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Abstract: 
 

 This project entailed the design and setup of and outdoor 
quadrotor to be used as a platform to test possible sensor 

applications. 

As the project advanced, focus shifted from descriptive 
characterization to a more practical approach. 

The final build is a medium sized quadrotor for which a 
Geiger-Müller type sensor has been developed and 

integrated. 

 

  



Resumen: 
 

Este proyecto se centra en el desarrollo y la caracterización 
de un dron como plataforma para el desarrollo de 

aplicaciones con sensores. 

El proyecto ha evolucionado desde su inicio, siendo al 
principio un proyecto para poder analizar los sistemas y 

algoritmos que conforman un dron. 

Como resultado final se ha desarrollado un sensor Geiger-
Müller que transmite sus lecturas a un ordenador por radio y 
se ha descrito detalladamente los pasos y procedimientos a 

seguir para el desarrollo de un sistema igual o similar. 

  



Laburpena: 
 

Proiektu honen bitartez droi bat garatu eta karakterizatu egin 
da, sentsoreen garapenerako plataforma moduan erabilita. 

Proiektua garatzean lanaren hasierako izatea moldatuz joan 
da. Hasieran sistemen karakterizazio sakona genuen 
helburu, baina aplikazio praktikoago bat izan da gure 

helmuga. 

Geiger-Müller motako sentsore bat garatu da, irrati bidez 
ordenagailu bati datuak bidaltzeko gai dena. 
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Introduction: 
 

Robotics area has quickly developed throughout the whole century and drones are 
the very first representatives of this development. What really made drones stand 
out is how cheap they are, commonly converted into toys, we can find lots of different 
models in the market. Usually described by the number of motors they got, 
quadrotors are the most common form of drones nowadays. But drones are far from 
being toys, they are very capable and mobile platforms that we can use to navigate 
in other ways impossible to access areas. 

Five years ago, in 2011, a terrible disaster occurred in the Fukushima region in 
Japan. This catastrophe was initiated by a tsunami that damaged the coolant 
equipment of the Fukushima Nuclear Plant.  Afterwards, global concerns about 
nuclear energy were raised. Japan literally switched off all its nuclear power plants 
to infuse tranquillity.  In the future we might be able to sustain our needs just by 
using renewable energy, but until then we are dependant of carbon and nuclear 
energy. [1] 

These kind of tragic episodes may occur inevitably, although very rarely, and we 
have to be prepared to respond. Drones are capable of reaching the most 
inaccessible places faster, moreover, deploying a drone with the right sensor kit 
could be crucial for acquiring fast information. Or they could also do routine patrol 
tasks around hot zones, like nuclear plants, to make our daily life a bit safer. 

Our objective here is to design and setup a quadrotor as a platform for the 
development and integration of sensors.  In our case, a Geiger-Müller radiation 
detector has been developed and mounted onto this quadrotor but the work is also 
useful for any sensor interfacing with this setup.  

This project was developed in parallel to a college year, as a degree final project at 
Escuela Técnica Superior de Ingeniería y Sistemas de Telecomunicación of 
Universidad Politécnica de Madrid. As for that, time constraints where critical on the 
design considerations. 

Keeping this in mind, we also need it to be as accessible as possible to 
modifications, so we went for the open source route. The controller we selected is a 
modified version of APM 2.6 made by the community effort of Arducopter  "This is 
the full-featured, open-source multicopter UAV controller that won the Sparkfun 
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2013 and 2014 Autonomous Vehicle Competition (dominating with the top five 
spots). A team of developers from around the globe are constantly improving and 
refining the performance and capabilities of Copter". [2] 

This controller is perfect for our development because we can easily access all the 
information concerning how their hardware and software works and has a huge 
community backing it up at diydrones.com. This project is also very interesting from 
an engineering and telecommunications standpoint as we define, describe and 
implement every component in our way to building a quadrotor. 

This project, with all the technical and software considerations mentioned above, 
has given rise to the final setup that can be seen in the following figure (Fig 1). 

 

Flight controler. APM 2

Brushless MotorsGeiger circuit

Frame

Landing gear

Li‐po battery
Electronic speed controller
Mounted below frame arms

 

Fig 1:  The most important components of the drone showcased over the work table. Each relevant component is 
highlighted.
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1.1 Design considerations 
 

There are many different setups for quad rotors, therefore, we can specialize the 
build to our needs. We will start our task by presenting our requirements. 

In general you would consider things like flight time, payload (closely related to the 
first one) and camera/video options. But as we are developing a sensor platform, 
the payload is not going to be an issue, as the majority of the sensors and the 
associated circuitry are not very heavy. 

The most important design considerations are: 

 Low price 

 High fly time 

 Space to attach circuit boards 

 Land Station interfacing  

 Data storage 

 Easy setup 

1.2 Component description and characterization 
 

1.2.1 ARF kit 
 

When we purchased the frame, the best deal was what is called an almost ready to 
fly package (ARF).  

What is interesting about these packages is that you get almost everything you 
need; it includes motors, electronic speed controllers, frame and propellers. All of 
the parts have been tested on a drone and work well together, therefore the first 
time you are planning on building a drone those kind of packages are very helpful. 
We need to remember that our goal here is, not only to fly, but to develop a sensor 
to test on the drone. 

Chapter 1: Building a Quadrotor
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As for the system recommended specifications we should aim for a total payload of 
around 1200g. The choices will be explained more extensively on the sections 
ahead. 

1.2.1.1 Frame 
 

The first thing to consider is the size of the quad rotor we want to build, as it depends 
a lot on the application we want to give it.  

The frame choice deviated from the open source mindset for a few reasons. Firstly, 
lack drone piloting experience, therefore a robust frame will help us prevent severe 
damage during development. Secondly, we will be developing our own sensor 
boards for this project so we can design it to fit on a frame we already have. For this 
reason we went for a commercial drone frame which has been tested by a huge 
community and has proven it is very tough.   

 

1.2.1.2 Electronic Speed Controllers (ESCs) 
 

Drones use brushless motors. To control such motors we need one controller per 
motor. These controllers are known as Electronic Speed Controllers (ESC). A three-
phase current is delivered via 3 wires to the motors, creating a voltage differential 
across the motor terminals and making them spin. 

The flight controller generates a pulse-width modulation (PWM) signal. The 
conversion is made by the ESC's, which draw battery power and supply the motors. 

The DJI 15A OPTO ESC will take a 5 V PWM signal as input and translate it to 0% 
to 100% of the thrust. As we are using this particular ESC, calibration is not needed 
but should be checked in other cases. 

The specifications for this ESC’s (see Fig 2) are listed in Table 1:  

Table 1: Basic specifications of the ESC used 

Current 15A 
Signal Frequency 50Hz to 450Hz 
Voltage 11.1 to 14.8 V 
Battery 3S or 4S 
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Fig 2: E300 electronic speed controller. Battery feeds through XT-60 connectors (Yellow). The 3 pin connector 
drives the PWM signal from the flight controller. 

