
UNIVERSITY OF THE BASQUE COUNTRY

MASTER DEGREE THESIS

Accommodations Deduplication

Author:
Francis PEREZ

Supervisor:
Aitor SOROA

Oier LOPEZ DE LACALLE

Master in Computational Engineering and Intelligent Systems

Computer Science and Artificial Intelligence Department

September 24, 2018

http://www.ehu.eus/en
https://www.linkedin.com/in/francis-perez-705748a
http://ixa.si.ehu.es/node/124
http://ixa.si.ehu.es/node/88
https://www.ehu.eus/es/web/ccia-kzaa/home

iii

UNIVERSITY OF THE BASQUE COUNTRY

Abstract
Faculty of Informatics

Computer Science and Artificial Intelligence Department

Accommodations Deduplication

by Francis PEREZ

The problem to address is the accommodations deduplication. The deduplication is
a special case of entity resolution (ER) consisting in grouping different representa-
tions of the same entity, usually coming from different sources. The deduplication is
a complex process that requires several phases, being the most common ones, block-
ing and pair resolution. A new phase is introduced in addition to the previous ones,
clustering, that was not considered in previous work. We aim to build a framework
able to cover the different phases and design a strategy of clustering maximizing the
precision with the maximal possible recall.

HTTP://WWW.EHU.EUS/EN
https://www.ehu.eus/en/web/informatika-fakultatea/home
https://www.ehu.eus/es/web/ccia-kzaa/home

v

Acknowledgements
Many thanks to Aitor and Oier for their support, help and patience. Thanks also to
Manuel Sanchez, Hector Barriuso and Julen Telleria for being my official testers /
reviewers.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Problem Description . 1

1.1.1 Example . 1
1.2 Motivation . 3
1.3 Goals . 4

2 State of the Art 5
2.1 Deduplication Framework . 5

2.1.1 Blocking . 5
2.1.2 Matching . 6

Feature Extraction . 7
Classification . 7

2.1.3 Clustering . 8
2.2 Regarding Accommodations Domain 9

2.2.1 Blocking . 10
2.2.2 Classification . 10
2.2.3 Clustering . 10

3 Methodology 11
3.1 Data Description & Preprocessing . 11

3.1.1 Address Parsing . 12
Libpostal . 13
Geocoder . 14

3.1.2 Duplicates Information . 16
3.2 Blocking . 17
3.3 Feature Extraction . 19

3.3.1 PHash (Perceptual Hash) . 19
3.3.2 Levenshtein Distance . 21
3.3.3 TF-IDF . 21
3.3.4 Cosine similarity . 22
3.3.5 Features . 22
3.3.6 Dataset Format . 23

3.4 Pair Classification . 24
3.5 Clustering . 24

3.5.1 Predicate + Cut . 25
Basic Predicate . 25
Providers . 25
Clique . 25
Min-cut . 26

viii

Examples . 26
3.5.2 Interpretation . 28

3.6 Evaluation Metrics . 30
3.6.1 Pair Classification . 30
3.6.2 Clusters . 31

GMD . 32
VI . 33
Combination of GMD and VI . 33

4 Experiments 35
4.1 Accommodation Data Description . 35

4.1.1 Duplicates Comparisons/Records 36
4.2 Tools & technologies . 36
4.3 Pair Classification . 36

4.3.1 Evaluation . 37
4.3.2 Hyperparameters optimization 37
4.3.3 Pair Classification Results . 37

BayesNet . 37
IBK . 37
xgb . 37
Random Forest . 38
Adaboost . 38
Logistic . 38
Multilayer Perceptron . 38
SGD . 38

4.4 Clustering . 38
4.4.1 Evaluation . 39
4.4.2 Hyperparameters optimization 40

Thresholds . 40
4.4.3 Clustering Results . 42

Adaboost . 42
Random forest . 42
XGboost . 42

4.5 Results by dataset . 43

5 Analysis 45
5.1 Attributes . 45

5.1.1 Random Forest Attribute Importance 45
5.1.2 xgboost Attribute Importance . 46

5.2 Clustering Strategies . 46
5.2.1 Precision and Recall . 47
5.2.2 Erroneous Vertices Degree . 48
5.2.3 Clique . 49
5.2.4 Basic . 50
5.2.5 Providers . 50

5.3 Min-cut Error analysis . 50
5.4 Deduplication Update . 51

6 Conclusion and future work 53
6.1 Conclusions . 53
6.2 Future work . 53

ix

A GMD considerations 55

B Resources 57

C High Density Zones 59

D Workflow Measurements 63
D.1 Pair Classification / Clustering Evaluation 63
D.2 Blocking Predicate / Clustering evaluation 63

Bibliography 71

xi

List of Figures

1.1 Google results widget for "hotel miramar" search criteria 2

2.1 Overlapping blocks . 6
2.2 Example cluster 1 . 9
2.3 Example cluster 2 . 9

3.1 Density distribution for distance in duplicate entity representations . . 18
3.2 Miramar Booking.com . 20
3.3 Miramar Hoteles.com . 20
3.4 Miramar Expedia . 20
3.5 Failing pHash . 21
3.6 Non clique graph . 25
3.7 Clique graph . 26
3.8 Simple graph . 27
3.9 Complex graph . 28
3.10 Complex graph partition after first cut 29
3.11 Complex graph paritition after second cut 30

4.1 Prediction distribution by real duplicate 40
4.2 ROC . 41
4.3 Random forest VI by threshold . 43

5.1 Attribute Importance xgboost . 46
5.2 Problematic partitioning . 51

C.1 Rome density . 59
C.2 Rome kmeans centers . 60

D.1 Uncomplete graph . 64

xiii

List of Tables

1.1 Name and address of accommodation by source 3

2.1 Geo entities information . 7
2.2 Geo entities record . 7
2.3 Entities name . 7
2.4 Matching example . 8
2.5 Name levenshtein distance . 8

3.1 Tf-idf . 22
3.2 Simple graph table representation . 26
3.3 Complex graph table representation . 27
3.4 classification example . 31
3.5 GMD cost for prediction examples . 32
3.6 VI cost for prediction examples . 33

4.1 Distribution by city and cluster size . 35
4.2 Classifiers ranking by precision and recall 37
4.3 Adaboost splits / VI results . 42
4.4 Random forest splits / VI results . 42
4.5 Xgboost splits / VI results . 43
4.6 Best splits/VI values in different datasets 44

5.1 Attribute importance by Weka random forest 45
5.2 Table representation for problematic graph 51

C.1 Kmeans clusters size and center . 60

xv

List of Abbreviations

ER Entity Resolution
GMD Generalized Merge Distance
IQR Inter Quartile Range
kNN k-Nearest Neighbours
ML Machine Learning
OTA Online Travel Agency
PHash Perceptual Hash
RF Random Forest
SGD Stochastic Gradient Descent
TF-IDF Term Frequency - Inverse Document Frequency
VI Varition of Information
XGB Xtreme Gradient Boosting

1

Chapter 1

Introduction

1.1 Problem Description

The problem to address is the accommodations deduplication. We will define dedu-
plication as:

Definition 1. Deduplication is a special case of entity resolution (ER) consisting in group-
ing different representations of the same entity, usually coming from different sources.

Other definitions that we can find are:
“A crucial step in integrating data from multiple sources is detecting and elimi-

nating duplicate records that refer to the same entity. This process is called dedupli-
cation” (Sarawagi and Bhamidipaty, 2002)

“Entity resolution (ER), the problem of extracting, matching and resolving en-
tity mentions in structured and unstructured data, is a long-standing challenge in
database management, information retrieval, machine learning, natural language
processing and statistics. Ironically, different sub-disciplines refer to it by a variety
of names, including record linkage, deduplication, co-reference resolution, reference
reconciliation, object consolidation, identity uncertainty and database hardening”
(Getoor and Machanavajjhala, 2012)

“We consider the entity resolution (ER) problem (also known as deduplication, or
merge–purge), in which records determined to represent the same real-world entity
are successively located and merged” (Benjelloun et al., 2009)

As we can see there are several interpretation regarding the ER/deduplication/Record
linkage relationship, some consider them the same. But others not.

