CRYSTALLOGRAPHIC
COMMUNICATIONS

ISSN: 2056-9890
journals.iucr.org/e

Crystal structure of $\mathrm{K}_{0.75}\left[\mathrm{Fe}^{I I}{ }_{3.75} \mathrm{Fe}^{I I I}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot \mathbf{0 . 5} \mathrm{H}_{2} \mathrm{O}$, an open-framework iron phosphite with mixed-valent $\mathrm{Fe}^{I I} / \mathrm{Fe}^{I I I}$ ions

Edurne S. Larrea, José Luis Mesa, Estibaliz Legarra, Andrés Tomás Aguayo and Maria Isabel Arriortua

Acta Cryst. (2016). E72, 63-65

IUCr Journals

 CRYSTALLOGRAPHY JOURNALS ONLINEThis open-access article is distributed under the terms of the Creative Commons Attribution Licence http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

ISSN 2056-9890

Received 8 September 2015
Accepted 14 December 2015

Edited by M. Weil, Vienna University of Technology, Austria

Keywords: crystal structure; open-framework structure; hydrothermal synthesis; mixed-valent Fe ${ }^{11} / \mathrm{Fe}^{\text {III }}$ compound; isotypism

CCDC reference: 1442401
Supporting information: this article has supporting information at journals.iucr.org/e

OPEN 〇 ACCESS

Crystal structure of $\mathrm{K}_{0.75}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right]$.$0.5 \mathrm{H}_{2} \mathrm{O}$, an open-framework iron phosphite with mixed-valent $\mathrm{Fe}^{\mathrm{II}} / \mathrm{Fe}^{\text {III }}$ ions

Edurne S. Larrea, ${ }^{\text {a* }}$ José Luis Mesa, ${ }^{\text {b }}$ Estibaliz Legarra, ${ }^{\text {c }}$ Andrés Tomás Aguayo ${ }^{\text {d }}$ and Maria Isabel Arriortua ${ }^{\mathrm{a}, \mathrm{c}}$

${ }^{\text {a }}$ Dpto. Mineralogía y Petrología, Universidad del País Vasco, UPV/EHU, Sarrina $\mathrm{s} / \mathrm{n}, 48940$ Leioa, Spain, ${ }^{\text {b }}$ Dpto. Química Inorgánica, Universidad del País Vasco, UPV/EHU, Sarrina s/n, 48940 Leioa, Spain, ${ }^{\text {cBasque Center for Materials, }}$ Applications \& Nanostructures (BCMaterials), Parque Tecnológico de Zamudio, Camino de Ibaizabal, Edificio 500-1 ${ }^{\circ}$, 48160 Derio, Spain, and dDpto. Ingeniería Química, Universidad del País Vasco, UPV/EHU, Sarrina s/n, 48940 Leioa, Spain. *Correspondence e-mail: edurne.serrano@ehu.eus

Single crystals of the title compound, potassium hexaphosphitopentaferrate(II,III) hemihydrate, $\mathrm{K}_{0.75}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$, were grown under mild hydrothermal conditions. The crystal structure is isotypic with $\mathrm{Li}_{1.43}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{4.43} \mathrm{Fe}^{\mathrm{III}}{ }_{0.57}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$ and $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{5}\left(\mathrm{HPO}_{3}\right)_{6}\right]$ and exhibits a $\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right]^{0.75-}$ open framework with disordered K^{+}(occupancy $3 / 4$) as counter-cations. The anionic framework is based on (001) sheets of two $\left[\mathrm{FeO}_{6}\right]$ octahedra (one with point group symmetry 3 .. and one with point group symmetry .2.) linked along [001] through $\left[\mathrm{HPO}_{3}\right]^{2-}$ oxoanions. Each sheet is constructed from 12-membered rings of edge-sharing [FeO_{6}] octahedra, giving rise to channels with a radius of $c a 3.1 \AA$ where the K^{+}cations and likewise disordered water molecules (occupancy 1/4) are located. O $\cdots \mathrm{O}$ contacts between the water molecule and framework O atoms of 2.864 (5) A indicate hydrogen-bonding interactions of medium strength. The infrared spectrum of the compound shows vibrational bands typical for phosphite and water groups. The Mössbauer spectrum is in accordance with the presence of $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{III}}$ ions.