 

1.2.1.3 Motors 
 

The kit specifies its E300 propulsion system with some very vague specifications, 
but does point out these are 2212 motors (Fig 3) manufactured by them so we will 
be using those specs instead(Table 2) : 

Table 2: 2212 Motor specifications 

Dimension 28X24 mm
Rating 920 kV
Shaft 8.0 mm
Weight  56 gr
Standard Current  15-25A Max Current : 30A 
Recommended propeller  Li-Poly (11.1V) : 10x4.5 inch Li-Poly 

(14.7V) : 8X4.5 inch
 

The motor specifications differ slightly of those on the ESC because their max 
current is well beyond ESC specifications. A 3S battery will power these just fine, as 
the 15A ESC’s are also over dimensioned but manufactured as 15A OPTO ESC’s. 
So the kit will fly perfectly and will also be very resilient to mistakes. [3] 
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Fig 3: 2212 brushless motors connected by 3 bullet connectors to the ESC’s. Four screws hold it to the frame 
(White). The ESC ( under the frame arm ) will be tied to the arm with bridles. 

 

1.2.1.4 Propellers 
 

Propellers are defined by two numbers, the first one is the diameter of the propeller 
and the second one specifies the curvature of the blades. It is near impossible to 
find propeller specs in millimetres, therefore, for convenience, we will refer to them 
in inches.  

With more custom builds we would expect around10 inch propellers for 3S batteries 
and 8 inch for 4S, but instead the DJI propellers are 9.4 x 4.3 inch. 

The DJI 9.4 inch propellers are auto-adjustable, meaning you do not need any other 
piece of equipment to hold them to the motors. The drawback is the cost because 
we will pay a bit more per propeller but will gain in reliability. Based on those 9.4 
inch propellers there are other manufacturer’s propellers (Fig 4) compatible with the 
auto-lock system for our quadrotor, in case DJI stops manufacturing them. [4] 
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Fig 4: Non DJI auto lock propellers. 

 

1.2.2 Battery and Charger 
 

Once the frame was chosen, and as the ESC and motors come with it, we can 
choose the battery for our quad rotor. All modern drones use Lithium-Polymer (Li-
Po) batteries as their high output current capabilities are the required by the motors 
and they are very light weight compared to other technologies. 

These batteries are made of cells. The cell of a Li-Po battery outputs high currents 
at a minimum voltage of 3.7 volts. Usually this voltage is not enough or is not used 
to supply the motors so the batteries come packed with some cells in series. 

For our DJI F450 we could choose 3S or 4S packs, which means you got 3 or 4 Li-
Po cells packed in series for minimum voltages of 11.1 V and 14.8 V respectively.  

Smaller propellers need more speed to generate the same thrust, 3S batteries will 
give us a slower flight, but after reading about user feedback and how the frame 
behaves [5] we decided that a 3S Li-Po battery (Fig 5) with the DJI standard 
propellers will work fine. We could choose 4S packs in case we went for an acrobatic 
drone. 

Table 3: Turnigy battery specifications: 

Capacity(mAh) 5000 
Config (s) 3 
Discharge (c) 40 
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Weight (g) 443 
Max Charge Rate (C) 5 
Length-A(mm) 145 
Height-B(mm) 50 
Width-C(mm) 27 

RC transmitter battery 
Capacity(mAh) 2200 
Config (s) 3 
Discharge (c) 1.5 
Weight (g) 139g 
Length-A(mm) 100 
Height-B(mm) 33 
Width-C(mm) 19 

Table 4: Turnigy battery specifications. 

 

 

Fig 5: Left, fire resistant safe bag to store Li-Po batteries. Middle, 5000 mAh 3S battery pack for our quadrotor. 
Right, 2200 mAh 3S battery for the radio transmitter. 

We usually refer to batteries by their capacity but when talking about drones the C 
rating of the battery is very important.  Capacity for a battery is determined by how 
much current gives over an hour long discharge. By this definition a 5000 mAh 
battery would give us 5 amperes over an hour. 

Unloading a battery faster than that will usually mean the total capacity is reduced 
as the efficiency of the battery drops with fast unloads. Some batteries might even 
be permanently damaged due to this.  
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For quadrotors the best battery technology is the Lithium Polymer, these batteries 
are able to output high currents in very little time, for example, to take off.  Li-Po 
batteries also can have high C ratings which means they can unload that number 
times the nominal current. For example, our battery has a 40C rating and 5000 mAh 
capacity, which means it would be able to yield up to 200A without getting damaged. 

As our ESCs, which will draw the most of the power out of the battery, can consume 
up to 15 A we are safe using a 5000 mAh 40C battery. 

The battery choice was also determined by a big sale weekend, this battery was 
particularly economic, my guess here it is a bit too heavy for the common quadrotor 
user, but we had the space in our quad and high end performance is not a goal for 
us. 

With the sale we could also get a very basic and simple Li-Po battery charger (Fig 
6). The charge up time is of about 4 hours (1.2 Amps output current). When using 
Li-Po batteries you have to control their charge with caution, over charging or 
discharging could damage the battery or even set it ablaze. 

 

 

Fig 6: Basic Li-Po charger. Can charge 1S, 2S and 3S battery packs. 
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1.2.3 Power Distribution 
 

To draw power from the battery to the flight controller we need a regulator as the 
battery supplies over 11 volts and we need steady 5 V for the APM.  We chose a 
very handy model from HobbyKing, the component manufacturer, which is not only 
a 5V power supply but also comes with current and voltage sensors (Table 5) so we 
can measure battery status (Fig 7).  

 

Fig 7: HK power module. Left side black and red cables are soldered to the frame back plate, which distributes 
power to the ESC’s and the battery is connected to the XT-60 connector (Yellow). Six pin micro JST male 
connectors also gives current and voltage readings. 

 

Table 5: Module specifications 

Max input voltage 45V max 
 

Max current sensing 90A 
Switching regulator outputs 5.3V at 2.25A 
Connectors 6-pos micro JST cable for data 

XT60 connectors to battery 
 

Voltage and current measurement 0 to 5 V analog output. To be read by APMs 
10 bit ADC. 
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1.2.4 Radio telemetry 
 

To send data from our quadrotor to a ground station we need another radio 
transceiver. When purchasing them, country bandwidth availability should be 
checked first. 

For most European countries 433 MHz version radios are appropriate. As most 
mobile communications happen over 900 MHz. [6] 

These radios use MAVLink protocol to communicate [7]. This protocol is a very 
lightweight header only message system for small unmanned vehicles. Features 
include, dispositive identification and error correction up to 25%. It is also worth 
mentioning the handy python tools they have to create your own communication 
messages and that its open source. 

Some of these specifications are listed on Table 6. 

 

 

Fig 8: Radio transmitter and receiver (With antennas). Left, DF13 connector goes to the APM telemetry port. Right, 
connected via USB to the PC. 

 

 
Table 6: Telemetry module specifications. 

Supply voltage 3.7-6 VDC (from USB or DF13 connector) 
Transmit current 100 mA at 20 dBm 
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Receive current 25 mA 
Serial interface 3.3 V UART 
Size 25.5x 53x11 mm  
Weight 11.5g  

 
Table 7: Telemetry module specifications 

 

1.2.5 GPS 
 

The Global Positioning System (GPS) will give the drone the ability to fly by itself. 
Autonomous flight is not something we intend from the start, but is something the 
drone is capable of doing. 

