693	
TSNR	 for	 all	 available	 scans	 in	 the	 event-related	 dataset	 (Figure	 11.A).	 We	 also	694	
computed	the	weighted	average	TSNR	across	all	three	echoes	as	a	proxy	for	overall	695	
data	 quality	 of	multi-echo	 scans	 (Figure	 11.A,	 grey	 region).	 Figure	 11B	 –	 D	 show	696	
scatter	 plots	 of	 percent-detected	 events	 versus	 TSNR	 for	 all	 three	 pipelines,	697	
excluding	the	scan	marked	as	an	outlier	(Figure	11.A).	In	all	instances,	including	ME-698	
ICA,	we	 observed	 a	 significant	 correlation	 between	 percent	 of	 detected	 trials	 and	699	
initial	 data	 quality	 (TSNR).	 This	 suggests	 that	 despite	 the	 ME-ICA	 denoising	 step	700	
there	is	still	a	strong	dependence	of	the	results	on	the	original	quality	of	the	data.		701	
	702	

Number	of	ME-ICA	components.		703	
	704	
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Table	2	shows	the	average	number	of	components	found	by	the	ME-ICA	algorithm	705	
for	all	datasets,	as	well	as	the	number	of	components	being	rejected	(i.e.,	marked	as	706	
noise	by	the	algorithm).		707	

DISCUSSION	708	
	709	
Here	 we	 have	 evaluated	 the	 performance	 of	 ME-ICA	 with	 respect	 to	 an	 optimal	710	
linear	weighted	combination	of	multi-echo	time	series	(Poser	et	al.,	2006;	Posse	et	711	
al.,	1999)	and	conventional	analysis	of	 single-echo	 fMRI	data	under	different	 task-712	
based	experimental	setups	(i.e.,	block	designs	and	rapid	event-related	designs)	and	713	
acquisition	strategies	(i.e.,	constant	TR	and	cardiac-gated).	In	all	 instances,	ME-ICA	714	
outperformed	 the	 other	 pre-processing	 approaches	 in	 terms	 of	 activation	 extent,	715	
activation	 magnitude	 and	 ability	 to	 detect	 responses	 to	 individual	 trials.	 This,	716	
despite	 an	 average	 reduction	 in	 available	 degrees	 of	 freedom	 due	 to	 removal	 of	717	
noise	ICA	components	(see	Table	2).	All	together,	these	results	suggest	that	ME-ICA	718	
can	 reliably	 help	 improve	 the	 sensitivity	 of	 task-based	 fMRI	 experiments	 at	 the	719	
single	subject	level.	Thus,	we	extend	prior	work	focused	primarily	on	the	evaluation	720	
of	ME-ICA	within	 the	 framework	of	 resting-state	 and	 functional	 connectivity	 fMRI	721	
studies.	722	

ME-ICA	for	cardiac-gated	acquisitions	723	
		724	
Cardiac-gated	fMRI	datasets	constitute	a	particular	case	of	fMRI	data	contaminated	725	
by	 strong	 T1-related	 baseline	 signal	 fluctuations	 derived	 from	 non-constant	726	
acquisition	 times.	 As	 such,	 specific	 analytical	 techniques	 have	 been	 proposed	 for	727	
dealing	with	these	particular	datasets.	Here,	in	addition	to	the	1E	and	OC	pipelines,	728	
we	also	evaluated	ME-ICA	against	two	such	specific	methods:	(a)	a	model-driven	T1	729	
baseline	signal	correction	method	(1E-T1C	pipeline;	(Guimares	et	al.,	1998));	and	(2)	730	
a	dual-echo	T2*	estimate	approach	(T2*		pipeline;	(Beissner	et	al.,	2010)).	Our	results	731	
show	how	ME-ICA	outperformed	all	four	pipelines	in	terms	of	activation	extent	and	732	
magnitude;	 suggesting	ME-ICA	may	 be	 the	 preferable	 approach	 for	 such	 datasets.	733	
Below	we	discuss	the	relative	differences	across	all	pipelines.	734	
	735	
Only	 two	 pipelines,	 the	 1E-T1C	 and	 ME-ICA,	 significantly	 outperformed	 the	 1E	736	
pipeline	 in	 cardiac-gated	 datasets.	 This	 suggests	 that	 these	 two	 pre-processing	737	
approaches	 were	 able	 to	 account,	 at	 least	 partially,	 for	 the	 above-mentioned	 T1-738	
related	signal	fluctuations.	The	same	was	not	true	for	T2*	and	OC.	For	example,	while	739	
the	OC	pipeline	significantly	outperformed	the	1E	pipeline	for	non-gated	data,	such	740	