“From the result form of entity resolution, it could be classified into two types.
One is pair-wise entity resolution. The results are pairs of data objects which refer to
the same real-world entity. The other is group-wise entity resolution, whose result
is a family of clusters with each one containing the data objects referring to the same
real-world entity” (Wang, 2014)

In this case, record linkage and deduplication are considered special cases of
ER where record linkage refers to the ability of relating two different entities and
deduplication the fact of grouping all the equals’ entities. Our Definition 1 is closer
to this one.

1.1.1 Example

When a user searches for a specific hotel in Google, in some cases Google will show
in a separate widget the results with the accommodations from different sources like
figure 1.1.

2 Chapter 1. Introduction

FIGURE 1.1: Google results widget for "hotel miramar" search criteria

The widget in figure 1.1 is shown after searching for "hotel miramar" in google.
We can say that somehow and according to figure 1.1 Google has been able to dedu-
plicate the accommodation referencing "hotel miramar" from the following sources:

• Booking.com

• Official website

• Hoteles.com

• Expedia.es

• TripAdvisor.es

• FindHotel

• Trip.com

1.2. Motivation 3

• priceline.com

• ebookers.ie

We can expect that the different accommodation results share common elements
among them or have similarities. The idea behind deduplication is that different
sources may have different, but similar, attributes. If we consider the name and
address from some of the different links provided by Google we will get the table
1.1.

id source name address

1 Booking.com Hotel Miramar Barcelona GL Plaza Carlos Ibañez, 3
2 Official website Hotel Miramar Barcelona Plaça de Carlos Ibáñez, 3
3 Hoteles.com Miramar Barcelona Placa Carles Ibanez 3

TABLE 1.1: Name and address of accommodation by source

We can see in table 1.1 that the names are quite similar between them but not
the same. The same happens with the address. It is not always going to be possible
to find a strong correlation between attributes. Sometimes, some of them could be
similar and others not, other times is a combination of several attributes what gives
enough information to be able to deduplicate, etc.

1.2 Motivation

The deduplication acquires relevance in e-commerce Company that offers accommo-
dations. We can identify mainly two types of those e-commerce companies. First,
we have the Online Travel Agency (OTA) that allows the user to book an accommoda-
tion. The OTA will select what entity representation will be shown from the differ-
ent providers/sources representing the same accommodation. On the other hand,
we have the metasearch engine or aggregator, a metasearch engine will allow the user
to continue the booking process in one of the different providers. The main differ-
ence between them regarding the deduplication information is that the metasearch
engine will usually show the different options and the OTA won’t. In the Google
example, we can consider Google as a metasearch engine. Booking.com is an OTA.

From an OTA perspective, the deduplication process can be important because:

• Improves the user experience: The users don’t have the same offer several
times from different sources. The OTA select for them the "best" one.

• Contractual obligations: Agreements can be reached to offer some accommo-
dations in exclusivity. That means that a specific source must be selected when
there are duplicates.

• Optimizations: The final goal is to maximize the conversion and revenue; dif-
ferent logic can be implemented in order to decide what accommodation from
what provider is shown to the user in case of duplicates.

• Enriched Content: More content for the same accommodation is available when
we have more than on provider.

4 Chapter 1. Introduction

The first point also applies for the metasearch. The deduplication enables the
functionality of showing the different options for the same accommodation. In this
case, option means provider/source 1. We have mentioned Google but a vast num-
ber of meta-searchers and OTA exhibit a similar behavior and hence they have a
"deduplication process" in place.

We must be aware that there are several alternatives or ways of having a dedupli-
cation process, for example getting the information from outside, buying the data,
deduplicating manually or automatically. In this work, we present an automatic
deduplication system based on machine learning.

1.3 Goals

Having a set of entries representing an entity with a set of attributes like in fig 1.1 we
must be able to group the different representations related to the same entity. The
goals are:

• Building a generic framework/system in order to help in the deduplication
process.

• Apply the framework to the specific case of accommodation deduplication.

• Generate a resolution strategy with a precision near to 100% and maximal pos-
sible recall.

In order to do that we had to:

• Build a binary classifier for accommodation comparisons

• Study and implement attributes for the classification

• Implement global techniques of assignment and resolution of inconsistencies

1we will use both terms indistinctly.

5

Chapter 2

State of the Art

Most of the work related to deduplication is focused in efficient methods of grouping
entities minimizing the number of comparisons in order to detect duplicates (Benjel-
loun et al., 2009; Köpcke and Rahm, 2010; Christen, 2012). But this can be considered
only one of the different common phases within the deduplication process.

2.1 Deduplication Framework

The deduplication process usually consists in different phases. These phases some-
times are clearly differentiated from an implementation point of view and other
times are not, they mix. We won’t cover all the possibilities because it is out of
the scope of this work, these are the most significant phases:

2.1.1 Blocking

Blocking makes reference to the fact of grouping the records into blocks (Whang et
al., 2009). The intention is to reduce the number of comparisons to do. If we have,
let’s say, 3 million of accommodations and we decide to check any possible pair, we
would have a big number of comparisons. Exactly the combination of 2 elements
chosen from 3000000 without repetitions (3000000

2).
Doing a comparison and evaluating it has a cost. There is a need to reduce it as

much as possible without loosing relevant comparisons.
If we create blocks of, let’s say, 1000 elements from those 3000000, we could re-

duce the number of comparisons to: 3000 × (1000
2). Ideally, all of those 3000 blocks

should maximize the probability of any comparison between the elements of the
block to be a duplicate. Those 3000 blocks in this example are disjoint, but the block-
ing is not restricted to that, the comparison could be overlapping, meaning that the
same element or entity representation could be inside more than one block (Köpcke
and Rahm, 2010).

For our purpose, we are going to redefine the term blocking as:

Definition 2. Blocking is any indexing mechanism with the purpose of reducing the number
of comparisons.

We redefine it because the term "block", as a noun, give us a notion of something
already grouped and not something dynamic. The usual interpretation is that we
"block", as verb, elements and in order to know if two elements are comparable we
ask if they belong to the same block, so we can compare freely any two elements
members of the same block.

Our comparison is done based on a predicate that states what conditions two
entities have to meet in order to be comparable (blocking predicate or membership
predicate).

6 Chapter 2. State of the Art

Our proposed specification for the blocking predicate would be:
Being S our initial set of entities, fb the blocking predicate. We could say that our

comparisons will be done over the set:

∀x∀y(x ∈ S ∧ y ∈ S ∧ x 6= y : fb(x, y))

For example:

FIGURE 2.1: Overlapping blocks

In figure 2.1 we have 3 elements: A, B, and C. And 2 blocks: "Block 1" and "Block
2". Both blocks share the element B. We can compare A and B because belong to the
same block and we can compare B and C because both pertain to Block 2.

For example, if any single element A, B, and C has an attribute value, for A = 5,
for B = 3, for C = 6. We can reach the same block scheme by stating:

Any pair with a sum of their values <= 9 pertain to the same block. Or Any pair with
a sum of their values <= 9 can be compared.

The last statement could be translate as: being fv a function applied to an element
and returning its value, our definition of the blocking predicate will be:

fb = fv(x) + fv(y) <= 9

2.1.2 Matching

Given a single comparison between entities, we must decide whether those entities
represents the same concept or not. We will make use of a machine learning based
model in order to decide this. As said before, that is our core approach.

We will have a matching commutative function fm that receives two entities e1
and e2. That function will return true indicating that those entity representations are
duplicates or false otherwise.