 

Fig 9: The GPS module, LEA-6H GPS, contains a GPS and a compass. The compass is very useful as we can 
separate the GPS module from noise sources like motors. 

The GPS is connected to an exclusive port on the APM and the compass is 
connected to I2C buss as any other device. 

Table 8: GPS module specifications and features 

Data rate  5 Hz update rate 
Antenna  25 x 25 x 2 mm ceramic patch antenna 
Battery  Rechargeable 3V lithium backup battery 

Memory  I2C EEPROM for configuration storage 
Others  Power and fix indicator LEDs 
Configuration  Baud rate 38400 
Weight  38g with case 
Size  27.5 x 27.5 x 7mm 
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1.2.6 Radio Controller 
 

Even when the final objective would be to fly autonomously you always need a radio 
transmitter to control the drone. In Spain law referring to UAVs changes every 
month. In the meantime, only the pilots are responsible for a safe flight. Even if the 
drone is capable of autonomous flight we should always be ready to take direct 
control of it. 

As an entry controller the best deal we could get was the Turnigy X9. It includes 2.4 
GHz radio transmitter and receiver with 8 channels in PPM mode or 9 channels in 
PCM. PPM mode transmits data as PWM signals but in a much more packed signal. 
For a normal 20 ms PWM signal we would need 160 ms to transmit 8 channel data, 
in PPM 8 PWM channels are compressed on 20 ms. Therefore, the data rate is 
bigger and the response time lower. PCM on the other side is packing all the 
information on digital signals, for which you need a coder and decoder. 

 
Table 9: Radio transmitter relevant information 

Number of Channel 8ch ppm/9ch pcm 
Buzzer Yes 
Low Voltage Show Yes 
Battery 3S 
Display 128 x 64 LCD 

 

1.2.7 Flight Controller 
 

The most important piece of equipment you are going to need is a flight controller.  
As commented before we will need all the open source code so we can modify it 
and make it easy for us to use. 

For this reason we went for the Ardupilot project [2] which is a controller board not 
only capable of flying and quad rotor but is capable of controlling all sorts of 
unmanned vehicle. Another big advantage is the massive community backing it up, 
a lot of different things have been done with this system around the world that will 
help us through our journey. 

The source code and even the hardware is open sourced so we have different 
manufacturers distributing the Ardupilot boards (Fig 10). For the price, the 
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Hobbyking HKPilot Mega 2.7 (A slightly modified version of de Ardupilot APM2.6 
board) is the best deal we could get.  

 

Fig 10: APM flight controller board. Manufactured by Hobbyking. The physical board colour is black 

 

Table 10: APM table of specifications 

Dimensions: 44x70x15mm with case 

Weight:  32g with case 

CPU: Atmel ATMEGA2560 and ATMEGA32U-2  

Logs: 4MB flash memory chip 

Sensors: 
 

 Invensense's 6 DoF 
Accelerometer/Gyro MPU-6000 

 Accelerometer 
 High-performance Barometric 

pressure sensor MS5611-01BA03 
 Honeywell HMC5883L-TR Digital 

compass 
Interface:  Micro-USB  

 External compass support 
 GPS input, I2C, Power module 

input 
 Telemetry radio, OSD and airspeed 

sensor ports 
 Analog/digital I/O pins. 
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2.1 Ardupilot and Arducopter 
 

To start off, we recommend getting git to download and manage Ardupilot code. Git 
is a free and open source distributed version control system designed to handle 
everything from small to very large projects with speed and efficiency [8]. Using git 
we download the code to a directory and keep track of changes or go back to 
previous versions of the code. 

To build the code there are several platforms on each operative system. For each 
one the steps to follow are different. In our case, the easiest way to compile APM 
code is using APM’s modified Arduino IDE and installing the AVR MHV tool chain 
(Fig 11). The process is explained on the APM developer’s web page [9]. For 
extended use, we also recommend using Eclipse, linked to the Arduino compiler, 
but with all the advantages in terms of navigating through the code. 

The basic structure of the APM is divided in 5 parts: 

 

Vehicle directories: Here we can find every vehicle code, as we are going to use 
a quadrotor we would use the Copter code. They also include the make.inc file which 
lists library dependencies so you can build the code. 

 

AP_HAL:  The HAL (Hardware Abstraction Layer) makes possible to port Ardupilot 
to different platforms and hardware. With this layer making code for the APM 
supported boards it is much easier as the hardware components are handled by the 
HAL. For example, we will use the I2C communications later to connect our sensor, 
thanks to this layer we will have to configure the I2C bus semaphore and wait for 
the bus master (the APM board here) to request the data from our sensor.  

 

Tools directories: All the miscellaneous support directories like tools for testing 
and log replay features go in here. We will not be analysing this section. 

 

Chapter 2: Software and Interfacing
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External support code: APM code also covers PX4 boards, Gimbal code for 
camera gimbals and mavlink for radio communication protocols. We will be 
moderately interested in the mavlink code here to send the sensor data to the PC 
or land station. 

 

As the reader might or not know arduino is not multi-threaded natively, so when you 
need to have code running simultaneously you have to write your own scheduler 
code to manage it. APM based boards do this using timers and call-backs. One 
common use of threads is to provide drivers a way to schedule slow tasks without 
interrupting the main autopilot flight code [10].  
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Ardupilot Github.
Backed by the 

community

Git

Full Ardupilot 
file system

Arduino IDE 
for Ardupilot

MHV AVR 
toolchain

Ready to build the code

Conection Over USB. 

Code modifications

Interfaces with the I2C bus

Enables user code and 
other configurations

Defines user tasks

Usercode header file

 

Fig 11: Explicative scheme of the hardware and software involved in the modification we did to the code. The 
Hardware Abstraction Layer (HAL) is the boundary library between code and hardware. 
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2.1.1 Writing a task 
 

AP_scheduler controls the runtime on the code. It runs them on a priority system, 
attending those which are critical to the integrity of the vehicle first. After all 
stabilization or user input tasks are done (Fig 12), other secondary tasks, like logging 
data, are attended.  

 
Fig 12: Example code of the Ardupilot code workflow. It shows the tasks to accomplish to respond to user RC 
input. Starting by checking the flight mode [9] 

 

The most important task a quadrotor controller must do is the attitude update. When 
new inertial measurement unit (IMU) data, which measures acceleration on all axis, 
is available the controller must quickly analyse it and reacts accordingly. This task 
will define the system ticks, the microcontroller is free to attend other tasks between 
ticks, but must update the copter attitude every 10 milliseconds. 

Looking at the copter example we can see other important tasks are reading the RC 
radio input or checking and updating the throttle. The parameters required by the 
scheduler are, the name of the task, the frequency of calling (measured on system 
ticks) and the expected finish time in microseconds. 

SCHED_TASK(rc_loop,                4,    130), 

SCHED_TASK(throttle_loop,          8,     75), 

SCHED_TASK(update_GPS,             8,    200), 

We can add new tasks to run between ticks. The best way to do this with Arducopter 
is to use some pre-prepared task headers. These are called User Hooks.  
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To configure User Hooks we need to modify APM_Config.h file and uncomment 
some lines. We could also define our own headers there and create a task from 
blank but we would be doing just the same. Just as any arduino code our routine 
will consist of, at least, an initiation code and a loop code. 

