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of bosonic variables. These are the D=10 and D=11 spinor helicity variables, the set of
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We present an especially convenient parametrization of the spinor harmonics (Lorentz

(internal harmonics).

covariant gauge fixed with the use of an auxiliary gauge symmetry) and use this to find
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1 Introduction

An impressive recent progress in calculation of multi-loop amplitudes of d=4 supersym-
metric Yang-Mills (SYM) and supergravity (SUGRA) theories, especially of their maxi-
mally supersymmetric versions N'=4 SYM and N/ = 8 SUGRA [1-5], was reached in its
significant part with the use of spinor helicity formalism and of its superfield generaliza-
tion [6, 7, 9-13]. This latter works with superamplitudes depending on additional fermionic
variables and unifying a number of different amplitudes of the bosonic and fermionic fields
from the SYM or SUGRA supermultiplet.

The spinor helicity formalism for D=10 SYM was developed by Caron-Huot and
O’Connel in [14] and for D=11 supergravity in [15] (more details can be found in [16]).
The progress in the latter was reached due to the observation that the 10D spinor helicity
variables of [14] can be identified with spinor Lorentz harmonics or spinor moving frame
variables used for the description of massless D=10 superparticles in [17-19]. (Similar ob-
servation was made and used in D=5 context in [20]). The spinor helicity formalism of [15]
uses 11D spinor harmonics of [21-24].

As far as the generalization of D=4 superamplitudes is concerned, in [14] a kind of
Clifford superfield representation of the amplitudes of 10D SYM was constructed. However,
this later happened to be quite nonminimal and difficult to apply. Then the subsequent
papers [25-28] used the D=10 spinor helicity formalism of [14] in the context of type II



supergravity where the natural complex structure helped to avoid the use of the above
mentioned Clifford superfields.! An alternative, constrained superfield formalism was pro-
posed for 11D SUGRA amplitudes in [15]; its 10D SYM cousin will be briefly described
here (see also [31] and [16] for details). In it the superamplitudes carry the indices of ‘little
groups’ SO(D —2); of the light-like momenta kq(i) of i-th scattered particles and obey a set
of differential equations involving fermionic covariant derivatives D;'(i). This formalism is
quite different from the 4D superamplitude approach; some efforts on development of the
necessary technique and on deeper understanding of its structure are still required to be
accomplished to make possible its efficient application to physically interesting problems.

In this paper we develop a simpler analytic superfield formalism for the description
of 11D SUGRA and 10D SYM amplitudes. In it the superamplitudes are multiparticle
counterparts of an on-shell analytic superfields, which depend on the fermionic variable in
exactly the same manner as the chiral superfields describing N' = 8 SUGRA and N = 4
SYM. However, the component fields in these analytic superfields depend on another
set of bosonic variables including some internal harmonic variables (see [32-34]) w(‘;‘, WqA
parametrizing the coset %. These are used to split the set of (2N\') real spinor
fermionic coordinates ¢, of the natural on-shell superspaces of 11D SUGRA and 10D SYM
on the set of N complex spinor coordinates 7, and its complex conjugate 74, The analytic
on-shell superfields describing 11D SUGRA and 10D SYM depend on 7, but not on A
and, in this sense, are similar to the chiral on-shell superfields describing N' = 8 SUGRA
and N/ =4 SYM. However, as in higher dimensional case 7, = 0, wqa is formed with the
use of harmonic variable wy4, we call these superfields analytic rather than chiral.

We show how the analytic superamplitudes are constructed from the basic constrained
superamplitudes of 10D SYM and 11D SUGRA and the set of complex (D — 2) component
null-vectors Uy; related to the internal frame associated to i-th scattered particle. We
describe the properties of analytic superamplitudes and present a convenient parametriza-
tion of the spinor harmonics (gauge fixing with respect to a set of auxiliary symmetries
acting on spinor frame variables), which allows to establish relations between D=10, 11
superamplitudes and their 4d counterparts. Using such relation we have found a gauge
fixed expressions for the on-shell 3-point tree superamplitudes. These can be used as basic
elements of the analytic superamplitude formalism based on a generalization of the BCFW
recurrent relations [7]. The derivation and application of these latter, as well as the use of
analytic superamplitudes to gain new insight for further development of the constrained
superamplitude formalism will be the subject of future papers.

The rest of this paper has the following structure.

In the remaining part of the Introduction, after a resume of our notation, we briefly
review D = 4 spinor helicity and on-shell superfield description of N'=4 SYM and N = 8
SUGRA. In section 2 we describe the D=10 spinor helicity formalism. In section 3 we review
briefly the on-shell superfield description of 10D SYM [21]. Analytic on-shell superfield

! An interesting recent analysis of the divergences of higher dimensional maximal SYM theory [29, 30]
avoids an explicit use of the 10D spinor helicity formalism but assumes some generic properties of the
amplitudes in this formalism.



approach is developed in section 4. The spinor helicity formalism, constrained on-shell
superfield and analytic on-shell superfield descriptions of D=11 SUGRA are presented
in section 5. In section 6 we introduce the analytic D=10 and D=11 superamplitudes
and describe their properties and their relation with constrained superamplitudes. A real
supermomentum, which is supersymmetric invariant due to the momentum conservation,
is introduced there.

A convenient parametrization of the spinor harmonics is described in section 7. Its
study indicated the necessity to impose a relation between internal harmonics correspond-
ing to different scattered particles, which then allowed to associate a complex spinor frames
to each of them. In section 7 we also present a convenient gauge fixing of the auxiliary
gauge symmetries which leads to a simple gauge fixed form of both real and complex spinor
harmonics. This has been used to obtain gauge fixed expressions for 3-point analytic super-
amplitudes of 10D SYM and 11D SUGRA, which can be found in section 8. We conclude
in section 9.

Appendix A is devoted to spinor frame re-formulation of 4D spinor helicity formalism,
which is useful for comparison of 4D and 10/11D (super)amplitudes. Appendix B shows
how to obtain the BCFW-like deformation of the 10/11D spinor helicity and complex
fermionic variables from the deformation of real spinor frame and real fermionic variables
found in [14, 15].

1.1 Notation

As we will use many different types of indices, for reader convenience we resume the index
notation here.

The equations in D=10 and D=11 cases often have similar structure and we use similar
notations in these two cases. To describe these in a universal manner and also to stress this
similarity, it is convenient to introduce parameters N’ and s, which take values NV = 4,8
and s = 1,2 for the case 10D SYM and 11D SUGRA, respectively,

10DSYM : N =4, s=1, (1.1)
11D SUGRA : N =8, s=2. (1.2)

These characterize the number of supersymmetries and maximal spin of the quanta of the
dimensionally reduced theories, N'=4 SYM and N' = 8 SUGRA. Clearly, s = N /4.

The symbols from the beginning of the Greek alphabet denote Spin(1, D — 1) indices
(this is to say, indices of the minimal spinor representation of SO(1, D — 1))

a,B,v,0=1,...,4N .

Notice that, when we consider D=4 SYM and SUGRA, we use the complex Weyl spinor
indices a,, 8 = 1,2 and d,B = 1,2 so that the above equations do not apply.
The spinor indices of the small group SO(D —2) (indices of Spin(D —2)) are denoted by

g,p=1,...,2N and Gp=1,...,2N.



In the case of D=11 the dotted Spin(9) indices are identical to undotted, ¢ = ¢, while for
D=10 they are transformed by different (although equivalent) 8s and 8c representations
of SO(8).

The vector indices of SO(D — 2) are denoted by

I,JJK,L=1,...,(D—2)

while
ILJ,K,L=1,...,(D—4)

are vector indices of ‘tiny’ group SO(D — 4). Spinor indices of SO(D — 4) (Spin(D — 4)
indices) are denoted by
A B,C,D=1,...,N.

The latter notation also applies to the 4D dimensional reduction of 11D and 10D the-
ories, where A, B,C, D denote the indices of the fundamental representation of SU(N)
R-symmetry group.

Finally, a,b,c¢,d = 0,1,...,(D — 1) are D-vector indices. In D=4 we also use p,v, p =
0,1, 2,3 to stress the difference from D = 10 and D = 11.

The symbols 7,7 = 1,...,n are used to enumerate the scattered particles described by
n-point (super)amplitude.

1.2 D=4 spinor helicity formalism

In spinor helicity formalism the scattering amplitudes of n massless particles A(1,...,n) :=
A(Pa),€(1); -+ - P(n)s €n)) are considered to be homogeneous functions of n pairs of 2-
component bosonic Weyl spinors Ay = (5\(0';))* (a=1,2,a=1,2),

AL, .. n) == Apay, €1)i-- 1Py Em)) = A1) Ay -5 Ay Ay - (1.3)

The spinor )\‘()‘i) carries the information about momentum and polarization of i-th particle.

In particular, i-th light-like 4-momentum pé) is determined in terms of )\‘(”;) = (5\‘(5;.))* by
Cartan-Penrose relation (o« = 1,2, & =1,2, p=0,...,3) [41, 42]

Paiw = Pu)Tha = 2XaAa) S Put) = AN)TuAa)- (1.4)

o
@

This identity explains equivalence of two forms of the Cartan-Penrose representation (1.4)

Here o7, are relativistic Pauli matrices obeying O'Mad()'u 85 = 2€a€, 3 with €45 = ( ? *01) =€45-

and also allows to show that pa(i)pz‘) = 0.

i
The n-particle amplitude is restricted by n helicity constraints

~

h(,)A(l,,n) = hi.A(l,...,n), (1.5)
where the operator
. 1 0 <5 O
No= — a — Oé' — 1.
hiy =3 (%) oxe Al ‘”?i)) (1.6)



counts the difference between degrees of homogeneity in )\‘(3;.) and 5\%). Its eigenvalue h;,
the helicity of i-th particle, defines the amplitude homogeneity property with respect to
the phase transformations of )\?;) and S\‘é),

Al @G e PN ) = e MBALL N A (1.7)
It is quantized: the amplitude is a well defined function of complex variable /\‘(;;) if and only
if B; is equivalent to (5; + 27, and this happens when 2h; € Z. In the case of gluons h; = +1
and in the case of gravitons h; = 2.

1.3 D=4 superamplitudes and on-shell superfields

A superamplitude of N' =4 SYM or N/ = 8 supergravity depends, besides n sets of complex
bosonic spinors, on n sets of complex fermionic variables 7]{2) ((né))* = f)a(;)) carrying the
index of fundamental representation of the SU(N) R-symmetry group A, B =1,..., /N,

AL n) =A@ Ay i3 Amy Ay ) s Gy = =ty - (18)
It obeys n super-helicity constraints,
) _ N )
h(i)A({/\(i)a)\(i)ané)}) = ZA({)\@),)\@),W@)}), A=1,....N (1.9)
with
) I R
2h; A%y ——— — AT —— S 1.1
(@) (2) a)\(();) (7) 8)\‘(’;) +n; 67]{4 ( O)

It is important that the dependence of amplitude on fermionic variables is holomorphic:
it depends on n#* but is independent of 7 AG) = (776‘.))*. Furthermore, according to (1.10),
the degrees of homogeneity in these fermionic variables is related to the helicity h; char-
acterizing dependence on bosonic spinors. Hence, decomposition of superamplitude on the
fermionic variables involves amplitudes of different helicities.

These superamplitudes can be regarded as multiparticle generalizations of the so-called
on-shell superfields

_ 1 1) - —

SN = FH b tat onPntsap 40 D x4 N ), (1.11)
1 _ 1
N = /\TUAI ---UANEAL..AN7 N = (/\f—l)unB2 : '-UBNfABz.--BNv (1.12)
which obey the super-helicity constraint

- < < N - 0 <s O 0
h®(\, A, 1) = s®(\, A =, 2h =N =M, A=1,.. N
( ) 777) S ( ) 7?7)7 S 4 ) —"_ aAa 8)\a +77 a/r]A7 ) 7N
(1.13)

The chiral superfields on a real superspace L*2V) = {\, A\, n,7} obeying eq. (1.13) de-
scribe the on-shell states of N' =4 SYM and N' = 8 SUGRA. They can be considered as
homogeneous superfields on chiral on-shell superspace

£ = (X X ) (1.14)



satisfying eq. (1.13), which just fixes the charge of superfield with respect to a phase
transformations of its arguments.?

Such on-shell superfields can be obtained by quantization of D = 4 Brink-Schwarz
superparticle with A-extended supersymmetry in its Ferber-Shirafuji formulation [45, 46]
(see also [47, 48] as well as [49] and [50]). This observation has served us as an important
guide: in [16] we show how to obtain the 10D and 11D on-shell superfield formalism from
D=10 and D=11 superparticle quantization. Here we will not consider superparticle quan-
tization but describe briefly the resulting constrained on-shell superfields and constrained
superamplitude formalism of [15, 16] and use these as a basis to search for the analytic
on-shell superfields and analytic superamplitude formalism.

To conclude our brief review, let us present the expressions for basic building blocks
of the 4D superamplitude formalism, the 3-point superamplitudes of D=4 N = 4 SYM
theory. These are two: the anti-MHV (MHV)

TV 1
MHV 4
1,2,3) = 2 1 12
AMEY(1,23) D ESEr T T 6% (naqy < 23> +na@) < 31> +na@) < 12>)

(1.15)

and the MHV superamplitude

1 - - _
MHV 8

1,2,3) = ————— 6° (\a Aé Aé . 1.16
A ( ) &y ) [12] [23] [31] ( 1MA1 + 271 A2 + 377A3) ( )

Here we set the SYM coupling constant to unity and use the standard notation for the
contraction of 4D Weyl spinors

<ij > =< NN\ >= A\ = €Az,

[Zj] =< Zj > = [5\1;\]] = ?)\d]‘ = Edﬁ;\ -5\(5[]' . (1.17)

2 Spinor helicity formalism in D=10

As we have already mentioned in the Introduction, the D=10 spinor helicity formalism [14]
can be constructed using the spinor (moving) frame or Lorentz harmonic variables. To
describe these it is convenient to start with introducing the vector frame variables or
vector harmonics (called light-cone harmonics in [51, 52]).

2.1 Vector harmonics

The property of vector harmonic variables are universal so that, instead of specifying
ourselves to D=10 dimensional case, we write the equations of this section for arbitrary
number D of spacetime dimensions. This will allow us to refer on these equations when
considering spinor helicity formalism for 11D supergravity.

2The relative charges of bosonic and fermionic coordinates of this phase transformations can be restored
from the relation between supertwistors and standard superspace coordinates [45]. In superamplitude
context these relations can be found e.g. in [2].



Let us consider a vector frame

1 _ 1 _
ug;) = <2 (ua#(z) + u;l) uls 3 (quEZ — u&)) € SO(1,D-1). (2.1)
It can be associated with D-dimensional light-like momentum kg, ka(i)k&) = 0, by
the condition that one of the light-like vectors of the frame, say u, = u?, — ug?_l), is

proportional to this k),
a # a=

The additional index ¢ will enumerate particles scattered in the process described by an
on-shell amplitude. Below in this section, to lighten the equations, we will omit this index
when this does not lead to a confusion.

The condition (2.1) implies u((f)nabul()d) = 7@ which can be split into [51, 52]

ugju= =0, )
uffu™ =0, uu =2, 2.4
ulu'= =0, ulu® =0, ulu® = —517 (2.5)

(c)

and also ug n(c)(d)ul()d) = Nap, Wwhich can be written in the form of

1 _ 1 -
6.0 = cugub® + —uFub= —ulul (2.6)

Notice that the sign indices = and # of two light-like elements of the vector frame
(see (2.3) and (2.4)) indicate their weights under the transformations of SO(1, 1) subgroup

of the Lorentz group SO(1,D — 1),

uy e 20T ulf s e T2 ul v (2.7)

It is convenient to change the basis and to consider the splitting of the vector frame
matrix (2.1) on two light-like and (D — 2) orthogonal vectors in the form [51]

0 2 0
o) = (uguf,ul)  wu® = @O =12 0 0 | (2:8)
0 007

This is manifestly invariant under the direct product SO(1,1) ® SO(D — 2) of the above
I

a’

scaling symmetry (2.7) and the rotation group SO(D — 2) mixing the spacelike vectors u

SO(D —2) : U, — U ulf — ult ul v ul O oot =1. (29)

a a

If only one light-like vector u, of the frame is relevant, as it will be the case in

our discussion below, the transformations mixing uff and ul can be also considered as a

symmetry. These are so-called K(p_o) transformations
Kp_g) : u, — u, ,
1 _ 1 _
ulf — u +ul K#I—FZUJ(K#IK#I), ul u£+§ugK#I (2.10)

(identified in [17, 18] as conformal boosts of the conformal group of Euclidean space).