For example for figure 2.1 fm will be invoked with fm(A, B) and fm(B, C).
In our work, we consider the case where the matching function uses a pre-built

classifier in order to determine the result (duplicate or not duplicate). But usually a
classifier receives a record R and returns the class (true or false) for that record:

fc : R→ {true, f alse}

As we have two parameters e1 and e2, we need a function fd, also commutative,
that maps e1 and e2 to a record (r). It maps at an entity level, not at attribute level,
that means that several attributes from the entity could be mapped to a unique at-
tribute in the record. The opposite is also true; the deriving function could produce
several record attributes based in a unique entity attribute.

2.1. Deduplication Framework 7

The merge function will be the composition of the deriving function and the
classifying function.

fm = fd ◦ fc

Feature Extraction

In the examples from Table 1.11, every row contains the following data: id, source,
name and address. We will consider every row an entity representation. We can do
up to 3 comparisons between them: 1 and 2, 1 and 3, 2 and 3.

A record r is a set of different attributes and their values. fd must convert the
entity information: source, name and address, from entity 1 and entity 2, to a set of
attributes and values. Those attributes should give a "hint" to fc in order to classify
as duplicate or not duplicate.

When speaking about comparisons there are two special case of measures:

• Similarities: a value that give us a sense of how close are the elements being
compared.

• Distances: It is the opposite of similarity.

For example, let’s suppose that we have the entities in Table 2.1 with the at-
tributes latitude and longitude.

id latitude longitude
e1 41.379707 2.176595
e2 41.37974 2.1765547

TABLE 2.1: Geo entities information

The resulting record from comparing e1 and e2 could have a unique attribute
"distance in meters". Table 2.2. We say that we derive the attribute distance from the
latitude and longitude information in the entities.

record distance
r1 4.97

TABLE 2.2: Geo entities record

Classification

Our classifier has to be trained in order to be able to classify unknown cases.

id name
1 Hotel Miramar Barcelona GL
2 Hotel Miramar Barcelona
3 Miramar Barcelona
4 Fake

TABLE 2.3: Entities name

1In page 3.

8 Chapter 2. State of the Art

Let’s suppose we have the entities in Table 2.3. All of them belong to the same
block so we are going to do all the possible comparisons. only entities 1, 2 and 3 are
duplicates. The fd will compute the Levenshtein distance of the name(Ristad and
Yianilos, 1998). By the moment we don’t need to understand the calculation of the
Levenshtein distance, we only need to remember the meaning of distance and take
into account that a greater value means a greater difference (dissimilarity) between
the elements being compared.

id1 id2 levDistance duplicate

1 2 3 true
1 3 9 true
1 4 24 false
2 3 6 true
2 4 21 false
3 4 15 false

TABLE 2.4: Matching example

With the levDistance attribute (result of the Levenshtein distance calculation) and
the class attribute duplicate in Table 2.4 the classifier will be able to learn a function
fc that given a record with the attribute levDistance will return true or false, meaning
it is a duplicate or not.

Of course, this is a simplification, and in this case we could think in a fixed func-
tion like

fc(e1, e2) = distance(e1, e2) < 15

No need for a machine learning based classifier for this simple case. But what will
happen if the "rule" changes frequently? Are we going to change it accordingly any
time new examples are given? What will happen if we have many data? ? Tons of
examples with many different attributes? What about table 2.5?

name1 name2 levDistance duplicate

hostal q hostal 56 2 false
hotel acta azul barcelona acta azul 16 true

TABLE 2.5: Name levenshtein distance

Table 2.5 will be hard to learn also from a ML (machine learning) perspective. We
will need more "hints", we will need more or different features, maybe the address
distance? The geographical distance? The type of accommodation?. We will treat it
later.

2.1.3 Clustering

“Clustering is the task of grouping a set of objects in such a way that objects in the
same group (called a cluster) are more similar (in some sense) to each other than to
those in other groups (clusters)” (Wikipedia contributors, 2018a)

In this work we will speak frequently about "clustering" as a different phase, but
"clustering" as a phase is introduced in this work, no references has been found in
previous papers.

2.2. Regarding Accommodations Domain 9

Once we have all possible comparisons, how do we group those entities in order
to conform the final cluster? Sometimes depending on the resolution strategy this
point can be included within the classification part, any classified pair would be
immediately grouped within a cluster.

Let’s suppose that Table 2.4 is the result of our deduplication process until the
matching phase. The relationship between entities can be modeled as a graph. An
edge meaning that the two vertex are duplicates and the absence means that they
are not duplicates.

FIGURE 2.2: Example cluster 1

The cluster is the grouping where all of the elements represents the same real
world entity, so the cluster itself is the real world entity and the elements are, let’s
say, a projection of a part of the information of the entity. Those elements refers to
only one real entity, so they can only be in one cluster.

In the figure 2.2 we can make two clusters: {1, 2, 3} and {4}. It is a easy case, but
what about something like figure 2.3?

FIGURE 2.3: Example cluster 2

We could say that there are 3 clusters {1, 2}, {1, 3} and {4}, but as per our definition
that can’t be possible, the element 1 cannot be part of two clusters. We could assume
transitiveness and group it like: {1,2,3} and {4} or maybe we could even group it as:
{1}, {2}, {3} and {4} or {1,2}, {3} and {4} or {1}, {2, 3} and {4}.

The clustering phase deals with those results and the grouping in order to get
the closest configuration of the real clusters.

2.2 Regarding Accommodations Domain

There are several references to hotel deduplication and local premises deduplication
as a more generic scope (Zheng et al., 2010; Benjelloun et al., 2009; Dalvi et al., 2014).

10 Chapter 2. State of the Art

The most explicit one, (Kozhevnikov and Gorovoy, 2016), makes a comparative from
the business point of view and the different costs for the solutions analyzed.

In the technical part, it mentions the features used, but provides little detail about
the implementation of the different phases and there is no metric at a cluster level.

In the following points we will treat the approach used in (Kozhevnikov and
Gorovoy, 2016) for the different phases.

2.2.1 Blocking

They divide the world in regions of a fixed size and make comparisons within the
same region and adjacent. There is no details about the implementation. The num-
ber of comparisons gathered were 9193 with 12 providers.

One of the features/attributes they use is region density, which only has sense
when there is a previous grouping like this.

2.2.2 Classification

They used a random forest with 30 decision trees and 22 features grouped by:

• based in name

• based in geographical location

• based in images

• based in other features

They achieve a result of a 99.1% precision and 98% recall. Those values can be
considered a baseline to compare with our classifier performance. Of course, we
don’t know the exact set of data at their disposition but is the most similar work that
we can compare with.

2.2.3 Clustering

No reference about clustering is provided. Possibly, they make the assumption of
transitiveness that we will treat later.

11

Chapter 3

Methodology

As described in the previous chapter, deduplication process includes several steps
in order to get a deduplication for a set of entities representation, this chapter is
structured around those steps and their order.

1. First of all, before starting the process we need a preprocess of the available
data that will serve as input for our deduplication process.

2. The process starts with the blocking step in order to reduce the number of
comparisons as stated in section 2.1.1.

3. Once we have the pairs of entity representations we need a set of features to
feed our machine learning model.

4. The trained model is used to make predictions.

5. The previous prediction are used to cluster the entities representation being
evaluated.

6. We evaluate the quality of the predictions and cluster results.

3.1 Data Description & Preprocessing

The basic input data includes the fields:

• address the physical address of the accommodation.

• supplierCode the provider/distributor.

• city the city where the accommodation is located, can be considered as an ex-
tension of the address.

• name name of the accommodation.

• coordinates geographical location of the accommodation, it is composed by
latitude (lat) and longitude (lon).

• chain owners of the accommodation.

• stars makes reference to the accommodation category, from 0 to 7.

• type type of the accommodation. The different types of accommodation are:

– Hotel

– Apartment

12 Chapter 3. Methodology

– Hostel

– Guest House

– Bed and Breakfast

– Resort

– Residence

– Motel

• images url’s to the provider images.

• id unique identifier for an accommodation in a provider.