 

define USERHOOK_VARIABLES "UserVariables.h" 

Needed to allow us to use the user hook headers file. The file UserVariables.h must 
contain the headers of our program just as any C program will contain. 

define USERHOOK_INIT userhook_init();  

define USERHOOK_MEDIUMLOOP userhook_MediumLoop(); 

Defines the user hook init and loop functions, doing this, the functions now exist and 
will be called by the scheduler. 

The init function will be called once on start-up, should contain health checks to 
make sure the sensor is reading correctly before taking off. 

And lastly the userhook_MediumLoop will hold the code running on loop. Here the 
Medium category is just a predefined frequency to call the task but Arducopter has 
a lot of different loops. For example, we are going to read radiation data every 
second, so we used the super slow loop for that. 

define USERHOOK_SUPERSLOWLOOP userhook_SuperSlowLoop();  

With this in mind we can write our task to register radiation data (Fig 13). 

 

2.1.2 Logging data 
 

Our APM 2.x has 4 megabytes of storage capacity on a Flash memory, accessible 
through an SPI interface. All the complexity of writing there is hidden behind an API, 
the API writes a log file for every flight and manages the wrapping when it fills up as 
well. 

Data logging is expected periodically and should have a self-describing data 
structure. It is self-describing as the ground station will interpret the format and 
display it without the need of a common scheme to all the log messages. 
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#define LOG_TEST_MSG 1 

  struct PACKED log_Test { 

      LOG_PACKET_HEADER; 

      uint16_t v1, v2, v3, v4; 

      int32_t  l1, l2; 

  }; 

 

The packets has a header for identification, afterwards, the data types are defined 
as we would declare them on any other C language. 

 

  static const struct LogStructure log_structure[] PROGMEM = { 

      LOG_COMMON_STRUCTURES, 

      { LOG_TEST_MSG, sizeof(log_Test),        

        "TEST", "HHHHii",        "V1,V2,V3,V4,L1,L2" } 

  }; 

 

We first define a data structure containing 4 unsigned 16 bit integers and 2 signed 
32 bit integers. This message is stored in program memory due to hardware 
constraints. The log would start with “TEST” and display the data separated as we 
did in the log structure. Data type is also present in the message, after the header, 
a letter for each data type is written between quotation marks. “H” is for 16 bit 
integers and “i” for 32 bit integers. 
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2.2 I2C connection with Arduino 
 

When using Arduino some problems appeared, these will be discussed in the fourth 
chapter. 

Libraries

Scheduler

HAL

AP_I2C_Sensors

Semaphore

Requests to #2

Super Slow Loop

SCL

SDA

I2
C
 b
u
s

 

Fig 13: Basic scheme of the code. The Scheduler calls the super slow loop. On the loop code our “sensors” 
object has the routines needed to perform the readings. The task calls the HAL for a semaphore object to 

request the I2C bus and once the bus is clear for use we are connected to the Geiger arduino chip. 

 

We decided to use an Arduino 328p chip to acquire the data and communicate with 
our APM. The code used to communicate an Arduino to APM and the code needed 
to read any other I2C sensor is very similar. So the work done here could be 
transferred to other applications. 

APM I2C libraries are based on Arduino (Wire library) and so we should not have 
any issues. To transfer data we configure the Arduino as a slave and give it a name 
on the bus: 

Wire.begin(2); 
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Wire.onRequest(requestEvent); 

We named it #2 as we know it’s a free name on this board. Other I2C devices have 
their own name and should be checked accordingly. We then write a routine to 
attend when the slave is requested on that address: 

void requestEvent(){ 

  Wire.write((uint8_t *)&data, 12); } 

On this case, the routine sends twelve data bytes to the APM that contain the 
measurements of our sensor. There are 12 data packets because we are sending 3 
double numbers, each one is 32 bits long (4 bytes) and the packets are sent in bytes. 

 

2.2.1 I2c connection to Ardupilot 
 

AP_HAL Semaphores use whatever semaphore system is available on the specific 
platform, and provide a simple mechanism for mutual exclusion. For example, I2C 
drivers can make sure only one device is using the bus. [11] 

On our APM board the I2C bus master is the APM. This cannot be changed, and the 
bus control should be managed by the flight controller to ensure it does not get 
blocked. As I2C protocol can handle addresses we can have several devices 
connected to the same bus. Also, I2C uses 2 wires for connection SDA and SCL 
signals. One transmits the data (SDA) and the other one is the clock source (SCL) 
(see Fig 13 and Fig 22 ).  

Our APM uses 5V for any other I/O port excluding the I2C bus, which runs at 3.3V 
using logic level conversion units. This is because modern GPS modules run on 
3.3V technology. Although, I2C can be used with different voltage devices, for our 
sensor we should aim for a 3.3V interface. 
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3.1 Radiation sensor 
 

3.1.1 Geiger­Müller tube 
 

For a Geiger-Müller (also known as just Geiger or G-M) tube to work it requires high 
electric fields to be applied to its terminals, these fields may vary from 400 V up to 
1000V. Due to these high voltage electric fields when radiation collides with the gas 
inside the tube an electron is stripped from a nucleus, rapidly accelerating and 
colliding with other particles in its way. These other particles can then return to its 
ground state in no more than a few nanoseconds emitting photons in the process 
[12]. These photons might also ionize other not tightly bound electrons and maintain 
the chain reaction.  

One mayor disadvantage of the G-M tubes, apart from the fact that we cannot 
distinguish between radiation types, is the relatively large dead time period after a 
discharge has happened (Fig 14), for example, a SBM-20 tube has around 200 
microseconds of dead time, and especially for high count rates, this phenomenon 
should be taken into account. The process that terminates the tube discharge is led 
by the positive ions created in this cascade effect. The heavy ions cannot move as 
fast as the electrons, so, as the cascade effect develops in the tube positive ion 
concentration increases, leading to the diminution of the electric field present in the 
tube. Eventually no more cascades are created as the field drops below a certain 
threshold and the discharge is finished.  

 

Fig 14: Cascade effect inside a Geiger tube, the fast photons trigger the discharge on the whole tube. 

Chapter 3: Sensors
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If only one gas is present in the tube there would be high chances of false second 
pulses after a real one occurred. When the initial discharge is terminated the heavy 
ions slowly drift towards the cathode (outer wall) to recombine with a surface 
electron. As the Ion and the Electron recombine to reform an atom, which is a more 
stable lower energy state, a quantity of energy equal to the ionization energy minus 
the energy needed to extract and electron from the cathode surface is liberated. The 
liberated energy could have enough energy to extract another electron from the 
cathode's surface (photoelectric effect), and thus, a second cascade effect would 
begin. A quenching gas is the second gas filling the G-M tubes, this gas composes 
10% of the total gas filling but is enough to stop second cascade processes from 
happening. These gases can be large organic gases (which decrease useful tube 
life time) or halogens. For example our selected (Fig 15) tube contains Bromine as 
the quenching gas, so we will not need special treatment for the double cascade 
problem. 