To make the associated momentum (2.2) invariant under SO(1, 1) transformations (2.7),
we have to require that

p? s et2apht (2.11)

and this explains the index # of p multiplier in (2.2). Of course, we can use (2.11) to set
p? = 1. However, it happens to be much more convenient to keep SO(1, 1) unfixed and to
use it as identification relation (gauge symmetry acting on) vector harmonics (2.1).

The complete expression for light-like momentum (2.2) is invariant under
Hp =[80(1,1) ® SO(D—2)] ® K(p_g) transformations (2.7), (2.9), (2.10). This is the
Borel subgroup of SO(1,D — 1) so that SO(1,D — 1)/Hp coset is compact; actually it

D=2) 1f we use H transformations as identification rela-

is isomorphic to the sphere S(
tion on the set of vector harmonics, these can be considered as a kind of homogeneous

coordinates of such a sphere [17, 18]

_ B SO(1,D — 1) o
{(“ il “I)} T SO(1,1)@S0(D —2)]@ K(p_g s (2.12)

Such a treatment as constrained homogeneous coordinates of the coset makes the vec-
tor frame variable similar to the internal coordinate of harmonic superspaces introduced
in [32, 33|, and stays beyond the name vector harmonics or vector Lorentz harmonics,
which we mainly use for them.

In the context of (2.2), S(°~2) in (2.12) can be identified with the celestial sphere of a
D-dimensional observer. Notice that this is in agreement with the fact that a light-like D-
vector defined up to a scale factor can be considered as providing homogeneous coordinates
for the S(P=2) sphere

{uz} =sP72, (2.13)

The usefulness of seemingly superficial construction with the complete frame (2.12) becomes
clear when we consider spinor frame variables, which provide a kind of square roots of the
light-like vectors of the Lorentz frame.

2.2 Spinor frame in D=10

To each vector frame u,()a) we can associate a spinor frame described by Spin(1,D — 1)

valued matrix VA € Spin(1, D — 1) related to ul()a) by the condition of the preservation of

D-dimensional Dirac matrices
VIV =uf Ty, VIT@Y = (2.14)

and also of the charge conjugation matrix if such exists in the minimal spinor representation
of D-dimensional Lorentz group,

vovt =, if C exists for given D. (2.15)



In the case of D=10, where the minimal Majorana-Weyl (MW) spinor representation is
16-dimensional, the SO(1,1) x SO(8) invariant splitting of vector frame in (2.1) is reflected
by splitting the spinor frame matrix on two rectangular blocks, v Ojg and v,

(ot .- :
V) = (vaq, vaq) e Spin(1,D — 1), (2.16)
which are called spinor frame variables or Lorentz harmonic (spinor Lorentz harmonic).
Their sign indices * indicate their scaling properties with respect to the SO(1,1) transfor-

mations, and their columns are enumerated by indices of different, c-spinor and s-spinor
representations of SO(8) group,

D=10: a=1,...,16, ¢=1,...,8, q=1,...,8. (2.17)

The set of constraints on 10D Lorentz harmonics are given by egs. (2.14) in which
05 = 04p = 0, and [ooh = gaof = 5oBe gre 16x16 generalized Pauli matrices, which
obey 0%6°% + 0%6% = 2n®I16x16. We prefer to write this relation in the universal form

re 1070 418 1070 = 26,7, (2.18)

which also describes the properties of symmetric 32x32 11D Dirac matrices introduced
below (see section 5.2).

The charge conjugation matrix does not exist in 10D Majorana -Weyl spinor represen-
tation so that there is no way to rise or to lower the spinor indices. The elements of the
inverse of the spinor frame matrix

« v “ :
Vigy = (vg"a> € Spin(1,D — 1) (2.19)

are introduced as additional variables, which obey the constraints

Vogﬁ)V([g)7 = voi}vq_7 + voé_qv;]M =04 (2.20)
and
v;avag = d4p v;o‘va_q =0,
v;ava; =0, U MUy = Ogp - (2.21)
For brevity, we will call v> % and v® inverse harmonics.

q q
The constraints (2.14) can be split on the following set of SO(1,1) ® SO(8) covariant

relations

ug U'op = 2Vaq vgq Uy Ogp = vq_favp_ , (2.22)
v;FaU; = u¥ o, 20ag 05T = I‘Zﬁuf , (2.23)
= 11 - I
Vg Loty = a7y 20(alg Ta¥8)” = Captia» (2.24)



where 7;1', = %I')q with I =1,...,8 are SO(8) Clebsh-Gordan coefficients obeying
VAT + 473 = 6" Iss 7'y + 574" = 6" Iss - (2.25)

Although the constraints for the inverse harmonics (2.19)

u; TP = ZU;O‘U;B, Ug 045 = vy Lavy (2.26)
ol =ufs vty P = Taebyi# (2.27)
vy Tavy = ulldgp vy v, ul .

vq_Fav; = —ué*y;q, 21);(&7(541);’3) = —Taeaby! (2.28)

can be obtained from (2.22)—(2.24) and (2.21), it is convenient to keep their form in mind.

The constraints (2.22) allow us to treat harmonic v,, as a kind of square root of the

light-like vector u, of the vector frame. Similar to this latter, v

aq
constrained homogeneous coordinates of the coset isomorphic to the celestial sphere

can be also treated as a

{vaqt € S°. (2.29)

Actually, eq. (2.29) abbreviates the spinorial counterparts of (2.12) and (2.13); the complete
form of the first of these is

{(Vaj Vag)} = Spin(l, 9) = 58, (2.30)

[SO(1,1) ® Spin(8)] « Kg

where Kp_o (Ks in our 10D case) leaves v, invariant and acts on the complementary

: +
harmonics v, i by

1 _
Kp_o : UOZ — vojg + iK#Ivapfyéq. (2.31)

In a model with [SO(1,1) ® Spin(D — 2)] *Kp_s gauge symmetry vaz does not carry

g can be obtained

degrees of freedom: any vaz forming Spin(1, D — 1) matrix with given v
from some reference solution of this condition, v (;go, by Kp_o transformations (2.31). This
justifies the simplified form of (2.29) where only v, are presented as the constrained

homogeneous coordinates of the sphere.

2.3 D=10 spinor helicity formalism

When the vector frame is attached to a light-like momentum as in (2.2),
ko = pTuy (2.32)

the constraints (2.22) for the associated spinor frame imply that the following D=10 coun-
terparts of the D=4 Cartan-Penrose relations (1.4) hold:

kalas =207 vaqusgs P70 Tavy = kadyp. (2.33)

In D=10 we should also mention the existence of the similar relations for the inverse
harmonics (2.19),

k %P = 2p#v(;°‘v;’3, p#vgfavg = kabgp - (2.34)
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Contracting the first equations in (2.33) and in (2.34) with v;ﬁ and v,,, and us-

aq7
ing (2.21) we easily find that these obey the massless Dirac equations (or, better to say,
D = 10 Weyl equations)

kaTogv, " =0, kaL**Pv; =0, (2.35)

Thus, they can be identified, up to a scaling factor, with D=10 spinor helicity variables
of [14]:

Aag = VP 0qy- (2.36)

The polarization spinor of the D=10 fermionic fields [14] can be associated with the inverse
harmonics v, “:

g = Vot . (2.37)
2.4 D=10 SYM multiplet in the Lorentz harmonic spinor helicity formalism

The polarization vector of the vector field can be identified with spacelike vectors u?! of the
frame adapted to the light-like momentum of the particle by (2.32) (cf. [14]) so that the
on-shell field strength of the D=10 gauge field can expressed by

D=10: Fab:k[aub]fwf:p#u[jubfw’, a=0,1,...,9, I=1,...,8 (2.38)

in terms of one SO(8) vector w!. It is easy to check that both Bianchi identities and
Maxwell equations in momentum representations are satisfied, ki, Fyq = 0 = ko F' ab,

As we have already said, the polarization spinor can be identified with the spinor frame
variable v “. Hence, in the linear approximation, the on-shell states of spinor superpartner

q
of the gauge field can be described by

XO‘ = f()q_awq (239)

in terms of a fermionic SO(8) c-spinor 4. Indeed, due to (2.35), the field (2.39) solves the
free Dirac equation.

When the formalism is applied to external particles of scattering amplitudes, the
bosonic w! and fermionic 14 are considered to be dependent on p? and on spinors hai-
monics v, related to the momentum of the particle through (2.33),

w = wl(pFug)  and = (¥ vp) (2.40)

When describing the on-shell states of the SYM multiplet, it is suggestive to replace p# by

its conjugate coordinate and consider the field on the nine-dimensional space R @ S%:

w! = w! (7, v)) and Vg = Pg(v7,0,) (2.41)

Vg
The supersymmetry acts on these 9d fields by
= - —q T = = I, =, — | = -
dethg(z™,v, ) = € Ty w (7,0, ), dew' (27,0, ) = 2ie Vy,,0=vp4(x~, v, ), (2.42)
where 8 component fermionic €7? is the contraction of the constant fermionic spinor e

with the spinor frame variable,

€ 1=¢€e",,. (2.43)

aq
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3 Constrained on-shell superfield description of 10D SYM

The above described fields of the spinor helicity formalism for 10D SYM can be collected in
on-shell superfields, which can be considered as one-particle prototypes of tree superampli-
tudes. A constrained on-shell superfield formalism for linearized 10D SYM was proposed
in [21]. We briefly describe that in this section and, in the next section 4, use it as a
starting point to obtain a new analytic superfield description of 10D SYM.

3.1 On-shell superspace for 10D SYM
In [21] the constrained superfields describing 10D SYM are defined on the real on-shell

superspace with bosonic coordinates = and v,,, and fermionic coordinates 6,

OB (27,07 ,va)}t s {Vag} =S°, (3.1)
qg=1,...,8, a=1,...,16.

The 10D supersymmetry acts on the coordinates of L8 by

0™ = 200, € vy, 00, = € vpyg s 0eUnq = 0. (3.2)
This specific form indicates that our on-shell superspace £(1®) can be regarded as invariant
subspace of the D=10 Lorentz harmonic superspace, i.e. of the direct product of standard

10D and 11D superspaces and of the internal sector parametrized by Lorentz harmonics
Spin(1,9)

Spin(1,1)®Spin(8) *

The generic unconstrained superfield on $(°1%) (3.1) contains too many component fields

(v Ojg, Vag) € Spin(1,9) considered as homogeneous coordinates of the coset

so that on-shell superfield describing linearized D=10 SYM should obey some superfield
equations. Such equations have been proposed in [21]. To write them in a compact form
we will need the fermionic derivatives covariant under (3.2)

0 0
D =07 +2i00— _ = — t= =1,...,8. .
q aq + 19q 6_, a_ a$: ) aq 89[1_ ) q ) 78 (3 3)

These carry the s-spinor indices of Spin(8) group and obey d = 1 91 = 8 extended super-
symmetry algebra

{D], D} } = 4ié,p0- . (3.4)

A one particle counterpart of a superamplitude is actually given by Fourier images of
the superfield on (3.1) with respect to #=. These will depend on the set of coordinates
(p”, 0, Ua_q), where p* is a momentum conjugate to =. The fermionic covariant derivative
acting on such Fourier-transformed on-shell superfields reads

+ _ ot -
D =0} + 2070, , (3.5)
and obeys

{DF, D} = 4p% 6y (3.6)
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3.2 On-shell superfields and superfield equations of 10D SYM
The basic superfield equations of D=10 SYM [21]

D =10 : DfUy =LV, ¢g=1,...,8, ¢=1,...,8, I=1,....8 (3.7)

are imposed on the fermionic superfield ¥, = W, (27, 9;, Uag ™) carrying c-spinor index of

SO(8). The superfield V! is defined by eq. (3.7) itself, which also imply that it obeys

DIV =2in].0_w,. (3.8)

This equation shows that there are no other independent components in the constrained
on-shell superfield V.

4 An analytic on-shell superfield description of 10D SYM

In this section we present an analytic superfield formalism for the on-shell D=10 SYM,
which is alternative to both the Clifford superfield approach of [14] and to the constrained
superfield formalism, which we have described above (more details can be found in [16]).
We begin by solving the equations of the constrained on-shell superfields of 10D SYM
from [21] in terms of one analytic on-shell superfield. In section 6 we generalize this for
the case of superamplitudes and describe an analytic superamplitude formalism.

4.1 From constrained to unconstrained on-shell superfield formalism

To arrive at our unconstrained superfield formalism it is convenient to write the superspace
equations (3.8) and (3.7) for on-shell superfields describing 10D SYM [21] in the form of

DiW! = 2iy], 0, (4.1)

Diwy =~ o-w', g=1,....8, ¢=1,...,8, I=1,...,8.

The superfield V! in (3.7) and (3.8) is related to W! by VI = o_W?!. After such a
redefinition, we can discuss the bosonic superfield W' as fundamental and state that L\
is defined by the ~-trace part of (4.1). The first terms in its decomposition on fermionic
coordinates are

2
Wt =w! +2i07 v +i07 v 0 o_w! — gew” 0~ 0 ~lo_h+....

We are going to show that, after breaking SO(8) symmetry down to its SO(6)=SU(4)
subgroup, eq. (4.1) splits into a chirality condition for a single complex superfield
(@ = W7 +iW?) and other parts which, together with (4.2), allow to determine ¥; and
all the remaining components of W7 in terms of this single chiral superfield.

4.2 SU(4) invariant solution of the constrained superfield equations

Breaking SO(8) — SO(6) ® SO(2) ~ SU(4) ® U(1), we can split the vector representation
8, of SO(8) on 64141 of SO(6),

w!=w! wi, w8, I=1,...,6. (4.3)
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Then introducing

W7 — w8 - WT+iw?
o = — =" Uy =50, (4.4)

we find that (4.1) implies
DJ(I) = (5qp + i(77ﬁ8)qp) Uy,
DF® = — (64p — i(7"7%)gp) V) (4.5)

It is important to notice that the matrices

73;',; = % (5qp + Z'(sz)qp) ) (4.6)
are orthogonal projectors
PPt =P, PP =P, PP~ =0 (4.7)
Pt+P” =1, (PHY* =P,
and hance that (4.5) implies
(Ogp — (V'3 )gp) DF @ =0, (6gp +i(v'7%)gp) Djf ® = 0. (4.9)

As, according to (4.8), the projectors P and P~ are complementary and complex conju-
gate, we can introduce complex 8 x4 matrix qu and its complex conjugate wy4 such that

(Ogp +i(Y"9)3,) = 2w Wpa,  (Sgp — i(Y7A)5,) = 2Wgawy™. (4.10)
In terms of these rectangular blocks eqgs. (4.9) can be written as chirality (analyticity)
conditions
_ .
Di®=0, D™&=0, (4.11)
with
D} =wpaD,  Di=uw"DJ. (4.12)

The remaining parts of egs. (4.5) determine the fermionic superfield Wy,

Uy = w0 4 h 0= —%chb, Tt = —1D1o. (4.13)
Eq. (4.2) allows us to find also the derivatives of the remaining 6 components W of the
SO(8) vector superfield W7,

1

~(v'3%) gDy Dy (& — B). (4.14)

o_wl =
- 8

To conclude, we have solved the equations for constrained on shell superfields of 10D
SYM [21] in terms of one chiral (analytic) on-shell superfield ® and its c.c. ® (4.4).
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4.3 The on-shell superfields are analytic rather than chiral

Our solution breaks explicitly the manifest SO(D — 2) = SO(8) ‘little group’ invariance
of the constrained superfield formalism down to SO(D — 4) = SO(6) (called ‘tiny group’
n [26]). Actually, one can avoid this explicit SO(8) — SO(6) ® SO(2) ~ SU(4) ® U(1)
symmetry breaking by using the method of harmonic superspaces [32, 34]. To this end we
must write the general solution of the constrained superfield equations in a formally SO(8)
invariant form by introducing a ‘bridge’ coordinates parametrizing SO(8)/[SU(4) ® U(1)]
coset: the SO(8) valued matrix

. -1 _ 1 _
Ut = (UI{UI(?),UI@)) — (UIJ’2 (Ur+0y) >y (Ur - U1)> € SO(8).  (4.15)

This is transformed by multiplication on SO(8) matrix from the left and by multiplication
by SO(6) x SO(2) € SO(8) matrix from the right. The conditions of orthogonality of the
UI(J) matrix (4.15), UI(J) UI(K) = 6)E) imply that the complex vector U is null and has
the norm equal to 2,

Uiur=0, UiUr =0, Uiy =2, (4.16)
as well as that it is orthogonal to six mutually orthogonal real vectors UII
U]U]j =0, U[U[j =0, U]jU[k = 5jk. (4.17)

Now we can easily define SO(8) covariant counterparts of the projectors in (4.6)

P = . (5qp +i(y! )qu(7)U(8)) 4 570Uy,
Pop = % (b0 — (V"5 ) U U ) = Z'VI’NVJUIUJ- (4.18)
Furthermore, we can define the 8x8 SO(8) valued matrices w((l P and w(p ), which are
related to (4.17) by
I U( ) — (p) éﬂ)(Q)w§54)’ wgp)w(?) = 5P wl(;,i)w](;/") — 5@ (4.19)

The elements of these real matrices can be combined in two rectangular 8 x 4 complex
conjugate blocks

wy = (Wga)*,  wi = (wga)*, A=1,2,34. (4.20)

These obey
Wy MTpA + Wyawp™ = 8p (4.21)
’J)quqA = 5BA , ququ =0, WgAWgB = 0, (4.22)

and factorize the orthogonal projectors (4.18)
1 g 7 79 - ~ r —
Pap =77 7 U1U; = welpa, Py = AU = wgaw,? (4.23)
(cf. (4.10)).
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With a suitable choice of representation of 8d Clebsch-Gordan coefficients 'yéq = ﬁéq,
the first equation in (4.19) can be split into

o= L UY = iwlod pu? + iwgad"Piogg (4.24)
wqp = ’)/qu] = 2’11_),1,4’11);)-4, (qu = ’yépU] = Qw(‘;‘pr. (4.25)
In (4.24)
. . . 1 . _
ohp=—ob = (518 = ieABCDc}fCD, I=1,...,6, ABCD=1,...,4
(4.26)
are 6d Clebsch-Gordan coefficients which obey
o5 + o751 = 251758 UIZB&jCD = —45[A053}D, UII;‘B UéD = —2eapcp - (4.27)

Using (4.25) and (4.22), it is not difficult to check that eqs. (4.23) are satisfied.?