was	 not	 the	 case	 for	 cardiac	 gating.	 In	 fact,	 for	 gated	 data,	 activation	 extent	 and	741	
magnitude	significantly	decreased	for	the	OC	pipeline	relative	to	1E	(Figure	6).	This	742	
is	 because	 the	T1	 artifacts	 that	 affect	 gated	 acquisitions	 are	 equally	 present	 in	 all	743	
echoes,	and	a	simple	linear	voxel-wise	combination	of	the	different	echo	time	series	744	
does	 not	 eliminate	 them.	 Contrarily,	 it	 seems	 to	 enhance	 them	 relative	 to	 other	745	
signal	components	according	to	our	results.		746	
	747	
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In	the	case	of	the	T2*	approach,	this	pipeline	resulted	in	the	lowest	activation	extent	748	
and	magnitude	for	both	gated	and	non-gated	datasets.	Although	for	the	purpose	of	749	
T2*	 estimation,	 data	were	 spatially	 smoothed	 prior	 to	 computing	T2*	estimates	 (as	750	
previously	 suggested	 (Beissner	 et	 al.,	 2010)),	 numerical	 instabilities	 in	 the	751	
computation	 of	 the	 voxel-wise	 signal	 quotients	 (Eq.	 1)	might	 have	 resulted	 in	T2*	752	
estimates	 with	 higher	 noise	 than	 original	 single	 echo	 time	 series;	 leading	 to	 the	753	
reported	decrease	in	activation	extent	and	magnitude.	Similarly	to	here,	a	decrease	754	
in	 activation	 extent	 from	 single	 echo	 to	 dual-echo	 T2*	estimates	 was	 previously	755	
reported	by	Beissner	et	al.	(2010)	using	a	finger	tapping	task;	suggesting	this	issue	756	
is	not	specific	to	our	dataset.	757	
	758	
The	1E-T1C	pipeline	significantly	outperformed	the	1E	pipeline,	yet,	 it	still	yielded	759	
significantly	 less	 activation	magnitude	and	extent	 than	ME-ICA.	Moreover,	 the	1E-760	
T1C	pipeline	requires	accurate	logging	of	the	interval	of	time	that	elapses	between	761	
consecutive	 images	 and	 relies	 on	 obtaining	 accurate	 estimations	 of	T1	 across	 the	762	
brain,	which	can	be	problematic	when	attempting	imaging	of	certain	structures	such	763	
as	 the	 spinal	 cord	 (Xie	 et	 al.,	 2012).	 Here	we	 demonstrate	 how	ME-ICA	 can	 be	 a	764	
viable	alternative	 for	denoising	cardiac-gated	datasets	 that	 lacks	 these	 limitations.	765	
In	 addition,	 ME-ICA,	 in	 this	 context,	 provides	 a	 qualitative	 T1	 map	 as	 a	 major	766	
component.	This	T1	map	may	be	used	for	image	registration	or	other	analyses.		767	
	768	
One	 important	 factor	 contributing	 to	 the	 superior	 performance	 of	 ME-ICA	 in	769	
cardiac-gated	data	 is	 that	ME-ICA	was	able	 to	reliably	detect	components	strongly	770	
correlated	 with	 T1	artifacts.	 This	 is	 clearly	 exemplified	 by	 the	 fact	 that	 ME-ICA	771	
always	assigned	 the	highest	 rho	 (i.e.,	non-BOLD	 likelihood)	and	 lowest	kappa	(i.e.,	772	
BOLD	 likelihood)	 to	a	 component	whose	 time	series	 strongly	 correlated	 (r=0.84	±	773	
0.16)	 with	 estimations	 of	 T1-related	 signal	 shifts	 associated	 with	 the	 irregular	774	
acquisition	 intervals	 (Figure	 7).	Moreover,	 the	 average	 rho	 for	 this	 “cardiac-gated	775	
artifactual	 component”	 detected	 by	 ME-ICA	 was	 on	 average	 237.1	 ±	 59.6.	 The	776	
average	 rho	 for	 all	 other	 noise	 components	 across	 all	 subjects	 in	 the	 non-gated	777	
datasets	(which	lacks	such	T1	artifacts)	was	28.7	±	11.0,	approximately	an	order	of	778	
magnitude	 less.	 This	 shows	 how	 robustly	 ME-ICA	 can	 identify	 this	 T1	 artifactual	779	
component	 specific	 to	 gated	datasets.	 It	 also	highlights	 the	potential	 of	ME-ICA	 to	780	
identify	and	remove	other	T1-related	artifacts	such	as	those	associated	with	inflow	781	
effects	 in	 constant	 TR	 acquisitions,	 which	 are	 otherwise	 difficult	 to	 model	 and	782	
account	for.		783	
	784	