With the previous information we have something in the following format:

{
" address " : "placa carles ibanez 3",
" supplierCode " : "***",
" c i t y " : "barcelona",
"name" : "miramar barcelona",
" coordinates " :

" l a t " : 41.37074,
" lon " : 2.17041

} ,
" chain " : "***",
" s t a r s " : "5",
" type " : "Hotel",
" images " : [],
" id " : "1"

}

LISTING 3.1: Basic Information Example
The supplierCode and chain are omitted intentionally because of confidentiality.

3.1.1 Address Parsing

We use external address formatters, google and libpostal. These formatters are able
to standardize the address and to extract the different components of that address.
The main observed differences between them are that libpostal in some cases is lan-
guage sensitive. It doesn’t return the address formatted exactly the same way when
the addresses are in different languages (Euskara or Catalan for instances). How-
ever, google geocoder has more restrictive uses conditions. We add to the basic
information:

• expandedAddress: The libpostal formatted and standardized address

• road: the name of the street according to libpostal

• houseNumber: number of the address building according to libpostal

• level: floor in the building according to libpostal

• unit: within the building and level, the unit of the address according to lib-
postal

http://developers.google.com/maps/documentation/geocoding
http://github.com/openvenues/libpostal

3.1. Data Description & Preprocessing 13

• googleFormatted: the google formatted / standardized address

• googleHouseNumber: the house number according to google.

The extended data would be:

{
" address " : "placa carles ibanez 3",
" supplierCode " : "***",
" c i t y " : "barcelona",
"name" : "miramar barcelona",
" coordinates " :

" l a t " : 41.37074,
" lon " : 2.17041

} ,
" chain " : "***",
" s t a r s " : "5",
" type " : "Hotel",
" images " : [],
" id " : "1",
" expandedAddress " : "placa carles ibanez 3",
" road " : "placa carles ibanez",
" houseNumber " : "3",
" l e v e l " : "",
" uni t " : "",
" googleFormatted " : "Plaça de Carlos Ibáñez, 3, 08038 Barcelona, Spain",
" googleHouseNumber " : "3",

}

LISTING 3.2: Extended Data Example

Libpostal

We don’t use directly libpostal but a wrapper: libpostal-rest. Libpostal-rest offers
two services

• /expand gives us the standardized address = expandedAddress

• /parser gives us the different components for an address

For example, for the parser query:

Libpostal rest parser request

{
" query " : "placa carles ibanez 3"

}

we get the response:

Libpostal rest /parser response

[
{

" l a b e l " : "road",
" value " : "placa carles ibanez"

http://github.com/johnlonganecker/libpostal-rest

14 Chapter 3. Methodology

} ,
{

" l a b e l " : "house_number",
" value " : "3"

}
]

The request is the same for the expand endpoint but the response is different:

Libpostal rest /expand response

[
" placa c a r l e s ibanez 3 "

]

Geocoder

Geocoder give us the same information than libpostal-rest but within a single call
like:
https://maps.googleapis.com/maps/api/geocode/json?address=
placacarlesibanez3&key=YOUR_API_KEY1

We would get a response like:

geocoder response

{
" r e s u l t s " : [

{
" address_components " : [

{
" long_name " : "3",
" short_name " : "3",
" types " : ["street_number"]

} ,
{

" long_name " : "Plaça de Carlos Ibáñez",
" short_name " : "Plaça de Carlos Ibáñez",
" types " : ["route"]

} ,
{

" long_name " : "Barcelona",
" short_name " : "Barcelona",
" types " : ["locality", "political"]

} ,
{

" long_name " : "Barcelona",
" short_name " : "Barcelona",
" types " : ["administrative_area_level_2", "political"]

} ,
{

" long_name " : "Catalunya",
" short_name " : "CT",

1a key must be provided

https://maps.googleapis.com/maps/api/geocode/json?address=placa carles ibanez 3&key=YOUR_API_KEY
https://maps.googleapis.com/maps/api/geocode/json?address=placa carles ibanez 3&key=YOUR_API_KEY

3.1. Data Description & Preprocessing 15

" types " : ["administrative_area_level_1", "political"]
} ,
{

" long_name " : "España",
" short_name " : "ES",
" types " : ["country", "political"]

} ,
{

" long_name " : "08038",
" short_name " : "08038",
" types " : ["postal_code"]

}
] ,
" formatted_address " : "Plaça de Carlos Ibáñez, 3, 08038

Barcelona, España",
" geometry " :

" bounds " :
" nor theas t " :

" l a t " : 41.3705931,
" lng " : 2.1716681

} ,
" southwest " :

" l a t " : 41.370015,
" lng " : 2.1711519

}
} ,
" l o c a t i o n " :

" l a t " : 41.3703336,
" lng " : 2.1713897

} ,
" l o c a t i o n _ t y p e " : "ROOFTOP",
" viewport " :

" nor theas t " :
" l a t " : 41.3716530302915,
" lng " : 2.172758980291502

} ,
" southwest " :

" l a t " : 41.36895506970851,
" lng " : 2.170061019708498

}
}

} ,
" par t ia l_match " : true,
" p lace_ id " : "ChIJ1cYr0ESipBIRkF6CsSTA5Mk",
" types " : ["premise"]

}
] ,
" s t a t u s " : "OK"

}

After getting the results from Google, we have to filter the address type. In addition,

16 Chapter 3. Methodology

we set one of the optional parameters (bounds) indicating a bounding box where the
address is located. This is done because the same address could be found in different
cities or countries. The bounds are related to the coordinates of the accommodation.
For example, if we search for "General Salazar 9" we will get several addresses:

• Salazar Jeneralaren Kalea, 9, 48012 Bilbo, Bizkaia, España

• 9 Salazar Ln, Bernalillo, NM 87004, EE. UU.

• 9 Salazar Ln, Ponderosa, NM 87044, EE. UU.

• Salazar 9, Magisterial, 60460 Tancítaro, Mich., México

• . . .

Nevertheless, if we add the parameter &bounds=43.2498558,-
2.9379479|43.2618558,-2.9599479 being 43.2498558,-2.9379479 the left bottom
coordinates of our bounding box and 43.2618558,-2.9599479 the right upper ones,
we will get only 2 addresses.

• Salazar Jeneralaren Kalea, 48012 Bilbo, Bizkaia, España

• Salazar Jeneralaren Kalea, 9, 48012 Bilbo, Bizkaia, España

The difference between both of them is that the first one has the type "route", and
the other one has the type "street_address". This behavior is the reason why we
prioritize the allowed types, being the allowed types and their order:

• lodging

• premise

• street_address

• route

The order goes from more specific to more generic.

3.1.2 Duplicates Information

We have information that allows us to answer the question: What accommodations
are duplicate?
In some datasets, the information of the clusters is stored with
the entity representation information, as an extra attribute. In
https://www.cs.utexas.edu/users/ml/riddle/data.html we can find some datasets
that follow that approach. We instead have decided to store the clusters information
as a separated file.
The format for that file is:

example clusters json file

[
[

" 1 "
] ,
[

3.2. Blocking 17

" 2 " ,
" 3 "

]
]

It is a collection of collections of ids. In this case we have two clusters {"1"} and {"2",
"3"}. This id is the same attribute id in the entity representation.

3.2 Blocking

We apply the blocking at two levels.