 

Fig 15: Image of the SBM20 a Russian Geiger-Muller tube. To the left the small tip of the Anode is isolated from 
the external wall (Cathode). 

As for the output pulse of the tube, we expect a rapid rising edge, typically around 
microseconds, followed by a slower rise. The first rise corresponds to the first 
interaction cascades but chain reactions will trigger them all around the tube more 
slowly. The absolute maximum of the pulse would require a lot of time and does not 
give any special information so the sensing circuit time constant is kept low (less 
than 100 microseconds) to leave only the fast leading edge of the pulse. [12] 

Lastly, the operating region of a G-M tube has some set-up advantages. If voltage 
is below the threshold it will not measure anything, but voltages bigger than the 
starting voltage will make it work. Just after surpassing the stating voltage a plateau 
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region exists, in this region, typically flat, max counting rate is achieved for a 
constant emission test source. Elevating the voltage further may cause damage on 
the tube as constant discharges are triggered, but for most tubes the plateau region 
(Fig 16) will be quite wide which makes G-M tubes quite resilient to sub-optimal 
operating conditions.  

 

Fig 16: Geiger tube plateau region. Dashed arrow indicates the operating voltage for this example. 

 

3.1.2 Boost voltage generator 
 

To generate up to 1000 Volts we will need a boost converter type generator, where 
we will transform the 5 volts given by the power module. 

There are plenty of boost converter or flyback topology based voltage generators, 
open source on online resources. We will not be doing anything new here, but the 
online resources do a really poor job of explaining why their circuit works. 

At first we did not know what tube we would be using so we searched for similar 
designs and went for one that let us control the output voltage by simply adjusting a 
potentiometer (more on this on the conclusions). 

Booster type generator design can be very complicated. The high voltage will be 
generated by an effect called inductive kickback. Conducting a current through and 
inductor will make it store energy in magnetic form (Fig 17).  
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Fig 17: Booster circuit approximation on the “on” phase. Current increases on the inductor as it is connected to 
the battery. 

 

Cutting the current in the inductor opposes this change and the magnetic energy 
stored in it is converted into current with a very high voltage peak. (Fig 18). 

V௅ሺtሻ  ൌ  Vg –  vሺ t ሻ 

 

Fig 18: Booster circuit approximation on the “off” phase. After opening the switch to ground the inductor opposes 
the change and creates a big voltage spike to maintain current on the inductor. This spike charges the capacitor 
as VL is negative on this phase. 

We then store this voltage peak in a capacitor which will feed our load as we can 
see on the following image (Fig 19). 
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Fig 19: Booster circuit approximation on the “off” phase. The inductor current decreases over time until there is 
no more energy on it. Any load current is fed by the capacitor until next battery switching cycle begins. The open 
circuit is physically realized using a diode so current can only flow forwards. 

 

 

For around 1000V peak with a 5V power source we will need a 15 mH inductor and 
25 mA peak inductor current. This value is purely experimental. Simulations with 
PSPICE give us a good idea of how high the peak can be, but even on simulations, 
having a precise response of the inductor is difficult and so we will rely on previous 
works on this matter to select our components. [13] [14] 

Boost converters to supply such high voltages will be used in Discontinuous Current 
Mode (DCM). What is less well known is that when the load current is low enough, 
a flyback converter behaves as a constant volt-age source. It converts the peak 
inductor current to output voltage in a ratio that depends only on the inductor and 
the capacitance associated with it [15]. So we will be using this peak inductor current 
controlled by a potentiometer to regulate the voltage. 

For that, a transistor working as a switch will be used. This transistor is a power 
transistor capable of isolating the high voltage spikes that the inductor will generate. 
Transistor polarization voltage is also considered here, in this case, it has a 0.55V 
gate threshold (see part list). 

௦ܸ௢௨௥௖௘ ൌ 5ܸ, ௧ܸ௥௔௡௦௜௦௧௢௥ ൌ 0.55ܸ, ܸ ൌ   ܴܫ

ܴ௧௥௜௠௠௘௥ ՜  22Ω ܽ݊݀ 100Ω ݊݁݁ݓݐܾ݁

௣௘௔௞ܫ ՜  ܣ݉ 5.5 ݀݊ܽ ܣ25݉ ݊݁݁ݓݐܾ݁
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To make sure we can supply the Geiger counter we assume a 1000 counts/second 
maximum count rate and we calculate the power consumption of the Geiger tube 
(Calculations are done for the SBM20). 

݁݃ܽݐ݈݋ݒ ݀݁݀݊݁݉݋ܿ݁ݎ 20ܯܤܵ ൌ 450ܸ 

݁ܿ݊ܽݐ݅ܿܽ݌ܽܥ 20ܯܤܵ ൌ  ܨ݌5

The energy stored by the tube then is, 

ܧ ൌ ଵ

ଶ
 ଶ      (1)ܸܥ

And its charge, 

ܸ ൌ
ொ

஼
 , ܳௗ௜௦௖௛௔௥௚௘ ൌ ܸ · ܥ ൌ  (2)     ܥ݊ 25

Using the count rate from eq1, 

ௌ஻ெଶ଴ܫ ൌ
ொ

்
ൌ  (3)      ܣߤ25

We then calculate the power consumption of the tube, 

ܲ ൌ ܸ · ܫ ൌ 450  · ௌ஻ெଶ଴ܫ ൌ 1.25 ܹ݉    (4) 

Provided that efficiencies around 80% are not rare on these type circuits we will try 
to adjust the switching so that it gives 1.5 mW of input power. 

As we already know that peak inductor current should lie between 5 mA and 25 mA, 
we choose the period of the switching: 

 
ܶ ൌ , ݏ݉ 0.3 ܫ ൌ ௣௘௔௞ܫ ൌ  *ܣ8݉

ூܲ௡௣௨௧ ൎ
ଵ

ଶ

௅·ூమ

்
ൌ 1.6 ܹ݉     (5) 

*It is around one third of the value and should therefore equate to around 300 V and should be near 

our worst case scenario. 

So we will be consuming less than 0.5 Amperes from the drone battery. 

The load capacitor is also chosen to hold much more charge than the requirements 
of several Geiger tube counts. This capacitor is also the separation between 1000V 
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and ground, so specially designed capacitors are required (see part list). Worst 
scenario for the load is to detect a particle every 200 microseconds (Geiger tube 
dead time). Using that and the charge per event calculated on (2). 

ܶ

ௗܶ௘௔ௗ
· ܳௗ௜௦௖௛௔௥௚௘ ൎ  ܥߤ0.4

Around tenfold bigger capacitor for 450 Volt reference load and commercial 
capacitor values sets us on 10nF capacitors. 

Lastly, in order to reduce the voltage ripple associated to booster circuits, there is 
an RC filter with cutting frequency of 15 Hz to maintain DC power as close as we 
can. 

