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Abstract

There is a current interest in quantifying time-varying connectivity (TVC) based on neuroim-

aging data such as fMRI. Many methods have been proposed, and are being applied,

revealing new insight into the brain’s dynamics. However, given that the ground truth for

TVC in the brain is unknown, many concerns remain regarding the accuracy of proposed

estimates. Since there exist many TVC methods it is difficult to assess differences in time-

varying connectivity between studies. In this paper, we present tvc_benchmarker, which is a

Python package containing four simulations to test TVC methods. Here, we evaluate five dif-

ferent methods that together represent a wide spectrum of current approaches to estimating

TVC (sliding window, tapered sliding window, multiplication of temporal derivatives, spatial

distance and jackknife correlation). These simulations were designed to test each method’s

ability to track changes in covariance over time, which is a key property in TVC analysis. We

found that all tested methods correlated positively with each other, but there were large dif-

ferences in the strength of the correlations between methods. To facilitate comparisons with

future TVC methods, we propose that the described simulations can act as benchmark tests

for evaluation of methods. Using tvc_benchmarker researchers can easily add, compare

and submit their own TVC methods to evaluate its performance.

Author summary

Time-varying connectivity attempts to quantify the fluctuating covariance relationship

between two or more regions through time. In recent years, it has become popular to do

this with fMRI neuroimaging data. There have been many methods proposed to quantify

time-varying connectivity, but very few attempts to systematically compare them. In this

paper, we present tvc_benchmarker, which is a python package that consists of four simu-

lations. The parameters of the data are justified on fMRI signal properties. Five different

methods are evaluated in this paper, but other researchers can use tvc_benchmarker to

evaluate their methodologies and their results can be submitted to be included in future

reports. Methods are evaluated on their ability to track a fluctuating covariance parameter
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between time series. Of the evaluated methods, the jackknife correlation method per-

formed the best at tracking a fluctuating covariance parameter in these four simulations.

Introduction

Time-varying connectivity (TVC) is being applied to an increasing number of topics studying

the brain’s networks. Topics that have been explored with TVC include development [1], vari-

ous pathologies [2, 3], affect [4], attention [5], levels of consciousness [6], and temporal prop-

erties of the brain’s networks [7–9]. There are many concerns raised regarding methodological

issues. These issues span biased variance [10, 11], movement artefacts [12], and appropriate

statistics [13, 14].

Methods used to derive TVC estimates are as diverse as its range of applications. Examples

of different methods include: the sliding window method, sometimes tapered [15], multipli-

cation of temporal derivatives [16], methods using Euclidean distance between spatial config-

urations [8], k-means clustering methods [7, 17], eigenconnectivities [18], point process

methods [19, 20], Kalman filters [21, 22], flexible least squares [23], temporal ICA [24], slid-

ing window ICA [25], dynamic conditional correlation [26], phase differences [27] wavelet

coherence [4], hidden Markov models [28], and variational Bayes hidden Markov models

[29]. This list of TVC methods is not exhaustive, and even more methods can be found in the

literature.

While these methods and their applications may offer new insights into the functions of the

brain and cognition, it becomes difficult to compare results when different studies use differ-

ent methods to estimate brain dynamics. Each method is often introduced and evaluated by

the authors’ own simulations, empirical demonstrations, and/or theoretical arguments. How-

ever, apparent differences in time-varying connectivity in different studies may have been

influenced, or even caused, by differences in the underlying methodology used to derive con-

nectivity estimates.

In order to maximize reproducibility of reported findings, it is important that comparisons

of proposed TVC methods can be made with a common set of simulations. To this end,

we have developed four simulations that aim to show how well results from different TVC

methods correlate with each other and evaluate their performance of tracking time varying

covariance. The proposed methods and simulations are included in the Python package

tvc_benchmarker, (available at www.github.com/wiheto/tvc_benchmarker). Researchers can

evaluate their own TVC methods in tvc_benchmarker. The software also allows for new meth-

ods to be submitted to us for inclusion in future reports. Here we demonstrate the functional-

ity and results obtained by tvc_benchmarker by evaluating the performance of the following

five methods: sliding window (SW), tapered sliding window (TSW), spatial distance (SD),

jackknife correlation (JC), and multiplication of temporal derivatives (MTD).

Methods

Software used

All methods for TVC derivation were implemented in Teneto v0.2.7b [8]. Bayesian statistics

for evaluating performance of TVC methods were calculated in PyMC3 V3.1 [30], simulations

and analysis were done using Numpy V1.13.1 [31], Scipy V0.19.1 [32], and Pandas V0.19.2.

Matplotlib V2.0.2 [33] and Seaborn V0.7.1 [34] were used for figure creation.

Simulations to benchmark time-varying connectivity
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Time-varying connectivity methods

As discussed in the introduction, the list of published TVC methods that are designed to be

applied to fMRI imaging data is long. In an ideal world all methods will be contrasted under

the same conditions such that an evaluation of those methods that give appropriate results can

be performed. However, it was not our intention to provide a complete comparison of all pub-

lished methods. Instead we have made all simulation tools freely available so that researchers

can evaluate their own TVC methods. Before describing the simulations and the results, we

provide a brief overview of the five methods that are evaluated in this article.