ME-ICA	for	constant-TR	acquisitions	785	
	786	
For	 non-gated	 data,	 the	 improvements	 derived	 from	 the	 use	 of	ME-ICA,	 although	787	
also	 statistically	 significant	 relative	 to	 the	 other	 pipelines,	 were	 smaller	 in	788	
magnitude	(see	Figure	6).	This	may	have	been	because	all	pre-processing	pipelines	789	
included	 corrective	 steps	 for	 common	 artifacts	 such	 as	 slow	 signal	 drifts	 (via	790	
regression	of	Legendre	polynomials),	head	motion	(via	rigid	spatial	realignment	and	791	
regression	 of	motion	 estimates	 and	 their	 first	 derivatives)	 and	 thermal	 noise	 (by	792	
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means	 of	 smoothing).	 Our	 data	 suggest	 that	 although	 ME-ICA	 statistically	793	
outperformed	the	other	pipelines,	the	standard	pre-processing	pipeline	was	able	to	794	
account,	 to	 a	 large	 extent,	 for	 the	 detrimental	 effects	 of	 these	 important	795	
contaminating	sources,	 leaving	a	narrower	margin	of	 improvement	for	the	ME-ICA	796	
algorithm.	 Nevertheless,	 the	 combined	 results	 from	 the	 gated	 and	 non-gated	797	
experiments	highlight	the	versatility	of	ME-ICA	to	detect	different	types	of	artifacts	798	
without	the	need	to	adapt	pre-processing	pipelines	to	the	specific	characteristics	of	799	
each	dataset.		800	
	801	
Detailed	 exploration	 of	 ME-ICA	 components	 marked	 as	 noise	 suggests	 that	802	
additional	 gains	 in	 sensitivity	 (relative	 to	 the	 other	 pipelines)	 came	 from	 the	803	
removal	 of	 physiological	 noise,	 scanner	 instabilities	 other	 than	 slow	 signal	 drifts,	804	
and	 residual	 head	 motion	 related	 artifacts.	 For	 all	 subjects	 and	 experimental	805	
paradigms,	ME-ICA	removed	components	with	temporal	and	spatial	patterns	typical	806	
of	these	artifactual	sources	(Supplementary	Figure	2.A	–	D).	Yet,	it	is	worth	noticing	807	
that	 we	 still	 found	 a	 significant	 relationship	 between	 original	 per-run	 TSNR	 and	808	
detection	percent	of	individual	trials	after	ME-ICA	(Figure	11.D).	This	suggests	that	809	
residual	 traces	 of	 noise	 persist	 in	 the	 data	 despite	 the	 application	 of	ME-ICA,	 and	810	
sensitivity	 is	 still	 dependent	 on	 original	 data	 quality.	 Additional	 improvements	 to	811	
the	ME-ICA	 algorithm	and	optimization	 of	multi-echo	 acquisition	parameters	may	812	
help	mitigate	this	situation	(please	see	Future	Directions	below	for	a	more	detailed	813	
discussion).	814	
	815	
All	improvements	in	activation	extent	and	magnitude	happened	despite	a	significant	816	
decrease	 in	 estimated	 effect	 size	 from	 the	 1E	 relative	 to	 the	 OC	 and	 ME-ICA	817	
pipelines.	Although	an	additional	significant	decrease	in	effect	size	from	OC	to	ME-818	
ICA	 was	 observed,	 it	 was	 limited	 to	 only	 three	 tasks	 in	 the	 event	 related	819	
experiments.	 This	 observation,	 combined	with	 the	 fact	 that	OC	 is	 an	 intermediate	820	
component	of	the	ME-ICA	algorithm,	suggests	that	the	main	cause	of	the	decrease	in	821	
effect	 size	 estimates	 is	 this	 OC	 step.	 This	 is	 in	 agreement	with	 the	 simulations	 of	822	
BOLD	 contrast	 and	 OC	 weights	 shown	 in	 Figure	 2.	 The	 OC	 scheme	 used	 here	823	
corresponds	to	a	previously	proposed	voxel-wise	 linear	combination	of	multi-echo	824	
time	 series	 designed	 to	 optimize	 BOLD	 contrast-to-noise	 (Posse	 et	 al.,	 1999);	 not	825	
simply	BOLD	contrast.	With	the	exception	of	the	cardiac-gated	case,	the	OC	pipeline	826	
always	resulted	in	an	increase	in	activation	magnitude	and	a	decrease	in	effect	size	827	
relative	 to	 the	1E	pipeline;	 confirming	 that	 the	OC	 approach	 yielded	 the	 expected	828	
overall	increase	in	BOLD	contrast-to-noise;	despite	a	concomitant	decrease	in	effect	829	
size.		830	
	831	
Overall	experimental	decreases	in	effect	size	from	1E	to	OC	(Non-gated	Block	Data:	832	
13.14%;	Event-related:	8.86%)	were	larger	than	those	in	the	simulations	(6.63%).	It	833	
is	 possible	 that	 small	 errors	 in	T2*	 estimates,	 given	 the	 limited	 number	 of	 echoes	834	
available,	or	the	fact	that	we	did	not	correct	for	the	use	of	parallel	imaging	(Poser	et	835	
al.,	 2006),	 may	 have	 affected	 weight	 computations	 and	 produced	 the	 observed	836	
additional	 decrease	 in	 effect	 size.	 Also,	 other	 weighting	 methods,	 such	 as	 those	837	
based	on	temporal	signal-to-noise	estimates	(Poser	et	al.,	2006),	may	help	alleviate	838	
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these	issues.		Nevertheless,	despite	the	decrease	in	effect	size	estimates,	the	OC	step	839	
led	 to	 an	 overall	 improvement	 in	 BOLD	 contrast-to-noise	 as	 evidenced	 by	 the	840	
increases	 in	 activation	 extent	 and	 activation	magnitude.	 The	 same	 is	 true	 for	ME-841	
ICA.	842	
	843	
Finally,	 it	 is	worth	noting	 that	 the	performance	of	ME-ICA	was	 tested	 for	 the	 two	844	
most	 common	 task-based	 experimental	 paradigms	 (block	 and	 event	 related).	845	
Moreover,	for	event	related	paradigms,	we	used	five	tasks	expected	to	evoke	activity	846	
in	many	different	brain	regions,	including	but	not	limited	to,	primary	sensory	motor	847	
cortex.	 In	 all	 instances,	 ME-ICA	 outperformed	 the	 other	 pipelines	 in	 terms	 of	848	
activation	extent	and	magnitude.	In	terms	of	detectability	of	individual	events,	ME-849	
ICA	did	better	in	all	tasks,	although	pairwise	comparison	only	reached	significance	850	
for	three	of	the	five	tasks.	These	results	suggest	that	our	conclusions	regarding	the	851	
better	 performance	 of	 ME-ICA	 over	 traditional	 single-echo	 fMRI	 and	 optimal	852	
combination	 of	multi-echo	 data	 generalize	well	 across	 tasks	 and	paradigms.	 Prior	853	
studies	have	demonstrated	the	ability	of	ME-ICA	to	improve	functional	connectivity	854	
analysis,	especially	for	subcortical	regions	(Kundu	et	al.,	2013).	Our	results	suggest	855	
that	 ME-ICA	 is	 also	 a	 viable	 denoising	 option	 for	 traditional	 task-based	 studies.	856	
Further	research	should	evaluate	how	ME-ICA	may	help	increase	the	sensitivity	and	857	
interpretability	of	studies	that	use	naturalistic	stimuli	for	purposes	such	as	decoding	858	
(Nishimoto	et	al.,	2011)	or	looking	for	patterns	of	inter-subject	correlation	(Hasson	859	
et	al.,	2004).		860	
		861	