1. Chemical context

Open-framework materials have been a major research topic in materials science during the last decades because of their potential applications (Barrer, 1982; Wilson et al., 1982; Davis, 2002, Adams \& Pendlebury, 2011). Many efforts have been made to obtain porous materials using different oxoanions in combination with metals (Yu \& Xu, 2010). The use of struc-ture-directing agents or templates, not only organic but also inorganic, has also been extended in order to achieve this purpose. In this context, a new porous mixed-valent $\mathrm{Fe}^{\mathrm{II}} / \mathrm{Fe}^{\mathrm{III}}$ phosphitoferrate with lithium cations and an open-framework structure, $\mathrm{Li}_{1.43}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{4.43} \mathrm{Fe}^{\mathrm{III}}{ }_{0.57}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$, has been reported (Chung et al., 2011). This structure presents channels of $c a 5.5 \AA$ diameter along the [001] direction in which water molecules and lithium ions are located. The same type of framework but with $\mathrm{Fe}^{\mathrm{II}}$ cations and with ammonium counteranions was reported recently for $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Fe}_{5}^{\mathrm{II}}\left(\mathrm{HPO}_{3}\right)_{6}\right]$ (Berrocal et al., 2014).

Here we report on the synthesis and crystal structure of isotypic $\mathrm{K}_{0.75}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ resulting from the replacement of lithium/ammonium by potassium. The iron cations in this compound are again in a mixed valence oxidation state of +II and +III .

Figure 1
Asymmetric unit of $\mathrm{K}_{0.75}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ with displacement parameters drawn at the 50% probability level.

2. Structural commentary

The asymmetric unit of $\mathrm{K}_{0.75}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ (Fig. 1) contains two Fe sites on special positions ($6 f$ and $4 d$) with site symmetries of .2. and .3., respectively, three O sites, one P site and one H site. In addition, disordered sites associated with a water molecule ($\mathrm{O} 1 W$) and the potassium counter-cation are present. The crystal structure is made up of two types of $\left[\mathrm{FeO}_{6}\right]$ octahedra linked via edge-sharing into sheets parallel to (001). These sheets consist of 12 -membered rings formed by six $\left[\mathrm{Fe}_{1} \mathrm{O}_{6}\right]$ octahedra and six $\left[\mathrm{Fe}_{2} \mathrm{O}_{6}\right]$ octahedra. In one of the FeO_{6} octahedra (Fe 1), the $\mathrm{Fe}-\mathrm{O}$ bond lengths range from 2.046 (2) to $2.179(2) \AA$ while in the [$\mathrm{Fe}_{2} \mathrm{O}_{6}$] octahedron, a more uniform bond-length distribution from 2.134 (2) to 2.143 (2) is observed. In order to assign the content of $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{III}}$ on these sites, a Mössbauer spectrum was recorded (Fig. 2). Three different components were observed, two doublets, corresponding to $\mathrm{Fe}^{\mathrm{II}}$ cations, and a third doublet, corresponding to $\mathrm{Fe}^{\text {III }}$ cations. The determined $\mathrm{Fe}^{\mathrm{II}} / \mathrm{Fe}^{\mathrm{III}}$ ratio is 3.1, in good agreement with the formula. According to bond-valence calculations (Brown, 2002), a clear assignment of which of the two iron sites carries the $\mathrm{Fe}^{\mathrm{III}}$ cations cannot be made. The calculated bond-valence sum for site Fe 1 assuming $\mathrm{Fe}^{\mathrm{II}}$ is 2.213 valence units (v.u.), while assuming $\mathrm{Fe}^{\text {III }}$ gives 2.367. Corresponding values for the Fe 2 site are 2.014 v.u. assuming $\mathrm{Fe}^{\mathrm{II}}$ and 2.155 assuming $\mathrm{Fe}^{\text {III }}$. The $\mathrm{O}-\mathrm{Fe}-\mathrm{O}$ bond angles of the two $\left[\mathrm{FeO}_{6}\right]$ octahedra are in the range between 78.10 (8) and 102.63 (7) ${ }^{\circ}$ for cis- and between 175.77 (11) and $163.23(8)^{\circ}$ for the trans-angles.

The (001) iron oxide sheets are linked through phosphite groups whereby six anions share the innermost oxygen atoms of each ring (Fig. 3), forming 12-membered channels extending along [001]. The channels have a radius of about $3.1 \AA$. The $\mathrm{P}-\mathrm{O}$ bond lengths of the anion range from 1.529 (2) to 1.541 (2) \AA and are comparable with those of the two isotypic structures. The $\mathrm{P}-\mathrm{H}$ distance in the title compound is 1.29 (4) \AA, and the $\mathrm{O}-\mathrm{P}-\mathrm{O}$ bond angles range from 110.24 (11) to 114.32 (11) .