Sliding window (SW). The SW method is one of the most commonly used methods to

estimate TVC. The sliding window method uses a continuous subsection of the data, estimates

the degree of correlation (Pearson correlation), slides the window one step in the time series,

and repeats. This creates a smooth connectivity time series as neighbouring estimates of con-

nectivity share all but two data points. The SW method is based on the assumption that nearby

temporal points are helpful to estimate the covariance. In our simulations, two different win-

dow lengths were chosen: 15 and 29 (when necessary these are referred to as SW-15 and SW-

29). Given the common choice of a time resolution (TR) of 2 seconds in fMRI, this results in a

window length of 30 and 58 seconds which touches the upper and lower bound for rule-of-

thumb window lengths that has been suggested [35]. The reason for choosing odd number

window lengths is to ensure that the center of each window corresponds to a specific time-

point.

Tapered sliding window (TSW). The TSW method can be described as a weighted Pear-

son correlation where the weights are set to zero except for the data points residing inside the

window. This procedure is identical to the SW method except that a larger weight is placed on

time points closer to the centre of the window (t). Often, the weights are distributed according

to a Gaussian distribution centred at t. In our simulations using the TSW method, we used a

Gaussian distribution with a variance of 10 time-points. The window lengths were the same as

for the SW method (centered at t) and referred to as TSW-15 and TSW-29. See also [15] for an

example of usage of the TSW method.

Spatial distance (SD). In the sliding window methods, temporally adjacent data points

are used to estimate the covariance. An alternative is to use time points that have similar spatial

profiles. There are two steps to this method: first, a weight vector is calculated for each time

point using the spatial distance between all other time points; second, a weighted Pearson cor-

relation is used to derive the connectivity estimate at t.
To calculate the weight vector for t (wt), each weight is based on the distance of the spatial

dimensions and another time point. In functional neuroimaging data the “spatial dimensions”

correspond to the amplitude of the signal for the voxels or regions of interest. While the

weights can be derived in multiple ways, [8] took the inverse of a distance function between

the spatial dimension amplitudes at t and for each other time point (u):

wðtÞu ¼
1

Dt;u
t 6¼ u ð1Þ

where the Euclidean distance was selected for D. This entails that time points that have a simi-

lar activation profiles close to t will get larger weights. The weight vectors are each subse-

quently scaled between 0 and 1. The “self weights” (wðtÞt ) are set to 1. Each time point gets its

own weight vector (wt) which is the length of the time series.

After the weight vector has been calculated, the connectivity estimate at t is the weighted

Pearson correlation where each time point is weighted by w(t). This entails that points that are

Simulations to benchmark time-varying connectivity
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spatially close are considered. For more details of the SD method, see [8]. See [36] for a detailed

discussion how the SD method differs in its assumptions from the sliding window methods.

There is an important difference in [8] and the simulations here. [8] uses all regions of

interest (not just two time series) to calculate the weight vector. As there are only two time

series in all the simulations in this paper, this might be considered closer to a bivariate version

of the SD method where each edge has its own collection of weight vectors (i.e. the bivariate

SD method will have a weight vector for each edge and time point while the multivariate SD

method will have a weight vector for each time point). S1 Appendix demonstrates that, on

fMRI data, there is a large correlation between the bivariate and multivariate methods (mean

Spearman rank (ρ): 0.76 (from 38,503 edges)).

Jackknife correlation (JC). The JC method has previously been shown on electrocortico-

graphic data for single trial coherence and Granger causality [37]. To the best of our knowl-

edge, the jackknife correlation method has not yet been utilized in the TVC literature. Thus,

we provide a more detailed description of its logic and workings. The jackknife correlation

method is outlined in more detail and contrasted to a binning approach (which is akin to the

sliding window method) in [37]. The JC method, when applied to single time point covariance

estimates of signals x and y at t computes the Pearson correlation between the two signals

using all time points in x and y with the exception of xt and yt:

JCt ¼ �

PT
i ðxi � �xtÞðyi � �ytÞ

PT
i ðxi � �xtÞ

2PT
i ðyi � �ytÞ

2

 !

i 6¼ t ð2Þ

Of note, the inclusion of the minus sign in the equation above is to correct for the inversion

caused by the leave-n-out process (see below). The �xt and �yt are the expected values, excluding

data at time point t:

�xt ¼
1

T � 1

XT

i

xi i 6¼ t ð3Þ

To demonstrate the JC method, 10,000 time points were drawn from a multivariate Gauss-

ian distribution with a mean of 0 and a variance of 1 to generate the two time series shown in

Fig 1A. Additionally, the time series were constructed so that the covariance between the two

varied as a function of time. For the first 2,000 time points, the covariance was set to 0.8 and

then further decreased in steps of 0.2 for every 2,000th time point (Fig 1B).

The relative connectivity time series are similar (but inverted) for a leave-n-out compared

to a window-length-n methods (Fig 1C). The JC method corresponds to the case when n = 1,

i.e. a leave-1-out approach after correcting for the inversion (all leave-n-out estimates are mul-

tiplied by -1 to correct for the inversion in Fig 1). All possible choices of n were computed for

the leave-n-out method: (i.e. a leave-1-out to a leave-9,998-out. The window-of-length-n was

computer for n = 2 to n = 9,998 (see Fig 1D and 1E). Note that the window-length method

could be 9,999 and 10,000 but was not used as the leave-n-out method cannot do this.