The above bridge coordinates or harmonic variables [32-34] can be used to define
the SO(8) invariant version of complex covariant derivatives (4.12), and of complex linear
combinations of 8 bosonic superfields W/

o=wlu;, o=wl, (4.28)

which are analytic and anti-analytic, (4.11).

The expression for fermionic superfield W4 can be written in the form of (4.13), but
now with w and w factorizing the covariant projectors (4.23). It is also not difficult to write
the covariant counterpart of the expression (4.14) for other 6 projections wi=w/ U; I of
the 8-vector superfield W!. However, a more straightforward expression for wi = WJ Ul bt
in terms of ® reads

w!=_Do, (4.29)
where

i 1 0 0 0 1 _jAB 0
DJ 2U ﬁ Uj]ai + = i qBaiI] " - §O'JAB —_— (430)
T q

is one of the covariant harmonic derivatives (first introduced in [32] and [33] for SU(2)/U(1)
and SU(3)/[U(1)xU(1)] harmonic variables). In our case the other covariant derivatives are

0 i 0 0 i 0
U, 22 4 UJAB—qBa ; 201{1Bw3

p/ =1
27 auy " o0,

e (4.31)

3 In this calculation and below the following identity is useful

I S A A _ Jf. A J B, .- ~JAB _
Yap = Urwgawy + Urwg wpa + Uy (zwq OABWp + 1WqAC wa) .
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conjugate to (4.30), and

D(O):U[a_ﬁla+;<wA o —w? 9 >+;(w{4 0 —WgA _a >7 (4.32)

ou; o0,
g (0 50\ iy 0 0
pld— 2l __yl 2 v jj A, B .
2( Koud Roul ) Ta% E " gugd T M gw,, ) T

i jjoal. B9 0
L B 9 s 4.
+20 B <wq 8w§1 quaqu>, (4.33)

providing the differential operator representation of the U(1) and Spin(6) = SU(4) gen-
erators on the space of internal harmonics. These covariant derivatives preserve all the
constraints on harmonic variables, eqs. (4.21), (4.22), (4.24) and (4.25), and form the
so(8) algebra.

One can easily check that, by construction, our analytic superfield (4.28) obeys

D% =0, (4.34)
Do =0, (4.35)
D¢ =&, (4.36)

These equations are consistent with the analyticity conditions (4.11) as
D/, D] =0. (4.37)

4.4 Analytic superfields and harmonic on-shell superspace

Thus, we have solved the superfield equations for constrained on-shell superfields of D = 10

SYM in term of one complex analytic superfield ® obeying the chirality-type equation (4.11)
Spin(8) __ SO(8)
Spinl(p(;;l®U(1) = SU@eU0)
coset coordinates (4.21), (4.22), which we, following [32-34], call harmonic variables or

with complex fermionic derivatives (4.12) defined with the use of

internal harmonics.
These analytic superfields are actually defined on a ‘harmonic on-shell superspace’

which can be understood as direct product of the on-shell superspace (3.1) and the
Spin(D—2)

Spin(D-D)aU() Ccoset

DOO=BRN) = {27 vyes Wga, wis 07)} (4.38)

N o . _ Spin(D —?2)
(=) =R!, {vaq}—SD 2 {(qu,w?)}—Spin(D_zL)@U(l)'

Here and below in (4.42), to exclude the literal repetition of the same equations, we write
them in the form applicable both for D = 10 and D = 11 cases, for which

4 for D =10,
g=1,....2N, a=1,... 4N, N = o (4.39)
8 for D =11.
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Supersymmetry acts on the coordinates of the harmonic on-shell superspace by

(ct. (3.2))

ex™ = 2i0, € vay, Of; =€ gy, OcUog =0, Oclliga=0=dcw,", (4.40)

and leaves invariant the covariant derivatives (3.3)
+ _ o+ 0— _
Dy =0, +2i0, 0=, D_ =0-, (4.41)

as well as BX = u_)qADq+ used to define analytic superfields ® by D:CIJ =0, (4.11).
To see that the analytic superfields are actually functions on a sub-superspace of (4.38),
we have to pass to the analytic coordinate basis.

4.5 Analytical basis and analytic subsuperspace of the harmonic on-shell
superspace

The presence of additional harmonic variables allows to change the coordinate basis of the

harmonic on-shell superspace LGE=3)I2N) 6 the following analytical basis
BEP=EN) = [T, vags Dga, wiin, 7 )}, (4.42)
xpi=a + 22‘77277_‘4 , Ny =0, Wga, ﬁ_A = Gq_qu .

The supersymmetry acts on the coordinates of this basis by
Sex = din e, Sena = €4, S A=A, (4.43)
where
€4 = € VqWyA , € "t =c"v w. (4.44)

It is generated by the differential operators

Qh =0  +4im 0k, Q™ =07 (4.45)
and leaves invariant the covariant derivatives?
_ _ 0 0
D=0 = — D = o + 4ig~ ok D_=0t= . 4.46
A 877_‘4 ’ A + ) = = = 8xf ( )
The harmonic covariant derivatives in the analytical basis have the form
J_nd_ b —-jap_0
D’ =D’ — 570 9B (4.47)
A _mi_boa g 0
D7 =D" - 577 O'ABai_ ) (4.48)
B
1 0 1 0
DO =pO 4 —p7 = A 4.49
; Fit__p ij 0 i fj _ 0
DI —pl7 4 57 BUUBA@—_A _ §U[JBA77A8 . (4.50)

where D7, D7, D and D7 formally coincides with (4.31), (4.30), (4.32) and (4.33).

4To be rigorous, one might want to write the L symbol also on the fermionic derivatives in (4.46),
ok w— ot ,, o a#. We, however, prefer to make the formulae lighter and write this symbol on the
bosonic derivative &% only.
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It is not difficult to see that supersymmetry (4.43) leaves invariant analytical on-shell

superspace Ef(D_g)‘N), a sub-superspace of LGP =32N) with coordinates
3(D—3)|NV - _
PO (0T vags Wga, w3} - (451)

The above defined analytic superfields are superfields on this analytic sub-superspace,
D = (27,145 Vags WA, w?) & D ®=0. (4.52)
The supersymmetry transformation of the analytical superfields are defined by
' (x7',nys...) = ®(x7,ny;- - ), or equivalently,
—(eAQN re T _
A e g = (4.53)

—aieAn ok ot

=e D(zT,nys--)-

(2L, my;-.) =€

For our discussion of the amplitudes, it will be useful to consider a Fourier image of
an analytic superfield with respect to x7,

,ip#zf

(T, 113 Vags Waas W) = /dp#e D(p™ 113 Vgt Waas W) - (4.54)

The supersymmetry acts on this Fourier image as

—aptte=A atA

TN, —e, -
)=e e ) (4.55)
= exp{—4p"e M} (o g —ex; ). (4.56)

(% 5

The analytic on-shell superfield can be decomposed in series on complex fermionic
variable,

- 1 B B
B(p* Vaqiw, @3 14) = ¢ a2 A4 CnpnagP + () Ap P (M) L (4.57)

In this description 8 fermions 1; and 8 bosons w! of the SO(8) covariant constrained
superfield formalism are split into 4+4 and 14641 representations of SO(6) ~ SU(4)

P (Uy) = (24 4 V2 (4.5
Ay o (wh) = (¢, 648, 60)). (4.5

8
9

)
)
The sign and numerical superscripts of the fields describe their charge with respect to U(1)
group acting on 74 = n,. The origin of the analytic superfield in components of SO(8)
vectors suggests that its charge is equal to +1, ® = &),

This can be expressed by the differential equation

fz(loD)@(p#, Vg Wy W5 4) = P(p7, Vi w, Wi M4) (4.60)

aqo

where

(4.61)
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is the 10D counterpart of the superhelicity operator. It is easy to see that, when acting on
an analytic superfield, h(1°P) coincides with covariant harmonic derivative D) (4.49),

il(lOD) - D(O) |on analytic superfields » (462)

so that eq. (4.60) for analytical ® coincides with D@ = &. Indeed, while the central
basis form of this latter equation is given by (4.36) with D) from (4.32), in the analytical
basis we have to use the covariant derivative (4.49) so that our analytic superfield, being

A

independent of 77, obeys

_ _ 1/ _ 0 _ _
(D(O) — 1)<I>(p#, Vpgs W, W3 NA) = <D(0) + 3 (”Aan—> — 1) @(P#, Vg W, Wina) = 0.
A
(4.63)

This is identical to (4.60) with A(19P) given in (4.61).
_ Similarly, the analytic basis counterparts of eqs. (4.34) and (4.35), D’® = 0 and
D ® =0, include the derivatives (4.47) and (4.50) and read

D7 ®(p*, vagsw,Wi114) = DT B(p*, vy w, ;ma) =0, (4.64)
;5 _ B i 77 _ 0 _ _
DIJ(I)(IO#7 an§w7w§77A) = §UIJBA77A? (I)(p#, "an§w7w§77A) : (465)
B

D,® = D (p*, Vg W, W5Ma) =0, (4.66)

has been used.®

As we have already noticed, the spectrum of the component fields described by the
analytical superfield (4.57) formally coincides with the fields of ' = 4 D=4 SYM. However,
these fields depend on different set of bosonic variables: on 1+8+12=21

{P#} = R}F , {v;q} — g8 , {(quvaq)} _ SU(SO(S)

ST 00 (4.67)

instead of 3=4-1 non-pure gauge components of (A, A\) = CP? in 4D case.

A reader with experience in harmonic superspace formulation of N' = 2 D = 4 supersymmetric matter
and gauge theories might notice the similarity of eqgs. (4.11) and (4.34) with basic equations of the hy-
permultiplet superfield ¥, which read Dj{q+ =0= D}lq" and DT¢"T = 0. In central basis of N/ = 2
harmonic superspace D} = ™Dy, , DY = uf D}, and DT+ = ujaui, where DY, = (D4;)* are standard
N = 2 fermionic covariant derivatives, i,j = 1,2 and " uju; =1. Itlis well-known [32, 34] that the first
of these equations (Grassmann analyticity conditions) are dynamical and the last is purely algebraic in this
basis. However, after passing to an analytical basis the role of the equations interchange: the Grassmann
analyticity conditions define a subclass of superfields, analytic superfields, while D™ +¢* = 0 becomes dy-
namical equation for the analytic superfield. One might wonder whether similar interchange effect occurs
in our formalism. The answer is negative as far as our D=10 on-shell superspace description is oriented on
collecting inside an analytic superfield the on-shell degrees of freedom of the SYM: we cannot distinguish
algebraic and dynamical equations in this framework. Furthermore, as we will stress and discuss below, our

internal harmonics are actually pure gauge variables.
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The indices A, B = 1,...,4 of the fermionic coordinates and of some of the on-shell
component fields of 10D SYM are transformed by SU(4). However, in distinction to the
rigid SU(4) R-symmetry group of N' = 4 D=4 SYM, in ten dimensional theory SU(4) is
a gauge symmetry: it is used as identification relation on the set of harmonic variables

qu, Waq (4.22) making them generalized homogeneous coordinates of the %&}m coset.

4.6 On (w,w)-dependence of the analytic superfields. Complex spinor
harmonics

The meaning of the dependence of analytic superfields (4.52) on the additional set of inter-
nal harmonic variables (w, w) requires some clarification. As we have discussed in section 3,
the 10D counterpart of the 4D helicity spinors (), \) is provided by the spinor harmonic vari-
q.+, vy ). However, these are real while to define an analytic or chiral superfield, simi-
lar to the ones used in the on-shell superfield description of N' = 4 SYM in D=4, we need to

ables (v

have a complex structure. The role of internal harmonics (w, w) is to introduce such a com-
plex structure without breaking explicitly the Spin(8) gauge symmetry. This ‘little group’
symmetry, acting on the spinor harmonics (U[—;_, v, ) and used to identify them with the ho-

mogeneous coordinates of the celestial sphere S® = Spin(e) ®53§i(g()g%)o(171)] K (2.30), acts
also on (w,w). Moreover, (w,w) are pure gauge with respect to this Spin(8) symmetry, so
that the only invariant content encoded in them is the above mentioned complex structure.

One can formally fix the gauge with respect to SO(8) symmetry by setting Uy =47 +id5.
The residual symmetry of this gauge, in which (w,w) are determined by (4.10), is SU(4) ®
U(1), and the Spin(8) symmetry acting on the spinor harmonic reduces to this smaller
subgroup. In this language, the analytic superfields depend on the spinor harmonics only,
but these parametrize the coset

Spin(1,9) Spin(1,9)

[Spin(6) ® Spin(2) ® SO(1,1)] « Ks _ [SU(4) @ U(1) ® SO(1, 1)] & Kg (4.68)

instead of (2.30).
This is tantamount to saying that the analytic superfields (4.52) depend on the set of
complex spinor harmonics composed of (v;, v, ) and (w,w) according to

e A= A b A A
Vpd = UaqWqd, Vg 1= UgpW",  Ugg = UpWpa, Vg 1= v ws", 4.69)
- ., ——Aa ., —a, A +o . o - —+Aa ., 4o, A

V" =0, “Wga, U =g wg, vy = Mga, U = v, w, (4.70)

After taking into account the constraints and identification relations, one concludes that
these parametrize the coset (4.68). Resuming, (4.52) can be equivalently written in the form

O =d(aL, 0,0, 0.0) &  Did=0. (4.71)

We, however, find more convenient at this stage to think about dependence of

analytic superfields on real spinor harmonics, parametrizing the celestial sphere
$8 (= Spin(1,9)
~ [Spin(8)®SO(1,1)|x K3

coset %, in spite of these latter are pure gauge in our case.

), and on the set of internal harmonic variables parametrizing the
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4.6.1 Origin of internal harmonics

To clarify the passage from (4.52) to (4.71) and the auxiliary nature of internal harmonics,
it is instructive to discuss how the analytic superfield ® can be obtained in quantization
of massless 10D superparticle. The reader not interested in this issue can pass directly
to section 5.

More details on quantization in present notation can be found in [16] (see also [23] for
11D case). Here we begin from stating that in a Lorentz-analytic coordinate basis® the 10D
(and 11D) massless superparticle has no fermionic first class constraints but only 8 (16)
second class fermionic constraints dj . They have the form df = 7/ +2if, p* ~ 0, where 7
is the momentum variable conjugate to fermionic coordinate function ¢, = ¢, (7) and Pt =
p7 (1) is momentum conjugate to the bosonic coordinate function 2= = z=(7) depending
on particle proper time variable 7. These d; are the classical mechanics counterparts of
the fermionic covariant derivatives in (3.3). Their second class nature is reflected by the
Poisson bracket (P.B.) relations

{dc—;7 d;_}P.B. = _4ip#5qp' (4.72)

The second class constraints can be resolved by passing to Dirac brackets (D.B.). Then the
dynamical system has no fermionic constraints but the fermionic coordinate variable obey
o i
{aq 79]2 tos = *4,.?6(1? : (4.73)
After quantization (in the momentum representation with respect to =), the algebra of
fermionic operators 0, is

(67,67 = 4;#5%,, (4.74)
and we have to find a representation of this Clifford-like algebra on the superparticle state
vectors ("wavefunctions’).