Figure 2
Mössbauer spectrum of the title compound showing the presence of $\mathrm{Fe}^{\mathrm{II}}$ and $\mathrm{Fe}^{\mathrm{III}}$. The fit was made with the NORMOS program (Brand et al., 1983).

The disordered potassium cations and water molecules are located on special positions in the twelve-membered channels of the framework with site symmetries of 32 . and 3 .., respectively. The occupancy factors are 0.75 for potassium and 0.25 for the water molecule. Although the hydrogen atoms of the water molecule could not be located, the $\mathrm{O} \cdots \mathrm{O}$ distance of 2.864 (5) \AA between the water $\mathrm{O} 1 W$ atom and the O 1 atom of the framework indicates possible hydrogen-bonding interactions of medium strength. Because the $\mathrm{O} 1 W$ site is located on a threefold rotation axis, three hydrogen bonds with the inorganic skeleton with an angle of 113.42 (5) ${ }^{\circ}$ are possible.

3. Synthesis and characterization

$\mathrm{K}_{0.75}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ was synthesized under mild hydrothermal conditions and autogeneous pressure

Figure 3
Crystal structure of $\mathrm{K}_{0.75}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$ in polyhedral representation, in a projection along [001]. Colour code: $\mathrm{Fe}_{6} \mathrm{O}_{6}$ octahedra are blue, $\mathrm{Fe}_{2} \mathrm{O}_{6}$ octahedra are magenta, HPO_{3} tetrahedra are orange, O atoms are red and K^{+}ions are grey. Hydrogen-bonding interactions between O 1 from the framework and $\mathrm{O} 1 W$ are shown with dashed lines.

Table 1
Experimental details.

Crystal data	
Chemical formula	$\mathrm{K}_{0.75}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right]-$ -
	$0.5 \mathrm{H}_{2} \mathrm{O}$
M_{r}	797.45
Crystal system, space group	Trigonal, $P \overline{3} c 1$
Temperature (K)	100
$a, c(\AA)$	$10.1567(5), 9.2774(6)$
$V\left(\AA^{3}\right)$	$828.82(8)$
Z	2
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	5.14
Crystal size (mm)	$0.29 \times 0.05 \times 0.04$
Data collection	Agilent SuperNova
Diffractometer	Analytical $(C r y s A l i s ~ P R O ;$ Agilent,
Absorption correction	$2014)$
	$0.423,0.845$
$T_{\text {min }}, T_{\text {max }}$	$5132,647,618$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.026
$R_{\text {int }}$	0.664
(sin $\theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	
Refinement	$0.026,0.061,1.19$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	647
No. of reflections	54
No. of parameters	All H-atom parameters refined
H-atom treatment	$0.8,-0.50$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	

Computer programs: CrysAlis PRO (Agilent, 2014), OLEX2 (Dolomanov, 2009), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2001) and WinGX (Farrugia, 2012).
(10-20 bar at 343 K). The reaction mixture was prepared from 30 ml water, 2 ml of hypophosphorous acid, 0.17 mmol of KOH and 0.37 mmol of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The mixture had a pH value of $\simeq 3.0$. The reaction mixture was sealed in a polytetrafluoroethylene (PTFE)-lined steel pressure vessel, which was maintained at 343 K for five days. This procedure allowed the formation of single crystals of the title compound with a dark green to black colour.

The IR spectrum (see supporting information for this submission) shows typical bands corresponding to the stretching and deformation mode of the water molecules at 3235 and $2410 \mathrm{~cm}^{-1}$, respectively. The spectrum also shows the stretching and deformation modes of the $\mathrm{P}-\mathrm{H}$ bond at $1750 \mathrm{~cm}^{-1}$. The bands corresponding to the symmetric $\left(v_{\mathrm{s}}\right)$ and antisymmetric ($\nu_{\text {as }}$) stretching vibrational modes of the $\left(\mathrm{PO}_{3}\right)$ groups appear at 930 and $1151 \mathrm{~cm}^{-1}$, whereas the symmetric $\left(\delta_{\mathrm{s}}\right)$ and antisymmetric (δ_{as}) deformation modes of this group are centred at 450 and $590 \mathrm{~cm}^{-1}$ (Nakamoto, 1997; Chung et al., 2011).

