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1. Introduction

Quantum entanglement plays a central role in quantum infor-
mation science and quantum optics [1, 2]. Due to recent tech-
nological breakthroughs, it is now possible to create entangled 

states, for instance, with photons, cold trapped ions, ultracold 
atoms and solid state systems [3–15]. Even if we successfully 
entangle two particles, they soon will become disentangled 
due to quantum correlations built up with the environment. 
Hence, environmentally induced loss of entanglement has 
received much recent attention.

Because the environment involves many degrees of 
freedom, most models adopt a phenomenological approach 
which includes, for example, coherence and energy decay 
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Abstract
We study quantum entanglement loss due to environmental interaction in a condensed matter 
system with a complex geometry relevant to recent proposals for computing with single 
electrons at the nanoscale. We consider a system consisting of two qubits, each realized by 
an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits 
are widely separated and each interacts with its own environment. The environment for each 
is modeled by surrounding double quantum dots placed at random positions with random 
orientations. We calculate the unitary evolution of the joint system and environment. The 
global state remains pure throughout. We examine the time dependence of the expectation 
value of the bipartite Clauser–Horne–Shimony–Holt (CHSH) and Brukner–Paunković–
Rudolph–Vedral (BPRV) Bell operators and explore the emergence of correlations consistent 
with local realism. Though the details of this transition depend on the specific environmental 
geometry, we show how the results can be mapped on to a universal behavior with appropriate 
scaling. We determine the relevant disentanglement times based on realistic physical 
parameters for molecular double-dots.

Keywords: quantum entanglement, quantum decoherence, quantum disentanglement

(Some figures may appear in colour only in the online journal)

E P Blair et al

Entanglement loss in molecular quantum-dot qubits due to interaction with the environment

Printed in the UK

195602

JCOMEL

© 2018 IOP Publishing Ltd

30

J. Phys.: Condens. Matter

CM

10.1088/1361-648X/aab98d

Paper

19

Journal of Physics: Condensed Matter

IOP

Original content from this work may be used under the terms 
of the Creative Commons Attribution 3.0 licence. Any further 

distribution of this work must maintain attribution to the author(s) and the title 
of the work, journal citation and DOI.

2018

1361-648X

1361-648X/18/195602+7$33.00

https://doi.org/10.1088/1361-648X/aab98dJ. Phys.: Condens. Matter 30 (2018) 195602 (7pp)

https://orcid.org/0000-0001-5872-4819
https://orcid.org/0000-0002-9602-751X
https://orcid.org/0000-0002-0026-516X
mailto:lent@nd.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-648X/aab98d&domain=pdf&date_stamp=2018-04-19
publisher-id
doi
http://creativecommons.org/licenses/by/3.0
https://doi.org/10.1088/1361-648X/aab98d


E P Blair et al

2

times as model inputs. The dynamics of the entangled 
particles are then non-unitary [16–19]. Few-particle systems 
can be more tractable yet still illuminate the behavior of 
much larger systems. For example, recent experiments have 
been successful at realizing a coherent system-environment 
dynamics with few particles, and saw thermal behavior emerge 
in a sub-system, even when the global system evolution is 
unitary with a fixed energy [20, 21].

Here, we consider a specific quantum system embedded 
in a few-particle environment for which we can calculate 
the global unitary system+environment dynamics exactly. 
The model environment is large enough for us to observe 
the disentangling dynamics of the embedded subsystem and 
see behavior similar to that expected from a large environ-
ment. In particular, we examine qubits realized by double 
quantum dots (DQD) with an extra electron, where the elec-
tron position encodes the quantum information. We study 
a system of two DQDs which are initially prepared in a 
maximally entangled state. These target DQDs are spatially 
separate and each interacts Coulombically with its own 
environment consisting of randomly placed similar DQDs 
with random orientations. Each environmental DQD inter-
acts with the target DQD and also with all other DQDs in the 
same environment. Due to this interaction, the target DQDs 
become disentangled, which we follow by computing the 
Bell correlation function of Clauser–Horne–Shimony–Holt 
(CHSH) [22] and also that of Brukner–Paunković–Rudolph 
and Vedral (BPRV) [23], and look for the transition to clas-
sical (i.e. local realistic) behavior and the time scale on 
which this happens. Though the system is small enough to 
calculate the unitary dynamics exactly, it represents a large-
dimensional Hilbert space, so aspects of the behavior of 
truly large systems emerge.