As shown in Fig 1G, the Spearman correlation between the two methods is close to 1 for

various choices of n. However, their correspondence in covariance estimates between the two

methods departs at the tails (Fig 1F and 1H). These deviations occur for two reasons: (1) when

n is very small it implies there is little data to work with for the window-length-n method. On

the other hand, low values of n do not hamper the performance of the leave-n-out method. (2)

Large values of n will result in few estimates for covariance for each time point, which makes

the correlation between the two methods less stable. In sum, while it is impossible to create

Simulations to benchmark time-varying connectivity
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Fig 1. Illustration of jackknife correlation and leave-n-out/window-length-n symmetry. (A) Two time series drawn

from a multi-variate Gaussian distribution, stretching over 10,000 time points with their covariance parameter

changing every 2,000th time point. (B) The covariance parameter of the two time series in A. (C) Depiction of how the

window-length-n and leave-n-out relate to each other. Shaded region indicates time points used in the correlation

estimate at time point t. (D) The correlation estimate per time point for varying n of the leave-n-out method

(correcting for the inversion by multiplying with -1). The time series for each n is scaled between 0 and 1. (E) Same as

D, but for the window-length-n method. (F-H) Correlation between the time series of connectivity estimates for

window-length-n and leave-n-out methods for different values of n. (F) Shows n between 1-50 (G) Shows n over the

entire time series. (H) Shows n between 9,950 and 10,000. (I) The correlate of the amplitude of the two time series. 49

Simulations to benchmark time-varying connectivity
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estimates for window-of-length-1, it is however possible to use a leave-1-out method as an

approximation for a window-length-1 due to the symmetry between the two methods.

When estimating the TVC, the two major aims are to accurately measure the covariance

and to be sensitive to changes in the covariance. In the case of the leave-1-out (i.e. the jackknife

correlation) approach, we achieve a unique connectivity estimate per time point that is more

reliable than using a smaller window size (due to the fact that more data is used). Usually, the

SW method has to find a balance between the two aims. In this respect, the JC method is an

optimal sliding window method as it does not have to compromise between temporal sensitiv-

ity on the one hand and accuracy on the other.

The time point based TVC estimate obtained with the JC method should be interpreted as

the relative difference in connectivity at any particular data point compared to all other data

points in the time series. This is because the covariance for each data point is estimated based

on its relationship to all other data points. To illustrate this effect, consider the 49 data points

randomly sampled from a Gaussian distribution with a mean of 0 and a covariance of 0.5 as

shown in Fig 1I. If we assume that the 49 time points are used to compute the JC estimate for

the covariance for a 50th time point, the value of this new data point will have no impact on its

JC covariance estimate because the other 49 points are used. What the 50th time point does is

change the JC estimate for the other 49 points. This means that the relative position of the 50th

point changes in relation to the rest of the time series. The standardized JC estimate of covari-

ance for all possible values of the 50th time point is shown in Fig 1J. What this example shows

is that an individual JC estimate has little meaning by itself and only becomes meaningful rela-

tive to the other JC estimates in the time series.

When using the JC method to estimate TVC, it is important to keep in mind that it leads to

a compression of the variance. Furthermore, the amount of compression is proportional to the

length of the time series. It is often helpful to scale or standardize the connectivity time series

derived by the JC method before any subsequent analysis. Finally, while a Pearson correlation

was used in this study for the JC, it is possible to use other correlation methods such as the

Spearman Rank instead.

Multiplication of temporal derivatives (MTD). The MTD approach to estimate TVC

was first introduced in [16]. In brief, the multiplication of temporal derivatives method first

computes the temporal derivative of a time series as:

dfi ¼ xi;t � xi;t� 1 ð4Þ

Next, the coupling between the signal sources i and j is defined as the product of the two

derivatives dfi and dfj for each time point t, divided by the product of the standard deviation

for dfi and dfj:

MTDi;j;t ¼
dfi;tdfj;t

sdfi
sdfj

ð5Þ

The MTD method is often used together with a smoothing function in the form of a win-

dow function. In our simulations, a window length of 7 was chosen, since this was considered

optimal in [16].

Post-processing for TVC estimates. After each of the TVC methods were applied to the

simulated data a Fisher transform was applied to the connectivity time series (except for the

time points were sampled from a multivariate Gaussian distribution with a covariance of 0.5. (J) Illustration of the

jackknife correlation estimate for different possible values, relative to the 49 time points in I.

https://doi.org/10.1371/journal.pcbi.1006196.g001
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MTD method). To illustrate the variance compression that results from the JC method, the

TVC for the JC method was not standardized in Simulation 1.

The SW, TSW and MTD methods should all be greatly affected by any autocorrelation

existing in the signal as they all use windows of neighboring time points. The SD and JC meth-

ods are more robust to affects of autocorrelation since these two methods are permutation-

invariant (i.e. they will return the same estimates even if the order of the time series is shuf-

fled), unlike SW, TSW, and MTD.

Simulations

This section provides an overview of the simulations that are conducted and the general meth-

odology used. See each simulation’s subsection in the results section for full details of each

simulation.

To compare accuracy and performance for the five TVC methods, we performed four dif-

ferent simulations. The first simulation investigated the similarity of the different TVC meth-

ods by correlating their respective connectivity estimates. The second simulation targeted how

well the different methods were able to track a fluctuating covariance parameter. The third

simulation tested how robust the estimated fluctuating covariance is when the mean of the

time series fluctuates, mimicking the haemodynamic response function. The forth simulation

considered whether TVC methods can accurately track abrupt changes in covariance.

All simulations considered two time series each consisting of 10,000 samples generated

from multivariate Gaussian distributions. At each time point, the covariance between the time

series could vary (see below). A full account of all model assumptions made as well as a justifi-

cation for our model parameter settings for the four simulations models used in the present

study are given in S2 Appendix.