Limitations	of	the	current	study	862	
	863	
In	this	study,	we	compared	ME-ICA	to	four	other	pre-processing	pipelines,	of	which	864	
only	one	mimics	single-echo	fMRI	protocols.	Although	most	common	pre-processing	865	
steps	 were	 included	 in	 the	 1E	 pipeline,	 more	 aggressive	 denoising	 could	 be	866	
accomplished	in	single-echo	datasets	using	additional	steps.	For	example,	different	867	
aspects	 of	 physiological	 noise	 can	 be	 corrected	 if	 concurrent	 physiological	 traces	868	
(e.g.,	 cardiac	 and	 respiration)	 are	 available	 (Birn	 et	 al.,	 2008;	 Chang	 et	 al.,	 2009;	869	
Glover	et	al.,	2000);	or	even	in	their	absence	(Beall	and	Lowe,	2007;	Behzadi	et	al.,	870	
2007).	Manual	and	automatic	single-echo	ICA-based	denoising	procedures	(Pruim	et	871	
al.,	 2015;	 Salimi-Khorshidi	 et	 al.,	 2014)	 can	 also	 help	 remove	 additional	 traces	 of	872	
noise.	 Prior	 research	 has	 shown	 that	 there	 can	 be	 substantial	 inter-subject	873	
differences	in	terms	of	optimal	pre-processing	pipelines	(Strother	et	al.,	2004).	It	is	874	
possible	that	comparison	of	ME-ICA	against	these	other	single-echo	pre-processing	875	
pipelines,	including	subject-specific	ones,	would	show	relatively	less	improvements.		876	
	877	
Also,	 the	 present	 study	 focused	 only	 on	 different	 aspects	 of	 sensitivity.	 The	878	
performance	 of	 ME-ICA	 ought	 to	 also	 be	 evaluated	 in	 terms	 of	 test-retest	879	
reproducibility	 across	 scans,	 subjects	 and	 sites.	 For	 example,	 more	 accurate	880	
accounting	 of	 hardware	 instabilities,	 where	 ME-ICA	 tends	 to	 do	 well,	 may	 help	881	
improve	 the	 reproducibility	 of	 single-subject	 results	 across	 sites,	 an	 important	882	
standing	 challenge	 for	 future	 clinical	 fMRI	 applications.	 Further	 research	 should	883	
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evaluate	 these	 other	 scenarios	 before	 making	 any	 categorical	 claims	 about	 the	884	
superiority	of	multi-echo	denoising	approaches	over	single-echo.	885	
		886	
Finally,	 in	 this	study	we	used	 the	middle	echo	as	a	proxy	 for	standard	single-echo	887	
fMRI.	 In	this	manner,	we	were	able	to	compare	pre-processing	pipelines	 for	single	888	
and	 multi-echo	 datasets	 using	 the	 same	 data	 (with	 the	 same	 artifacts)	 for	 all	889	
pipelines.	 Yet,	 the	 acquisition	 of	 additional	 echoes	 comes	 at	 a	 cost	 in	 temporal	890	
resolution.	For	example,	single-echo	runs	with	the	same	spatial	resolution,	in-plane	891	
acceleration,	 and	 number	 of	 slices	 of	 the	 block-design	 dataset	 could	 have	 been	892	
acquired	using	a	TR	of	1875ms,	 instead	of	 the	 current	one	of	2500ms,	 if	 the	echo	893	
time	 were	 that	 of	 middle	 echo	 (TE=31.7ms).	 It	 is	 possible	 that	 additional	 data	894	
points,	 derived	 from	 shorter	 TRs,	 could	 help	 increase	 the	 statistical	 power	 of	895	
equivalent	“true”	single-echo	datasets,	and	reduce	the	differences	presented	here.		896	
	897	
Nevertheless,	 despite	 the	 limitations	 cited	 above,	 our	 results	 agree	 with	 prior	898	
reports	 of	 the	 better	 performance	 of	 ME-ICA	 for	 functional	 connectivity	 studies	899	
(Kundu	et	al.,	2012).	These,	combined	with	experimental	demonstration	of	its	ability	900	
to	 separate	 BOLD-like	 (as	 in	 ultra-slow	 block	 designs)	 from	 non-BOLD	 (scanner	901	
related)	 slow	 signal	 fluctuations	 (Evans	 et	 al.,	 2015),	 and	 its	 ability	 to	 remove	902	
simultaneous	multi-slice	related	artifacts	(Olafsson	et	al.,	2015),	suggest	that	multi-903	
echo	fMRI	acquisition	strategies	combined	with	ME-ICA	are	a	versatile	and	powerful	904	
alternative	to	current	single-echo	fMRI	acquisition	and	pre-processing	schemes.		905	