The intent of our model is not to propose a setup that can 
readily be realized in the laboratory. Rather we explore dis-
entanglement in a concrete physically-motivated system that 
captures the key elements of the issue—separated but initially 
entangled pairs, and spatially distinct environments—in a 
tractable model amenable to direct numerical solution.

Recent experiments have entangled spatially separated 
double-dots using photons [24, 25], and phonons [26]. Remote 
electron spin systems have been entangled over a distance of 
more than a kilometer using microwave photons [27] and 
resulting Bell CHSH violations were measured. We do not 
concern ourselves here with the details of how the initial 
entanglement is established, but rather examine its decay due 
to entanglement with the environment.

The main characteristics of our model are the following.

 (i) The joint state of system and environment remains pure 
during the dynamics. Thus, we model both the system 
and environment exactly. There are no stochastic or 
phenomenological terms added into the model.

 (ii) The setup is physically motivated, rather than based on an 
abstract spin chain model. In fact, this system is a useful 
model for molecular mixed-valence double quantum dot 
systems and has the advantage of including a natural and 
physically realistic coupling mechanism [28–31]. Such 

a double-dot system is a promising candidate for digital 
computing at the nanoscale [32].

 (iii) The two target DQDs do not interact with each other and 
they have their own environments, which are separated 
and therefore not coupled to each other. This reflects the 
typical physical situation of spatially separated qubits 
and avoids artificial environment-mediated entanglement 
between the target systems.

 (iv) There is Coloumbic coupling between the environment 
DQDs themselves, not only between the system DQDs 
and the environment DQDs. The coupling strength is 
computed from the distance and the orientation of the 
double dots.

 (v) The model is the simplest possible to contain the 
necessary ingredients. The Hamiltonian consist of 
terms corresponding to the Coulomb energy only, while 
the electrons cannot tunnel between the dots. Hence 
the electrostatic energy remains constant during the 
dynamics. Moreover, in the computational basis, only 
the phases of the state vector components change, the 
amplitude remains constant.

 (vi) Remarkably, even if a small number of environment 
DQDs are considered (we will show results for 10 envi-
ronmental DQDs below), the decay of entanglement 
between the system DQDs results in a smooth decay of 
the Bell correlations. After appropriate normalization, 
all curves corresponding to various random arrange-
ments of the environment double dots collapse to the 
same curve.

This model is an extension of a previous studies of the 
decoherence of a single double dot qubit state due to the envi-
ronment [32, 33]. There, entanglement with the environmental 
drives the local system into Zurek ‘pointer states’. More com-
plex internal dynamics have also been studied. Mixed valence 
molecules, which might realize 1 nm size double-dot qubits, 
have additional nuclear motion to consider. Electron transfer 
from one dot to the other is coupled to vibrational modes of 
the nuclei, and ultimately the substrate [34]. In the present 
model we consider only rigid double-dots to focus on the 
issue of entanglement loss alone.

Our paper is organized as follows. In section 2, we describe 
the model. In section 3, we discuss which observables we need 
to measure to obtain Bell inequality violations. In section 4, 
we present the results of our calculations in modeling 
the quantum dynamics of the system in time as quantum 
entanglement vanishes.

2. Model description

The target DQDs labeled A and B are described using a two-
state basis composed of states 

∣∣αA
0

〉
= |0A〉, 

∣∣αA
1

〉
= |1A〉, ∣∣αB

0

〉
= |0B〉, and 

∣∣αB
1

〉
= |1B〉 in which the electron is fully local-

ized on the bottom (0) or top (1) dot, respectively. A fixed 
charge of  +e/2 resides at each dot, providing net charge neu-
trality for each DQD. The two initially entangled DQDs are 
far apart and each interact with a separate environment.

J. Phys.: Condens. Matter 30 (2018) 195602
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The environment is composed of several similar DQDs 
surrounding the target DQDs. The environmental DQDs are 
arranged in a sphere of radius R with the positions on the 
sphere and the orientation of the double-dots chosen ran-
domly as shown in figure 1. Each of the environmental DQDs, 
indexed by k = 1, 2, . . .N , is described by a similar two-
state basis 

∣∣αk
0

〉
= |0k〉 and 

∣∣αk
1

〉
= |1k〉. There are N/2 envi-

ronmental DQDs surrounding each target DQD (N is always 
chosen to be even). We label individual DQD basis states with 
an integer m ∈ {0, 1}. Target DQD basis states are indexed 
with mA and mB, while the kth environmental DQD is indexed 
with mk.