Thermogravimetric analysis of the title compound (see supporting information for this submission) shows a first massloss process of 1.05% between room temperature and 498 K . This mass loss corresponds to the removal of water (theoretical value: 1.13%). Between 498 K and 673 K , another mass loss of 0.45% takes place which could not be assigned to a chemical reaction. This second process is followed by a third
continuous process associated with a considerable gain of mass due to the oxidation of the compound.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table $1 . \mathrm{H}$ atoms of the water molecule were not modelled. The hydrogen atom of the phosphite group was located in a difference density map and was refined without any constraint. Potassium and water oxygen sites are located in the channels. The occupancy factors of both atoms were initially set taking into account the previous characterization (themogravimetric measurement, Mössbauer spectrum fit). Some trials to refine the occupancy factors of these atoms were made. However, the results were very similar to those initially set, with a slight increase of reliability factors. Therefore, for the final model the occupancy factors were fixed at 0.75 for the K1 and at 0.25 for the O1W site.

Acknowledgements

We gratefully acknowledge financial support of this work by the Ministerio de Economía y Competitividad (MAT2013-42092-R), the Gobierno Vasco (IT-630-13 and SAI12/82) and the University of the Basque Country (UFI-11/15). The authors also thank the technicians of SGIker (UPV/EHU), Dr J. Sangüesa, Dr Leire San Felices and Dr A. Larrañaga for the X-ray diffraction measurements. ESL thanks the Basque Government for her postdoctoral contract.

References

Adams, J. \& Pendlebury, D. (2011). Global Research Report. Materials Science and Technology. Philadelphia: Thomsons Reuters.
Agilent (2014). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
Barrer, R. M. (1982). Hydrothermal Chemistry of Zeolites, Academic Press, London.
Berrocal, T., Mesa, J. L., Larrea, E. S. \& Arrieta, J. M. (2014). Acta Cryst. E70, 309-311.
Brand, R. A., Lauer, J. \& Herlach, D. M. (1983). J. Phys. F: Met. Phys. 13, 675-683.
Brandenburg, K. (2001). Diamond, Crystal Impact GbR, Bonn, Germany.
Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
Chung, U.-C., Mesa, J. L., Pizarro, J. L., de Meatza, I., Bengoechea, M., Rodríguez Fernández, J., Arriortua, M. I. \& Rojo, T. (2011). Chem. Mater. 23, 4317-4330.
Davis, M. E. (2002). Nature, 417, 813-821.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Nakamoto, K. (1997). Infrared and Raman Spectroscopy of Inorganic and Coordination Compounds, John Wiley \& Sons: New York.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. \& Flanigen, E. D. (1982). J. Am. Chem. Soc. 104, 1146-1147.

Yu, J. \& Xu, R. (2010). Acc. Chem. Res. 43, 1195-1204.

supporting information

Acta Cryst. (2016). E72, 63-65 [doi:10.1107/S2056989015024007]

Crystal structure of $\mathrm{K}_{0.75}\left[\mathrm{Fe}^{\mathrm{II}}{ }_{3.75} \mathrm{Fe}^{\mathrm{III}}{ }_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot \mathbf{0 . 5} \mathrm{H}_{2} \mathrm{O}$, an open-framework iron phosphite with mixed-valent $\mathrm{Fe}^{\text {II }} / \mathrm{Fe}^{\text {III }}$ ions

Edurne S. Larrea, José Luis Mesa, Estibaliz Legarra, Andrés Tomás Aguayo and Maria Isabel Arriortua

Computing details
Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: OLEX2 (Dolomanov, 2009); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Potassium hexaphosphitopentaferrate(II,III) hemihydrate

Crystal data
$\mathrm{K}_{0.75}\left[\mathrm{FeII} 3.75 \mathrm{FeIII}_{1.25}\left(\mathrm{HPO}_{3}\right)_{6}\right] \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=797.45$
Trigonal, P3c1
Hall symbol: -P 3 2"c
$a=10.1567$ (5) \AA
$c=9.2774$ (6) \AA
$V=828.82(8) \AA^{3}$
$Z=2$
$F(000)=779$

Data collection

Agilent SuperNova
diffractometer
Radiation source: Nova (Mo) X-ray microsource
Multilayer optics monochromator
Detector resolution: 16.2439 pixels mm^{-1}
ω scans
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.026$
$w R\left(F^{2}\right)=0.061$
$S=1.19$
647 reflections
54 parameters
$D_{\mathrm{x}}=3.195 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3002 reflections
$\theta=2.3-28.0^{\circ}$
$\mu=5.14 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Prism, black
$0.29 \times 0.05 \times 0.04 \mathrm{~mm}$
$T_{\text {min }}=0.423, T_{\text {max }}=0.845$
5132 measured reflections
647 independent reflections
618 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=28.2^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-13 \rightarrow 12$
$k=-9 \rightarrow 13$
$l=-12 \rightarrow 10$