௢݂ ൌ
ଵ

ଶగோ஼
, ܴ ൌ , Ωܯ1 ܥ ൌ  (7)    ܨ10݊

To layout the circuit and print the PCBs we used KiCad open-source design tools. 
[16] 

 

Fig 20: Booster section of the circuit. T1 transistor is switching every 0.3ms to deliver power onto the load 
capacitors, C2 and C3, which also conforms an RC low-pass filter with R2 to reject the voltage ripple. The tube is 
connected to P1 and P2. 
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To both sides of the tube P1 and P2 here we also need some resistors. For optimal 
tube operation R3 (anode resistor) and the equivalent of R7/R8 (cathode resistor) 
should have a 45:1 Ratio, at least that seems to have become “industry standard”. 
[13] 

The cathode side (P2) is just a voltage divider. When a particle is detected a 100V 
spike is created. The capacitor protects the transistor and the voltage divider steps 
it down to around 1,5V. The time constant of this circuit should be kept below 100 
microseconds to avoid pulse stacking. 

௧ܸ௥௔௡௦௜௦௧௢௥ ൌ 100ܸ
ோ଼

ோ଻ାோ଼
ൌ 1,478ܸ, ܴ8 ൌ 1,5݇Ω , ܴ7 ൌ 100݇Ω  (8) 

Note that the diode not only needs to withstand high voltage, it should also be a fast 
recovery diode so that current does not reverse.  

Table 11: Table of components 

Name Value Mouser No. 
Inductor (L1) 15 mH 580-12LRS156C 
Trimmer (R10) 0-100 Ω 652-3299W-1-101LF 
FR diode (D1) 1 kV and 75 ns 625-BYG23M-E3/TR3 
Capacitors (C2,C3) 10 nF and 1kV 77-VJ1206Y103KXGAT5Z 
Capacitors (C5) 330 pF Had spare 
Resistors (R7,R8) 100 kΩ,1.5 kΩ 667-ERJ-P06F1003V 
Resistors (R2,R3) 1ܯΩ,4.7ܯΩ 660-HV732BTTD1004D 
HV Transistor (T1) 1k2 V Bipolar NPN 511-STN0214 
Transistor (T3) 0.55 V Gate 512-MMBT4401 

 

 

3.1.3 Switching timer 
 

With the previous calculations we know the switching frequency should be around 
3.4 kHz or have a period of 0.3 ms. In this case it was realized with a 555 CMOS 
(lower current draw) Timer. Other options will be discussed on the build section, but 
at the moment it was the easiest solution. 

The time the inductor needs to stay in tis on state is unknown (we can adjust it with 
the potentiometer). We let it “self-regulate” the on time by connecting the T2 voltage 
sensing transistor to the Reset (pin4 Fig 21). When T2 triggers current flows through 
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R4 and drives Reset LOW. This forces the output (pin 300) to go low fast through 
the discharge pin, which is grounded. [17] 

When the output goes low T1 stops the current through the potentiometer R10 and 
thus C4 starts to discharge through R6 slowly. This RC circuit should retrigger the 
circuit after 0.3 ms, as was calculated in the previous section (eq 5). 

 

 

 

Fig 21: The TCL555 controls the switching of the T1 transistor. T2 triggers when the desired peak current is 
achieved, resetting the 555. C4 discharges through R6 until the 555 gets triggered again, causing Q to go high 
again and recharging C4 through D2 very fast. 

 

 

So the RC oscillator, 

ܸ ൌ ଴ܸ݁
ష೟
ೃ಴ ൌ൐ ௧ܶ௥௜௚௚௘௥ ൌ  (9)    ݏݑ 213

The voltage comparator on the 555 triggers at 1/3 of the supply voltage. The 
capacitor is loaded through D2 diode so the starting voltage is 4.4V. (Fig 21) 
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Table 12: Timer components 

Name Value Mouser No. 
Filter Capacitor (C1) 220 uF 5985-AFK10V220-F 
Diode (D2) General Purpose 863-MMSD4148T3G 
Capacitors (C4) 1 nF 77-VJ0805Y102JXJPBC 
Resistors (R6) 220 kΩ 667-ERJ-6ENF2203V 
Resistors (R5) 330Ω 667-ERJ-6ENF3300V 
Resistors (R1) 1k Ω 667-ERJ-6ENF1001V 
Sensing Transistor (T2) 0.55 V Gate 512-MMBT4401 
Resistors (R4) 100 kΩ 667-ERJ-P06F1003V 

 

 

3.1.4 Microcontroller 
 

We used the Atmega-328P for this project because it was the first one available. To 
detect the tube events we just need a digital I/O port and an interruption routine. 
Annexed to this document should be the full program written for arduino to detect a 
falling edge.  

The microcontroller is running off of its own RC oscillator. The configurations needed 
to achieve this are beyond the scope of this project. We will only discuss why this 
not a problem and the benefits on the build chapter. To do it we need to burn a new 
boot loader on the microcontroller, this is achieved with the Arduino IDE and some 
help from their forums and AVR fuse calculators. [18] [19] 

The connections to APM and the two leds used to create patterns when initializing 
and after a detection are on the image below (Fig 22). 
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Fig 22: Atmega328P circuit connexions. 24 and 23 connect to leds so we can monitor the detections without a PC. 
28 and 27 are connected to APM via I2C protocol. Finally pin 4 is used to detect the falling edge. 

 

Using an external microcontroller is advised. Even when the task itself is very simple 
and our flight controller could easily handle it, it requires an external interrupt on the 
highest priority to make sure we do not lose any events in our measurements. 

3.2 Measurements and calibration 
 

The circuit was tested in the lab before going to calibration. We can clearly see the 
voltage is being generated by the inductive kickback on the oscilloscope by 
soldering a 1GOhm resistance in series with the oscilloscope. The oscilloscope 
probe was set to 10 MOhm resistance so the readings where near 100 times 
smaller. 
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Fig 23: Measurements done on the Geiger circuit. One probe (yellow) measures the voltage on the switching 
transistor gate (T2). The green signal is measured through a 1GOhm resistor to dampen the signal 100 times. Once 
the transistor shuts inductor supply we see an immediate voltage kickback. 

 

Setting the oscilloscope to single trigger and adjusting it just below the supply 
voltage lets us take a photo of the moment the Geiger tube registers an event. The 
inductive kickback occurs on every transistor switching and peaks at 756 V. After 
each kickback the voltage drops to its nominal level around 600 V in rms. The peak 
represents less than 1% of the total signal which is easily endured by the Geiger 
tube. 

When an event is detected the voltage will drop significantly. The last resistor before 
the tube (R3 on Fig 20) and the RC circuit after the tube (C5, R7,R8) coupled with 
how much energy we are able to transfer per switching cycle define the time of 
recuperation. As it was stated before, these values are experimental and the 
“industry standard” is to use 45:1 anode to cathode resistance ratio. 
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Fig 24: Radiation event capture. The green signal probe is connected to a 1GOhm resistor connected to the tube. 
The yellow probe is measuring the voltage drop on the other end (T3 collector). The event detection gives us a 
clean falling edge that will be detected by the Arduino. High RMS voltages where needed for the testing tube, we 
suspect malfunction. 

The recuperation time, estimated around 200 us (see Fig 24), matches the tube 
dead time (detailed in section 3.1). 