1. Worldwide blocking, we compare accommodations within the same city

2. Internal blocking, we compare accommodations complying a predicate

For the internal blocking, we have decided to select the geographically nearest ac-
commodations. The maximum distance is parameterizable but the reference in use is
600 m. We decided this distance because is the highest found in our training dataset.
The distance is calculated based in the coordinates from the basic information shown
before.
The following data reflects the distribution for the geographical distance of all the
duplicate pairs in our dataset:

distance in meters
Min. : 0.000
1st Qu.: 4.955
Median : 12.321
Mean : 31.076
3rd Qu.: 28.321
Max. :596.376

The minimum found distance is zero; the median is 12 m and the mean 31 m. The
inter quartile range

(IQR) = 3rdQ− 1stQ = 28.321− 4.955 = 23.366

The formula 3.1 is a common one to identify outliers.

q > Q3 + 1.5 · IQR (3.1)

If we follow it, we will arrive to the conclusion that everything > 63.37 m is an outlier.
That means that our reference, 600 m, is quite permissive.
In fact in figure 3.1 we have a better view of the density distribution for distance, we
can see that most of the values are accumulated in distances smaller than 100. This
data is obtained from the records classified as duplicate in our training dataset.
Moreover, we don’t do comparisons for entities coming from the same provider.
Actually, that case happens with a very small incidence (0.02% in our main dataset).
Conversely, there is a near linear correlation between being duplicate and the dis-
tance.
Being fd the geographical distance between two entities and pp a predicate that says
if 2 entities have the same provider. Our blocking predicate is 3.2

18 Chapter 3. Methodology

FIGURE 3.1: Density distribution for distance in duplicate entity rep-
resentations

fb(x, y) < 600∧ ¬pp(x, y) (3.2)

In Appendix C there is an analysis of another common scenario that doesn’t apply
to our case.

3.3. Feature Extraction 19

3.3 Feature Extraction

Previously we introduced a deriving function fd that takes two entities and return
a record that a classifier can process. As our record variables are the product of a
combination between two entities, we will have always a transformation to combine
those entities and create new variables / features.
The process of transforming information to a new set of features it is what we call
feature extraction.
We are going to use a limited number of feature deriver types:

• EqualsDeriver: takes two arguments and returns true if are equals, and false
otherwise.

• NullableEqualsDeriver: a special case of EqualsDeriver. If any of the argu-
ments is null it will return null and it will return the evaluation of a Equals-
Deriver otherwise.

• GeoDeriver: will return the distance between two coordinates.

• IntersectImageFeatureDeriver: given two set of images it will return true if
there is at least one combination of two images from the different sets whose
pHash (perceptual hash, explained in subsection 3.3.1), hamming distance is
less than a threshold. Simplifying: indicates if there are images similar enough.

• LevenshteinFeatureDeriver: return the Levhenstein distance between two
strings (subsection 3.3.2).

• CosineSimilarityFeatureDeriver: given two strings calculate the tf-idf cosine
similarity, explained in subsections 3.3.3 and 3.3.4.

• IntersectionDeriver: Given two arguments if they are equals the value is re-
turned, otherwise null is returned.

All of these types has been implemented in our generic framework.
In order to understand the previous deriver some concept explanations are needed:

3.3.1 PHash (Perceptual Hash)

A perceptual hash is a fingerprint of a multimedia file derived from various features
from its content.
For example: we have three images from 3 distinct url’s for Hotel Miramar
Barcelona.
From a human point of view the figures 3.2, 3.3 and 3.4 are obviously the same.
However, what we know from those images from the software point of view is that:

• they have different url’s

• they have different sizes

• they have different resolutions

The perceptual hash is returning a hash that can be compared with a string similarity
function like hamming distance in order to know the differences. 2

2The hamming distance for two strings measures the number of distinct elements for those strings,
in other words, the number of elements that differ from one string to the other one.

20 Chapter 3. Methodology

FIGURE 3.2: Miramar Booking.com

FIGURE 3.3: Miramar Hoteles.com

FIGURE 3.4: Miramar Expedia

3.3. Feature Extraction 21

For example, according to http://www.phash.org/demo/ the Expedia and Book-
ing.com images have a distance of 20. A threshold for the distance is defined with
the value 26; anything less than 26 means the images perceptually equivalents.
PHash is robust to some transformations like resizing, compression, contrast adjust-
ment and many others. But it is vulnerable to others transformations like cropping.
There are other options in order to compare images that are more robust than pHash,
but pHash is simple and fast to process.
One alternative which works well for cases like fig 3.5 was openImaj (Hare, Saman-
gooei, and Dupplaw, 2011). However, as said before, the processing time to down-
load and compare the images is too big. Consider an average of 47.22 images per
accommodation.

FIGURE 3.5: Failing pHash

3.3.2 Levenshtein Distance

We have already defined some edit distance metrics like GMD, Hamming, etc. What
they have in common is that those metrics measure the number of changes done in
the candidate object in order to become equals to the original one.
“In information theory, linguistics and computer science, the Levenshtein distance
is a string metric for measuring the difference between two sequences. Informally,
the Levenshtein distance between two words is the minimum number of single-
character edits (insertions, deletions or substitutions) required to change one word
into the other.” (Wikipedia contributors, 2018b)

3.3.3 TF-IDF

TF-IDF (Term Frequency - Inverse Document Frequency) is a measure of how many
repetitions have a term within a document (variable) compared to the number of
times that term appears in other documents.
For Example. We have the property name and we have three entities whose variables
name are:

1. Hotel Miramar Barcelona GL

2. Hotel Miramar Barcelona

3. Miramar Barcelona

The term frequency for the word "Hotel" in "Hotel Miramar Barcelona GL" is 1. For
"Hotel Miramar Barcelona" is also 1 and For "Miramar Barcelona" is 0.
The word "Hotel" appears in two "documents", "Hotel Miramar Barcelona GL" and
"Hotel Miramar Barcelona". So its idf will be 1/2, remember that the "i" of idf stands
for inverse. If we multiply the tf * idf we get our tf-idf value for a specific word in
the context of a single variable, because tf applies to the variable.

http://www.phash.org/demo/

22 Chapter 3. Methodology

The formulas used are:

t f = ft,d

/
∑
t′∈d

ft′,d

id f = log
N
nt

= − log
nt

N

where nt = |{d ∈ D : t ∈ d}|, N is the number of documents and ft,d is 1 if the term
t occurs in d and 0 otherwise.

3.3.4 Cosine similarity

cos(xxx, yyy) =
xxx · yyy

||xxx|| · ||yyy|| =
∑n

i=1 xiyi√
∑n

i=1 (xi)2
√

∑n
i=1 (yi)2

(3.3)

Equation 3.3 shows the formal specification for cosine function. x and y are two
vectors. In our case, they are two vectors of tf-idf values for the set of words in both
variables.
For example let’s suppose we have the following Table 3.1.

TABLE 3.1: Tf-idf

word idf variable 1 tf variable 2 tf

hotel 0.67 1 1
miramar 0.03 1 1
barcelona 0.2 1 1
gl 0.01 1 0

With the given table 3.1. Our resulting cosine similarity for the comparison of vari-
able 1 and variable 2 would be:

(0.672 + 0.032 + 0.22)/((
√

0.672 + 0.032 + 0.22 + 0.012) · (
√

0.672 + 0.032 + 0.22))

Note that for the numerator there is no references to 0.01 in "gl" row because the tf
of variable 2 is 0.

3.3.5 Features

We have already introduced the concept of feature deriver and we mentioned seven
types that we use.
With the available data and those derivers, we get the final features:

• distance: geo distance

• nameLevenshteinDistance: levenshtein distance of the name

• addressLevenshteinDistance: levenshtein distance of the address

• expandedAddressLevenshteinDistance: levenshtein distance of the ex-
panded address

• addressNameLevenshteinDistance: levenhstein distance of the name compo-
nent of the address

3.3. Feature Extraction 23

• sameAddressNumber: whether the address number components are equals

• sameLevel: whether the levels address component are equals

• sameUnit: whether the unit address component are equals

• sameChain: whether the chain is the same

• sameType: whether the type are equals

• typeIntersection: in case of being equals the types, what is it?