0 restraints

Primary atom site location: iterative
Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map All H -atom parameters refined

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0254 P)^{2}+2.2546 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.015
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.8 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.50 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$	Occ. (<1)
Fe1	$0.62108(5)$	0	0.25	$0.00709(16)$	
Fe2	0.6667	0.3333	$0.33159(7)$	$0.00659(18)$	
P1	$0.70307(8)$	$0.11196(8)$	$0.58780(7)$	$0.00748(18)$	
O3	$0.6916(2)$	$0.1569(2)$	$0.4316(2)$	$0.0110(4)$	
O2	$0.3954(2)$	$-0.1473(2)$	$0.3120(2)$	$0.0095(4)$	
O1	$0.8210(2)$	$0.1342(2)$	$0.1437(2)$	$0.0124(4)$	
K1	1	0	0.25	$0.0247(5)$	0.75
O1W	1	0	$0.063(2)$	$0.033(4)$	0.25
H1	$0.645(4)$	$-0.033(4)$	$0.592(4)$	$0.011(9)^{*}$	

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	$0.0070(2)$	$0.0067(3)$	$0.0075(3)$	$0.00336(14)$	$-0.00016(10)$	$-0.00031(19)$
Fe2	$0.0062(2)$	$0.0062(2)$	$0.0074(3)$	$0.00310(11)$	0	0
P1	$0.0072(3)$	$0.0087(3)$	$0.0068(3)$	$0.0042(3)$	$0.0006(2)$	$0.0003(2)$
O3	$0.0112(10)$	$0.0147(10)$	$0.0083(9)$	$0.0075(8)$	$0.0018(7)$	$0.0024(8)$
O2	$0.0091(9)$	$0.0079(9)$	$0.0113(9)$	$0.0041(8)$	$0.0023(7)$	$-0.0004(7)$
O1	$0.0153(10)$	$0.0095(10)$	$0.0140(10)$	$0.0073(9)$	$-0.0003(8)$	$0.0002(8)$
K1	$0.0151(7)$	$0.0151(7)$	$0.0439(15)$	$0.0075(3)$	0	0
O1W	$0.018(5)$	$0.018(5)$	$0.062(12)$	$0.009(2)$	0	0

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Fel-O1	2.046 (2)	$\mathrm{P} 1-\mathrm{H} 1$	1.29 (4)
$\mathrm{Fe} 1-\mathrm{Ol}^{\text {i }}$	2.046 (2)	$\mathrm{O} 2-\mathrm{P} 1^{\text {vii }}$	1.534 (2)
$\mathrm{Fe} 1-\mathrm{O} 2$	2.096 (2)	$\mathrm{O} 2-\mathrm{Fe} 2^{\text {viii }}$	2.134 (2)
$\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	2.096 (2)	O1-P1 ${ }^{\text {ix }}$	1.529 (2)
$\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	2.179 (2)	O1-K1	2.935 (2)
Fel-O3	2.179 (2)	$\mathrm{K} 1-\mathrm{O} 1^{\text {x }}$	2.935 (2)
Fe1-K1	3.8486 (6)	$\mathrm{K} 1-\mathrm{O} 1^{\text {xi }}$	2.935 (2)
$\mathrm{Fe} 2-\mathrm{O} 2{ }^{\text {i }}$	2.134 (2)	$\mathrm{K} 1-\mathrm{O} 1^{\text {xii }}$	2.935 (2)