Future	directions	for	ME-ICA	906	
	907	
Although	ME-ICA	was	able	to	remove	greater	amounts	of	noise	in	the	data	than	the	908	
other	pipelines	were,	 three	different	 findings	suggest	 the	ME-ICA	procedure	could	909	
still	 be	 further	 improved.	 First,	 for	 the	 ME-ICA	 per-trial	 analyses,	 only	 46%	 of	910	
individual	 trials	were	detected	 in	 the	 fMRI	maps.	 This,	 despite	 strong	 evidence	 of	911	
subject	 compliance	 based	 on	 eye	 tracker	 and	 button	 box	 responses.	 Second,	 we	912	
found	a	significant	relationship	between	data	quality	(i.e.,	TSNR)	and	individual	trial	913	
percent	detection	after	ME-ICA.	These	two	observations	suggest	that	there	is	room	914	
both	 for	 improvements	 in	 sensitivity	 and	 for	 the	 removal	of	 residual	noise.	Third,	915	
detailed	evaluation	of	ME-ICA	outputs	revealed	consistent	misclassification	of	a	few	916	
clear	 noise-like	 components	 (see	 examples	 in	 Figure	 12)	 as	 “not-noise”	 in	 all	917	
subjects.	 This	 third	 observation	 confirms	 that	 the	 ME-ICA	 algorithm	 did	 not	918	
correctly	eliminate	all	potential	noise	components.	In	the	remainder	of	this	section	919	
we	discuss	several	ways	in	which	the	ME-ICA	algorithm	could	be	improved,	as	well	920	
as	 the	 need	 for	 additional	 systematic	 evaluations	 to	 optimize	 multi-echo	921	
acquisitions	for	ME-ICA.		922	
	923	
The	following	are	the	main	components	of	the	ME-ICA	algorithm	(see	(Kundu	et	al.,	924	
2012)	 for	 a	 detailed	 description):	 (1)	 generation	 of	 OC	 time	 series	 (i.e.,	 a	 T2*	925	
weighted	voxel-wise	 linear	combination	of	all	echoes);	 (2)	spatial	 ICA	over	 the	OC	926	
time	series	 to	determine	 spatially	 independent	 signal	 components	 in	 the	data;	 (3)	927	
computation	 of	 a	 per-component	 feature	 set	 aimed	 primarily	 at	 characterizing	 its	928	
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TE-dependence	profile;	(4)	classification	of	components	as	noise/not-noise	running	929	
an	empirically	defined	decision	tree	over	the	 feature	set;	and	(5)	removal	of	noise	930	
components	from	the	data.	Of	these,	components	2,	3	and	4	are	the	best	targets	for	931	
algorithmic	tuning.		932	
	933	
Spatial	ICA,	the	most	common	form	of	ICA	in	fMRI,	is	designed	to	separate	spatially	934	
independent	sources	for	which	only	linear	mixtures	of	the	sources	themselves	(e.g.,	935	
voxel-wise	time	series)	are	available	(Mckeown	et	al.,	1998).	When	applied	to	fMRI	936	
data,	spatial	ICA	has	proven	successful	at	reliably	extracting	both	noise	(Thomas	et	937	
al.,	2002)	and	biologically	meaningful	(Smith	et	al.,	2009)	signal	components.	While	938	
many	ME-ICA	components	show	clear	noise-like	(their	rho	is	among	the	highest	and	939	
their	 kappa	 among	 the	 lowest;	 Figure	12.B)	 and	BOLD-like	 (their	 kappa	 is	 among	940	
the	 highest	 and	 their	 rho	 among	 the	 lowest;	 Figure	 12.D)	 profiles,	 there	 is	 also	 a	941	
non-negligible	number	of	components	whose	kappa	and	rho	suggest	they	constitute	942	
a	mixture	of	both	BOLD	and	non-BOLD	effects	(their	position	in	the	kappa-rho	plot	943	
is	 near	 the	 45°	 degree	 line;	 Figure	 12.A,	 dashed	 black	 line).	 Keeping	 components	944	
with	 a	 mixture	 of	 TE	 and	 non-TE	 dependence	 may	 translate	 into	 suboptimal	945	
denoising,	 as	 non-TE	 components	 remain	 in	 the	 data	 after	 the	 ME-ICA	 step.	946	
Removing	 them	 risks	 eliminating	 BOLD-effects	 of	 neuronal	 origin	 (e.g.,	 false	947	
negatives).	 It	 may	 be	 possible	 that	 alternative	 source	 separation	 methods	 could	948	
better	 extract	 signal	 components	 with	 purer	 TE	 dependence	 profiles.	 Potential	949	
candidates	 include	 regionally	 restricted	 spatial	 ICA	 (e.g.,	 a	 searchlight-like	950	
approach),	independent	vector	analysis	(Adali	et	al.,	2014),	temporal	ICA	(Smith	et	951	
al.,	 2012)	 and	 deep	 learning	 approaches	 (Plis	 et	 al.,	 2014).	 All	 these	 alternatives	952	
have	 been	 successfully	 applied	 to	 fMRI	 datasets	 in	 contexts	 other	 than	 denoising.	953	
Future	research	should	evaluate	their	performance	for	the	specific	purpose	of	multi-954	
echo	based	denoising.		955	
	956	
Kappa	and	rho	are	ME-ICA’s	primary	way	to	characterize	the	overall	TE-dependence	957	
profiles	 of	 ICA	 components.	 Kappa	 is	 a	 weighted	 grand-average	 of	 how	 well	 the	958	
magnitude	of	 the	 component	varies	 linearly	with	TE	across	 the	 imaged	volume	of	959	
brain	 (as	 expected	 for	 pure	 BOLD	 components).	 Its	 counterpart,	 rho,	 tells	 on	960	
average	how	much	the	component’s	magnitude	remains	constant	across	echoes.		In	961	
theory,	noise	components	(e.g.,	scanning	artifacts	and	head	motion	artifacts)	should	962	
have	high	rho	and	negligible	kappa,	while	BOLD-like	components	(e.g.,	task-induced	963	
activation	 and	 intrinsic	 resting-state	 fluctuations)	 should	 have	 high	 kappa	 and	964	
negligible	rho.	In	practice,	those	expectations	are	not	always	met,	with	some	noise	965	
components—easily	identifiable	as	noise	by	their	spatio-temporal	patterns—having	966	
similar	kappa	and	rho	(e.g.,	sitting	near	the	45°	line	in	Figure	12.A)	or,	even	higher	967	
kappa	 than	 rho	 (Figure	 12.C).	 ME-ICA	 deals	 with	 this	 reality	 by	 using	 additional	968	
features	 during	 the	 final	 classification	 step,	 including	 explained	 variance,	 relative	969	
percentage	 of	 voxels	 fitting	 the	 two	 TE	 dependence	 profiles	 of	 interest	 (e.g.,	 no-970	
dependence	 or	 linear	 dependence),	 and	 overlap	 between	 component	 maps	 and	971	
voxels	that	best	fit	each	TE	dependence	profile.	Moreover,	ME-ICA	does	not	operate	972	
in	 absolute	 terms	 of	 kappa	 and	 rho,	 but	 on	 their	 rank	 and	 relative	 position	with	973	
respect	to	empirically	observed	inflection	points	(e.g.,	an	elbow)	in	both	kappa	and	974	