Simulations 2, 3, and 4 all consisted of a fluctuating covariance parameter (rt) that was used

to generate the covariance between the time series. TVC methods were evaluated based on

their ability to track the rt parameter. How rt was generated could vary for different simula-

tions. In simulation 2, rt varied throughout the time course based on a normal distribution.

The simulation was run multiple times allowing for different autocorrelation of rt through

time. In simulation 3, rt varied in the same way as simulation 2 but it was applied to time series

that had a non-stationary mean that mimicked a HRF. This simulation was also run multiple

times with different autocorrelations. In simulation 4, rt varied based on two different “states”

that lasted for varying amounts of time. This method was run two times when states could be

short (2-6 time points long) or long (20-60 time points long). By evaluating the correlation of

different TVC methods with each simulation’s rt, we can evaluate which time varying proper-

ties a method is sensitive to.

Simulation 1-3 have all their parameters justified on empirical data in S2 Appendix. Simula-

tion 4 has its state lengths based on what has been identified by different TVC studies. It is

important to stress that these different state lengths may have been identified due to the meth-

ods which were used and may not reflect real dynamic properties.

Statistics

In principle, it is possible to simply correlate the results from the different TVC methods with

the rt values of each simulation to statistically evaluate their performance. However given the

inherent, but known, uncertainty in rt, we deemed it was appropriate to create a statistical

model which accounts for this uncertainty. Thus, for each TVC method, a Bayesian statistical

model was created to evaluate the relationship between the TVC estimate and the signal

covariance.

Simulations to benchmark time-varying connectivity
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The Bayesian model aims to predict y, which is the vector of the known sampled covari-

ances (i.e. rt) with x, which is the connectivity estimate for each TVC model.

yi � N ðmi; sÞ

mi ¼ aþ bxi

a � N ð0; 1Þ

b � N ð0; 1Þ

s � N halfð0; 1Þ

ð6Þ

All TVC estimates and the values of rt were standardized prior to calculating the models

with a mean of zero and standard deviation of one. This was done to facilitate the interpreta-

tion of the posterior distribution parameter β. The different TVC methods vary in the number

of time points estimated (e.g. the beginning and end of the time series cannot be estimated

with the sliding window method). In order to facilitate model comparison between methods,

we restrained the simulations to include only the time points that had estimates from all TVC

methods (i.e the limit was set by the SW and TSW methods which can estimate the covariance

for 9,972 out of 10,000 time points).

The statistical models were estimated through 5,500 draws from a Markov Chain Monte

Carlo (MCMC) with a No-U-Turn Sampler [38] sampler implemented in pymc3. The first 500

samples were burned.

The statistical models for the different TVC methods can be contrasted in two ways: (1)

model comparison by examining the model fit; (2) by comparing the posterior distribution of

β for the different TVC methods. To evaluate the model fit, the Watanabe-Akaike information

criterion (WAIC, [39]) was used. The posterior distribution of β illustrates the size and uncer-

tainty of the relationship between x and y. To aid the interpretation of these results for readers

unfamiliar with Bayesian statistics, the mode of the distribution corresponds approximately to

a maximum-likelihood estimated β value in a linear regression (if uniform priors are used for

the parameters the posterior mode and the maximum-likelihood estimator would have been

exactly the same).

In simulation 1, the different TVC estimates are compared with each other to evaluate

how similar these estimates are. To do this, a Spearman correlation is used to evaluate the

relationship.

Results

Simulation 1

The first simulation aimed to quantify the similarity of the different TVC time series estimates.

If two TVC methods are strongly correlated, this is a positive sign that they are estimating sim-

ilar aspects of the evolving relationship between time series. A negative correlation between

two methods would suggest that they do not capture the same dynamics of the signal.

In this simulation we created two time series (X), each consisting of 10,000 time points in

length. The time series were constructed by:

Xt ¼ aXt� 1 þ � ð7Þ

The autocorrelation with lag of 1 is determined by αXt−1 and the covariance at t is deter-

mined by �. � was sampled from a multivariate Gaussian distribution (N ):

� � N ðm;SÞ ð8Þ

Simulations to benchmark time-varying connectivity
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where μ is the mean and S being the covariance matrix of the multivariate Gaussian distribu-

tion. Both time series were set to have a mean of 0, variance of 1 and a covariance of 0.5. In

summary:

m ¼ 0; 0

S ¼
1 0:5

0:5 1

 !
ð9Þ

The autoregressive parameter α controls the size of the autocorrelation in relation to the

preceding time point (i.e. the proportion of the previous time point that is kept). Here, it was

set to 0.8 which was deemed to be an appropriate degree of autocorrelation for BOLD time

series (see S2 Appendix). A portion of the two simulated time series is found in Fig 2A together

with the plots of their respective autocorrelation (Fig 2B and 2C) and a plot of the correlation

between the two time series (Fig 2D).

The resulting connectivity time series for the different TVC methods when applied to the

simulated data is shown in Fig 3. From Fig 3, several qualitative observations can be made

about the methods. Firstly, there was a very strong similarity between the SD and JC methods,

despite the fact that they consist of quite different assumptions. Further, the SD, JC, and MTD

methods were all able to capture considerably quicker transitions than the SW and TSW

Fig 2. Simulated data in Simulation 1. (A) Two correlated time series were generated (a total of 10,000 time points were simulated, only the first 100

time points shown in the figure for illustration purposes). (B-C) Autocorrelation of both time series (colors corresponding to respective time series

given in (A)) for up to 10 lags. (D) Kernel density estimation illustrating the covariance between two time series (r = 0.51).

https://doi.org/10.1371/journal.pcbi.1006196.g002
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methods. The long window lengths (SW-29 and TSW-29) were smoother than the SW-15 and

TSW-15 methods. Finally, the variance of the JC method was considerably smaller than all

other methods, illustrating the variance compression as previously discussed.