$\mathrm{Fe} 2-\mathrm{O} 2{ }^{\text {ii }}$	2.134 (2)
$\mathrm{Fe} 2-\mathrm{O} 2^{\text {iii }}$	2.134 (2)
Fe2-O3	2.143 (2)
$\mathrm{Fe} 2-\mathrm{O} 3{ }^{\text {iv }}$	2.143 (2)
$\mathrm{Fe} 2-\mathrm{O} 3^{\text {v }}$	2.143 (2)
$\mathrm{P} 1-\mathrm{Ol}^{\text {vi }}$	1.529 (2)
$\mathrm{P} 1-\mathrm{O} 2{ }^{\text {vii }}$	1.534 (2)
P1-O3	1.541 (2)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 1^{\text {i }}$	97.50 (12)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 2$	167.07 (8)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 2$	89.81 (8)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 2{ }^{\text {i }}$	89.81 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O}^{2}{ }^{\mathrm{i}}$	167.07 (8)
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O} 2^{\text {i }}$	85.10 (11)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	90.97 (8)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	91.82 (8)
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	78.11 (8)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Fe} 1-\mathrm{O}^{\text {i }}$	98.73 (7)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 3$	91.82 (8)
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 3$	90.97 (8)
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O} 3$	98.73 (7)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Fe} 1-\mathrm{O} 3$	78.11 (8)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{O} 3$	175.77 (11)
O1-Fe1-K1	48.75 (6)
$\mathrm{O} 1^{\mathrm{i}}$-Fe1-K1	48.75 (6)
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{K} 1$	137.45 (6)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Fe} 1-\mathrm{K} 1$	137.45 (6)
O3--Fe1-K1	92.11 (5)
$\mathrm{O} 3-\mathrm{Fe} 1-\mathrm{K} 1$	92.11 (5)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Fe} 2-\mathrm{O} 2{ }^{\text {ii }}$	85.13 (8)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Fe} 2-\mathrm{O} 2{ }^{\text {iii }}$	85.13 (8)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Fe} 2-\mathrm{O} 2{ }^{\text {iii }}$	85.13 (8)
$\mathrm{O} 2 \mathrm{i}-\mathrm{Fe} 2-\mathrm{O} 3$	78.10 (8)
$\mathrm{O} 2{ }^{\text {ii }}-\mathrm{Fe} 2-\mathrm{O} 3$	93.44 (7)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Fe} 2-\mathrm{O} 3$	163.22 (8)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Fe} 2-\mathrm{O} 3{ }^{\text {iv }}$	163.23 (8)
$\mathrm{O} 2 \mathrm{ii}-\mathrm{Fe} 2-\mathrm{O}^{\text {iv }}$	78.10 (8)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Fe} 2-\mathrm{O}^{\text {iv }}$	93.44 (7)
$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{O} 3{ }^{\text {iv }}$	102.63 (7)
$\mathrm{O} 2-\mathrm{Fe} 2-\mathrm{O}^{\text {v }}$	93.44 (7)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Fe} 2-\mathrm{O}^{\text {v }}$	163.22 (8)
$\mathrm{O} 2{ }^{\text {iii- }} \mathrm{Fe} 2-\mathrm{O}^{\text {v }}$	78.10 (8)
$\mathrm{O} 3-\mathrm{Fe} 2-\mathrm{O}^{\text {v }}$	102.63 (7)
$\mathrm{O}^{\text {iv }}-\mathrm{Fe} 2-\mathrm{O} 3^{\text {v }}$	102.63 (7)
$\mathrm{O} 1^{\text {vi}}-\mathrm{P} 1-\mathrm{O} 2{ }^{\text {vii }}$	112.13 (11)
$\mathrm{O} 1{ }^{\text {vi }}-\mathrm{P} 1-\mathrm{O} 3$	114.32 (11)
$\mathrm{O} 2{ }^{\text {vii }}$-P1-O3	110.24 (11)