	 23	

rho	 spectrums	 that	 tend	 to	 indicate	 the	border	between	mostly	BOLD	and	mostly	975	
noise	 components	 (see	 Figures	 4	 and	5	 in	 (Kundu	 et	 al.,	 2012)).	Despite	 all	 these	976	
safeguards,	our	data	show	how	noise	components,	in	some	instances,	are	incorrectly	977	
labeled	 as	 BOLD-like	 (Figure	 12.C),	 most	 likely	 because	 these	 components	 have	978	
similar	 kappa	 and	 rho	 values,	 but	 also	 because	 they	 are	 located	 near	 the	 above-979	
mentioned	empirically	defined	inflection	points.	We	believe	that	refinements	in	the	980	
computation	of	kappa	and	rho	(e.g.,	better	accounting	 for	outliers	 in	 the	TE	 fits	or	981	
using	 a	 different	 weighting	 scheme	 when	 averaging	 across	 the	 brain)	 may	 help	982	
improve	the	profiling	of	components	as	BOLD	and	non-BOLD.	 In	addition,	 the	ME-983	
ICA	algorithm	may	also	benefit	from	the	inclusion	of	additional,	not	necessarily	TE-984	
based,	 features	 that	may	 help	 better	 characterize	 noise	 components	 in	 a	manner	985	
similar	 to	 how	 other	 automatic	 ICA	 denoising	 algorithms	 do	 (Pruim	 et	 al.,	 2015;	986	
Salimi-Khorshidi	et	al.,	2014).		987	
	988	
Finally,	 additional	 improvements	 to	 ME-ICA	 could	 come	 from	 modifying	 or	989	
substituting	its	current	empirically	defined	decision	tree	by	data	driven	alternatives	990	
(e.g.,	 logistic	 regression,	 clustering)	 that	may	 better	 combine	 the	 rich	 information	991	
gathered	by	the	current,	or	a	potentially	expanded,	feature	set.		992	
		993	
In	 addition	 to	 potential	 updates	 to	 the	ME-ICA	 algorithm	 itself,	 several	 questions	994	
regarding	how	to	best	optimize	multi-echo	data	acquisition	and	pre-processing	for	995	
ME-ICA	 still	 require	 systematic	 empirical	 evaluation.	 For	 example,	 most	 prior	996	
studies	 that	 use	 ME-ICA	 acquired	 three	 or	 four	 equally	 spaced	 echoes;	 partly	 to	997	
avoid	incurring	large	losses	in	temporal	resolution.	Computation	of	kappa	and	rho,	998	
the	main	decision	criteria,	relies	on	voxel-wise	linear	fits	based	on	as	many	points	as	999	
there	are	available	echoes.	The	same	is	true	for	computation	of	static	voxel-wise	T2*	1000	
maps	later	used	for	generation	of	OC	time	series	(Eq.	2).	Although	three	points	are	1001	
sufficient	 to	 compute	 a	 linear	 fit	 (please	 see	 Supplementary	 Figure	 3	 for	1002	
representative	 T2*	 maps	 and	 goodness	 of	 fit	 in	 terms	 of	 the	 coefficient	 of	1003	
determination	R2),	additional	points	can	help	improve	the	quality	of	the	fits	as	long	1004	
as	 these	 additional	 points	 are	 not	 excessively	 noisy.	 Multi-echo	 sequences	 can	1005	
acquire	more	than	three	echoes,	yet	any	additional	echoes	will	have	lower	signal-to-1006	
noise	 ratio	 as	 the	 longer	 the	 time	 interval	between	 the	 radio-frequency	pulse	and	1007	
read-out	window	the	lower	the	amount	of	signal	available.	Future	research	should	1008	
evaluate	 the	 optimal	 number	 of	 echoes,	 and	 how	 much	 the	 specific	 echo	 times	1009	
matter,	for	the	purpose	of	ME-ICA	denoising.	These	additional	investigations	should	1010	
consider	the	use	of	multi-echo	multiband	sequences	which	now	permit	acquisition	1011	
of	 additional	 echoes	 without	 incurring	 concomitant	 loses	 in	 temporal	 resolution.	1012	
Several	recent	studies	(Boyacioğlu	et	al.,	2015;	Olafsson	et	al.,	2015)	have	reported	1013	
that	 combined	multi-echo/multiband	approaches	 can	help	better	 account	 for	high	1014	
frequency	 artifacts,	 help	 with	 removal	 of	 physiological	 noise,	 and	 ultimately	1015	
improve	 the	 spatial	 specificity	 and	 sensitivity	 of	 regular	multi-echo	 fMRI.	 In	 fact,	1016	
initial	 evaluation	 of	ME-ICA	with	multi-echo/multiband	 datasets	 suggest	 that	ME-1017	
ICA	can	clearly	benefit	from	these	richer	datasets	(Olafsson	et	al.,	2015).		1018	
	1019	
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The	effect	of	other	important	acquisition	parameters	with	the	potential	to	alter	the	1020	
noise	 profile	 of	 the	 data	 such	 as	 amount	 of	 in-plane	 acceleration,	 multi-slice	1021	
acceleration	 factor	 or	 flip	 angle	 should	 also	 be	 evaluated	 systematically.	 Finally,	1022	
another	 important	 factor	 to	 consider	 is	 the	 effect	 that	 other	 pre-processing	 steps	1023	
may	have	on	the	ME-ICA	algorithm.	For	example,	any	registration	step	will	come	at	1024	
the	 cost	 of	 spatial	 smoothing.	While	 spatial	 smoothing	may	 help	 remove	 thermal	1025	
noise	and	aid	with	ICA	convergence,	it	may	also	produce	undesired	mixing	of	BOLD	1026	
and	non-BOLD	signals,	making	their	separation	and	consequent	classification	more	1027	
difficult.	 It	 may	 be	 possible	 that	 ME-ICA	 may	 benefit	 from	 conducting	 the	 TE-1028	
dependence	 analysis	 at	 an	 earlier	 pre-processing	 step	 than	 as	 currently	1029	
implemented	 here.	 Empirical	 optimization	 of	 all	 these	 factors,	 combined	 with	1030	
improvements	 in	 the	 algorithm	 itself,	 should	 help	 further	 improve	 the	 denoising	1031	
capabilities	 of	 the	 ME-ICA	 methodology,	 and	 perhaps	 help	 fMRI	 achieve	 the	1032	
necessary	 single-subject	 levels	 of	 sensitivity,	 specificity	 and	 reproducibility	 to	1033	
achieve	its	long-term	goal	of	entering	routine	clinical	practice.		1034	

CONCLUSION	1035	
	1036	
In	this	study,	we	evaluated	the	performance	of	the	ME-ICA	denoising	technique	for	1037	
task-based	 fMRI	 studies	 at	 the	 single-subject	 level	 under	 different	 experimental	1038	
scenarios.	 In	 all	 instances,	 ME-ICA	 showed	 superior	 sensitivity	 to	 the	 other	 two	1039	
alternatives	 under	 evaluation,	 suggesting	 its	 potential	 suitability	 for	 clinical	1040	
applications	where	 group	 averaging	 is	 not	 possible.	ME-ICA	 performed	 especially	1041	
well	 in	cardiac-gated	datasets,	where	we	demonstrated	how	it	was	able	to	reliably	1042	
remove	T1	artifacts	associated	with	irregular	repetition	times.	1043	
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FIGURE	LEGENDS	1225	
	1226	