To assess the degree of similarity of the estimates of functional connectivity time series

obtained from all TVC methods, a Spearman correlation was computed for each TVC method

pairing (Fig 4). The connectivity time series estimates from all methods correlated positively

with each other (Fig 4). Some methods showed strikingly strong correlations (SD & JC: 0.976;

SW-15 & TSW-15: 0.999; SW-29 & TSW-29: 0.978). Between the different window lengths the

correlation was slightly smaller (SW: 0.644; TSW: 0.755). The lowest correlation was found

between the JC and MTD methods (ρ = 0.138).

The results from Simulation 1 showed that the connectivity estimates provided by the tested

methods are, to a varying extent, correlated positively with each other. It also illustrated how

the different methods differ in their resulting smoothness of the connectivity time series. The

results from this simulation cannot validate whether any TVC method is superior to any other,

it merely highlights which methods produce similar connectivity time series.

Fig 3. Time-varying connectivity estimates for Simulation 1. The TVC methods: (A) JC; (B) SD; (C) SW-15; (D) SW-29; (E) MTD; (F) TSW-15; (G)

TSW-29. Only the first 500 time points are shown for illustration purposes.

https://doi.org/10.1371/journal.pcbi.1006196.g003
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Simulation 2

In Simulation 1, it was not possible to evaluate how well the different TVC methods perform.

To evaluate the performance, the simulated data must change its covariance over time and

how this changes must be known beforehand. The aim of this simulation was to see how well

the derived TVC estimates can infer the covariance that the data was sampled from when the

covariance is fluctuating.

Two time series were generated (X). Each time point t is sampled from a multivariate

Gaussian distribution:

Xt � N ðm;StÞ ð10Þ

where the covariance matrix was defined as:

St ¼
s rt

rt s

 !

ð11Þ

and where the variance, σ = 1, was set to 1. At each time point, rt was sampled from another

Gaussian distribution:

rt � N ðmr; srÞ ð12Þ

The mean of the time series (μ) was set to 0, the mean of the covariance (μr) was set to 0.2.

The simulation was run three times where the parameter for the variance of the fluctuating

Fig 4. The degree of similarity of functional connectivity estimates for all tested TVC methods computed with the

Spearman correlation coefficient in Simulation 1.

https://doi.org/10.1371/journal.pcbi.1006196.g004
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covariance (σr) was set to three different values {0.08, 0.1, 0.12}. This ensured that the different

TVC methods are robust to different variances of connectivity changes.

The covariance at time (rt) was sampled from a Gaussian distribution. Each time point

received a new value of rt. This allowed us to compare each TVC method’s connectivity esti-

mate in relation to the time varying covariance parameter rt. Note, that at each time point the

relationship between the two time series is dictated by a single realization from a Gaussian dis-

tribution where rt is the covariance. Thus, we should not expect the connectivity estimate from

any method to correlate perfectly with rt. However, it is possible to compare which method

correlate better or worse with rt to evaluate the overall performance.

The above model will have a temporally fluctuating covariance. It fails to include any auto-

correlation in the time series. Not accounting for this may bias the results for some of the

tested methods that utilize nearby temporal points to assist estimating the covariance. Merely

adding an autocorrelation, like in Simulation 1, will also increase the covariance between the

two time series and this will not be tracked by rt. To account for this, we placed a 1-lag autore-

gressive model for the fluctuating covariance at rt:

rt ¼ art� 1 þ � ð13Þ

� � N ðmr; srÞ ð14Þ

Where α is the autocorrelation parameter. The values for μr and σr were the same as above.

When t = 1, � was set to 0.

This revised formulation of our simulation model allowed for the covariance to fluctuate,

but with an added autocorrelation on the covariance parameter. In simulation 2, three differ-

ent settings of the parameter α were used (α = 0, 0.25, 0.5). When α = 0 it is equivalent to the

original model outlined above with no autocorrelation. With an increased α it entails a greater

influence of the covariance from t − 1 in sampling the covariance at t. α = 0.5 is reasonable

given highly correlated BOLD time series. An α = 0 is more to be expected when time series

are less correlated. 10,000 time points were sampled for each of the three different settings of

the autocorrelation parameter. See also S2 Appendix for a justification of the parameter set-

tings chosen here based on empirical fMRI data.

Simulation 2 was run with 9 different simulation parameter combinations: three different

values of α and three different values of σr. A sample of time series generated with the model

using different settings for the autocorrelation parameter α is shown in Fig 5A, 5D and 5G.

Due to the varying degree of autocorrelation, the mean covariance for time series changes as a

function of α, but rt still depicts a Gaussian distribution (Fig 5B, 5E and 5H). The degree of

crosscorrelation between the two time series followed the specified α parameter for the auto-

correlation of the covariances (Fig 5C, 5F and 5I).

The results from Simulation 2 are shown in Tables 1–3 (for σr = 0.1) and Tables A-F in S3

Appendix (for σr = 0.08 and 0.12). The JC method had the lowest WAIC score for all settings

of α, followed by the SD method. The MTD method came in third place for all but one param-

eter configurations. All WAIC values, their standard error and Δ WAIC scores are shown in

Tables 1–3.