$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{Ol}^{1}$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 2$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O}^{2}$
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O} 2$
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O}^{2}$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O}^{3}$
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O}^{\mathrm{i}}$
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{O}^{\mathrm{i}}$
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{Fe} 1-\mathrm{O}^{\mathrm{i}}$
$\mathrm{O} 1-\mathrm{Fe} 1-\mathrm{O} 3$
-Fel-O3
$\mathrm{O} 2 \mathrm{~B}-\mathrm{Fe} 1-\mathrm{O} 3$
O-Fe1-O3
O1-Fe1-K1
O1ㄴㄷe1—K1
$\mathrm{O} 2-\mathrm{Fe} 1-\mathrm{K} 1$
O2 ${ }^{\mathrm{i}}$-Fe1—K1
O3ㄴㄷe1—K1
O3-Fe1-K1
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{Fe} 2-\mathrm{O}_{2}{ }^{\mathrm{ii}}$
85.13 (8)
85.13 (8)
78.10 (8)
3.44 (7)
163.23 (8)
78.10 (8)
93.44 (7)
102.63 (7)
93.44 (7)
163.22 (8)
78.10 (8)
102.63 (7)
02.63 (7)
114.32 (11)
110.24 (11)
7.50 (12)
$\mathrm{O} 1^{\text {xi }}-\mathrm{K} 1-\mathrm{O} 1^{\text {xii }}$
$\mathrm{O1}^{\mathrm{x}}-\mathrm{K} 1-\mathrm{O} 1^{\text {xiii }}$
63.23 (8)
63.23 (8)
$\mathrm{O}^{\mathrm{xi}}-\mathrm{K} 1-\mathrm{O} 1^{\text {xiii }} \quad 109.30$ (4)
O1 $1^{\text {xii }}$ - $\mathrm{K} 1 — \mathrm{O} 1^{\text {xiii }} \quad 78.54$ (8)
$\mathrm{Ol}^{\mathrm{x}} \mathrm{K} 1-\mathrm{O} 1 \quad 109.30$ (4)
O1 ${ }^{\text {xi-K1—O1 }} 78.54$ (8)
O1 ${ }^{\text {xii }-K 1 — O 1 ~} 109.30$ (4)
O1 ${ }^{\text {xiii }}-\mathrm{K} 1 — \mathrm{O} 1 \quad 171.12$ (8)
$\mathrm{O}^{\mathrm{x}}-\mathrm{K} 1-\mathrm{Ol}^{\mathrm{i}} \quad 78.54$ (8)
$\mathrm{O} 1^{\mathrm{xi}}-\mathrm{K} 1-\mathrm{O} 1^{\mathrm{i}} \quad 109.30$ (4)
$\mathrm{O} 1^{\text {xii }}-\mathrm{K} 1 — \mathrm{O} 1^{\mathrm{i}} \quad 171.12$ (8)
$\mathrm{O}{ }^{\text {xiii }}-\mathrm{K} 1 — \mathrm{O} 1^{\mathrm{i}} \quad 109.30$ (4)
$\mathrm{O} 1 — \mathrm{~K} 1-\mathrm{Ol}^{\mathrm{i}} \quad 63.23$ (8)
$\mathrm{O1}^{\mathrm{x}}$ - $\mathrm{K} 1 — \mathrm{Fe}^{\mathrm{xii}} \quad 140.73$ (4)
$\mathrm{O}^{\mathrm{xi}}-\mathrm{K} 1 — \mathrm{Fe}^{\mathrm{xii}} \quad 31.62$ (4)
$\mathrm{O}^{\mathrm{xii}}-\mathrm{K} 1 — \mathrm{Fe}^{\mathrm{xii}} \quad 31.62$ (4)
$\mathrm{O}^{\mathrm{xiii}}-\mathrm{K} 1 — \mathrm{Fe}^{\mathrm{xii}} \quad 94.44$ (4)
$\mathrm{O} 1-\mathrm{K} 1 — \mathrm{Fe}^{\mathrm{xii}} \quad 94.44$ (4)
Ol^{i} —K1—Fe1 ${ }^{\text {xii }} \quad 140.73$ (4)
$\mathrm{O}^{\mathrm{x}}-\mathrm{K} 1 — \mathrm{Fe} 1^{\mathrm{x}} \quad 31.62$ (4)
O1 ${ }^{\text {xi }}$-K1—Fe1 ${ }^{\mathrm{x}} 140.73$ (4)
$\mathrm{O}^{\mathrm{xii}}-\mathrm{K} 1 — \mathrm{Fe}^{\mathrm{x}} \quad 94.44$ (4)
$\mathrm{O} 1^{\text {xiii }} \mathrm{K} 1 — \mathrm{Fe}^{\mathrm{x}} \quad 31.62$ (4)
O1—K1—Fe1 ${ }^{\mathrm{x}} \quad 140.73$ (4)
$\mathrm{Ol}^{\mathrm{i}}-\mathrm{K} 1 — \mathrm{Fe}^{\mathrm{x}} \quad 94.44$ (4)
$\mathrm{Fe}^{\mathrm{xii}}$-K1—Fe1 ${ }^{\mathrm{x}} \quad 120$
$\mathrm{O1}^{\mathrm{x}}-\mathrm{K} 1 — \mathrm{Fe} 1 \quad 94.44$ (4)
O1 ${ }^{\text {xi }}-\mathrm{K} 1 — \mathrm{Fe} 1 \quad 94.44$ (4)
O1 ${ }^{\text {xii }} \mathrm{K} 1 — \mathrm{Fe} 1 \quad 140.73$ (4)
O1 ${ }^{\text {xiii- }} \mathrm{K} 1 — \mathrm{Fe} 1 \quad 140.73$ (4)
$\mathrm{O} 1 — \mathrm{~K} 1 — \mathrm{Fe} 1 \quad 31.62$ (4)
O1ㄴK1—Fe1 31.62 (4)
Fe1 ${ }^{\text {xii—K }} 1 — \mathrm{Fe} 1 \quad 120$
Fe^{x} —K1—Fe1 120
O1 ${ }^{\mathrm{x}}$-K1—K1 $1^{\text {xiv }} 109.64$ (4)
O1 ${ }^{\text {xi }} \mathrm{K} 1 — \mathrm{~K} 1^{\text {xiv }} \quad 70.36$ (4)
O1 ${ }^{\text {xii }}-\mathrm{K} 1 — \mathrm{~K} 1^{\text {xiv }} \quad 109.64$ (4)
O1 ${ }^{\text {xiii }}$-K1—K1 ${ }^{\text {xiv }} \quad 70.36$ (4)
O1—K1—K1 ${ }^{\text {xiv }} 109.64$ (4)