	1227	
1.	Target	ROIs	for	the	performance	analysis	of	block-design	dataset.	(A)	Target	ROI	1228	
obtained	with	the	Neurosynth	tool	for	the	concept	“music”.	(B)	Spherical	ROIs	sitting	1229	
on	bilateral	inferior	colliculus.	1230	
	1231	
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	1232	
Figure	2.	(A)	Simulated	BOLD	contrast	curves	for	echo	times	ranging	from	0	to	200	1233	
ms	 for	 three	 different	 amounts	 of	 task-induced	 ΔT2*	 (i.e.,	 1%,	 3%	 and	 7%;	 black	1234	
curves).	Estimated	OC	weights	according	to	Eq.	1	for	the	same	range	of	echo	times	1235	
are	shown	in	green.	(b)	Simulated	effect	size		(i.e.,	BOLD	contrast)	for	the	1E	and	OC	1236	
pipelines	for	the	three	different	ΔT2*	scenarios.	1237	
	1238	
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	1239	
Figure	3.	Sample	screenshots	for	each	of	the	five	tasks	under	evaluation	in	the	rapid	1240	
event-related	experiments.	(A)	Motor	task.	(B)	Biological	motion	detection	task.	(C)	1241	
Houses	visualization	task.	(D)	Music	listening	task.	(E)	Sentence	reading	task.	1242	
	1243	
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	1244	
Figure	4.	Target	ROI	sets	 for	 the	rapid	event-related	experiments.	 (A)	Target	ROIs	1245	
for	 the	motor	 task.	 (B)	Target	ROIs	 for	 the	biological	motion	observation	 task.	 (C)	1246	
Target	 ROIs	 for	 the	 house	 visualization	 task.	 (D)	 Target	 ROIs	 for	 the	 sentence	1247	
reading	task.	1248	
	1249	
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	1250	
Figure	 5.	 Probabilistic	 maps	 of	 activation	 across	 subjects	 for	 all	 pre-processing	1251	
pipelines	for	both	acquisition	schemes	(cardiac-gated	and	non-gated).	The	color	of	a	1252	
voxel	indicates	the	percentage	of	subjects	for	which	that	voxel	became	significant	at	1253	
pFDR<0.05.	In	all	instances,	activity	was	detected	in	portions	of	the	superior	temporal	1254	
gyrus.	IC	activation	was	present	more	consistently	across	subjects	only	for	the	ME-1255	
ICA	pipeline	(see	Table	1).	Target	ROIs	are	shown	with	a	black	contour.	1256	
	1257	

	1258	
Figure	 6.	 Performance	 analysis	 results	 for	 the	 block-design	 dataset.	 The	 top	 row	1259	
shows	the	results	for	the	non-gated	data	and	the	bottom	row	for	the	cardiac-gated.	1260	
Post-hoc	 paired	 T-tests	 that	 reached	 significance	 (p<0.05)	 are	 marked	 with	 an	1261	
asterisk.	1262	
	1263	
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	1264	
Figure	7.	ME-ICA	components	marked	as	noise	and	showing	the	largest	correlation	1265	
with	 the	 estimation	 of	 T1-related	 signal	 changes	 derived	 from	 irregular	 TR	 in	1266	
cardiac-gated	acquisitions.	For	each	subject	we	show	the	ME-ICA	component	spatial	1267	
map	on	the	right,	its	associated	time	series	in	black	and	the	estimation	of	T1-related	1268	
signal	change	for	that	subject	in	dashed	red.	All	time	series	are	normalized	(mean	of	1269	
zero	 and	 standard	 deviation	 of	 one)	 so	 that	 similarities	 in	 shape	 can	 be	 better	1270	
visualized.	 Light	 grey	 vertical	 lines	 indicate	 actual	 acquisition	 times	 of	 the	 MRI	1271	
volumes.	Dark	grey	rectangles	signal	the	times	associated	with	discarded	volumes	at	1272	
the	beginning	of	each	run.	1273	
	1274	
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	1275	
Figure	8.	Probabilistic	maps	of	activation	across	runs	for	the	per-task	(rapid	event-1276	
related)	analysis	for	all	five	tasks	and	three	pre-processing	pipelines.	While	a	total	of	1277	
16	 runs	 contributed	 to	 the	probabilistic	maps	 for	 the	BMOT,	HOUSES,	MUSIC	 and	1278	
READ	tasks,	only	13	did	for	the	MOTOR	task.	These	13	activation	maps	correspond	1279	
to	the	runs	in	which	subjects	were	instructed	to	use	their	left	hand.	Black	contours	1280	
show	 the	 target	 ROIs	 for	 each	 particular	 task.	 Colored	 arrows	 point	 at	 locations	1281	
where	ME-ICA	 resulted	 in	 greater	 consistency	 of	 activation	 across	 subjects	 inside	1282	
(red)	and	outside	(black)	the	target	ROIs.	1283	
	1284	

	1285	
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Figure	9.	Performance	analysis	results	for	the	rapid	event-related	dataset/per-task	1286	
analyses.	 Post-hoc	 paired	 T-tests	 that	 reached	 significance	 (p<0.05)	 are	 marked	1287	
with	an	asterisk.	1288	
	1289	

	1290	
Figure	10.	(A)	Average	percent	of	detected	trials	across	tasks	(pFDR	<	0.05)	and	pre-1291	
processing	 pipelines	 for	 the	 per-trial	 analysis	 of	 the	 rapid	 event-related	 dataset.	1292	
Significant	 pair-wise	 T-tests	 are	 marked	 with	 an	 asterisk.	 Error	 bars	 represent	1293	
standard	error.	(B)	Same	as	(A)	for	pUnc	<0.001.	1294	
	1295	