The electronic configuration associated with a specific 
environmental basis state can then be referred to using the 
vector

�m ≡ [m1, m2, . . . , mN ]. (1)

There are NE = 2N such vectors, [�m1, �m2, �m3, . . . �mNE ], each 
representing a specific electronic configuration of the envi-
ronment E.

The basis states for describing the global system Ω, which 
includes the two target DQDs and the environment, consist of 
the direct products of the individual DQD states
∣∣ΦmA,mB,�mp

〉
=

∣∣αA
mA

〉 ∣∣αB
mB

〉 ∣∣∣α1
[�mp]1

〉 ∣∣∣α2
[�mp]2

〉
. . .

∣∣∣αN
[�mp]N

〉
.

 (2)
The global state can then be written as a linear combination of 
these basis states

|ψ(t)〉 =
∑

mA, mB = 0, 1
p = 1, 2, . . .NE

cmA,mB,�mp(t)
∣∣ΦmA,mB,�mp

〉
.

 (3)

2.1. System Hamiltonian

The Hamiltonian for the global system, including A, B, and 
the environment E, is determined only by the electrostatic 
interaction between DQDs in the basis state electronic con-
figurations. Let U j,k

mj,mk
 be the electrostatic potential energy 

between the jth qubit in state mj (0 or 1) and the kth qubit in 
state mk (0 or 1). This energy is given by

U j,k
mj,mk

=
P(mj)P(mk)e2

16πεo

[
1

r j,k
0,0

− 1

r j,k
0,1

− 1

r j,k
1,0

+
1

r j,k
1,1

]
. (4)

where e is the fundamental charge, εo is the permittivity of 

free space, r j,k
mj,mk

 is the distance between dot mj in DQD j and 
dot mk in DQD k, and P(m) is the polarization of a DQD in 
state m. P(1) = +1 and P(0) = −1.

The total electrostatic potential energy of a configuration 
of target DQDs in states mA and mB, and the environment in 
the state defined by �mp is calculated by simply summing over 
all interactions between all pairs of DQDs.

EmA,mB,�mp =
1
2

∑
j�=k

U j,k
mi,mj

. (5)

 Here the sums over indices i and j are over the DQDs 
[A, B, 1, 2, . . . , N], that is, including both target and environ-
mental DQDs.

In this model there is no tunneling between dots within 
the DQD; we are interested in the entanglement of the phase 
degrees of freedom rather than electron transfer effects which 
have been studied elsewhere [34]. The Hamiltonian for the 
global system is then diagonal in the basis states defined by 
equation (2) is:

Figure 1. A pair of entangled double quantum dots are spatially separate and interact with local environments. Each pair of spheres 
represents a double dot with dot separation a. The basis states for each pair correspond to a 1 (top dot occupied) or 0 (bottom dot occupied). 
The target pair of double-dots (colored in purple) are prepared in an entangled symmetric Bell state. Each interacts with a local environment 
of similar double dots, randomly positioned and oriented around them in a sphere of radius R. The Coulomb interaction couples the double-
dot states and the global system evolves under coherent unitary evolution.

J. Phys.: Condens. Matter 30 (2018) 195602



E P Blair et al

4

Ĥ =
∑

mA,mB,p

∣∣ΦmA,mB,�mp

〉
EmA,mB,�mp

〈
ΦmA,mB,�mp

∣∣ . (6)

We can characterize the strength of the interaction between 
each target DQD and its local environment by the electrostatic 
energy needed to flip DQD A or B from 0 to 1 with the envi-
ronment in state �mp as

Eflip
A,�mp

≡ E1,mB,�mp − E0,mB,�mp ,

Eflip
B,�mp

≡ Ema,1,�mp − EmA,0,�mp .
 (7)
These energies depend on the electrostatic configurations of 
the environment DQDs. We now define a quantity independent 
of the quantum state of the environment. Let the root-mean-
square of the flip energies over all the electronic configura-
tions of the local environmental basis states be Eflip

RMS(A/B). 
A characteristic time can then be defined for each of the sepa-
rated systems and the system as a whole as

τA,E = h/Eflip
RMS(A), τB,E = h/Eflip

RMS(B), τE =
√
τA,EτA,E.

 (8)

The characteristic time τE depends on the details of the geo-
metrically random orientation and positions of the envi-
ronmental DQDs. As we will see later, while the system is 
described by a complicated interaction of randomly placed 
double dots, the time constants given in equation (8) charac-
terize the main aspects of the dynamics [33].