The appearance on this way of the constrained superfields (5.28) and of the Clifford
superfield formalism by Caron-Huot and O’Connel is discussed in [16] (see also concluding
section 9 for a brief discussion). To arrive at the analytic superfields formalism, we need to
split 8 (16) Clifford-like variables é; on the set of 4 complex fermionic coordinates and 4
momenta conjugate to these. Such an ‘oscillator’ (creation and annihilation operator) repre-
sentation of Clifford algebra is well known, but it requires to introduce a complex structure,
which breaks the SO(8) symmetry of the 8-dimensional Clifford algebra down to U(4).

A generic complex structure can be described by (complex linear combinations of the)
columns of an SO(8) valued matrix, w(‘;‘ and wq4 (4.20) obeying (4.22). They can be used
to split 6, on the counterparts of creation and annihilation operators,

~A— A— — ~_ N— ~— a_ ]-
TIAZHq WqA n A:Hq w?7 {77,4:77 B}ZW5AB- (4.75)

5The ten bosonic and 16 fermionic coordinates of the Lorentz-analytical coordinate basis of Lorentz
harmonic 10D superspace are constructed from the standard superspace coordinates x, 0 and Lorentz
(see [16] and

; =._ pa,= . H# ._ a,# I ._ a1 | o= I gt p— _ pa, — + _ po,, +
harmonics as 27 = 2%u,, o7 = 2], @7 = a%ug + 10, 7,405, 05 = 0%vaq and 07 = 0%v

refs. therein).
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Then, we can quantize superparticle in n-representation, in which 7, = 7, and n B 6778— 5

and the wavefunction depends on 1. Such a wavefunction do not depend on the complex
B

conjugate fermionic coordinate 77" and, hence, is a counterpart of chiral superfield, an
analytical superfield.

Actually in such a way, we arrive at the analytical superfield (4.57), which depend,
besides the above mentioned 7, and bosonic p (or its conjugate coordinate z=) also
on the Lorentz harmonic variables v,,, parametrizing the celestial sphere of the 10D ob-
server (2.29) and the above variables w(‘;‘, WgA-

Such a description corresponds to introducing w,‘;‘ (1), wqa(T) as additional variables of
particle mechanics, so that the splitting of real 6, (7) on 1 () and 7A(7), as in (4.75),
can be performed already at the level of superparticle action. This is also in correspondence
with the general ideology of harmonic superfield approach [32-34] (see [53-55] for quanti-
zation of superparticle in the standard A/ > 2 D=4 harmonic superspace). However, in our
case there is a peculiarity related to the fact that such internal harmonic coordinate func-
tions in the superparticle action will be pure gauge with respect to SO(8) gauge symmetry.
Furthermore, this is the same SO(8) gauge symmetry which was used as an identification
relation on the set of Lorentz harmonic variables and allowed to treat them as homogeneous
coordinates of the celestial sphere (2.29). Hence, on one hand, we can fix the SO(8) gauge
by setting wj;‘, WgA to some constant values thus breaking SO(8) gauge symmetry down to
SU(4) x U(1). But on the other hand, after that we cannot use SO(8) gauge symmetry
as an identification relation on the Lorentz harmonic variables. Then these latter cannot
be considered as parametrizing the celestial sphere, but rather are homogeneous coordi-
nates of a bigger coset (4.68). The number of additional (with respect to celestial sphere)
dimensions of this coset coincides with the dimension of the coset SO(8)/[SU(4) x U(1)].

Such a gauge fixing leads us to the wavefunction (4.71) seemingly dependent on smaller
number of harmonic variables. However, as we have just explained, the number of degrees
of freedom in the Lorentz harmonic variables serving as an argument of the wavefunc-
tion (4.71) is the same as the sum of the number of degrees of freedom in Lorentz harmonic
variables (2.29) and internal harmonics (4.67) the superfield (4.52) depend on.

As we have already said, we prefer the second description, in which SO(8) gauge
symmetry is used as an identification relation on the set of Lorentz harmonics, which then
parametrize the celestial sphere S®, and the internal harmonics describe the degrees of
freedom of the coset SO(8)/[SU(4) x U(1)].

4.6.2 Comment on harmonic integration

If we were constructing the harmonic superspace actions for field theories in terms of our
analytic superfields, then at some stage we would need to define and to use the integration
over the internal harmonic variables wgl, WqA- In particular, the Lagrangians of such actions
should be defined as an integral over SO(8)/[SU(4) x U(1)] coset. Such a problem, although
interesting, goes beyond the scope of this paper where we use only on-shell superfields and
their multiparticle generalizations, tree superamplitudes.

When working with the on-shell superfield description of free supermultiplets and tree

amplitudes, we can always treat the analytic superfields/superamplitudes as encoding the
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constrained superfields/superemplitudes and their components, particle amplitudes, which
are independent of internal harmonics. The internal harmonic variables enter such encoding
relations in a linear manner: see (4.28) and its superamplitude generalization (6.13). How-
ever, the further development of the formalism, and particularly its generalization to loop
amplitudes, might require to introduce and to use the integration over SO(8)/[SU(4) x U(1)]
coset parametrized by internal harmonics.

5 Spinor helicity formalism and on-shell superfield descriptions of the
linearized 11D SUGRA

5.1 Spinor helicity formalism in D=11

In this section we develop D = 11 spinor helicity formalism [15] on the basis of the spinor
moving frame approach to 11D superparticle [23, 24]. This uses the Lorentz harmonics
which can be considered as square roots of the vector frame variables, the 11D version of vec-
tor harmonics introduced in [51, 52]. The description of this latter basically coincide with
that given in section 2.1 for their 10D cousin, but with setting D=11, a,b,c =0,1...,10,
and I,J, K =1,...,9 in the appropriate places.

This is to say the vector frame is described by egs. (2.1) or (2.8) with D = 11, and is
“attached” to a light-like 11-momentum kq; by eq. (2.2). The Lorentz harmonic variables
forming the vector frame matrix are constrained by (2.3)—(2.6) and defined up to the trans-
formations (2.7), (2.9), (2.10) which allow to identify them as homogeneous coordinates
of the coset (2.12) with D = 11. This last equation is equivalent 11D version of (2.13)
where in the Lh.s. the light-like vector u is defined modulo its scaling transformations (as
resulting from acting on it by SO(1, 1) symmetry of the set of vector harmonics (2.12)).

5.2 Spinor frame and spinor helicity formalism in D=11

11D spinor harmonics are defined as rectangular blocks of Spin(1, 10)-valued spinor frame
matrix

v = (v 4> Vaq) € Spin(1, 10). (5.1)

aq?

This is defined as a kind of square root of the vector frame matrix (2.12) by constraints

VI,V = uéa)F(a) ) vIiT@y = fbul()a) )

vevt =c.
Here C' is the 11D charge conjugation matrix, which is imaginary and antisymmetric C, g =
~Cg, = —(Cyp)*. Ty and T? in (5.2) are real symmetric 32 x 32 matrices Ies=T%, =
I27C, 5 and ¢ =128 = Co‘ﬂﬂﬂ , obeying (2.18). They are constructed as products of
11D Dirac matrices I'YY = —(T'27)* obeying the Clifford algebra, TeT 4+ T°T'* = 29®l35 39,
and of the above described charge conjugation matrix.

In (5.1) a,B,v are indices of 32 dimensional Majorana spinor representation of
SO(1,10) and g, p are spinor indices of SO(9),

D=11: a,B,v=1,...,32 and gp=1,...,16. (5.4)
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Notice that, in distinction with D=10, both spinor harmonics in 11D spinor frame ma-
trix (5.1) carry Spin(9) indices of the same type. Furthermore, the existence of charge
conjugation matrix allows to construct the elements of inverse spinor frame matrix obeying

—o,, + —0,, —
Vg “Vap = Ogp » Vg Vg =0,
+a,, + _ o, — _
v "V =0, Vg “Vap = Ogp (5.5)

in terms of the same spinor harmonics:

D=11: yf*=iC%f, v % =—iC%v, . (5.6)

The constraints (5.2) can be split on the following set of SO(1,1) ® SO(9) covariant
relations

ug o5 = 20aq vpg Uy Ogp = v;fav; , (5.7)
v;f‘az}; = uf(sqp, 2vaq+v5q+ = Fgﬁuf ,
vg Tavy = ta7gp 20(alg Yag¥18)a " = Lagtia
where W’ép = 7;{(1 are nine dimensional 16x16 Dirac matrices, I = 1,...,9. In the Majorana

spinor representation of SO(9) the charge conjugation matrix is symmetric and we identify
it with dg.
The Kp_o transformations of Lorentz harmonics in D=11 are given by

1 _ _ _
Ky : v(jq — ’UQJE + iK#Ivapfy}{q, Vog ™ Vag - (5.10)

When [SO(1,1) ® Spin(9)] ® K9 can be used as an identification relation, i.e. in the model

which possesses gauge symmetry under these transformations, the spinor harmonics can

be considered as the coordinates of the coset of the Lorentz group isomorphic to S? sphere,

Spin(1, 10
{Vaks Vag) € pin( . ) = s
a [SO(1,1) ® Spin(9)] ® Ko

The fact that the vector frame is adapted to the light-like 11-momentum k, by eq. (2.2)

imply

(5.11)

kal'gs = 2p#va_qv5;, p#vq_f’avp_ = kolgp (5.12)
which can be equivalently written as
ko008 = Qp#vq_o‘vq_ﬂ, p#vq_I‘avp_ = kalgp - (5.13)
These relations imply that the spinor harmonics v, obey the Dirac equation
kal*Pvg =0 & kalhgu,” = (5.14)

and hence define the helicity spinor

Aag = Vs, . (5.15)

The polarization spinor in D=11 can be obtained from helicity spinor with the use of charge

conjugation matrix,

D=11: A\ =+/ptu @ =iCNg,. (5.16)
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5.3 Linearized D=11 SUGRA in the Lorentz harmonic spinor helicity
formalism

The linearized on-shell field strength of 3-form gauge field of 11D SUGRA (called ‘formon’
in [56]) can be expressed by

Faped = kjgup ue’ug™ Apjg (5.17)

in terms of light-like momentum (2.32), spacelike vectors u,! of the frame adapted to the
momentum by (2.32), and an antisymmetric SO(9) tensor Ay = A7k (in 84 of SO(9)).
The linearized on-shell expression for the Riemann tensor reads

Rap™ = kiquy Kluny (5.18)
where the second rank SO(9) tensor hy; is symmetric and traceless (in 44 of SO(9))
hry=hyr, hir=0. (5.19)

We express these properties by writing hy; = h(y)). Finally, the gravitino field strength
solving the Rarita-Schwinger equation is expressed in terms of ~-traceless SO(9) vector-
spinor ¥y, (128 of SO(9)) b

Tap™ = kjquiyvg “Vrg = pfugupo, Wiy, 75, Vi, = 0. (5.20)

The set of on-shell fields hry, Arjx, ¥r, can be used to describe the supergravity
multiplet in light-cone gauge [57]. In our spinor helicity/spinor frame description, which
can be deduced from the on-shell superfield formalism of [21], these fields depend on the
density p# and spinor harmonics v,, (homogeneous coordinates of S (2.29)) related to the
momentum by (2.33),

Ak = A (07 vy, his = hiray(p™ vy, Vg =V(p7,0,).  (5.21)

In the next section we will use the (superfield generalization) of the Fourier images of the
above fields defined on R ® SY space,

Ark = Ay (@™, v, ), hry = hrny(E=, v, ), Vg =V(e=,v,).  (5.22)
5.4 Constrained on-shell superfield description of 11D SUGRA

A constrained on-shell superfield formalism for linearized 11D SUGRA was proposed in [21]
and was generalized for the case of superamplitudes in [15] (see [16] for details).
The constrained on-shell superfields are functions on the real on-shell superspace

2(10|16) : {(l’ 0 )}7 {Uc;q} = Sga (523)
g=1,...,16, a=1,...,32,
where the 11D supersymmetry acts as follows (cf. (3.2))
dex™ = 20, € v, 0e0, = €"vy, 0eVpg = 0. (5.24)

a’ €’q ag >’
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The fermionic covariant derivatives have the form

d B}
+ _ ot n— — + . _
Dy =0 +2i6,0-, 0=, 9= A 1,...,16. (5.25)

They obey d =1 9 = 16 supersymmetry algebra (cf. (3.4))
{D}, DS} = 4ibgp0- . (5.26)

The linearized 11D supergravity was described in [21] by a bosonic antisymmetric
tensor superfield

ATTE — AWTR] (4= 6= 4 ) (5.27)

»Yq o Yaq

which obeys the superfield equation
DfAYE =3inIwkl Ll =0, gp=1,...,16, I=1,...,89. (5.28)

The consistency of eq. (5.28) requires that gamma-traceless fermionic Wy, obeys

1
1 IJKL 1[J KL JKL J
Dfv, = - (yqp + 60" 1) O-ATEE 1 20_Hy vy, (5.29)

with symmetric traceless tensor superfield Hy; satisfying

DfHp =o{lw)),  Hyy=H;,  Hyp=0. (5.30)
Actually any of the three equations, (5.28), (5.29) or (5.30), can be chosen as the funda-
mental; then other two will be reproduced as its consistency conditions. All the on-shell
degrees of freedom of the 11D SUGRA can be extracted from any of the three constrained
Superﬁelds H[J, A[JK or \I’[q.

5.5 Analytic on-shell superfields of 11D SUGRA

Similar to the case of 10D SYM, the 11D SUGRA can be also described by one complex
superfield in N/ = 8 extended analytic superspace. This is to say, the system of superfield
equations (5.28), (5.29), (5.30) can be solved in terms of one analytic (chiral-like) superfield

carrying charge 2 under the U(1) subgroup of SO(9) C Spin(1, 10) acting naturally on the
Spin(9)

Spn(MeU) coset.
5.5.1 ﬁ(g)o(z) harmonic variables

Following the line described in section 4.3 for the case of D=10 SYM, let us introduce

internal vector harmonics providing a set of constrained homogeneous coordinates for the
__S00) __ £ (4.15
SO =S0() Coset (cf. (4.15))

; -1 1 _
U}J) _ (U[J,UI(8),UI(9)) — <U1J, 5 (U +Tp) r (U - U1)> € SO(9). (5.31)
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The condition (5.31) is equivalent to the set of relations which are described by (4.16)
and (4.17), but now with I,.J = 1,...,9 and I,J = 1,...,7. eqs. (4.16), in their turn,
imply that the symmetric 16x16 matrices

Upp = Ufyép, @qp = U[’Yép (5.32)

are nilpotent

=0, Yy=o0, (5.33)

and their anticommutator is proportional to unity matrix

VJ+Qy=4. (5.34)

Hence, [T//4 and its complex conjugate [//4 are orthogonal projectors and thus can be
factorized

1 B B 1.
Pt;; = EW: qupr ) Pqp - ZW: prqu (535)

in terms of complex 16x8 matrices w,* = (w,4)*, which obey eqs. (4.21) and (4.22).

Let us introduce the Spin(9) valued matrix wép ) providing a bridge between spinor
representations of SO(9) and SO(7), and also a kind of ‘square root’ of UI(J) of (5.31).

w((lp) € Spin(9), UI(J)’yép = @)y ") (5.36)

Then we can calculate the projectors (5.35) in its term and find
2w, M4 = wéql)(I + i’y8’yg)(q/)(p/)wz()p/) L 2Wgawy” = w((lq/)(f — i’ysfyg)(q,)(p/)wl()p/) . (5.37)

These equations make manifest that complex 16 x 8 matrices qu and wy 4 are combinations

(p)
q

of the columns of a real 16x16 Spin(9) valued matrix wy ’. Thus, the space parametrized

by w,? and 10,4 is Spin(9) group manifold. Now, if we assume the Spin(7) ® Spin(2) gauge

symmetry and use it as an identification relation in this space, we can treat qu and Wy
as homogeneous coordinates of the coset WM,

Spin(9)
A -
Wy, W = 5.38
{wg™ 0aal = g e U0) (5:38)

Spin(9)
Spin(7)®Spin(2)
Let us stress that the conditions (5.36) are stronger than the ones imposed by (4.22)

with ¢,p = 1,...,16. These latter would imply wgp) € SO(16) only, while (5.36) results
in w € Spin(9) c SO(16).
Another useful observation is that the second equation in (5.36) with J = 8,9 can be

and call them harmonic variables [32-34].

written in the form

Upp = 204U P 0y, Uy = 2w/ Uspw,” (5.39)
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where the complex symmetric matrices Uy and UAB = (Usp)* obey
UscUB =547 (5.40)

These matrices can be identified with the charge conjugation matrix of SO(7), which is
symmetric and can be chosen to be the unity matrix. Then Uy = dap = UAB and (5.39)
simplifies to

Uup = 2Wgatipa , Upp = 2qupr, (5.41)

which gives more reasons to state that wya is a square root of the complex nilpotent
matrix [y,
The covariant harmonic derivatives preserving all the constraints on the WI&(I)

harmonic variables, egs. (4.21), (4.22), (5.36) and (5.41), have the form

D/ = % 8;} - UjjaaU[ + é&jABqu 03;‘ : (5.42)
o/ — % Iagg — U i %angqB au‘iA , (5.43)
p© — UI;UI - UlaaUI + % <qua£]A — w‘?af)gl , (5.44)
Dl = % (Ufgagié - UIJ{af;é) + %UIJBA <wf 8364 - quaqu) ; (5.45)

where ai; B= 57AB are SO(7) Clebsch-Gordan coefficients and ol = gl

As far as we have chosen 7d charge conjugation matrix to be equal to unity matrix,
the contraction of two spinor subindices is allowed (see (5.41)), and we can write all the
SO(7) spinor indices as subindices. However we find convenient to keep some part of these
as superindices as an indication of the origin of variables which carry them as well as with
the aim to keep as manifest as possible the similarity of our 11D SUGRA formalism to the
10D SYM case.