	1296	
Figure	11.	(A)	TSNR	per	functional	run	and	echo	time.	The	weighted	average	TSNR	1297	
across	all	three	echoes	is	also	presented	(gray	box).	TSNR	reported	in	terms	of	the	1298	
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median	 (dot),	 25–75%	 percentiles	 (box),	 and	 most	 extreme	 data	 points	 not	1299	
considered	outliers	 (dotted	whiskers).	 In	 addition,	 outliers	 are	marked	with	 a	 (+)	1300	
symbol.	 (B)	Scatter	plot	of	percent	detected	 trials	 (pFDR	<	0.05)	 for	 the	1E	pipeline	1301	
versus	 temporal	 signal-to-noise	 ratio	 (TSNR).	 Each	 circle	 represents	 a	 different	1302	
functional	scan	and	the	dashed	line	represents	a	least-squares	linear	fit	to	the	data.	1303	
(C)	Same	as	(B)	for	the	OC	pipeline.	(D)	Same	as	(B)	for	the	ME-ICA	pipeline.	1304	
	1305	

	1306	
Figure	 12.	 (A)	 Kappa	 –	 Rho	 spectrum	 for	 the	 ME-ICA	 decomposition	 of	 a	1307	
representative	 subject	 that	 participated	 in	 the	 rapid	 event-related	 experiments.	1308	
Each	 dot	 represents	 a	 component.	 The	 color	 of	 the	 dot	 indicates	 whether	 the	1309	
component	 was	 marked	 as	 noise	 by	 the	 ME-ICA	 algorithm	 (red)	 or	 not-noise	1310	
(green).	The	size	of	the	dots	is	proportional	to	the	amount	of	variance	explained	by	1311	
the	 component.	 A	 dashed	 black	 line	 indicates	 locations	 in	 the	 plane	where	 kappa	1312	
equals	 rho.	 (B)	 Time	 series	 and	 spatial	maps	 for	 three	 different	 noise	 component	1313	
correctly	identified	as	noise	by	ME-ICA.	For	the	particular	case	of	component	C3,	the	1314	
component	had	high	temporal	correlation	(r=0.87)	with	traces	of	head	displacement	1315	
in	the	AP	direction	(dashed	red	line).	(C)	Time	series	and	spatial	maps	for	two	noise	1316	
components	 incorrectly	 identified	as	BOLD	by	ME-ICA.	(D)	Time	series	and	spatial	1317	
maps	for	two	BOLD	components	correctly	identified	by	ME-ICA.	For	all	components	1318	
a	label	or	black	arrow	indicates	its	location	in	the	kappa-rho	spectrum	(A).	1319	
	 	1320	
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	1321	

SUPPLEMENTARY	FIGURE	LEGENDS	1322	
	1323	

	1324	
Supplementary	Figure	1.	Visual	field	areas	of	interest	(AOI)	for	the	different	tasks	as	1325	
defined	 in	 the	 OGAMA	 software	 for	 the	 analysis	 of	 eye	 tracking	 data.	 Areas	 of	1326	
interest	are	delineated	in	yellow.	Representative	heat	maps	of	visual	focus	for	good	1327	
subjects	are	superimposed.	For	tasks	that	show	target	stimuli	in	different	hemifields	1328	
during	different	trials	(BMOT	and	READ)	areas	in	both	hemifields	were	defined,	but	1329	
only	the	correct	one	was	used	in	each	trial	for	the	analysis.	(A)	AOI	for	the	MOTOR	1330	
task.	 (B)	 AOIs	 for	 the	 BMOT	 task.	 (C)	 AOI	 for	 the	 HOUSES	 task.	 (D)	 AOIs	 for	 the	1331	
MUSIC	 task.	 In	 this	 case,	 the	 visual	 focus	 map	 indicates	 “drums”	 as	 the	 subject’s	1332	
response.	(E)	AOIs	for	the	READ	task.	1333	
	1334	
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	1335	
Supplementary	 Figure	 2.	 Representative	 ICA	 components	 detected	 by	ME-ICA	 for	1336	
the	block	design	datasets.	In	all	instances	the	component’s	time	series	are	presented	1337	
on	the	left	and	the	corresponding	spatial	map	on	the	right.	All	time	series	have	been	1338	
normalized	 to	 a	 mean	 of	 zero	 and	 a	 standard	 deviation	 of	 one.	 The	 transition	1339	
between	 functional	 runs	 is	 marked	 with	 a	 vertical	 dashed	 black	 line.	 (A)	1340	
Representative	noise	component	associated	with	head	motion	artifacts.	In	addition	1341	
to	the	component’s	time	series	we	also	present	traces	of	rotational	motion	(dashed	1342	
green	 line)	 that	 correlated	 heavily	with	 this	 component.	 (B)	 Representative	 noise	1343	
component	associated	with	slow	scanner	drift.		(C)	Representative	noise	component	1344	
associated	 with	 hardware	 instabilities.	 (D)	 Representative	 noise	 component	1345	
associated	 with	 physiological	 noise.	 (E)	 Representative	 BOLD-like	 component	1346	
depicting	the	default	mode	network.	(F)	Representative	time	series	associated	with	1347	
the	auditory	task	demanded	from	the	subjects	during	these	scans.	1348	
	1349	

	1350	
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Supplementary	Figure	3.	Representative	static	T2*	maps	and	associated	goodness	of	1351	
fit	maps	as	measured	by	the	coefficient	of	determination	(R2).	(A)	Static	T2*	map	for	1352	
a	 representative	 dataset	 from	 the	 non-gated	 block	 design	 experiments.	 (B)	1353	
Goodness	 of	 fit	 associated	 with	 the	 map	 in	 (A).	 (C)	 Static	 T2*	 map	 for	 a	1354	
representative	dataset	from	the	gated	block	design	experiments.	(D)	Goodness	of	fit	1355	
associated	with	the	map	in	(C).	(E)	Static	T2*	map	for	a	representative	dataset	from	1356	
the	event-related	experiments.	 (F)	Goodness	of	 fit	 associated	with	 the	map	 in	 (E).	1357	
For	all	datasets	we	observe	good	 fits,	with	 the	exception	of	 some	voxels	 in	dorsal	1358	
prefrontal	 regions	 affected	 by	 signal	 dropout	 at	 longer	 echo	 times	 (green	 arrow),	1359	
and	a	few	artifactual	bands	in	more	superior	slices	(white	arrow).	1360	
	1361	