• sameStars: whether the starts are equals

• providers: ordered concatenation of the provider

• nameCosineSimilarity: the tf-idf cosine similarity for the name

• addressCosineSimilarity: the tf-idf cosine similarity for the address

• expandedAddressCosineSimilarity: the tf-idf cosines similarity of the ex-
panded address

• sameImages: whether any image is contained in both entities (uses phash)

• isSameGoogleAddress: whether is same google formatted address

• googleLevenshteinDistance: the levenshtein distance of the google formatted
address

• sameGoogleAddressNumber: whether the address number component for
google is the same

3.3.6 Dataset Format

With the previous information, our final dataset format 3 would be:

1 @ a t t r i b u t e id1 {A1 , B1 , C1 }
2 @ a t t r i b u t e id2 {A2 , B2 , C2 }
3 @ a t t r i b u t e d i s t a n c e numeric
4 @ a t t r i b u t e nameLevenshteinDistance numeric
5 @ a t t r i b u t e addressLevenshteinDistance numeric
6 @ a t t r i b u t e expandedAddressLevenshteinDistance numeric
7 @ a t t r i b u t e addressNameLevenshteinDistance numeric
8 @ a t t r i b u t e sameAddressNumber { f a l s e , true , n u l l }
9 @ a t t r i b u t e sameLevel { nul l , f a l s e , t rue }

10 @ a t t r i b u t e sameUnit { nul l , f a l s e , t rue }
11 @ a t t r i b u t e sameChain { null , f a l s e , t rue }
12 @ a t t r i b u t e sameType { f a l s e , t rue }
13 @ a t t r i b u t e t y p e I n t e r s e c t i o n { null , Hotel , Apartment , Hostel , ’ Guest House ’ , ’

Bed and Breakfas t ’ , Resort , Residence , Motel }
14 @ a t t r i b u t e sameStars { f a l s e , t rue }
15 @ a t t r i b u t e providers {A, B , C}
16 @ a t t r i b u t e nameCosineSimilari ty numeric
17 @ a t t r i b u t e addressCos ineS imi lar i ty numeric
18 @ a t t r i b u t e expandedAddressCosineSimilarity numeric
19 @ a t t r i b u t e sameImages { f a l s e , t rue }
20 @ a t t r i b u t e isSameGoogleAddress { f a l s e , true , n u l l }
21 @ a t t r i b u t e googleLevenshteinDistance numeric

3in .arff, weka format

24 Chapter 3. Methodology

22 @ a t t r i b u t e sameGoogleAddressNumber { f a l s e , null , t rue }
23 @ a t t r i b u t e c l a s s { true , f a l s e }

LISTING 3.3: WEKA Arff Dataset Format

The attributes id1 and id2 are filtered out when we are training the model but we
need them when evaluating a dataset in order to know to what elements the pair
comparison refers.

3.4 Pair Classification

There is a wide variety of classifiers available, some of them require an exhaustive
tuning and expertise to get the right parameters optimized. We have tested some
common classifiers trying to consider the different bias introduced by them depend-
ing on their types. In other words, different types of classifiers adapts better to some
problems, we have choose from: linear classifiers, bayes, bagging, boosting, neural
network. Possibly, we haven’t been able to get the best optimization for the most
complex.
We know from other previous works which classifiers were chosen and what where
the results for the scope of our problem. Concretely (Kozhevnikov and Gorovoy,
2016) and (Zheng et al., 2010) both use meta classifiers based on decision trees: Ran-
dom Forest (Breiman, 2001) and Bagging of decision trees (Breiman, 1996) (both
quite similar).
The goal in this phase is to rank the following chosen classifiers:

• BayesNet

• MultilayerPerceptron

• IBk: KNN (k-Nearest Neighbours) implementation in Weka.(Aha, Kibler, and
Albert, 1991)

• SGD: Stochastic Gradient Descent (Bottou, 2010)

• Logistic: Logistic Regression in Weka. (Le Cessie and Van Houwelingen,
1992)

• Random Forest

• Adaboost (Freund and Schapire, 1996)

• xgb (Friedman, 2001)

3.5 Clustering

The first step to group the accommodations based on the pair resolution is to create
the distinct graphs resulting for that resolution. Any vertex is the entity represen-
tation, and we will have an edge for any pair classified as duplicate by the binary
classifier.

3.5. Clustering 25

3.5.1 Predicate + Cut

To do the clustering we need a predicate that tells us if the graph (g) is stable (Sg),
and a function fs that split the graph according to some criteria.
Our target function is f : G 7→ {G}, that function receives a graph and return a set
of graphs, it is applied recursively.
The chosen split function f is a min cut algorithm (Stoer and Wagner, 1997), and to
check the maximal cliques Bron–Kerbosch algorithm was used (Bron and Kerbosch,
1973).

f (g) =

{
{g} if Sg

∪{ f (x) : x ∈ fs(g)} otherwise
(3.4)

Equation 3.4 shows the function used to calculate the partitions of a graph.
We tested some predicates that will be explained in detail later:

• Basic: (S ⇐⇒ true)

• Providers: (S ⇐⇒ no providers repetitions within graph)

• Clique: (S ⇐⇒ graph conform a maximal clique)

Basic Predicate

The predicate S ⇐⇒ true is our base predicate.
In an indirect way, it states that the graphs are always stable, we won’t split any
graph, all the elements within a graph are grouped to form the final cluster.
It assume transitiveness, let A, B and C be accommodations. If A == B, and B == C,
then A == C. We will group A, B, and C as being the same entity.

Providers

Our providers predicates is S ⇐⇒ no providers repetitions within graph.
Indirectly it means that any graph containing 2 or more accommodations from the
same provider should be split.

Clique

(S ⇐⇒ graph conform a maximal clique).
A graph is a Clique if all the vertices are connected with any other vertex within the
graph.

FIGURE 3.6: Non clique graph

26 Chapter 3. Methodology

FIGURE 3.7: Clique graph

Figure 3.6 is not a clique; A and B are not connected.
Figure 3.7 is a clique, any pair of two elements is connected.

Min-cut

In graph theory, a minimum cut of a graph is a cut (a partition of the vertices of a
graph into two disjoint subsets that are joined by at least one edge) that is minimal
in some sense.
Our graphs are undirected, the edges has no orientation, the edge between A and B
is the same as from B to A. Our edges also have weight and the weight of our edge
is the probability prediction for being duplicates that our classifier provides.
Minimal in our undirected weighted graph refers to cutting the vertex with minimal
weight or minimize the weight of the edges being cut. The reasoning behind is
that we don’t want to cut edges with high probability because high prediction is
correlated to being duplicate.

Examples

In Table 3.2 we can see the table representation for a graph. We have three vertex (A1,
B1 and C1) from three different provider’s, A, B and C. The greater the prediction
value is, the greater is our confidence on the two entity being duplicates.

from to prediction
1 A1 B1 1
2 B1 C1 0.8

TABLE 3.2: Simple graph table representation

The resulting graph is figure 3.8. 4

Our basic predicate state that this graph is enough, so we can group the results and
get a final cluster as {A1, B1, C1}. This result would be shared with the providers
predicates. There are only 3 providers in this graph (A, B and C) and none of them
is repeated.
Based in our previous definition for a Clique, our second predicate would say that it
is not a clique. As the graph is not stable5 we need to cut it. If we apply the chosen

4the package igraph in R has been used to generate the graphs used in this example
5given our "stable" definition in 3.5.1

3.5. Clustering 27

FIGURE 3.8: Simple graph

min cut implementation we will get two partitions, one composed by (A1, B1) and
the other one C1. In the end we will have two clusters {A1, B1} and {C1}.
Our next example is a little more complex. The table to generate the graph would be
Table 3.3.

from to prediction
1 A1 B1 0.8
2 A1 D1 1
3 C1 D1 1
4 A1 B2 1
5 A1 C2 1
6 B1 D1 1
7 B2 C2 1

TABLE 3.3: Complex graph table representation

The resulting graph the figure 3.9.
Our first basic predicate,3.5.1, would cluster A1, B1, B2, C1, C2, D1
Our second and third predicate would apply the cut function and we would get
two partitions: one containing only C1 and the other one containing the rest of the
nodes. That partition is a single element and it would be grouped as a separated
cluster {C1}. Our min cut algorithm decides the cut, here C1 is cut because it has a
unique edge to the rest of elements (D1).
The second partition is the graph in the figure 3.10. That partition wouldn’t be stable
in neither our clique strategy (because is not a clique), nor our providers strategy
(has repeated providers), a new cut would be done, the edges cut are A1–B1 B1–D1.
The result for that cut would be two partitions, (A1, D1, C2, B2) and (B1). As in the
previous step B1 is isolated, a cluster is created {B1}.