supporting information

$\mathrm{O} 1^{\text {vi}}-\mathrm{P} 1-\mathrm{H} 1$	105.9 (16)	O1 ${ }^{\text {i }}$-K1—K $1^{\text {xiv }}$	70.36 (4)
$\mathrm{O} 2{ }^{\text {vii }}$ - $\mathrm{P} 1-\mathrm{H} 1$	105.6 (16)	Fe1 ${ }^{\text {xii }}$-K1-K1 ${ }^{\text {xiv }}$	90
O3-P1-H1	108.1 (16)	Fe1 ${ }^{\text {x }}$-K1-K1 $1^{\text {xiv }}$	90
$\mathrm{P} 1-\mathrm{O} 3-\mathrm{Fe} 2$	135.47 (12)	Fe1-K1-K1 ${ }^{\text {xiv }}$	90
P1-O3-Fe1	123.82 (12)	O1 ${ }^{\text {x }}$-K1-K1 ${ }^{\text {xv }}$	70.36 (4)
Fe2-O3-Fe1	98.26 (8)	$\mathrm{O} 1^{\mathrm{xi}}-\mathrm{K} 1-\mathrm{K} 1^{\text {xv }}$	109.64 (4)
$\mathrm{P} 1^{\text {vii-}}$ - $22-\mathrm{Fe} 1$	127.45 (12)	$\mathrm{O} 1^{\text {xii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {xv }}$	70.36 (4)
$\mathrm{P} 1^{\text {vii }}-\mathrm{O} 2-\mathrm{Fe} 2^{\text {viii }}$	130.31 (12)	O1 ${ }^{\text {xiii }}-\mathrm{K} 1-\mathrm{K} 1^{\text {xv }}$	109.64 (4)
$\mathrm{Fe} 1-\mathrm{O} 2-\mathrm{Fe} 2^{\text {viii }}$	101.19 (8)	$\mathrm{O} 1-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{xv}}$	70.36 (4)
$\mathrm{P} 1{ }^{\text {ix }}-\mathrm{O} 1-\mathrm{Fe} 1$	129.84 (13)	O1 ${ }^{\mathrm{i}}$-K1-K1 ${ }^{\text {xv }}$	109.64 (4)
$\mathrm{P} 1^{\mathrm{ix}}-\mathrm{O} 1-\mathrm{K} 1$	124.86 (11)	Fe1 ${ }^{\text {xii }}-\mathrm{K} 1-\mathrm{K} 1^{\mathrm{xv}}$	90
Fe1-O1-K1	99.63 (7)	Fe1 ${ }^{\text {x }}$-K1-K1 ${ }^{\text {xv }}$	90
$\mathrm{O} 1^{\mathrm{x}}-\mathrm{K} 1-\mathrm{O} 1^{\text {xi }}$	171.12 (8)	Fe1-K1-K1 ${ }^{\text {xv }}$	90
$\mathrm{O} 1^{\mathrm{x}}-\mathrm{K} 1-\mathrm{O} 1^{\text {xii }}$	109.30 (4)	$\mathrm{K} 1^{\text {xiv }}-\mathrm{K} 1-\mathrm{K} 1^{\text {xv }}$	180

[^0]
[^0]: Symmetry codes: (i) $x-y,-y,-z+1 / 2$; (ii) $y+1, x,-z+1 / 2$; (iii) $-x+1,-x+y+1,-z+1 / 2$; (iv) $-y+1, x-y, z$; (v) $-x+y+1,-x+1, z$; (vi) $-y+1,-x+1, z+1 / 2$; (vii) $-x+1,-y,-z+1$; (viii) $y, x-1,-z+1 / 2$; (ix) $-y+1,-x+1, z-1 / 2$; (x) $-y+1, x-y-1, z$; (xi) $-x+2,-x+y+1,-z+1 / 2$; (xii) $-x+y+2,-x+1, z$; (xiii) $y+1, x-1$, $-z+1 / 2$; (xiv) $-x+2,-y,-z+1$; (xv) $-x+2,-y,-z$.