The SBM20 is an old Russian tube manufactured in mass during the Cold War. 
Once the voltage generator is working we need to characterize our tube.  

To do this we went to the Radiation and Calibration laboratory at Instituto de Fusión 
Nuclear in Universidad Politécnica de Madrid. There and with the kind help of the 
laboratory technicians we tested the circuit. 
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3.2.1 The Plateau 
 

As explained in section 3.1.1 we need find the plateau of our tube to use it as our 
working conditions. To do this, we vary the voltage of the circuit and measure count 
rate. The samples we used is called Nuclear B and Radium 226 and we had two 
tubes to test. 

Table 13: Plateau calibration measurements 

Tube 1(Nuclear B) Tube 2 (Radium 226) 
Voltage (V) Counts (CPS) Voltage (V) Counts (CPS) 
745 11.6 615 298 
755 11.97 680 323 
835 12.08 730 334 
915 12.49 780 333 
1015 13.5 830 334 
1115 14.8 875 338 
1215 14.3 

 

On the table above we see the most remarkable data from the tests. We concluded 
that Tube 1 was not working well, as we were unable to find a plateau. Tube 2, on 
the other hand, behaved as expected. We suspect that Tube 1 might have been 
damaged because all previous work on the voltage generator was done and tested 
with it. 

With this data we determine plateau and can choose the best working voltage as 
780 V (the middle point). 

 

3.2.2 Calibration 
 

To fully characterize a Geiger-Müller tube we would need calibrated samples and a 
geometrical analysis to calculate the solid angle of incident radiation on the detector, 
methods which are complicated and are unnecessary for our detector and its 
purpose. 

Radiation events are very low probability events. This type of events follow a 
Poisson’s distribution and the error associated to it.  
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ሺ݊ሻ݌ ൌ
ሺேሻ೙௘ష೙

௡!
 (10) 

Where N is the number of expected counts (the mean value we are going to 

measure) and so the standard deviation or error is ߪ ൌ √ܰ. When n tends to infinity 
it is just a normal distribution. This means we either need to measure for a long time 
or have high number of events to make a precise measurement Table 14. 

Table 14: Relative error table 

100 events in 10 minutes 100 ൅ √100
10

ൌ 10 ൅ 1 ՜  ݎ݋ݎݎ݁ 1%

10 000 events in 1000 minutes 10000 ൅ √10000
1000

ൌ 10 ൅ 0.1 ՜  ݎ݋ݎݎ݁ 0.1%

 

Knowing the reduced flight times we would aim at quick measurements of zones of 
high intensity radiation, for example, after a big disasters like Fukushima to quickly 
access a certain hard to reach area. 

To make sure we are reading radiation simple test is to measure the count rate 
variation with distance. The following data (Table 15) was acquired with Tube 2 and 
Nuclear B sample: 

Table 15: Radiation and distance measurements 

Distance(cm) Counts(cps) 
9 326 
8 209 
5.5 148 
4.5 83 
3 64 
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Fig 25: Left, graphic of the measurements taken at the UPM laboratory. Right, the drone (red and white) with the 
Geiger sensor board attached stays around 10 cm from the ground. 

If we assume a punctual detector and source, the intensity of radiation should decay 

close to ן 1
ଶൗݎ , where r is the distance to the detector (Fig 25). As we can see the 

curve is close, but there are variations due to solid angle between the sample and 
the tube, which is also not punctual, and the detector. 
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This section will be a little different. We will be reviewing the process followed to 
build and setup the quadrotor but we will also talk about problems encountered on 
the process. 

4.1 Connection scheme 
 

To connect everything up we followed the manufacturer guides [20] , as well as the 
board developer guides [21]. All the information is online on those resources and 
other various guides. Here we present our own scheme of connection (Fig 26). 

We do not intend to make a step by step guide, but we summarize them here: 

1. The build started by soldering the four power cables, like the ones the power 
module (Fig 7) uses, with XT60 connectors to the F450 back plate’s four 
corners(Fig 26). The power module is also soldered here to the pads marked 
on the PCB. This conforms the power distribution circuitry. 

 

2. After that, the F450 frame, assembled following their instructions.  

 

3. The ESCs are tied with bridles to the frame arms, and the motors screwed in 
the end. Do not mount the propellers on the motors unless you are going to 
fly. 

 

4. Radio receiver is mounted on the back of the drone with Velcro straps and 
the telemetry radio on the opposite side. 

 

5. Finally the controller is tied with velcro to the top of the frame were we also 
place the GPS.  

Chapter 4: Build steps
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X4 ESC:
‐Xt60 connectors fro the f450 pcb.
‐3 pin connectors to APM2

X4 Motors
3 bullet connectos to 

the ESCs

Power module:
‐Soldered to the F450 pcb.
‐6 pin connector to APM2.

Radio Receiver:
RX‐‐‐‐APM
Ch 1‐‐‐‐Pin 1
Ch 2‐‐‐‐Pin 2
Ch 3‐‐‐‐Pin 3
Ch 4‐‐‐‐Pin 4
Ch 5‐‐‐‐Pin No
Ch 6‐‐‐‐Pin 5
Ch 7‐‐‐‐Pin 6
Ch 8‐‐‐‐Pin 7

Sacrificing 1 channel 
lets us have 6 flight 
modes.
One 2 positions 
switch and a 3 
positions switch on 
the top right.

F4
5
0
 p
cb
 b
a
ck 

p
late

GPS:
To use external 
compass APM2 
needs a jumper

External Compass to 4 pin connect
Only uses 2 wires as  it is  I2C

Gps to APM2 4 pin 
connection.

Telemetry  Radio:

2 identical units, both 
for transmitting and 
receiving data.
One on the drone and 
the other via usb to the 
PC.

Ditital and Analog I/
O ports.
LEDs could be 
controlled from 
here‐

 

Fig 26: Connections scheme for our drone. 
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4.2 Mission Planner 
 

Mission Planner is a full-featured ground station application for the ArduPilot open 
source autopilot project. [22] As for our purposes, Mission planner lets us configure 
the drone, read Geiger radiation measurements and download the data logs of the 
flight and view them. Then main features we used for this project are described 
below. (Fig 27) 

 

Fig 27: Mission Planner main window. The red rectangles highlight the features we are using. 

Mission Planner can be connected to APM in two ways. The first one is using an 
USB micro cable, we used this mode to upload and test the code, and the second 
is using the telemetry radio. 

Once connected through the telemetry radios and the drone powered up we will 
immediately begin to receive radiation data. We can check this data in real time 
through the Messages tab (Fig 27). Data is sent each second and shows the 
following format:  

Table 16: Information display format 

Cps:XXX Total:XXX Tmilis:XXX 
Events on the last 
second 

Total number of events Time since operation on 
milliseconds 
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The DataFlash Logs tab lets us download the log files. These files contain all the 
sensor information as well as other vital data, like GPS data. With these logs we 
can even correlate radiation measurements with the position they were done from 
(Fig 28). Our sensor data is configured to appear under the “GEIG” header. 

 

Fig 28: Illustrative heat map, radiation data could be gathered and mapped on heat map style presentation. The 
image is illustrative and does not contain real data. 