28 Chapter 3. Methodology

FIGURE 3.9: Complex graph

For the rest (A1, D1, C2, B2) according to our providers predicate is stable, so a
cluster is also created: {A1, B2, C2, D1}.
For our clique strategy the resulting graph in figure 3.11 is no yet a clique. If we cut
the D1 element will be isolated and the remaining is a clique, we get two clusters
{A1,B2,C2} and {D1}
The final results for the strategies are:
Basic: {A1, B1, B2, C1, C2, D1}
Providers: {C1}, {B1}, {A1, B2, C2, D1}
Clique: {C1}, {B1}, {A1,B2,C2}, {D1}

3.5.2 Interpretation

We have mentioned the concept of clique. In a deduplication our concept of cluster
have some special implications different to the meaning of cluster in other scopes.
For example, when we say that A1, B1, C1 conform a cluster what we are saying
translated to a graph is that they would conform a clique, where any edge is a re-
lation of duplicity, A1 is duplicate of B1, A1 is duplicate of C1 and B1 is duplicate
of C1. It is important not to misunderstand this conclusion, the real clusters being
cliques, with the Clique strategy that tries to approximate those clusters/cliques.

3.5. Clustering 29

FIGURE 3.10: Complex graph partition after first cut

If we use our basic strategy to cluster the figure 3.6 what we are doing according to
this interpretation is creating a relation or an edge between A and B.
Generalizing this concept we see that the clique strategy never creates edges, only
cuts, the basic strategy never cuts, only creates edges and the providers strategy cuts
in some cases (when the graph has a provider repeated) and creates in other cases.
Forgetting about the clusters and focusing in the graph, our problem, given a graph
with relations of duplicity between vertices, is the problem of approximating the real cliques.

30 Chapter 3. Methodology

FIGURE 3.11: Complex graph paritition after second cut

3.6 Evaluation Metrics

We will have different solutions to a problem and we will need some way of com-
paring those solutions. The deduplication process includes several phases and all
of them could potentially have their own metrics6. However, we will focus on the
metrics for the classification part and the clustering part. We use different metrics
for the pair evaluation and the evaluation at cluster level.

3.6.1 Pair Classification

For the evaluation of the binary classification model, we use precision and recall.
The technical definition would be (Ting, 2010):

• Precision = Total number of documents retrieved that are relevant/Total num-
ber of documents that are retrieved.

• Recall = Total number of documents retrieved that are relevant/Total number
of relevant documents in the database.

6In fact, from the mathematical point of view, maybe we should be call it "measure" (Menestrina,
Whang, and Garcia-Molina, 2010)

3.6. Evaluation Metrics 31

In our scope retrieved means comparisons that we have classified as duplicates.
Moreover, relevant documents in the database means comparisons that we know
that in fact are duplicates.
Therefore, the precision would be the number of real duplicates detected by the
classifier vs the total number of comparisons classified as duplicates, including the
ones that actually were not real duplicates (false positives).
The recall would be the number of real duplicates detected by the classifier vs the
total number of real duplicates.

id1 id2 distance real class predicted class

1 2 3 true true
1 3 9 true true
1 4 24 false false
2 3 6 true true
2 4 21 false false
3 4 15 false true

TABLE 3.4: classification example

In table 3.4 we can see an example of the prediction of our chosen classifier compared
with the known classification.
The precision is:

#(predicted == true)&(real == true)
#(predicted == true)

In this case our precision is 0.75, 3 out of 4 predicted duplicates were in fact dupli-
cates.
The recall is:

#(predicted == true)&(real == true)
#(real == true)

Following the described formula, the recall for our example is 1, all the real dupli-
cates where predicted as duplicates.
Our target metric for the pair classification is the precision; if there are several solu-
tions with the same precision we choose the one with the best recall.

3.6.2 Clusters

In subsection 2.1.3 we explained that we can generate different cluster configurations
for the same pair classification resolution and we finished saying that:
“The clustering phase deals with those results and the grouping in order to get the
closest configuration of the real clusters.”
Here we try to measure how close two cluster configurations are.
The metrics at a cluster level are quite more complex and less intuitive than the ones
for the pair classification. We will try to explain the problems and the chosen metrics
in the following lines.
Let’s suppose we have the following predicted cluster configurations:

P1 = {〈1, 2, 3, 4〉}

P2 = {〈1〉, 〈2〉, 〈3〉, 〈4〉}

P3 = {〈1〉, 〈2, 3, 4〉}

32 Chapter 3. Methodology

P4 = {〈1, 2〉, 〈3, 4〉}

We know that the "real" cluster configuration is:

R = {〈1, 2, 3〉, 〈4〉}

In P1 we have predicted that elements 1, 2, 3, 4 conforms a unique cluster.
In P2 we have predicted that we have four clusters, one for every element.
In P3 we have predicted that we have two clusters, one for 1, and another one for the
rest.
In P4 we have predicted that we have two clusters, one for 1 and 2, and another one
for 3 and 4.
The reality (R) is that 1,2 and 3 conforms a cluster, and 4 conforms another cluster.
We propose two measurements to calculate how close are P1 and P2 to R:

• Generalized Merge Distance (GMD)(Menestrina, Whang, and Garcia-Molina,
2010).

• Variation of Information (VI)(Meilă, 2007).

GMD

In subsection 2.1.2 we said that a distance measurement indicates the dissimilarity.
The GMD evaluates the number of splits and merges needed to modify the predic-
tion in order to get the real solution.
In our P1 example it would be enough splitting 〈1,2,3,4〉 in two clusters 〈1,2,3〉 and
〈4〉. No merge operations are needed.
In our P2 example we need to merge 〈1〉, 〈2〉 and 〈3〉 in 〈1,2,3〉. No merge operations
are needed.
In our P3 example we need to split 〈2,3,4〉 in 〈2,3〉 and 〈4〉 and later merge 〈1〉 and
〈2,3〉.
In our P4 example we need to split 〈1,2〉 in 〈1〉 and 〈2〉 and later merge 〈2〉 and 〈3,4〉.

Prediction Splits Merges Total Distance

P1 1 0 1
P2 0 2 2
P3 1 1 2
P4 1 1 2

TABLE 3.5: GMD cost for prediction examples

The Table 3.5 shows the summary of the operations needed and total distance, being
the total the splits + the merges. However GMD allows us to define cost functions
for splits (fx) and merges (fm). 7

We have decided that our target is to have the minimum number of splits. The
reason is that we prioritize the precision rather than the recall. In the Appendix
D there are more details about how are related the GMD splits/merges from the
cluster evaluation and the precision/recall from the pair classification. Therefore,
in this scenario we have decided that we will only consider the number splits, the
merge function will be always 0.

7In our case we have modified a little bit the definition for the split and merge and the GMD calcu-
lation, details are provided in appendix A.

3.6. Evaluation Metrics 33

fs(x) = |x| − 1

fm(x) = 0

VI

The definition for VI is:
“The criterion, called variation of information (VI), measures the amount of informa-
tion lost and gained in changing from clustering C to clustering C’.”(Meilă, 2007).
From the previous GMD calculations, we can see that the number of merges and
splits can be the same but the "size" of the clusters could be different.
For example the P3 cost is 1 split and 1 merge. The P4 cost is also 1 split and 1 merge.
If we calculate the VI for our example predictions we will obtain Table 3.6.

Prediction VI

P1 0.8112781
P2 1.188722
P3 1.377444
P4 1.188722

TABLE 3.6: VI cost for prediction examples

We can see in Table 3.6 that the VI for P4 is smaller (better) than the VI for P3, even if
they have the same split and merge cost.
In the GMD subsection we said that GMD allows to configure functions for the splits
and merges costs. We can calculate the VI value modifying those functions:

fs(x) = fm(x) = −∑
n

|xn|
N
· log2(

|xn|
t

)

Where N is the total number of elements = the sum of elements in all clusters = all
the entities, and the variable t is the total number of elements in x.
In case of having the same number of splits we will consider the best VI.