2.2. Density operator and equation of motion

The time evolution of the system is calculated using the 
equation  of motion of the density operator. The density 
operator for the global system is defined from (3) by

ρ̂Ω(t) = |ψ(t)〉 〈ψ(t)| =
∑

mA, m′
A

mB, m′
B

p, p′

cm′
A,m′

B,�m′
p
c∗mA,mB,�mp

∣∣ΦmA,mB,�mp

〉 〈
Φm′

A,m′
B,�mp′

∣∣∣.

 (9)
The dynamics of the global system density matrix is obtained 
by solving the von Neumann equation as

ρ̂Ω(t) = e−i Ĥ
� t ρ̂Ω(0) e+i Ĥ

� t. (10)
This time evolution is exact within the model and the global 
system described by ρ̂Ω is always in a pure state.

We now define the initial state of the joint system. The 
target DQDs A and B are initially in the symmetric entangled 
Bell state

∣∣ψAB(0)
〉
= [|0〉A |0〉B + |1〉A |1〉B] /

√
2. (11)

The initial state of the kth environmental DQD is an unpolarized 
state given as

|ψk(0)〉 = eiθk
(
|0k〉+ eiφk |1k〉

)
/
√

2, (12)

where the phases θk and φk  are chosen randomly, with a dis-
tribution that results in the corresponding Bloch vectors being 
uniformly distributed over the unit sphere. We take the initial 

state of the density operator to be a tensor product state of the 
entangled system AB and the complete environment.

3. Tracking entanglement with Bell operators

We will primarily observe the disentanglement of the target 
DQDs by computing the dynamics of the expectation values 
of Bell operators. These are are relevant experimentally, 
since they can obtained by projective measurements on 
the subsystems. In the next section  we will also calculate 
entanglement measures for the evolving system.

3.1. CHSH correlation function

We now calculate the Clauser–Horne–Shimony–Holt (CHSH)  
correlation function and the corresponding Bell inequality [22]. 
This function is often measured experimentally and it has 
been shown that states violating the CHSH inequality can be 
used in the Ekert protocol for entanglement assisted quantum 
communication [35].

For each subsystem A and B we define operators in the 
space spanned by the local basis vectors |0〉 and |1〉. In this 
basis we define the rotation operator R̂ as

R̂(θ) = cos(θ) [ |1〉 〈1|+ |0〉 〈0| ] + sin(θ) [ |0〉 〈1| − |1〉 〈0| ] .
 (13)

We define two basis sets, a and a′, for measurements on sub-
system A as

|al〉 = R̂(θa) |l〉A ,

|a′
l〉 = R̂(θa′) |l〉A

 (14)

for l = 0, 1 for indicating the two basis states. We also define 
two basis sets, b and b′, for measurements on subsystem B

|bl〉 = R̂(θb) |l〉B ,

|b′l〉 = R̂(θb′) |l〉B ,
 (15)

for l = 0, 1. For the maximum Bell violation we choose 
[θa, θa′ , θb, θb′ ] = [0◦, 45◦, 22.5◦, 67.5◦]. We define projection 
operators for measuring the four combinations of 0 and 1 on 
the two parties, for measurements using the a and b bases as

P̂kl(a, b) = |ak〉 〈ak| ⊗ |bl〉 〈bl| , (16)

for k, l = 0, 1. The CHSH correlation function encodes the |0〉 
and |1〉 states with a  −1 and  +1 respectively. The expectation 
value for the product of the measurements (±1) on A and B 
using these bases is then given by

P̂×(a, b) ≡ P00(a, b)− P01(a, b)− P10(a, b) + P11(a, b),

E(a, b) = 〈P×〉 = Tr
(
ρ̂P̂×(a, b)

)
.

 (17)
Expressions analogous to equations (16) and (17) define sim-
ilar quantities E(a, b′), E(a′, b), and E(a′, b′) using the other 
choices of basis states. The CHSH correlation function is then 
defined to be

SCHSH = |E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′)| . (18)

J. Phys.: Condens. Matter 30 (2018) 195602
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The assumption of local realism yields the Bell inequality

SCHSH � 2. (19)

For local values of a, a′, b, and b′ which are distributed 
randomly and uniformly SCHSH =

√
2 holds, obeying the 

inequality. For the fully entangled Bell state of equation (11), 
by contrast, SCHSH = 2

√
2, in violation of (19).