4.3 Build Problem discussion 
 

 To assembly the drone we used Velcro straps and bridles, this are very handy 
light weight ties. In the process we found ourselves re-doing certain parts of 
the drone and this method turned to be very convenient.  

 

 Nuts and bolts should be tightened with epoxy glue to prevent them from 
untying on flight due to vibrations. This step should come near the end after 
the drone has been tested. 
 

 

 The GPS mounting accessory is very fragile and it broke during one of the 
first flights. As we are using the compass located on the GPS capsule, 
locating it near the motors will make compass readings noisier. 
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 The Arduino IDE, provided by Arducopter and used for compiling the code 
works most of the time, but should be handled with care if multiple Arduino 
versions are being used. Some of our compilations where corrupted by using 
multiple instances at once on the same machine while testing code for the 
Geiger circuit (Standard Arduino) and APM Arduino IDE. We solved it by 
doing a fresh install. 

 

 The Geiger sensor board did not work at first, with switching frequency 
changing at its will, we finally resolved it was caused by a cold welding on the 
circuit. 

 

 At first having no crystal oscillator on the Geiger circuit seemed fine. We could 
use the 8MHz RC oscillator inside the arduino chip. This made sense 
because the I2C protocol has its own clock signal and it does not get affected 
by clock accuracy. Also, having the arduino run at lower clock speeds and 
3.3V makes it consume less power and we can have some battery savings. 
The arduino microcontrollers that come with a P letter at the end of their name 
come with their own boot loader. This boot loader did not switch to the RC 
oscillator if an external clock signal was missing. To fix this we had to burn a 
new boot loader on the chip and change the fuse configuration to allow 
internal oscillator operation. [19] 
 

 Our APM2 flight controller was a bit different from the official version as it was 
purchased from a different manufacturer. The I2C pins we are using to 
communicate with the Geiger sensor were not soldered to the physical port 
at first. This had very little documentation and was found on the Eagle files 
and soldered accordingly. 
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4.4 Complete parts list 
 

Table 17: Parts list and prices for the project 

Part Description Cost 
Drone battery Turnigy 5000mAh 3S 30C Lipo Pack (EU 

Warehouse) 
35.72 € 

Radio transmitter and receiver Turnigy 9X 9Ch Transmitter w/ Module & 
8ch Receiver  

69.96€ 

F450 frame  DJI F450 +Propellers ARF kit 206.5 € 

Geiger circuit parts and PCB 
(estimated) 

Electronic components and PCB board 15 € 

3 pin connectors for APM Twisted 15cm Male to Male Servo Lead 
(JR) 22AWG (10pcs/set) 

US$2.66 

Additional propellers Gemfan DJI Style Propeller 9.4x4.3 
Locknuts (CW/CCW) (2pcs) 

US$4.32 

Propeller balancing kit HobbyKing™ Universal Propeller 
Balancer, For T Style and Std Propellers 

US$6.75 

Other propellers Turnigy Slowfly Propeller 10x3.8 Black 
(CCW) (4pcs) 

US$5.60 

Other propellers Turnigy Slowfly Propeller 10x3.8 Black 
(CW) (4pcs) 

US$5.40 

Vibration damper foam Anti-Vibration Foam (White Latex Foam) US$1.47 

Velcro straps Battery Strap (5pcs/bag) US$1.95 

Battery charger Turnigy E3 Compact 2S/3S Lipo 
Charger 100-240v (US Plug) 

US$12.35 

Battery charging safe bag Lithium Polymer Charge Pack 18x22cm 
Sack 

US$1.99 

Handy battery monitor HXT Simple Lipoly Monitor 2S~3S. A 
must have for all lipo users! 

US$2.19 

HK dampening mount HobbyKing Universal Vibration Damping 
Mount (62x35mm) 

US$3.99 

XT60 connectors Male T-Connector <-> Female XT-60 
(1pc/bag) 

US$1.25 

Optional landing gear DJI F450 /F550 Flamewheel Extended 
Landing Gear (4pcs/set) 

US$5.99 

Flight controller, GPS, Power 
module and telemetry combo 

HKPilot Mega 2.7 Master Set With OSD, 
LEA-6H GPS, Power module, Telemetry 
Radio (433Mhz) (XT-60) 

US$179.99 

USD dollar to Euro conversion sum 214.71 € 

Total 541.89 € 
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In this work, we have assembled a drone as a platform for sensor applications and 
we have superficially characterized the main electronic devices and software 
considerations that a new user might need to know before venturing on the 
adventure of designing and building a drone. Firstly, we analysed an open source 
flight controller code. We have been able to isolate key software modules and modify 
them to implement our own application. The full flight controller code is very 
extensive and we quickly realized that trying to break down all of it was very complex 
and beyond the scope of this project. Secondly, we have studied how sensors 
interact with the systems available on drones and developed a Geiger-Müller sensor 
board for it. Drones are an ideal platform for sensor applications because they 
already contain a wide variety of sensors themselves.  

By analysing the Arducopter code we were able to transmit custom data packets 
over radio to a Ground Station (a PC). These are recorded on log files during flight 
but can also be checked on line with the telemetry radio. This combination proved 
to be very useful, as we could do live test with real radiation samples. Even if 
radiation measurements over one or two meters are already a very difficult task, the 
quick development on precise autonomous flight could prove to be interesting in 
these applications. On this matter we have developed a testing ground for future 
work, the drone software and hardware are known to be capable of autonomous 
flight, but consistency needed to perform these tasks will only come through fine 
tuning. 

Based on previous work we were able to break down and developed a lightweight 
Geiger sensor board for our drone. We tested various features, for example, the 
addition of a fuse for blackout prevention, with mixed results. Designing this Geiger 
sensor also showed us how extensive switching power supply field is, meaning there 
is a lot of room for improvement on this topic. 

Last but not least, it is noteworthy that using commercial parts saved us money.  
Buying commercial parts is cheaper than building them one by one. This, combined 
with an open-source flight controller the final product is robust and reliable. The work 
accomplished here is also interesting for further research on sensor applications for 
drones. 

Chapter 5: Conclusions
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5.1 Future perspectives 
 

There are still some aspects that could require polishing or upgrading. Autonomous 
take off feature could easily be implemented with more time and testing on 
rangefinders. This matter would be especially interesting for mapping applications. 

The possibility of mapping high radiation areas could be useful if the flight times 
where better, for example, by using better quality batteries or doing whole new builds 
with more efficient rotors and propellers. Radiation sensitivity could be improved by 
using an array of Geiger-Müller tubes, meaning the drone would have to stay less 
time in an area to do a more precise measurement. 

The Geiger sensor board we used is a prototype. The size can be made much 
smaller and some components are not vital. As an example, we propose a similar 
circuit but with a PWM controlled inductor switching cycle. As said before, the 
switching power supply field is extensive enough that we could complicate it as 
much as we like.  

It would be a great experience to be able to field test the drone and explore its 
usefulness on a real world application. For now, it is a step forward.  

 

5.2 Promoting open­source  
 

During this project we have used various open-source software and hardware, 
following this philosophy, the source code used for this application and schematics 
are available in Github at https://github.com/mastrain/Geiger-drone.git
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