The posterior distribution of the β parameter for each of the TVC methods for all parameter

choices are shown in Fig 6 when σr = 0.1 (for other values of σr see Figs A-B in S3 Appendix).

Larger values in the β distribution for a method (i.e. correlating more with rt) conforms with

the best fitting models (i.e. lower WAIC score). The SW-15, SW-29, TSW-15, TSW-29 and

MTD methods performed equally poor when α = 0, and all improved as α increased. The

MTD method improved the most as the α value increased, followed by the TSW-15 and SW-
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Fig 5. A sample of fluctuating covariance generated in Simulation 2. (A-C) α = 0 and σr = 0.1. (A) An example of rt fluctuating over time, showing

only first 500 time points shown for illustration purposes. (B) Distribution of the fluctuating covariance parameter (rt) (C) Autocorrelation of rt for 10

lags. (D-F) Same as A-C but with α = 0.25. (G-I) Same as A-C but with α = 0.5.

https://doi.org/10.1371/journal.pcbi.1006196.g005

Table 1. Results of Simulation 2 where α = 0.0 and srt
= 0.1. Tables shows WAIC, WAIC standard error, and differ-

ence in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE Δ WAIC

JC 28103.6 142.963 0

SD 28104.3 143.047 0.687371

TD 28200.4 143.872 96.7158

TSW 28201.9 143.896 98.2981

SW 28205.8 143.956 102.192

https://doi.org/10.1371/journal.pcbi.1006196.t001

Table 2. Results of Simulation 2 where α = 0.25 and srt
= 0.1. Tables shows WAIC, WAIC standard error, and differ-

ence in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE Δ WAIC

JC 28104.6 139.337 0

SD 28117.6 139.386 12.9322

TD 28168.1 139.483 63.5039

TSW 28181.8 139.501 77.1804

SW 28195.7 139.752 91.0829

https://doi.org/10.1371/journal.pcbi.1006196.t002
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15 methods. SD and JC showed the best performance, with similar posterior distributions of β,

although the JC was always slightly higher. There was little difference between the methods

when changing the variance of the fluctuating covariance (σr) (See S3 Appendix). The β values

do however scale when σr changes. When σr is smaller, β values decrease due to there being

more uncertainty when sampling each realization from similar distributions.

At times parts of the posterior distributions of the SW, TSW and MTD methods were

below 0 to the extent that they would be not classed as “significant”. For example, these meth-

ods performed worst when σr = 0.08 and α = 0. Here the percentage of the posterior distribu-

tion above 0 was: SW-15: 80%, SW-29: 47%, TSW-15: 84%, TSW-29: 54%, MTD: 89%. The JC

and SD methods always had the entire posterior distributions above 0.

In sum, the JC method, followed closely by the SD method, showed the best performance in

terms of tracking a fluctuating covariance between two time series as performed in Simulation

2. The MTD method ranked in third place when there is a higher crosscorrelation between the

time series present. The SW and TSW methods showed the worst performance, both in the

WAIC score and posterior distributions of β.

Table 3. Results of Simulation 2 where α = 0.5 and srt
= 0.1. Tables shows WAIC, WAIC standard error, and differ-

ence in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE Δ WAIC

JC 28037.2 141.83 0

SD 28053.5 141.797 16.2988

TD 28120.2 141.398 82.9943

TSW 28148.7 141.628 111.464

SW 28201.2 142.018 163.961

https://doi.org/10.1371/journal.pcbi.1006196.t003

Fig 6. Posterior distributions of the β parameter of the Bayesian linear regression models in Simulation 2. The figure shows the results for varying

values of the autocorrelation parameter (α) where the variance of the fluctuating covariance (σr) is equal to 0.1. See S1 Appendix for other values of σr.

For each parameter configuration, a model was created for each TVC method. The TVC estimate was the independent variable estimating the

fluctuating covariance (rt) between the two time series.

https://doi.org/10.1371/journal.pcbi.1006196.g006
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Simulation 3

The aim of Simulation 3 was to examine the behaviour of different TVC methods when there

were non-stationarities present in the data. A typical scenario when this will occur is in a TVC

analysis in task fMRI. Simulation 3 is identical in structure to Simulation 2 apart from the fol-

lowing two changes: (1) A non-stationarity, aimed to mimic the occurrence of an event related

haemodynamic response function (HRF). Specifically μ, which was set to 0 for both time series

in Simulation 2, received a different value at each t (see next paragraph). (2) σr was set to 0.1

instead of varying across multiple values. This is because Simulation 2 showed no large differ-

ences when varying σr.

μt was set, for both time series, according to the value of a simulated HRF, that was twenty

time points in length and repeated throughout the simulation. The HRF was simulated, with a

TR of 2, using the canonical HRF function as implemented in SPM12 using the default param-

eters [40]. This HRF, which has a length of 17 time points, was padded with an additional 3

zeros. The amplitude of the normalized HRF was multiplied by 10 to have a high amplitude

fluctuations compared to the rest of the data. μt is thus the padded HRF repeated throughout

the entire simulated time series. This represents a time series that includes 250 “trials” that

each lasts 40 seconds. This simulation helps illustrate how well TVC methods could be imple-

mented in task based fMRI. Examples of the time series generated using different autocorrela-

tion are shown in Fig 7.

Fig 7. Examples of time series used in Simulation 3 where the mean of the time series is sampled from a time series that included a train of

simulated event related HRF fMRI responses (spaced apart every 20 time points). Only the first 100 time points are shown for illustration purposes.