3.2. Brukner–Paunković–Rudolph–Vedral correlation  
function

We will now consider the Bell inequality derived by Brukner 
et  al in [23], which is a generalization of Mermin’s Bell 
inequality [36, 37] for bipartite states that are not necessarily 
symmetric.

We define three sets of rotated basis function as

|uk〉 = R̂(θk) |0〉 , |vk〉 = R̂(θk) |1〉 , (20)

for k = 1, 2, 3. For the correlation function we choose 
[θ1, θ2, θ3] = [0◦, 120◦, 240◦]. For each subsystem A and B a 
particular basis set corresponding to one of these angles is 
randomly chosen and a projective measurement is carried 
out. The projection operators corresponding to measure-
ments are

P̂(0)
k = |uk〉 〈uk| , P̂(1)

k = |vk〉 〈vk| , (21)

where we used the subscript k = 1, 2, 3 for the three measure-
ment settings. Each of these operators has eigenvalues 0 and 1, 
hence all measurements on either subsystem A or B have these 
outcomes. We define the correlation operators for obtaining 
the same outcome in the two qubits as

P̂same
kl (A, B) = P̂(0)

k (A)⊗ P̂(0)
l (B) + P̂(1)

k (A)⊗ P̂(1)
l (B), (22)

and for obtaining the opposite outcomes as

P̂opp
kl (A, B) = P̂(0)

k (A)⊗ P̂(1)
l (B) + P̂(1)

k (A)⊗ P̂(0)
l (B), (23)

for k �= l. The operator P̂same
12 (A, B), for example, corre-

sponds to a measurement of setting 1 on one subsystem 
and setting 2 on the other, both yielding the same result 
(both 0 or both 1).

The correlation function needed to evaluate the Bell ine-
quality is then defined as

SBPRV =

3∑
k

〈
P̂same

kk (A, B)
〉
+

3∑
k,l �=k

〈
P̂opp

kl (A, B)
〉

, (24)

where the subscript refers to the initials of the authors of [23]. 
Local realism requires that each subsystem A and B have 
values that determine the results of measurements of settings 
1, 2, and 3 before the measurement is made. That assumption 
yields the inequality

SBPRV � 7 (25)

for any probability distribution of the measurement outcomes 
[37]. By contrast, the fully entangled Bell state of equation (11) 
yields SBPRV = 7.5 in clear violation of equation  (25). We 
evaluate directly the time-dependent value SBPRV(t) from the 
density matrix evolving in time under equation (10).

4. Results

Starting with the initial state given by equations (11) and (12), 
we solve for the unitary evolution of the global density matrix 
using equation  (10), and calculate the correlation functions 
SCHSH(t) and SBPRV(t) directly from the global density matrix. 
The number of environmental double-dots is NE  =  10 (five 
around each target double-dot) yielding 210  =  1024 environ-
mental electronic configurations.

In figure 2(a), the results are shown for a  =  1 nm, a typical 
scale for molecular double-dots, which sets the time scale at 
picoseconds. Calculated Bell correlation functions are shown 
for 6 different values of R/a ∈ {2.5, 3, 3.5, 4, 5, 7}, corre-
sponding to different average strengths of coupling to the 
environment. For each value of R/a, 12 different random geo-
metric arrangements of the environments are shown.

The CHSH correlation function SCHSH(t) for each of 
these 72 configurations shown on the upper part of figure 2, 
begins at the value corresponding to maximally violating the 
Bell inequality. Then, it starts dropping out of the Bell viola-
tion regime and decaying to the classical limit. As expected, 
the stronger the coupling to the environment, the faster the 
quantum entanglement disappears.

Figure 2(b) shows the same 72 cases of the geometrically 
random environment as figure 2(a), but plotted on a time axis 
scaled by the characteristic time τE as calculated from equa-
tion  (8). The value of τE is distinct for each of the random 
geometries of the environment. The time-scaled result is inde-
pendent of the values of a or R/a.

The squares show the value of a single Gaussian fit to all 72 
curves for the transition from the initial Bell-state value to the 
classical limit. The fit yields a Gaussian width of τopt = 1.34 
τE and matches the calculated bundle of trajectories well. The 
CHSH correlation function evolves from the fully entangled 
value to the value corresponding to local realism over a time 
on the scale of τE and the transition is very close to Gaussian, 
rather than the often-assumed exponential associated with 
semigroup behavior. Note that the slope at small times is here 
zero, in contrast to the finite slope of an exponential.