5.5.2 Analytic on-shell superfields from constrained on-shell superfields

Using the above described harmonic variables it is not difficult to find a projection of the
symmetric traceless tensor superfield Hy; which, as a result of (5.30), obeys an analyticity
equation. Indeed, let us define a complex superfield

o =HYUU;. (5.46)
Multiplying (5.30) on U;U; we find that this superfield satisfies
D& =i, vJU’, (5.47)

which, in the light of (5.33), implies (@U)qu;q) = 0. Using the factorization of the
projector (5.35) and eqgs. (4.22) we find that this is equivalent to the analyticity condition

Di®=0, D} =1weaD]. (5.48)
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Besides (5.48), the analytic superfield (5.46) obeys

D% =0, (5.49)
Do =0, (5.50)
D¢ =25 (5.51)

As in the case of 10D SYM, using the harmonic derivative (5.43) and the remaining
parts of (5.47) and (5.30) we can obtain the expression for all other components of the
constrained superfield Hy; in terms of ® and its complex conjugate .

Passing to the analytic coordinate basis of the on-shell superspace (5.23), which is
described by D = 11 N' = 8 version of (4.42), one can check that a superfield ® obeying
eq. (5.48) depends on 14 but not on its c.c. 7 = (4)*. This is reflected by the name
analytic superfield which we have attributed to such ®.

Notice that the complex fermionic variable 74 is almost identical with the one used in
the description of N’ = 8 4D supergravity; the word ‘almost’ here refers to the fact that
only SO(7) subgroup of SU(8) acts on its index 4.” The decomposition of our analytic
superfield in 74,8

®(p#, vag;w, ;ma) = 62 £ a4 L ()T AT ()8R (5.52)

looks very much the same as chiral superfield (1.11) describing the linearized N' = 8
supergravity. However, all the fields in its decomposition depend on a different set of
variables:

¢(+2) — ¢(+2) (p#7 'UDTq; w, w) , ¢(+3/2)A = ’(/)<+3/2)A(p# v w, 'lI)) N etc. (553)

» Yago

versus ¢T2 = ¢T2(\, \) with complex two component A = (A\)* in D=4.
The set of 24=1+9+14 bosonic variables our on-shell fields depend on includes ‘energy’

p? , spinor harmonic variables Vags

which are considered as homogeneous coordinates of the

celestial sphere S” realized as a coset of Lorentz group SO0 f)pxi%(;iﬁ?g)] &K, (2.29), and a set
Spin(9)
of

Spm(n@spm) \nternal harmonic variables quA, Waq (5.38).

The signs and numerical superscribes of the component fields in (5.52) and (5.53)
indicate their charges under U(1) symmetry transformations acting on 74, w and w. These
can be easily calculated in the assumption that the overall charge of the superfield is equal
to 42.9

The above statements about charges of variables and superfields under U(1) € SO(9) C
SO(1,10) can be formulated as a differential equation (cf. (1.5))

iL(llD)<I>(p#, Vpgs W5 W3 NA) = Q‘P(P#Wa_(ﬁwﬂl_}; n4) (5.54)

"Probably, to observe the SU(8) symmetry, one has to consider (w,w) as parametrizing the coset
SO(16)/[SU(8) ® H] with some H C SO(16). (This in its turn would require to consider U+ in (5.39)
to be an independent spin-tensor coordinate). Thus a hidden SO(16) symmetry of 11D SUGRA might be
relevant in this problem. It is tempting to speculate that Eg hidden symmetry might also happen to be
useful in this context.

8To streamline the presentation at this stage we prefer to pass to the Fourier image of the superfields
with respect to 2= (actually 27 = = + 2ina7™) coordinate ((5.21) vs (5.22)).

9 This assumption is suggested by the origin of the analytic superfield in SO(D—2) tensor, ® = Hy;U;U;.
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where

i) . 1 0

1 4 0 1 0
w — =W
qA@w A 2 a

+ 514
Gwa“ 2" ona
is the 11D counterpart of the helicity operator (1.10). On the analytic superfields it coin-
cides with the harmonic covariant derivative D(©) (5.44),

E(HD) = D(O) |on analytic superfields » (556)

so that eq. (5.55) actually coincide with (5.51).

In the above presented description by analytic superfield the 44+84=128 bosonic fields
of the on-shell 11D supergravity (h;; = h(s)) and Arjx = Ajpyk) in the SO(9) =SO(D-2)
covariant notation) are split onto 14+28+70+28+1 representations of SO(7)=SO(D—4),

(5.55)

ey Ay < (- Aarg) = (00D, ¢7DAB GABCD g0 () (5.57)
and 128 fermionic fields splits on 14+28+70+28+1
Y2 (U |70 = 0) = (Y, 95l pFDABC y3)4) (5.58)

5.6 Supersymmetry transformation of the analytic superfields

As in the case of 10D SYM, we can find that rigid 11D supersymmetry acts on the analytic
on-shell superfield of 11D supergravity by

' (™, v, w,w;n4) = exp{—4p”€ AUA}(I)(

7q7 )qawwnA ;1)

__ _ 0 -
= exp {4[)#6 AnA o EAa} (D(p#’ Vg s W, W, 77A) ) (559)
1A
where
e = e;qu =€ vaqqu, €4 = € Wga = € VqqWgA (5.60)

and €% is constant fermionic parameter.
The supersymmetry generator defined by ® = e <" Qad,

0
Qa =qo+ 4o = 4P anUA’UJ + anqua (5.61)
A
is given by the sum of the algebraic part ¢, and of the differentail operator §,,
Go = ApT Vg 4, (5.62)
0

A~

Go = VoqWqA 75— (5.63)

oma

However, in distinction to the D=4 case, to split the parameter of rigid supersymmetry

@ on the parts corresponding to ¢, and ¢, we need to use the composite complex spinor

harmonic variables v “w qA and v, “Wqa (while in D=4 the splitting appears automatically
~(D=4)

because ¢ and q((x =4

carry different type of Weyl spinor indices).
To show that the algebra of supersymmetry generators (5.61) is closed on the
momentum,

{Qa,Qp} = 4p#va_qv571 =2p.I55, (5.64)

we have to use (4.21), 2w(‘;‘1Dp)A = Ogp-
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6 Analytic superamplitudes in D=10 and D=11

In this section and below, to avoid doubling of the formulae, we will tend to write the
universal equations describing simultaneously D=10 and D=11 case whenever it is possible.
(See section 1.1 for the universal description of our index notation).

6.1 Properties of analytic superamplitudes

The simplest superamplitudes are multiparticle counterparts of the analytic super-

fields (4.57) and (5.52)

A, 5D (Z kaz) = {pl ) aqzywhwunAz 5D <sz az) . (61)

(]

n

They do not carry indices, are Lorentz invariant, invariant under [][SO(1,1); ® SO(D —
i=1

2); ® SO(D — 4);] and covariant under H SO(2); = U(1); symmetry transformations.

The Lorentz group SO(1,D — 1) acts nontrivially on spinor harmonic variables v,

only, SO(D—2); act on v, and on the internal harmonic variables (wé, Wagi), SO(1,1); act
on v,; and on the fermlonlc Nai = 1y, and SO(D — 4); transform w - and Wag, N in 4s
and 4s, respectively. Finally, SO(2); = U(1); symmetries act nontrwlally on w(‘;‘l, W Agis A
with the same value of i, and on the amplitude which carries the charge s = N /4 (+2 for
11D SUGRA and +1 for 10D SYM) with respect to each of the U(1); group.

The gauge symmetry [[SO(1,1); ® SO(D —2); ® SO(D —4); make possible to identify

2
. . — —+ A - ) . .
each set of harmonic variables, (vaqi, v, (ji) and (wqi, WAgi), With generalized homogeneous

coordinates of the cosets:

_ B Spin(1,D — 1) _ «(D-2)
(ot - (oo a7~ 62)

and!0

SO(D — 2)

A -

~ = . 6.3

{wquAql} (SO(D—4)®U(1)>Z ( )

Notice that here, in distinction to section 2 devoted to D=4 case, we prefer to write

n n

explicitly the momentum preserving delta function §° (Z k:m) = oP (Z pfum> and
7 7

denote by A the amplitudes with arguments obeying the overall momentum conservation

n n
D hai= plug =0,  uplhs=2v, v . (6.4)
7 A

The representations of the variables and superamplitude with respect to the symmetry
groups are summarized in table 1, where the parameter s = A//4 distinguish the cases of
D=10 SYM (s=1) and D=11 SUGRA (s=2).

IOK(D_Q)i symmetry (2.31) implies an independence of the amplitude on the complementary anz har-
monics. This is reflected by the list of arguments of the amplitude in (6.1). Let us recall that for D = 11 case
Gg=q=1,...,16, while for D=10§ =1,...,8and ¢ = 1,...,8 are indices of different spinor representations

of SO(8).

— 32 —



variables /representations | SO(1,1); | SO(D-2); | SO(D-4); | SO(2);=U(1); | Spin(1,D-1)
weight | repr. repr. charge

An({p7 v wi, Wi i }) +s

ol +2

va_q(i) -1 8s 16s

W,y 8s 4s —1/2

Wy A(s) 8s 4s +1/2

NAG) = Nag -1 4s +1/2

U T+s +1

Uy T+s -1

Table 1. SO(D-4) and SO(D-2) representations, SO(1,1) weights and U(1) charges of the analytic
superamplitude and its arguments; s = 1 for D=10 SYM and s = 2 for 11D SUGRA. U; and U;
are bilinears of w and @ as defined in (4.25) for D=10 and (5.41) for D=11.

This table also indicates that the simplest superamplitudes (6.1) are Lorentz scalars,
have charges +s with respect to all the U(1); symmetry groups and are inert under all other
bosonic symmetry transformations SO(1,1); @ SO(D —2); @ SO(D —4);. As we will discuss
below, the analytic superamplitudes also obey a set of equations with harmonic covariant
derivatives which provide us with counterparts of the 4D helicity constraints (1.5).

More complicated superamplitudes, which do carry the nontrivial representations of
SO(D — 4); and different charges under SO(2); = U(1); can be obtained by acting on the
analytic superamplitude (6.1) by fermionic covariant derivatives Dz(i) and by harmonic
covariant derivatives.

6.2 From constrained to analytic superamplitudes. 10D SYM

Let us discuss the relation of the above described analytic superamplitude (6.1) with the
constrained superamplitude formalism [15, 16].
The basic constrained superamplitude of 10D SYM theory

Ap (k1,075 ke, 0,) 67 (Z kai) =A11...1n({ﬂféyva_qi; 0,i}) 5P (Z P?ﬁua:@) , (6.5)

carry n vector indices of SO(8); groups. It obeys the equations (see [16] for details)

+5 4(n) _ o # 1 4n)
Dq]‘AIl...Ij...In - 2p] ’qujj'Afl...fjfl(jjfjurl...]n ) (66)
where
DY — §ti 19,70~ ot .— 9 6.7
q" =Yg T 205 Vg5, T pp—. (6.7)
q)
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To express the analytic superamplitude (6.1) through the constrained superamplitude (6.5),
let us first contract the SO(8); vector indices of this latter with the complex null-vectors
Uy, i of the corresponding internal frames (6.3),

An({p]  Vagis wis i3 0333) = Un1 - Upyn An 1, (0] Vi 0331) (6.8)
qui = 7£pUIi = 2’117}(1,4@"11};3- . (69)

Using (6.9) and the properties (4.22) of the internal harmonics (6.3), one can easily check
that

D Aa{pf  vaqiiwi, @i 6;1) =0 Vi=1,....n. (6.10)
In these equations
L . 0 - - — A _ - A
Dy =wea; Dy = Py 2)Ways  May=Oy0aas, 0 = 0w (6.11)
J

Our analytic 10D SYM superamplitude is related to (6.8) by

‘QEj”f"Ea""fBA # o= e D A+ AAD 4
n({Pz » Ugginr Wiy Wiz 1] 4;We; +1; T WqAi -
(6.12)

An({pF v wi, Wisnai}) = e

Indeed, one can easily check that
B 235 p?&n]}jﬁ;B 0

#
D+(j)e2 25 P5 "B;T;
6ﬁj—A

so that A, of (6.12) is 7; *-independent due to (6.10).

Resuming, the analytic superamplitude (6.1) is expressed in terms of constrained su-
peramplitude (6.5) by contracting its SO(8) vector indices ;, with appropriate null-vectors
Ur,i constructed from internal harmonics as in (4.25):

An({Pf,Ua;i;wi,wi;nAi})

—2Z-p#n_.ﬁ._B
=e 7 Ut U Ana, (0] vagss it + 77 A0gai)). (6.13)
It is not difficult to check that this amplitude also obeys
Dy An({p} , Vagss wir winai}) =0, j=1...,n, (6.14)
DjKAn({pfava_qulawla77141}) =0, J=1...,n, (615)
0 _ _ _ _ .
DO An({pF v wi, @i 1i}) = Aa({pF  vggiiwi, @inai}), G=1,...,n,  (6.16)

with the derivative defined as in (4.47)—(4.50), (4.31)—(4.33), but for j-th internal harmonic
variables. Eqgs. (6.14)—(6.16) can be considered as counterparts of the D=4 super-helicity
constraints (1.13).
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6.3 Analytic superamplitudes of 11D SUGRA from constrained
superamplitudes

Eq. (6.12) with ¢ = 1,...,2N and A = 1,..., N describes also the relation of the con-
strained and analytic superamplitudes of 11D SUGRA if we set /' = 8 and

A0y Vg Wi @i 053) = U U+« UnanUun At 1)) (g APF 3 Vagi}) - (6.17)

Here the basic superamplitude of the constrained superfield formalism, .A(( 1I1))e((Indn))
symmetric and traceless on each pair of SO(9); vector indices enclosed in doubled brackets,
obeys the equation [15, 16]
DO 4™ = 1 AT . (6.18)
4 T ((11J1)- (15 5))-((Indn)) Uilajps “3(1191))- | T5)pj - ((TnTn))

The r.h.s. of this equation contains y-traceless A((Iljl))-~~((]j—1jj—1)) Ti05 (L1510 ((In )

4 _
Yars AL 1)) Ty () = O (6.19)

Finally, Ur,; in the r.h.s. of (6.17) is expressed through bilinear of the internal harmonics by
US;? = VépU“ = 2WqAiWp Ai (6.20)

(see (5.41)).