(A) α = 0, (B) α = 0.25, (C) α = 0.5.

https://doi.org/10.1371/journal.pcbi.1006196.g007

Simulations to benchmark time-varying connectivity

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006196 May 29, 2018 15 / 23

https://doi.org/10.1371/journal.pcbi.1006196.g007
https://doi.org/10.1371/journal.pcbi.1006196


The results from Simulation 3 are shown in Fig 8 (posterior distributions of β) and Tables

4–6 (model fit) which evaluated each TVC’s method performance at tracking the fluctuating

covariance (rt). Results were similar with Simulation 2. In the case when the autocorrelation of

the covariance was 0, the SW, TSW and MTD methods performed quite poorly, but again all

Fig 8. Posterior distributions of the β parameter of the Bayesian linear regression models in Simulation 3. Fig. shows a 1x3 grid with the varying

values of the autocorrelation (α). For each parameter configuration, a model was created for each TVC method. The TVC estimate was the independent

variable estimating the fluctuating covariance (rt) between the two time series.

https://doi.org/10.1371/journal.pcbi.1006196.g008

Table 4. Results of Simulation 3 where α = 0.0. Tables shows WAIC, WAIC standard error, and difference in WAIC

from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE Δ WAIC

JC 28175.3 142.323 0

SD 28184 142.346 8.68954

TD 28207.1 142.591 31.7657

TSW 28207.5 142.661 32.2356

SW 28207.6 142.653 32.2856

https://doi.org/10.1371/journal.pcbi.1006196.t004

Table 5. Results of Simulation 3 where α = 0.25. Tables shows WAIC, WAIC standard error, and difference in WAIC

from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE Δ WAIC

JC 28138.3 142.606 0

SD 28160.5 142.749 22.2079

TD 28184.1 143.06 45.8161

TSW 28190.6 143.249 52.3508

SW 28202 143.265 63.7404

https://doi.org/10.1371/journal.pcbi.1006196.t005
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improved to varying degrees as this increased. The longer windows (SW-29 and TSW-29)

methods were generally the worst method, followed by shorter sliding window methods (SW-

15 and TSW-15). The MTD method came in third place. The JC method has the best perfor-

mance, followed closely by the SD method, in all parameter conditions. When α = 0, some

methods had only portions of their posterior distribution above 0 (SW-15: 73%, SW:-29: 30%,

TSW-15: 78%, TSW-29: 65%, MTD: 84%). The JC and SD methods had 100% of their distribu-

tions above 0 for all parameter conditions.

In sum, the results from Simulations 2 and 3 suggests that the JC method has the best per-

formance in terms of detecting fluctuations in covariance compared to the other four TVC

methods. This result also holds when a non-stationary event related haemodynamic response

was added to the mean of the time series.

Simulation 4

Simulation 4 aimed to test how sensitive different TVC methods are to large and sudden

changes in covariance (i.e. changes in “brain state”) that previously have been postulated to

exist in fMRI data (e.g. [11, 15, 17]). We here start in a similar fashion as we did in Simulation

2 where samples for the two time series are drawn from a multivariate Gaussian distribution

Xt � N ðmt;StÞ ð15Þ

St ¼
s rt

rt s

 !

ð16Þ

Similar to simulation 2, we set μt = 0 and σ = 1. The covariance parameter rt was sampled

from a Gaussian distribution where the mean was shifted

rt � N ðmstatet
; srÞ ð17Þ

and where σr = 1. At each state transition, mstatet
was randomly chosen from a set M (M = {0.2,

0.6}). The duration of each state was randomly sampled from L. Two different scenarios for

state transitions were simulated. In the fast transition condition L = {2, 3, 4, 5, 6} and in the

slow transition condition L = {20, 30, 40, 50, 60}. These values correspond to the number of

time points a “state” lasts. Beginning at t = 1, mstatet
to mstatetþl

was randomly sampled from M
where l was sampled from L. This procedure was continued until Xt was 10,000 samples long.

These choices for brain state changes provide time scales of state transitions between 40-

120 seconds (slow condition) or 4-12 seconds (fast condition) in simulated fMRI data with a

TR of 2 (Fig 9A and 9D). The statistical model for evaluating the different TVC methods per-

formance was the same as Simulation 2 and 3. A summary of data generated in Simulation 4 is

shown in Fig 9.

Table 6. Results of Simulation 3 where α = 0.5. Tables shows WAIC, WAIC standard error, and difference in WAIC

from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE Δ WAIC

JC 28106.1 139.883 0

SD 28136.7 139.769 30.6289

TD 28150.5 139.587 44.4145

TSW 28177.2 139.546 71.1701

SW 28203 139.717 96.9538

https://doi.org/10.1371/journal.pcbi.1006196.t006
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The results from Simulation 4 are shown in Fig 10 and Tables 7 and 8. In the quick transi-

tion condition, the JC and the SD showed the best performance for both the WAIC scores and

the posterior distribution of β (Fig 10A; Table 7). This was followed by the SW-15 and TSW-

15 methods. In the slow transition condition the two sliding window methods outperformed

the other methods (Fig 10B; Table 8), with the longer windows (TSW-29 and SW-29) being

outperforming the shorter windows. The JC and SD methods perform similarly for both con-

ditions. Thus, when there are shifts in covariance that occur relatively slowly, the sliding win-

dow methods are sensitive at tracking these changes. All methods had 100% of their posterior

distributions above 0.