Figure 3(a) shows the time-scaled BPRV correlation, 
which behaves similarly, crossing out of the Bell viola-
tion regime and into the classical (local realism) limit with 
a Gaussian form. The width of the Gaussian is identical to 
that for the CHSH correlation function; the squares on the 
plot show the Gaussian fit. It may be that as the number of 
environmental DQDs increases, the phase interference that 
results in the slight residual oscillations averages out to a 
 precisely Gaussian shape.

Though both correlation functions have the same Gaussian 
shape and the same width, the transition out of the region for-
bidden by local realism occurs at different times for the two 
different Bell correlation functions. For the BPRV correlation 
function, the transition occurs at t/τE ≈ 1.21, whereas for the 
CHSH correlation function it occurs at t/τE ≈ 1.78. Of course 
entanglement can persist even after the system no longer vio-
lates a particular Bell inequality.

The Gaussian shape of the transition into local realism is 
notable. A similar Gaussian characteristic has been observed 
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by Cucchietti et al [38] in the context of the decoherence of 
a model spin system. This result seems to hold across many 
distributions of coupling to the environment and is rooted in 
the approximately Gaussian distribution of the eigenvalues of 
the Hamiltonian for a random environment.

Figure 3(b) shows the dynamics of the von Neumann 
entropy of the reduced density operator for the two target 
qubits, ρ̂AB(t) = TrE(ρ̂Ω(t)). The increase in entropy by one 
bit corresponds to the loss of local information about the state 
of the pair. The global von Neumann entropy remains zero 
throughout because the global state is always pure.

Figure 3 also shows the time dependence of the entangle-
ment of formation for the two target qubits [39]. This quan-
tity decreases as the entanglement between the two DQDs 
smoothly vanishes.

5. Conclusion

We have examined the dynamics of qubits realized with a 
double-dot with an extra electron. Initially, they were placed 
in a maximally entangled symmetric Bell state. Then, each 
interacted Coulombically with its own environment consisting 

Figure 2. The dynamics of the Bell correlation functions indicate the loss of entanglement under unitary evolution. (a) The CHSH 
correlation function SCHSH(t), defined by equation (18), is calculated as functions of time, assuming unitary evolution of the global system. 
The curves are shown for a  =  1 nm (which sets the time-scale) and for 6 different values of R/a = {2.5, 3, 3.5, 4, 5, 7}, corresponding 
to different average strengths of interaction with the environment. For increasing values of R/a the lines are colored [green, blue, cyan, 
magenta, red, black]. For each value of R/a, the results for 12 different random geometrical configurations of the environment are shown. 
(b) Scaled dynamics of the CHSH correlation functions for different random geometries of the environment. The value of the CHSH 
correlation function for all 72 different geometrical configurations of the environment shown in (a) are plotted here versus the time scaled 
by the characteristic time τE calculated from equation (8). The time τE depends on the mean energy of interaction with the environment and 
is different for each random geometry. The value of the CHSH correlation function decays from 2

√
2 for the pure Bell state to 

√
2 for the 

classical mixture. The points (squares) show the result of a Gaussian fit with characteristic time τopt = 1.34 τE.
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Figure 3. (a) Scaled dynamics of the BPRV correlation function (equation (24)) for 72 different random geometries of the environment. 
(b) Dynamics of the entanglement of formation of the two system qubits and the von Neumann entropy of their reduced state. For details, 
see caption of figure 2(b).
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of similar double-dots with a random position and orienta-
tion. While the dynamics was unitary and the entire system 
remains pure, the two system double-dots become gradually 
disentangled from each other. We followed this by calculating 
the dynamics of the expectation values of Bell operators for 
relevant Bell inequalities. We used the physical parameters 
of molecular mixed-valence double quantum dot systems for 
modeling, and calculated the relevant times scales. While the 
dynamics were different for different random geometries, 
with appropriate normalization all curves collapsed to a single 
curve. The time scale of disentanglement could be calculated 
precisely from the mean interaction strength between the 
system and the environmental degrees of freedom.

Our results can be understood by noting that quantum entan-
glement is best characterized not as fragile, but rather as pro-
miscuous. Dynamics entangles each system with all the other 
systems with which it interacts. This promiscuity is constrained 
by the principle of the quantum monogamy of entanglement 
[40, 41], which bounds the strength of entanglement between 
any two pairs when a system entangles with many other sys-
tems. The decay of entanglement we see between the two target 
DQD systems occurs precisely because they each entangle 
with multiple systems in their respective environments, while 
maintaining global coherence and purity completely.
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