Due to (6.18) and (6.19), A, of (6.17) obeys (6.10) and the 11D superamplitude (6.12)
is analytic, i.e. it depends on 7, but is independent of its complex conjugate ;" 4,

The analytic amplitude (6.17) also obeys the equations

D;-jAn({pfé,va;i;wi,wi;nAi}) =0, j=1,....,n, (6.21)
DI Ay ({5 0ggss wir B mai}) = 0, J=tn, (622)
DO A ({0 v wis i ni}) = 240 ({pF vy wis @iina}), j=1,....n,  (6.23)
with J, K =1,...,7.
6.4 Supersymmetry transformations of the analytic superamplitudes

The supersymmetry acts on our analytical superamplitudes as

AZ({P?:Ua;i;wq’?,U_Jin;UAi}) = e~ @tae) A, ({pF v; 3 wi, Wi nas})

= e—eaqa An({pfa U;; Wy, Wi} nai — 6;1@}) ) (624)
where (see (5.62) and (5.63))
n n a
€Go =4 Z pfﬁEf*nAi , €“Go = Z ezia— (6.25)
i— i TAi
i=1 =1
and (see (5.60))
€4 = €V gy = e%a‘qiwqm, E;-A_ = eava_iA = eo‘va_qiw;. (6.26)
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As in the case of the on-shell superfields, the supersymmetry generator acting on super-

amplitude splits
Qa = @a + quz (627)

onto the purely algebraic part and the differential operator

n n
~ —A — _ A
Qo = 429?%@ Nai = 42[’?%@%@-7%@'7 (6.28)
=1 i=1

- 0 = 0
i FOnai i=1 Onai

It is easy to check (using 2w(q‘iA1D‘p)Al- = 0gp (4.21)) that the generators (6.27) obey the
supersymmetry algebra, and actually anti-commute as far as the momentum is conserved:

n n
{Qa, Q,@} = 42 P?Ua;ivggi = 2FZB me' =0. (6.30)
=1 =1

6.5 Supermomentum in D=10 and D=11

Although we have succeeded in writing the supersymmetry generator in terms of com-
plex 7y, and its derivative, the simplest way to write a supersymmetric invariant linear
combination of fermionic variables uses the real fermionic Gq; of the constrained superfield
formalism (see (4.42)). Indeed, the real fermionic spinor

n
Qo = Z p?va_qi@q} ; (6.31)
i=1
which can be called supermomentum, is transformed into the momentum by supersymmetry
n 1 n
0eGa = &’ prkva_qivﬁ;i = §Fgﬁeﬁ Zpai (6.32)
i=1 i=1
and, hence is supersymmetric invariant when momentum is conserved,

0cfa =0  when Y pei=0. (6.33)
i=1

7 Convenient parametrization of spinor harmonics (convenient gauge
fixing of the auxiliary gauge symmetries)

7.1 Reference spinor frame and minimal parametrization of spinor harmonics

It looks convenient to fix the gauge with respect to the defining gauge symmetries of the
spinor frame variables [SO(1,1); ® SO(D — 2);] ® K(p_g); by setting

1
vf-:va_q—l—ﬁK,fIygpv+ vt o=uvt. (7.1)

aqi ap’ aqi aq
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+
g
be identified with homogeneous coordinates of an auxiliary coset (or reference coset)

SO(1,D-1) . SD_Q
SO, )@SO(D—2)]&Kp_2 '
bitrary, in a way convenient for the problem under consideration.

Here (va_q,v ) is an auxiliary reference spinor frame the components of which can

Clearly, the reference spinor frame can be chosen ar-

Eq. (7.1) provides the explicit parametrization of the spinor harmonics (va;i, atﬁ)
describing a celestial sphere of i-th D-dimensional observer by single SO(D — 2) vector
K 1. This is manifestly invariant under one set of [SO(1,1) ® SO(D — 2)] « Kp_» gauge

symmetries acting on the reference spinor frame variables.

v

Eq. (7.1) lead to the following expressions for vector harmonics in terms of reference
vector frame

- - - 1, 5
gy =g + K g + 5 (K7l (7:2)
1
ul, = ul + §Ki_l ulf (7.3)
ut — . (7.4)

The momentum of i-th particle is expressed through Kl-:I and density pfﬁ by

_ _ _ 1, -
kai = P} ug; = p}f (u + K g + 4(Ki)2uzi*) : (7.5)

Thus, in the gauge (7.1), the n-point amplitude (6.1) is a function of energies pz#, of
SO(D — 2) vectors K/, of the fermionic 14; and also of the constrained complex bosonic

w;, w; variables,
An = An({pf, K7 wi, @55 maid) (7.6)
This latter dependence will be specified below.

7.2 Generic parametrization of spinor harmonic variables and K#I = 0 gauge

A generic parametrization of the spinor harmonics (2.16) is

Vpgi = € O <vap + iKl qu-v;q> , (7.7)
. Loowr — g
Uoj(_ji = Oid?e alvoj]_i + iKz# VapiVpg s (78)

where the ‘physical’ degrees of freedom are carried by SO(D —2) vector K;-! parametrizing
the celestial sphere S(P—2) (through a kind of stereographic projection). Besides this, the
r.hs. of egs. (7.7), (7.8) contain «;, which is the parameter of SO(1,1), Ojqp and Ojgp,
which are the Spin(D —2) matrices,!! and K Z# I, which parameterizes the K(p_g) symmetry
transformations. All these transformations are used as identification relations on the set of
spinor harmonic variables. This is tantamount to saying that they are the gauge symmetry

“Notice that for both D=10 and D=11 the Spin(D —2) valued matrices Ogp; obey also Ogp,iOppyi = Sqp;
this is to say Spin(D — 2) C SO(2/N) for these cases.
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of the spinor frame construction. We can fix their values arbitrarily thus providing an
explicit parametrization of the coset (6.2). A particular choice a; = 0 = KZ# L Oigp = b4p
gives us the simple expressions (7.1) and (7. )

In D = 10 case we have to complete (7.7), (7.8) with
vgi Oigp < fK IU'“”"y;p) , (7.9)

I _
U;;a =€ azoqu“;ra - §Kz:# %5;5%1‘& ) (7.10)

while in D = 11, where ¢ = ¢, these equations are equivalent to (7.7) and (7.8).
Eq. (7.7) and (7.8) imply
1 _
v T = ie_o‘i_ajKj_iI(Oj'YIOiT)qpa (7.11)
where
K3 =K' - K7 (7.12)
In the gauge (7.1) this simplifies to

—a, — =I_1
U;'n'avaqj = §Kj¢ Vap (7.13)

and becomes antisymmetric in 4, 7. This latter fact suggests to search the 10D (and 11D)
counterparts of the 4D expression < ij > (1.17) on the basis of (7.13).

The complete parametrization of the vector frame variables corresponding to (7.7), (7.8)
is given by

_ 1
= =2 <u +4(K Vil + K IuI> (7.14)

and quite complicated expressions for uji and uf;z The light-like momentum of ¢-th particle

has the form of (7.5), but with a redefined pf,
b = o (1 + KMl 4 (R Put) (7.15)

ﬁf& = 6_26”,02éé . (7.16)

#

The expressions for v, and u ; simplify essentially if we use the K(p_s); symmetry to

fix the gauge

K =0 (7.17)

in which case
ul, = el = ol <UZ - ;Ufo") : (7.18)
1601 = 73iOpai O - (7.19)

The spinor frame parametrization with KZ# T=o (7.17) is given by the same eqgs. (7.7)
and (7.9), while eqgs. (7.8) and (7.10) simplify essentially:

+ _ iy, .t +a _ ). o, ta
Vagi = € 10%61}’“11;‘;? Vi —qupe Z'Up . (7.20)
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7.3 Internal harmonics and reference internal frame

As SO(D — 2); auxiliary gauge symmetry acts not only on i-th set of spinor harmonics
but also on i-th set of internal harmonics (w0, Ai,wq"}), the introduction of the reference
spinor frame in (7.7), (7.8) should be accompanied by the introduction of the reference
‘internal frame’. This is described by the set of harmonic variables (g4, qu) parametrizing

SO(D—-2)
the coset (Wmo(g)

) (reference coset). The i-th internal harmonic variables can be
decomposed on this reference frame,

_ _ _ iR B .
WqAi = quinB € ibi Z/[L’L s wq‘g = quiwa e+lﬁZZ/{BA,L'7 (721)

UZL € SO(D —4) c SUWN). (7.22)

In the case of D=10, we must also introduce the internal reference frame with c-spinor
SO(8) indices (w44, qu) and relate it to i-th internal harmonics by

WgAi = qui’@pB €i’3i Z/[L? , wqf} = quiwa e_iBiUBAi . (7.23)
The Spin(D — 2) valued matrices Ogp; in (7.21) and Ogp; in (7.23) are bridges between
SO(D —2); acting on i-th spinor frame and SO(D —2) acting on the reference spinor frame.
In other words, the first index of Oy, (Og4p;) matrix is transformed by SO(D —2); and the
second- by SO(D — 2) group. One can also consider them as compensators for SO(D — 2);
auxiliary gauge symmetry.

Similarly, the unitary Spin(D — 4) valued matrices Uy (7.22) are bridges between
Spin(D —4); and Spin(D —4) C SU(N) groups, and the phase factor e’ serves as a bridge
between U(1); and U(1) acting on the reference ‘internal frame’. Notice the opposite phases
e~ i and et in the expressions for wy4; and wg4; of 10D case. These are needed to
make charged the complex null-vectors Uy;, Ur; which are related with reference internal
vector frame by

U = 6_2iﬂiUJOzJI7 U = €+2wiUJO%”7 (7.24)

where O71 is SO(D — 2) matrix related to Oy and Opg; from (7.21) and (7.23) by (7.19).
Generically Og,; and Oyp; in (7.21) and (7.23) can be different from the matrices
denoted by the same symbols in (7.7) and (7.8). We however impose the condition that
they are the same.
Actually this implies that we do not have n independent sets of internal harmonics,
but only one reference internal frame, and that the derivatives with respect to j-th internal
harmonics does not live inert its i-th cousin, for example

Dj-’wqm = —565”Lﬂfijaécwq€ = eﬁ”uTlﬁij]quj , 5@' = Bz — 5]' s (7.25)
but

D37 Wqai =0, D}-jqui =0, (7.26)
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and
D/U;; =0. (7.27)

This implies that the analytic superamplitude of D=10 SYM obeying (6.14) have to be
superamplitudes (6.21) are constructed with the use of wy4; and Uy, variables.

constructed with the use of wya;, w:; and Uy, variables only. Similarly, the analytic 11D

To motivate this identification, let us recall that the only role of the internal harmonics
is to split the real fermionic variables 9;@' on a pair of complex conjugate 7, and ﬁ;A thus
introducing a complex structure (see discussion in section 4.6). Our choice implies that
we induce all the complex structures, for all ¢ = 1,...,n, from a single complex structure.
This latter is introduced with the reference internal frame (qu,qu) which serves as a
compensator for Spin(D — 2) gauge symmetry of the reference spinor frame.

7.4 Complex spinor frames and reference complex spinor frame

The identification of all the sets of internal harmonics through (7.21) and (7.23) automat-
ically implies that the SO(D — 2) symmetry transformations of the reference spinor frame
acts also on the reference internal frame. This allows to introduce a complex reference
spinor frame (cf. (4.69))

R CA = Ak A A
Vpa = UaqWqd, Vg 1= UgpW",  Ugg = UppWpa, Vg 1= U w5", (7.28)
—a . o ~—Aa . —a, A +a . ta ~t+Ac 4+ A
v " =0 Wga, U0 =0 %, v = v M ga, 0T = v M, (7.29)
and to express the complex spinor harmonics
N Do AL A + o tan. . ptA._ ot A
Vpdi = VaqiWadis  Upi = UgqiWqi s Ugni = VagiWiAi, UVgy = Vg Wi 5 (7.30)
- . -0 ——Aoa . —a. . A +o . 4o —4aA . 4o A
Vyi =0 Wi, =W, VA = v Weia, 1= v, wg; (7.31)
in terms of that.
In particular, one finds
— o —if; iB — 1 =I + i =Irrd _J —+C
Ugni = € Uy, (%B + 5K Urvgp + 5K Ur ogota ™ | (7.32)
_ coi—in [ —— 1 VR
7; QA _ e~ @i—ifi <z7 aB §KiJUﬂJmB - 5KifIUijgancB uBe’ (7‘33)
and
A aipi [, -B Y17 4B | eI JBO—+ A
v A = et (va +§ . Urvg, +§Ki Uipo”7" v o | Ug;, (7.34)
—o _ —a;+iBi7 T B PV ey +a [ ~+Ca
v = e itifiyl <’UB = KT U™ + S K U oped : (7.35)
The complex spinor harmonics (7.28) and (7.29) obey
—a.,.—-B __ + B __ +Aa, £B __ Ta,, £ _
v, 7 =0, vt =0, v =0, vi%v s =0,
v P =647, vt P =647 (7.36)
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The product of harmonics from different frames, say i-th and j-th, can be calculated
using (7.32), (7.34) and (7.36). Clearly for j = i the relation of the form of (7.36) are
reproduced for i-th set of complex spinor harmonics.

In particular, egs. (7.32) and (7.33) imply

1 .
<i Bjy >= 00, =UFe —%—1522 K5 U Ul Femea =it
1 BB,
= ng;f Uy Ul e ooy =ifinif;, (7.37)

The expression in the first line of (7.37) is convenient to calculate products of bracket
matrices, while the second is more compact due to the use of notation

c
uA]z = Iﬁj UCB; = uABij : (738)

When deriving eqgs. (7.32)—(7.37) the following consequences of (4.21), (4.24) and (4.25)
are useful

wqﬂgﬁ = wpAU + iohgwiUY winl = wil; + i7" PaypU{ | (7.39)

’yqp p ij + zquaJ AUI , qupr = WaaUs + iwy Bl UT . (7.40)

One can also calculate the expressions for < iy jTA >i= Vg va]A. However, in our

perspective the contraction (7.37) is much more interesting as far as it obeys
Df <iBji>=0, Vi=1,...,n. (7.41)

The expressions for complimentary harmonics in terms of complex reference spinor
frame simplify essentially in the gauge (7.17), KZ#I = 0, where (7.20) and (7.21), (7.23)
result in

B i3; _ _ i
UojAz I‘Z ,UaBeaz—Hﬂz , ,U;FAa — U—O—BauBf%eal—Hﬁl ’ (742)
and

1702;‘4 — EO—[&—BUBfieai—iﬁi , zt}a ULiBUEaeai—iBi ) (743)

This allows to find

B i —1Bji

Bit >=vPu = ul\Demi=thii (7.44)
< Z—BJX U —aB ;—AJ uj{ﬁ +OéJz+'L/B]7, — Z/[Afie_a“_lﬂl] . (745)

Let us stress that these are gauge fixed expressions: when K#! = 0 the r.h.s.-s will acquire
the contributions proportional to (7.11).

Using the bridges e®, ¢ and U ABi we can transform the complex fermionic variable
n4,; carrying SU(4); index, U(1); charge and SO(1,1); weight to

M = e TPUL g (7.46)
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which is inert under SU(4); ® U(1); ® SO(1, 1); but transforms nontrivially under the gauge
symmetry SU(4)®@U(1)®SO(1, 1) of the reference complex spinor frame. The advantage of
such variables is that 74, +774 ; is covariant for any values of i and j. The expressions in the
r.h.s.-s of egs. (7.44) and (7.45), as well as of their counterparts with j = 0, corresponding
to the reference complex spinor frame,

<itB . >i=0B, = UL <i B A >=0780T, =Ufem 7 (7.47)
< .+ng >:= 17+O‘BU;AJ. = Lfefajfiﬁj , < .7Bjj >i= TFC“BU;'AJ. :ULfeJrajHBj , (7.48)

can be used as covariant counterparts of the above SU(4); ® U(1); ® SO(1, 1); bridges. They
will be useful below in the discussion on 3-point superamplitude of 10D SYM.
In particular, it will be important that

<itB .o >< 7O > =gt h < TBiE S TO s = § Betoitili (7 49)

<iBE>< M0 > =270 < T 570 h s = § e 0 (7.50)
and
det <i P >= e~ 4ifi det <itF . >= gloitdibi (7.51)

represent the scale and phase factors corresponding to i-th particle.

8 3-point analytic superamplitudes in 10D and 11D

8.1 Three particle kinematics and supermomentum

Let us study 3-particle kinematics in the vector frame formalism. With (2.2) we can write
the momentum conservation as

pluT® + pluz + pfuz® = 0. (8.1)

Then, using (7.2)—(7.4) we split (8.1) into

ot + 0% +0f =0, (82)
PTKT +p K3+ pf K5' =0, (8.3)
pF(E 1) + pF (K2)* + pf (K3)? = 0. (8.4)

Eq. (8.2) makes (8.3) equivalent to

Ky Ky Ky
Pf P# P#

(8.5)
where K5;! = K[jf] = K51 — K71 (7.12). Using (8.5) and (8.2) we find that (8.4) implies

(Ka)2=0 =  (Ki3)?=0, (K)?=0. (8.6)
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The solution of egs. (8.6) for real vectors K]-:il are trivial. Thus a nontrivial on-shell 3-
particle amplitude can be defined only for complexified K j:il which implies that the light-like
momenta k{ of the scattered particles are complex.

The general solution of the momentum conservation conditions can be written in terms
of say K71 and complex null vector X! as

#
K;'=K7T+ k!,  K;'=K7! +K17#p2 ,  K'k'=o. (8.7)
p1 +p3

Notice that, to make the above equations valid for arbitrary parametrization (7.14), it
is sufficient just to rescale the scalar densities as in (7.16)

pf — pf =il (8.8)

In particular,
K3 Ky Ki

3 — ——] ==
~ - . - = IC 3 ’C ’C =0 (89)
,071‘7£ Pg# P2

are valid for a generic parametrization of the spinor harmonics.

8.2 3-points analytical superamplitudes in 10D SYM and 11D SUGRA

A suggestion about the structure of 10D and 11D tree superamplitudes may be gained
from the observation that, when the external momenta belong to a 4d subspace of the
D-dimensional space, they should reproduce the known answer for 4-dimensional tree su-
peramplitudes of ' =4 SYM and N' = 8 SUGRA, respectively. Due to the momentum
conservation, this is always the case for a three point amplitude and superamplitude.