Discussion

In this study we have developed four simulations to test the performance of different proposed

time-varying connectivity methods. The first simulation showed which methods yield similar

connectivity time series. Notably, all methods correlated positively with each other, but to a

varying degree. The second simulation generated data in which the autocorrelated covariance

between simulated time series varied in time. In this case, the JC method, followed closely by

the SD method, showed the best performance. In the third simulation, the generated time

series contained a non-stationary mean related to haemodynamic responses. Again, our simu-

lations suggested that the JC method performed best. The fourth simulation included nonlin-

ear shifts in covariance (in an attempt to simulate brain state shifts). When the states changes

were quick, the JC method performed best. When the state changes were slow, the TSW (fol-

lowed by the SW) performed best.

In a previous simulation that evaluated the sliding window method, the sensitivity of the

SW and TSW methods was found to be good at detecting state shifts [41]. Here, at least when

the transitions are slow, we found similar results. The sliding window methods is optimal if

there are slow state changes. However it is unclear if “state changes” are the best yardstick for

time-varying connectivity. In particular, non-stationarities in time-varying connectivity have

Fig 9. A sample of fluctuating covariance generated in Simulation 4. (A-C) Quick state transitions (between 2-6 time points long). (A) An example of

rt fluctuating over time, showing only first 500 time points shown for illustration purposes. (B) Distribution of the fluctuating covariance parameter (rt)

(C) Autocorrelation of rt for 10 lags. (D-F) Same as A-C but with the long state transitions (between 20-60 time points long).

https://doi.org/10.1371/journal.pcbi.1006196.g009
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Fig 10. Posterior distributions of the β parameter of the Bayesian linear regression models in Simulation 4. Fig. shows

a 1x2 grid with the varying values of the state length. For each parameter configuration, a model was created for each TVC

method. The TVC estimate was the independent variable estimating the fluctuating covariance (rt) between the two time

series.

https://doi.org/10.1371/journal.pcbi.1006196.g010

Table 7. Results of Simulation 4 where state length = {2,3,4,5,6}. Tables shows WAIC, WAIC standard error, and dif-

ference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE Δ WAIC

JC 27548.3 92.0207 0

SD 27571.1 92.7548 22.8124

TD 27741.6 93.5845 193.243

TSW 27749.5 93.3275 201.18

SW 28072.5 87.9986 524.197

https://doi.org/10.1371/journal.pcbi.1006196.t007

Table 8. Results of Simulation 4 where state length = {20,30,40,50,60}. Tables shows WAIC, WAIC standard error,

and difference in WAIC from the best performing method. A lower WAIC indicates a better fit.

Model WAIC WAIC SE Δ WAIC

TSW 21730.5 144.261 0

SW 22796.5 139.927 1065.97

TD 26630.8 106.131 4900.32

JC 27478.9 92.087 5748.42

SD 27503.1 93.3021 5772.6

https://doi.org/10.1371/journal.pcbi.1006196.t008
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been attributed to spurious sources such as movement [12]. Given the unknowns of the “true”

connectivity, methods which are robust over conditions are more likely the safer options—in

this case the JC or SD method performed similarly in both conditions. However, as mentioned

in the methods section, the SD method tested here is the bivariate version of the method and

not the multivariate version previously proposed in [8] (see also S1 Appendix for more the

relationship between these methods).

Overall the jackknife correlation method performed the best across all simulations. We

have shown it to be robust to numerous changes in parameters. However, the JC method is

not without some considerations. First, it introduces variance compression that reduces the

absolute variance, while preserving the relative variance within the time series. This variance

compression also scales with the length of the time series. The consequence of this is that direct

comparisons of the TVC variance between cohorts/conditions become hard to interpret as

time-varying fluctuations, especially when the length of the data varies. However, this is the

case for most methods and it should be remembered that the variance is proportional to the

static functional connectivity [7, 9, 10]. Simply put, the JC method (like all other methods)

should not be used for a direct contrast of the variance of TVC time series. Second, the JC

method sensitivity means that noise will be carried over per time point instead of being

smeared out over multiple time points. This is actually beneficial as it allows for further pro-

cessing steps to be applied that aim to remove any remaining noise (e.g. motion) which cannot

be done when the noise has been smeared across the connectivity time series (e.g. in windowed

methods).

The simulations and results presented in this study should not be taken as an exhaustive

and complete assessment of all aspects of a given method to conduct TVC. Rather, the four

simulations described here represents a subset of possible scenarios in terms of different meth-

odological characteristics that might be of interest. The current four simulations are marked

tvc_benchmarker simulation routine V1.0. If modifications or additional scenarios are consid-

ered to be improvements to the current simulations, these will get an updated version number.

Many additional simulations could be conceived on top of this original routine. For example,

one could include multiple time series, adding movement type artifacts, adding frequency rele-

vant characteristics, a stationary global signal etc. These have not been included here, as the

focus in these simulations was to primarily assess tracking of a fluctuating covariance. Input

from researchers about appropriate additions to the simulations is welcome.

We encourage researchers designing TVC methods to benchmark their own results with

tvc_benchmarker (www.github.com/wiheto/tvc_benchmarker). Researchers need only to

write a Python function for their method and use it as an input for tvc_benchmarker.
run_simulations()and their method will be compared to the TVC methods presented

in this paper (see online documentation). Functions can then be submitted through the func-

tion tvc_benchmarker.send_method(). All valid methods submitted will be released

in summaries of the submitted benchmarked results so that researchers can contrast the per-

formance of different methodologies.
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in the simulations.

(PDF)
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