In this section we find the gauge fixed form of the 10D 3-point superamplitude in the
gauge (7.17) and also present its 11D cousin. We also describe the first stages in search
for covariant form of the three point superamplitudes, which, although have not allowed
to succeed yet, might be suggestive for further study.

8.2.1 3-points analytical superamplitude of 10D SYM. Gauge fixed form

We chose as D=4 reference point the anti-MHV superamplitude of N'=4 SYM (1.15). As
we show in appendix A, using an explicit parametrization of 4D helicity spinors in terms
of reference spinor frame we can write it in the following form (see (A.38))

AMEV(1,9,8) — = e 200 68 (i, i, + i)
K oiiems) g (

# #)

T T
P + pin . (8.10)
G+ it 171314 T P2 [23]A>

Here 7, = 14/ ﬁfﬁ and ﬁfﬁ are D=4 counterparts of the rescaled 10D variables (7.46)
and (8.8) (see (A.35) and (A.25) in appendix A), K== = Ki/pg# (see (A.27)) and K3;
is a complex number, which can be associated through K3; = K3' + iK3;%> with a real
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2-component vector (K5;!, K572), the D=4 counterpart of the generic (D — 2)-vector K5;
in (7.12). It is tempting to identify K5; with K5;/U; of the previous section:

D= D=10 (and D=11)

'Ky «— K5'U;p (8.11)

The argument of the fermionic delta function in (8.10) also has the straightforward
10D counterpart ﬁ#ﬁ;l + ;372# M ag + ﬁfﬁ;zj’ where 77, and ﬁfﬁ are defined in (7.46) and (8.8)
in such a way that all of them carry indices, charges and weights with respect to the same
SO(1,1) ® SU(4) ® U(1) acting on the reference complex frame,

Nai = eaﬁ_wiuABi U ﬁz‘# = 6_2%/0? : (8.12)

Thus, the straightforward generalization of (8.10) to the case of D = 10 SYM theory
reads

AD=108YM _ _ K5'U o= 2i(B1+B2+83) 54 (
2067 +7%)
1. __ o o T T
— §IC—_IU1 e~ 2 Br+B2+0s) 54 (pfnm + P i+ pfnw) , (8.13)

T T
P1Mpga + P2 77[23]A)

where the complex null-vector == is defined in (8.9).

The multiplier e~2:(F1+82+63) makes the superamplitude invariant under U(1) symme-

try acting on the reference internal frame variables and supplies it instead with charges +1
with respect to all U(1); groups, i = 1, 2, 3, related to scattered particles. All other variables

3
in (8.13) are redefined in such a way that they are inert under [[[SO(D —2); ® SO(1,1); ®
U(1); ® SO(D —4);] and are transformed only by SO(D —2)®S0O(1,1) @ U(1) @ SO(D —4)

acting on the reference spinor frame and reference internal frame.

8.2.2 Searching for a gauge covariant form of the 3-points superamplitude
Let us try to search for a covariant expression for amplitude which, upon gauge fixing,
reproduce (8.13). Again, a guideline can be found in 4D expression (1.15). Counterparts

of < ij > blocks are given by the matrices \/pfép;# < ifBjZ > with < z'*BjZ > defined
in (7.37) so that a possible 10D cousin of the denominator in (1.15) is given by the trace
of the product of three such matrices,

pt ot pf < 17425 >< 27835 >< 3701 >=

1 = = — .
- 93 ﬁfﬁf'@}# Kz_llUI K3_2JUJ K2_1KUK e 2(B1+P2+P3)

1 L )
= (5% 1) (K==, e 2i(P1tBatss) (8.14)

The next problem is to search for a counterpart of n4; < 23 > expression in the
argument of fermionic delta function in (1.15). Here the straightforward generalization
x ng, < 2783, > does not work: it is not covariant under SU(4); and SU(4)s. The
covariance may be restored by using the matrices (7.45): the matrix

noy < 17925 >< 27837 >= i e 2 2ibyl Bomas—ifhs (8.15)
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is transformed in (1,1,4) of SU(4); ® SU(4)2 ® SU(4)3. However its nontrivial weights
(—2,0,—1) and charges (+1,0,+1/2), indicated by multipliers e=21=2#1 and e~ do
not allow to sum it with its 1, and 73" counterparts without breaking the gauge symmetries.
To compensate the above multipliers one can use the matrices (7.49). In such a way we
arrive at the expression

<273 Sa=ap <1728 >< 2793, >< 3P L < TR s< 1T >=

1. 1oy
= 5771'AK321UI 20#771 K=="ur, (8.16)

3
which is invariant under [] SU(4); ® U(1); ® SO(1,1); and carries the nontrivial repre-

sentations of only SU(4) é IIJ(l) ® SO(1,1) group acting on the reference complex spinor
frame. Then, as < n; j~ k™ >4 with 4, j, k given by arbitrary permutation of 123 has the
same transformation properties, we can sum them and write the 10D counterpart of the
fermionic delta function in (1.15),

o ((quﬁp;&p?)l/2 (<< N2 3 >Aa+<<n3 1 >+ 1727 >>A)> =

= (] PE P20t (K273 A+ <371 A+ <1727 >) =
(K::IU])4 o T T

= St o o) ot (i + i + i) =
(’C::IU[)4 ( s ~#)2 e~ 4i(B1+B2+P3)

B PRI det < imBE >

o o' (pltiina + o iiza + P4 i5a) » (87)

where in the last lines we have used (8.16) and (7.51).
Then, the covariant candidate amplitude is given by (8.17) divided by the product
of (8.14) and multiplied by three determinants (7.51),

AD:IO SYM __ 7
3 =

st ((p#p#pf)lﬂ (K723 > a+<my3 17 >a+<n; 1727 >, ) 3
g Hdet<z B.j

Py Py Py <1742, ><27B3.><37¢1, > Pl

= PP pE P (< 273 A+ <y 3T T A <y 1727 > 4) X

det <17 B4 >det<27C 5> det <3 F >
X A B c :
<17425 ><2-B3;>< 3017 >

(8.18)

One can easily check that in the gauge (7.17) (see (7.9), (7.10) with explicit parametriza-
tion (7.32), (7.33), (7.42)) this expressions reduces to (8.13).

However, the main problem of the above covariant expression (besides that it depends
explicitly on reference complex spinor frame) is that apparently it does not obey (6.14),

DI AP=10 S Mol e 8.18) ({pf,va;i;wuwi;mi}) #0. (8.19)

Indeed, it is constructed with the use of blocks (7.45) and (7.47) and, if we consider the
complex spinor frames as composed from spinor and internal harmonics as in (7.30) and
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use (7.25), we find, for instance,

D7 <i Bit > = —iewi UlcTUM ac < i BjE >#0,

D/ <itBis= —%a/‘ic <iBE>+£0, (8.20)

Thus we should find either a different covariant representation for the gauge fixed
amplitude (8.13), or a way to relax/to modify the condition (6.14) for the analytic super-
amplitudes.

Alternatively, one can use the gauge fixed form of the 3-point superamplitude as a
basis of a gauge fixed superamplitude formalism. In it all the Kg; symmetries acting on
i-th spinor frame variables are gauge fixed by the conditions (7.17). This gauge fixing is
performed with respect to a symmetry acting on the auxiliary variables, complementary
spinor harmonics. The gauge fixed expressions (7.42) and (7.43), as well as the expressions
for the physically relevant spinor harmonics (7.30)—(7.29), use the reference spinor frame.
This makes our gauge fixed superamplitude formalism manifestly Lorentz covariant. Such a
role of reference spinor frame is in consonance with the original idea of introducing Lorentz
harmonics to covariantize the light-cone gauge [51].

8.2.3 Analytical 3-point superamplitude of D = 11 supergravity

Similarly, the form of 3-point N' = 8 4D supergravity superamplitude, which is essentially
the square of the N’ =4 4D SYM one (see e.g. [11, 12]), suggests the following gauge fixed
expression for the basic 3-point superamplitude of 11D supergravity,

2
_ K:IUI i
A3D_11 SUGRA _ <~21~> e~ 4i(B1+PBa+p3) 58 (/771#77_13 At ﬁ#ﬁgg A)
2007 + %) " .
1

2
= (GUn) O 5 (i 4 i ) L (821)

Eq. (8.21) can be obtained by gauge fixing from

(DT psp )28 (<273 A+ <ny3 17 >a+ < 31727 >4) x
(det <1 Bi>det<27¢f > det <3°F > )2
X
< 17425 >< 2783, ><37¢1, >

(8.22)

However, as (8.18) in the case of 10D SYM, this expression does not obey eq. (6.14), so
that we should find either the reason to relax/to modify these equations, or to search for
a different covariant expression reproducing (8.21) upon gauge fixing.

Another interesting possibility is to use the gauge fixed spinor frame variables, obey-
ing (7.17) for all sets of spinor harmonics. As we have already stressed above, in distinction
with light-cone gauge, such a gauge fixed superamplitude formalism possesses manifest
Lorentz invariance and supersymmetry. This possibility is also under study now.
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9 Conclusion and discussion

In this paper we have constructed the basis of the analytic superfield formalism to cal-
culate (super)amplitudes of 10D SYM and 11D SUGRA theories. This is alternative to
the constrained superamplitude formalism of [15, 16] and also to the ‘Clifford superfield’
approach of [14]. The fact that it has more similarities with D=4 superamplitude calculus
of V=4 SYM and N = 8 SUGRA promises to allow us to use more efficiently the D=4
suggestions for its further development. In particular, such a suggestion was used to find
the gauge fixed form of the 3-point analytic superamplitude of 10D SYM and 11D SUGRA,
egs. (8.13) and (8.21).

We have begun by solving the equations of the constrained on-shell superfield formalism
of 10D SYM and 11D SUGRA [15, 16, 21] in terms of single analytic superfield depending
holomorphically on N' = 4 and N' = 8 complex coordinates, respectively. These N complex
coordinates 77, are related to 2V real fermionic coordinates 0, of the constrained superfield
formalism by complex rectangular matrix wga (= (w;j‘)*). This and its conjugate wj;‘ =
(wqa)* obey some constraints which allow us to consider them as homogeneous coordinates

Spin(D—2) ) and to call them internal harmonic variables.

Of the coset m

Similarly, the constrained n-point superamplitudes of the H SO(D — 2); covariant

constrained superfield formalism can be expressed in terms of analytlc superamplitudes

which depend, besides the n sets of 10D or 11D spinor helicity variables, also on n sets

(Wqai,w, Y of Spm(SDpinél()D cgsi)fin(z) internal harmonic variables. The sets of 10D and 11D

spinor helicity variables include Lorentz harmonics or spinor frame variables v agi which,
after the constraints and gauge symmetries are taken into account, parametrize the celestial
sphere S(P=2). Together with scalar densities pfé, they describe the light-like momenta and
the “polarizations” (SO(D —2); small group representations) of the scattered particles. The
constrained superamplitudes, which depend on these spinor helicity variables and (2N)-

component real fermionic variables 6 ., carry indices of the small groups SO(D — 2);. In

qi’
contrast, the analytic superamplitudes do not carry indices but only charges s = AN/4 of

U(1); which act on the internal frame variables (wqa4,w?;) and on the complex fermionic

)
Ny = Hlﬁwq 44. They may be constructed from the basig constrained superamplitudes by
contracting their SO(D — 2); vector indices with complex null vectors Uy; constructed from
bilinear combinations of (w;, w;).

The dependence of the analytic superamplitudes on internal harmonics is restricted
by the equations in terms of harmonic covariant derivatives which reflect the fact that the
original constrained superamplitudes are independent of (w;, w;). Moreover, the internal
harmonics (w;, w;) are pure gauge with respect to the SO(D — 2); symmetry which acts
also on the spinor harmonics (va_q i,v(;g ;). We have shown that internal harmonics can
be defined in such a way that analytic superamplitudes actually depend only on complex
e eUmER

spinor harmonics (v}, ,, va T) (7.30) parametrizing the coset 50T

Spin(1,D — 1)
[SO(1,1) ® Spin(D —4) @ U(1)] « Kp_2

{WFapn00)} = (9.1)
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However, we find convenient to consider these complex spinor harmonics to be composed

from the real spinor harmonics, parametrizing the coset isomorphic to the celestial sphere
S(D_2) _ Spin(1,D—1)

[SO(l,l)@Spin(D—2)]@KD,2
(W, w;), in spite of that these latter are pure gauge with respect to Spin(D — 2); sym-

metry (see (7.21) and (7.7)).
We have found a parametrization of the spinor frame variables and of the internal

(6.2), and the above mentioned internal harmonics

frame which is especially convenient for the analysis of the analytic superamplitudes. This
has allowed us to establish the correspondence of higher dimensional quantities with basic
building blocks of 4D superamplitudes and to use it to find the expressions for analytic 3-
point superamplitudes of D=10 SYM and D=11 SUGRA theories. These are the necessary
basic ingredients for calculation of the n-point superamplitudes with the use of on-shell
recurrent relations, the problem which we intend to address in a forthcoming paper.

The first stages in this direction should include a better understanding of the structure
of the 3-point analytic superamplitudes, in particular the search for its more convenient,
parametrization independent form, as well as the derivation of the BCFW-type recurrent
relations for the analytic superamplitudes. These should be more closely related to the
relations for D=4 superamplitudes [7, 11] than the BCFW-type recurrent relations for real
constrained 11D and 10D superamplitudes presented in [15, 16].

In particular, one expects the BCFW deformations used in such recurrent relations
to have an intrinsic complex structure, similar to the one in D=4 equations of [7]. As
we show in appendix B, starting from BCFW deformations of spinor frame and fermionic
variables in [15], which are essentially real, this is indeed the case. The resulting BCFW-
like deformations of the complex spinor frame variables (7.30) and of the complex fermionic
variables (4.42)

Ua_A(n) - va_A(n) +z Ua_A(l) \/f%? 5;2;) = Q_];%T_L) ’ (9'2)
- TAS A SA— | # #
Uaa) = Yaa()’ Ua(1) = Pa(t) = # Vatm) VPR /P1 (93)

nZn:nZn—i_'znZl V P#/P#, 7721 :7721 (94)
have the structure quite similar to that of the 4D super-BCFW deformations from [11]
(see (B.1)-(B.3) in appendix B).

Thus presently their exist three alternative superamplitude formalisms for 10D SYM,
two of which have been also generalized for the case of 11D supergravity. These are
Clifford superfield approach of [14], constrained superamplitude approach of [15, 16] and
the analytic superamplitude formalism of the present paper. As discussed in [16], and
also briefly commented in section 4.6.1, the one particle counterparts of all three types of
superamplitudes can be obtained by different ways of covariant quantization of 10D and
11D massless superparticles. In short, the separation point is how to deal with the Poisson
brackets of the fermionic second class constraints, (4.72).

The formalism of [14] and the analytic superfield approach of the present paper imply
‘solving’ the constraints by passing to the Dirac brackets (4.73) and quantizing these. In
such a way we obtain the Clifford algebra like anticommutation relation (4.74) for 8 (16
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in D=11 case) real fermionic variables éq_ . To arrive at the one-particle counterpart of
the superamplitudes from [14], one should consider the superparticle ‘wavefunction’ to be
dependent on the whole set of Clifford algebra valued variables é;, i.e. to be a ‘Clifford
superfield’. In contrast, to obtain an analytic superfield as superparticle wavefunction, we
need to split 8 real HAq* on 4 complex 1, and its complex conjugate 7~4, which obey the

4 can be considered as creation operator or

Heisenberg-like algebra. This implies that 7~
complex momentum conjugate to the annihilation operator . Then in the n-coordinate
(or holomorphic) representation the superparticle quantum state vector depends on 7,
but not on 7~4. In other words, it will be described by analytic superfield, the one-particle

counterpart of our analytic superamplitudes.

From this perspective, one can arrive at doubts in consistency of the Clifford super-
amplitude approach of [14]. Indeed, in terms of complex fermionic variables the above
described appearance of an unconstrained Clifford superfield in superparticle quantization
requires to allow the wavefunction to depend on both coordinate 1, and momentum 74
variables in an arbitrary manner. Then such a Clifford superfield wavefunction is not al-
lowed in quantum mechanics in its generic form and some conditions need to be imposed to
restrict its dependence on 74 and/or 1. The analytic superfields and superamplitudes
can be obtained on this way: by imposing on Clifford superfields/superamplitudes just the

conditions to be independent of 74,

The constrained superfields, the one-particle counterparts of the constrained superam-
plitudes, appear as a result of superparticle quantization if, instead of passing to Dirac
brackets (4.73), we realize the fermionic second class constrains as differential operators
D;r = % + ... obeying the quantum counterpart (3.4) of (4.72). The ‘imposing’ of the
quantum second class constraint is then achieved by considering a ¢, -dependent multicom-
ponent state vectors Wg (= (¥,, W) in D=10) and requiring them to obey a set of linear
differential equations DjWq = Ay,op¥p ((3.7) and (3.8) in D=10; see [16] for details of
this procedure). The advantages of this approach is the use of Grassmann fermionic coor-
dinates (rather than Clifford algebra valued ones) as well as its manifest covariance under
the ‘small group’ SO(8) (SO(9)) symmetry. The disadvantage is that superfields and super-
amplitudes are subject to the above mentioned set of quite complicated equations, which
have no clear counterpart in D=4 case. This makes the calculations in the constrained
superamplitude framework quite involving (in comparative terms) and creates difficulties
for the (straightforward) use of the experience gained in D=4. Also the decomposition of
constrained superfields on components looks quite non-minimal: in the 10D case, 9 com-
ponents of constrained superfield, all nonvanishing, are constructed of two fields describing
the on-shell degrees of freedom of SYM, bosonic w! and fermionic 1, appearing already
in first two terms of the decomposition.

In contrast, the components of the analytic superfields include different components
of w! = (¢, A8 (7)) and ¢, = (¢+1/2A,¢21/2) only ones. Thus the great advantage
of the analytic superamplitude formalism is its minimality. It is also much more similar to
the on-shell superfield and superamplitude description used for maximal D=4 SYM and
SUGRA theories. In particular, this similarity helped us to find the gauge fixed expression
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for the 3-point analytic superamplitudes of 10D SYM and 11D SUGRA. The price to
be paid for these advantages is the harmonic superspace type realization of the SO(8)
(SO(9)) symmetry and, consequently, dependence on additional set of harmonic variables
WA, w{;1 parametrizing Spin(8)/[SU(4)®@U(1)] coset. Presently the analytic superemplitude
formalism is under further development which, as we hope, will result in a significant
progress in 10D and 11D amplitude calculations.

An alternative direction we are also working out is to use the structure of the analytic
3-point superamplitude for deriving the expression for its cousin from the real constrained
superamplitude formalism [15, 16], and to use the interplay of the constrained and analytic
superamplitude approaches for their mutual development.

It will be also interesting to reproduce the analytic superamplitudes from an appro-
priate formulation of the ambitwistor string [60-62]. Notice that, although original am-
bitwistor string model [60] had been of NSR-type and had been formulated in D=10, quite
soon [63] it was appreciated its relation with null-superstring [50] (see [64, 65] for related
results and [66] for more references on null-string) and with twistor string [6, 66-68]. This
suggested its existence in spacetime of arbitrary dimension, including D=11 and D=4, and
the last possibility was intensively elaborated in [69-73]. An approach to derive the an-
alytic superamplitudes from the Green-Schwarz type spinor moving frame formulation of
D=10 and D=11 ambitwistor superstring [63] looks promising and we plan to address it in
the future publications.
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A On D=4 spinor helicity formalism

In D=4 Spin(1,3) = SL(2,C) and the spinor frame or Lorentz harmonic variables

vE = (vi)* [49] are restricted by the only condition v™%v} =1,
(vi,v)) € SL(2,C) <« v “l=1. (A.1)
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In a theory invariant under [SO(1,1) ® SO(2)] Ky transformations

(O Lt e (A (A.2)

vy e T (A.3)

o

— —a—ib, —
v, e Vg s

the set of such harmonic variables parametrize the sphere S? [17, 18],

Spin(1, 3) B SL(2,C) -
ﬁO@D@SmMM@Ka‘ﬁan®Uuﬂ®&—S? (A.4)

{(vg,va)} =

When the spinor frame is associated with a light-like momenta by the generalized Cartan-
Penrose relation
Pac = pT U505 (A.5)

(cf. (1.4)), S? in (A.4) is the celestial sphere.
In the scattering problem we can associate the spinor frame to each of n light-like
momenta and to express the corresponding helicity spinors of (1.4) in terms of the spinor

harmonics
_ # - 3 _ # - e
Aa(i) = VP a0 Aa(i) = VP iy 0 Pac(i) = PiyVali)Va(i) - (A.6)

As we have used only v;(i), the complementary spinor harmonic v;“(i) remains arbitrary up

to the constraint (A.1),
—o,+
Uiy Vo) = L (A.7)

Actually, this is the statement of Ky symmetry (parametrized by k# and k% in (A.2), (A.3)),
which can be used as an identification relation on the set of harmonic variables (as indicated
in (A.4)), and in this sense is the gauge symmetry. We can fix these Ky(;) gauge symmetries
by identifying (up to a complex multipliers) all the complementary spinors of the spinor
frames associated to the momenta of the scattered particles
(v(t.)vz;)) = U(Jg)av;r(j) =0 & v;r(i) x vi(j) Vi,j=1,...,n. (A.8)
It is convenient to reformulate this statement by introducing an auxiliary spinor frame
(vi), which is not associated to any of the scattered particles, and to state that any of the

(87

spinor frames (v:(i)) is related to that by (cf. (A.2), (A.3))

v;r(i) = eitifigpt @dJEz‘) = i Pigh (A.9)
Vo =€ T g FEKTVY), vy = e P (0g + KT, (A.10)

In this gauge the contractions of the spinors from different frames read

— 0T S= %% — e (aita;)—i(Bi+B) =
<Ua)e) TE Ve =€ i

< U(_l)va.) S = e(ocj—ai)—ki(,@j—ﬁi)’ (A.ll)
(50 P0)] = 06 Tagy = ¢ T TOTIRG,
[?7(_1)7_}?;)] _ e(aj—ai)—i(ﬁj—ﬁi)’ (A.12)
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where
Kj:i = ]Kj: -K; . (A.13)

Of course, we can use the SO(1,1); x SO(2); gauge symmetries to fix also o; = 0 and
Bi = 0Vi=1,...,n, but the multipliers 8; might be useful as they actually indicate the
helicity of the field or amplitude, while «; can be ‘eaten’ by the ‘energy’ variables pfﬁ.
Indeed, the i-th light-like momentum (A.6) can be now written as

Pac(i) = Py (e + Kg)w) (v; +KG08)

= Pl e + p( ARGty + Bl K uad + Pl K KGuls (A.14)
where ,5? = 6*20‘1 (8.8) an
Uia = Vo Vg “fa =0, 0,4 ufj =v

are two real and two complex conjugate (u; ~

like tetrade (see [43, 44] and refs. therein).

Using the complementary harmonics v, ©

ois Ui T of the auxiliary frame as reference spinors,

we can identify polarization vectors with the i-th frame counterparts of the above described
complex null-vectors u; * and u} = = (u, 7)*:

) .+ =y 5t ) ot =t e
Cac(i) = Yaa(i) = Vai)Vali)’  Caa() = Yaa() = Ya() V) - (A.16)

In the gauge (A.8) these identification implies that

() . L) (Dea _
20 "0 T 3%aa)fG) O (A-17)

Using (A.14) and (A.16) we can easily find
#

“Dho = D@t e = el @), (A1)
and then, for instance,
(+) (+) () Py, TN ]
(e k@) () €3)) = == (Wg)v) (V) V() (0g)0() (U5(3)
ﬁé) = _2i(B3—B2—P1)
= ——2 Ky (PP, (A.19)

This allows us to calculate 3-gluon amplitude of N'= 4 4D SYM,

M(1F,27,37) = gel[) ey el taneh, bo, bs)
= g(e (+)

() ¢ (g ()0 () () ()
) K@) Ei2) S3) T E2) K3) E(3) (1) T E(3) ) €1y o)) =

9 2By
:_162 (B3—PB2—51) ( Pl )K21-|-p( )K32)
— %ﬁz‘é)[{; e2i(B3—B2—P1) (A.20)

(see [58, 59] for the definition of ¢,. tensor). Notice that the last term in the second line
of this equation vanishes as a result of (A.17) and that at the last stage of transformations
of this equation we have used the consequence of the momentum conservation in 3-particle
process which we are going to discuss now.
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A.1 Momentum conservation in a 3-point 4D amplitude

In our notation the momentum conservation in the 3-particle process is expressed by

4o s
P(1)Yan)Va) T P(2)%@ %) + P(3) Va3 las) = 0 (A.21)

This implies
P+ p% + 5] =0, (A.22)

pUKT + 5Ky + Ky =0,
B B _
= Kyp="73K)="7K3z = Kpg=—_Ky (A.23)
P3 P2 P3
as well as

Kok = (K5 — K3) (K5 — K5) = 0. (A.24)

Here we have used the notation (A.13) and

pt =200t (A.25)

The solution of eq. (A.24) is nontrivial only if (K (32))* 7 K(39)- In this case one of two

branches of the general solution is described by
K5 =K; = Ky (A.26)

while K(:17273)

now on we will denote these complex nonvanishing K

can be different but obeying (A.23) with ﬁﬁ 2.3) restricted by (A.22). From

restricted by 3-particle kinemat-

(1,2,3)
ics by K{7 5 4y We will also use the solution of (A.23) in terms of complex non-vanishing K==

Ksy _ Ko _ Kiyg —=

== ==K . (A.27)
/fl# p?%f /32#
Eq. (A.26) implies
a1y X Va2) X Ugs) (A.28)

while ’Ua_(l), va_@) and ’Ua_(g) are different.
A.2 3-gluon amplitude and superamplitude in maximal D=4 SYM

The standard expression for the 3-point amplitude in D=4 SYM is written in terms of
S NS\ — # - =
<if >=<NA; >= AN Aoy =/ pj <vjv; >

=\ Bl 5 e BRI, (A.29)

If we were trying to guess the corresponding expression starting from (A.20), the f; de-
pendence indicates that this should be (up to a coefficient)

<123 <12 >4
< 23><3l> <12><23><31>

M(1T,27,37) (A.30)
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Using (A.29) and (A.23) one can easily check that this expression indeed reproduce (A.20),

4
<12> _ GRS, 2B BB — (5H)2K== (2B BaP) (A.31)
<12><23><31> B 3

In our notation the anti-MHV (MHV) type superamplitude reads (see (1.15))
1

<12 >< 23 >< 31 >

while the MHV amplitude is

AV (1,2,3) = S < 23> 4+ < 31> 43 < 12>),  (A32)

1 - _ _
MHV _ 8 (Y. : . —
AYY(1,2,3) = B [23] 3] 6% (Aa1mar + Aaznaz + Aasnas)

L 43
— 7{1 oIP = H Z i5) naina; - (A.33)

The covariance of ¢ function under the phase transformations of the bosonic spinors
holds when the fermionic variables 14; have the same phase transformation property as
Aai- This reflects its origin in Penrose-Ferber incidence type relation ns; = 0%;Aa;i [45]

which in terms of our Lorentz harmonic notation reads n4; = P?”Zi = \/E 0%V
Notice also that the indices A of all the fermionic coordinates are transformed by the
same SU(4), which is the R-symmetry group of N'=4 D=4 SYM.
Using (A.10), (A.9) and (A.22), (A.27), we can write the Grassmann delta function
of (A.33) in the form

A (m <23> 40 <31> 43 <12>) =

TN ) —41(514‘524’53) 54 (77 AK32 + ngAK13 + n3AK21)

= <p1 P2 P3

2 o Y _ - T T
= (atatat) oyt e i ti) 6t (5tnr, + o, + i i, )

_ e~ 4i(B1+B2+Ps3) 54 <p1 77[13],4 + p2 77[23] ) (A.34)

where!2

= a;+iB;

Nai =€ MNai s Napy = Maj — Mai» (A.35)

/51# is defined in (A.25).
Similarly, the fermionic delta function in (1.16) can be written as

0% (Ra1nar + Aaznaz + Aasnaz) = 0° ( P(1)PamyNay + P?;)@;zngz + P?@:}”Z:’,)
8 (o (At st (Rt Rt
=0 (% <P1 Naps + P2 77A[23]> +7§ (Kl P1 Maps T Ko 03 ’7A[23]))

= ((v + K7 oY) p1 Mapg (v; +K307) oy 77,4[23]) (A.36)

120ne can check that 71 = 0% (va + K7 vl) which makes transparent that all 7j,, are transformed by the
common U(1) ® SO(1, 1) group, but are inert under all the U(1); ® SO(1, 1); gauge symmetries, including
the one with ¢ = j.
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In this notation, the multiplier in the MHV superamplitude (1.15) reads

1 e2i(B1+P2+P3) 1 e2i(B1+B2+B3) ﬁ?
T # # - =K=K= ~of ~ =3
<12><23><31> pﬁ)pg)pg) K5 K5K5 Pt (Ky)

e2i(B1+PB2+P3) 1 A
" Gk w4

Using (A.37) and (A.34), we can write the 3-point anti-MHV superamplitude (1.15)
in the form

AMIV (19 3) = (K=7) e~ 2Ptz 4hs) 54 (P Tra + 03 gy + 74 773A) ;

KQ:l 722 4 (<3~ -
= _W (B1+B2+83) § <p1 77[13}14 + 0y 77[23]14) . (A.38)
1 2

B BCFW-like deformations of complex frame and complex fermionic
variables

An important tool to reconstruct tree D = 4 (super)amplitudes from the basic 3-point
(super)amplitude is given by BCFW recurrent relation [7] and their superfield generaliza-
tion [11]. The counterparts of these latter 4D relations for constrained superamplitudes
of 11D SUGRA and 10D SYM have been presented in [15, 16]. They use the real BCFW
deformations of real bosonic and fermionic variables of the constrained superamplitude
formalism. In contrast, in the case of the BCFW-type recurrent relations for analytic su-
peramplitudes (which are still to be derived), one expects the BCFW deformations used
in such recurrent relations to have an intrinsic complex structure, similar to the one of the
D=4 relations [7, 11]

A A i *A
MAn ="Nan+ 20,4, » AL ="1A1- (B.3)

Let us show how this can be reached starting from the BCFW deformations of real
spinor frame variables [15, 16]

by

1

Vag(n) = Yag(m) T Uap(1) Mpg » (B.4)
P(n)

— Pim)

Yaq(1) = Yaq() T FA| # Mgp v ap(n) ) (B.5)
P(1)
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and of the real fermionic variables

— pﬁ)
Opn) = Opmy T 209y Map | (B.6)
Pin)
#
— _ P(n) _
041y =gy =2 P Mgp 0y - (B.7)

ey

Here a = 1,...,4N and ¢,p =1, ...,4N (we should set N' = 8 and 4 for 11D SUGRA and
10D SYM, respectively) and z is an arbitrary number. In principle this can be considered
to be real z € R [14], although z € C is neither forbidden and actually more convenient in
amplitude calculations.

The above shift of spinor moving frame variables results in shifting the momentum of
the first and of the n-th particle,

— —

Kty = ki1 — 2q%, ki = k(o + 2q%, (B.8)

on a light-like vector ¢* orthogonal to both k:?l) and k:?n),

2@q* =0,  qak(yy =0,  qak{;) =0, (B.9)
provided we choose
1 L
Map == #OH# == (U‘I(l) gvp(n)) ' (B.10)
PP () (U0) i)
00 =TS . fap = qal'%p. (B.11)

The light-likeness of ¢ (B.9) implies the nilpotency of the matrix M,
M,pMyq =0,  MgM,, =0. (B.12)

We can also write the expression for light-like complex vector in terms of deformation
matrix,

1

¢ =5 Pk 0,0 T Mgpvy, - (B.13)
The nilpotency condition (B.12) guarantees that the shifted spinor moving frame vari-
ables obey the characteristic constraints, eqs. (2.33) with shifted light-like momenta k)

and k() (B.8) or, equivalently, (2.22) with shifted light-like ui and ugd,

— . 2 — . 2q°
WA S T e ) T e T (B.14)
P(1) P(n)

Notice that (B.4) and (B.5) imply

RS+ kS =k + KO (B.15)
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The complex structure similar to the one of D=4 BCFW deformations can be repro-
duced after passing to the complex spinor harmonics (7.30)—(7.33) composed from the
spinor harmonics and the internal harmonic variables. The internal harmonics can be used
to solve the nilpotency conditions (B.12) for the matrix My, in (B.4)-(B.7). The solution

— A B
Myp = wga 1M BWyp, 5

(B.16)

with an arbitrary hermitian A x A/ matrix 94 g, results in the following deformation of
the complex spinor frame variables (7.28) and of the complex fermionic variables:

- —u- - B 4 # A A-
Uad(n) = Vaga) T 2 Yan) WA\ P/ Py Vatn) = Vain) (B.17)
oy A= _ A A -~ B— #
Vo)) = Yar(t):  Pa() = Pa) ~ 2 VB Uiy \ P/ Pl (B.18)

and

- - B # oA _
Man =Man T 2051 M AN P(Y /Py Ma1 =Nax- (B.19)

These are already quite similar to the 4D super-BCFW transformations (B.1), (B.2), (B.3).
To make the similarity even closer, we can choose 9P 4 = 6% 4. In such a way we arrive
at (9.2), (9.3), and (9.4).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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