Combination of GMD and VI

We have defined two measurements for our cluster evaluation. But we don’t use it as
a unique metric, our definition, mixing the GMD and the VI part, can be synthesized
as: "We want to minimize the number of splits and in case of being the same we will
choose the smaller VI".
What we are defining is in fact a comparator. Being x and y two different solutions,
vi() the VI calculation and splits() the splits number:

x > y→ splits(x) < splits(y) ∨ (splits(x) = splits(y) ∧ vi(x) < vi(y))

If we rank the prediction examples according to this comparator, the order is:

1. P2

2. P1

3. P4

34 Chapter 3. Methodology

4. P3

35

Chapter 4

Experiments

In this chapter, we first give a description of our data and we mention the tech-
nologies used. Once these introductory topics are covered, we focus on the pair
classification and clustering phase. In those sections, we explain how we conduct
the experiments and get the measurements defined for each phase in the previous
chapter. We also show the results for each phase. It is important to note that the
clustering phase depends on the results from the pair classification.

4.1 Accommodation Data Description

We have used data consisting of a manual deduplication of a subset of accommoda-
tions located in:

• Madrid

• Barcelona

• Amsterdam

• Other cities

That data consist in:

• Information of the entity representations.

• Information about the clustering for those representations.

The format of the information was already explained in Section 3.1.

City 1 2 3 4

Barcelona 723 293 263 8
Madrid 303 140 184 7
Amsterdam 802 54 3 0
Other Cities 0 0 4 1270

Merged 1821 475 440 1277

TABLE 4.1: Distribution by city and cluster size

Table 4.1 shows four datasets with the number of gold clusters per size. The
Barcelona, Madrid and Amsterdam data are disjoint between them and were gen-
erated manually checking those cities, but the "other cities" can contain elements
from the other datasets, the "other cities" dataset was provided by external people.

36 Chapter 4. Experiments

The merged line is the result of joining all 4 datasets, we can see that when merged
the results are not a mere sum of the different datasets due to the fact of not being
disjoint sets as stated before. Our experiments are based in the merged one.
Summarizing:

1. We have 1821 + 475 + 440 + 1277 = 4014 deduplicated clusters

2. We have 1821 + 475 · 2 + 440 · 3 + 1277 · 4 = 9199 accommodations

When we apply our blocking predicate to generate all the records for our dataset in
the format specified in the Subsection 3.3.6 we get a dataset with 160907 records.

4.1.1 Duplicates Comparisons/Records

Based on the distribution of clusters size in Table 4.1 we can know how many dataset
records we will generate if our blocking predicate includes all the real duplicates
comparisons.1

Being d1, d2, d3 and d4 the number of elements for the clusters of size 1, 2, 3 and 4.
d1 = 1821 elements are isolated; no comparisons are needed for them.
d2 = 475 clusters of 2 elements
d3 = 440 clusters of 3 elements
d2 = 1277 clusters of 4 elements

4

∑
n=2

dn ·
(

n
2

)
(4.1)

Applying equation 4.1 we get the theoretical total of duplicates comparisons.

475 ·
(

2
2

)
+ 440 ·

(
3
2

)
+ 1277 ·

(
4
2

)
= 9457

From the 160907 records in our dataset we have 9248 labeled as duplicate. That
means that we are losing 9457− 9248 = 209 records in the blocking process.

4.2 Tools & technologies

The basic framework for deduplication has been built in Java, the main reason to
choose java is that it is widely adopted in the industry. Weka has been used to build
the models and for the graph visualization we have used Neo4j. R has also been
used for some statistical analysis and visualization. Specifically the library igraph
from R has some useful functions to works with graphs and visualization.

4.3 Pair Classification

In this section we evaluate the different classifiers considered in the Section 3.4.
1Usually losing a few records labeled as duplicate doesn’t have a big impact in the model created,

it doesn’t affect the training. However our blocking predicate should indeed include near the total of
the real duplicates.

http://www.java.com
http://neo4j.com
http://www.r-project.org
http://igraph.org/r/

4.3. Pair Classification 37

4.3.1 Evaluation

The evaluation in the pair classification is made based on cross validation 90/10. A
cross validation does a partitioning of the dataset, in the pair evaluation it is applied
to the dataset after blocking; it is applied to the 160907 records.

4.3.2 Hyperparameters optimization

As mentioned in the Section 3.4 some of the classifiers to test require tuning. We did
grid search over the most relevant parameters. That means that we choose a range
of values for the different parameters and do cross validations with the different
combinations of parameters.
Sometimes manual tests were done before to determine the range of values to test.

4.3.3 Pair Classification Results

Position Classifier Precision Recall Build time

1 Adaboost 0.993 0.994 5215 s
2 xgb 0.992 0.994 455 s
3 Random Forest 0.991 0.99 251 s
4 BayesNet 0.984 0.981 35 s
5 Logistic 0.982 0.979 23 s
6 SGD 0.981 0.981 3 s
7 Multilayer Perceptron 0.981 0.981 127 s
8 IBK 0.979 0.960 0 s

TABLE 4.2: Classifiers ranking by precision and recall

Table 4.2 shows the ranking by precision in pair classification for the different clas-
sifiers tested. The recall and build time2 are also considered. In the following lines,
the final configuration is described for all of them.

BayesNet

The default Searcher in the Weka configuration for BayesNet uses K2(Cooper and
Herskovits, 1991). That configuration gives us a precision of 0.908. Using Simu-
latedAnheling(Bouckaert, 1995) with 300 runs we get the 0.984 as we can see in the
Table 4.2. We didn’t use the default runs number, 1000, because of memory con-
sumption.

IBK

IBK spent too much time in order to evaluate the records in our dataset. The result
shown in the Table 4.2 is obtained with a mini dataset; the size of that mini dataset
is 10% of our dataset.

xgb

xgb (Chen, He, and Benesty, 2015) is an implementation of gradient boosting. The
main problem with xgb is that the implementation is found in different languages

2build time is the time taken to build the model.

38 Chapter 4. Experiments

and format but not in Weka, which is our main framework. That doesn’t mean that
we cannot use it, the model and prediction must be generated outside the frame-
work. The way we do this is:

• Generate the dataset in Java using the framework

• Import the dataset and do the pair evaluation in R

• Export the predictions to plain text in R

• Import the predictions in Java using the framework and do the cluster evalua-
tion using our framework

The performance of xgb is quite good. It has a top performance.
The default grid search from R resulted in the following configuration:
In the parameters tuning ’eta’ was held constant and the rest of the parameters were optmized
(alpha, lambda, nrounds). Accuracy was used to select the optimal model using the largest
value. The final values used for the model were nrounds = 150, lambda = 1e-04, alpha = 0
and eta = 0.3.3

Random Forest

The final parameters for the random forest are 98 iterations / trees with seven fea-
tures and 0.5 as prediction threshold obtained from the grid search.

Adaboost

The classifier chosen for AdaboostM1 is J48 (Weka C48 implementation) (Quinlan,
1993), 300 iterations.

Logistic

Used the default Weka configuration.

Multilayer Perceptron

Default Weka configuration except for the trainingTime parameter that it is override
to 40.

SGD

Default Weka configuration.

4.4 Clustering

The purpose of the pair classification ranking was to decide what classifiers to use
in our problem, but further tuning was done in order to get the best classifier taking
into account also the cluster evaluation. From our analysis, and according to Table
4.2 ,it seems that the tree ensemble models (Adaboost, XGB, Random Forest) achieve
the best results.

3This is actually the summary output from R evaluation on xgb.

https://github.com/francetem/deduper

4.4. Clustering 39

4.4.1 Evaluation

In the clustering, the cross validation is applied before blocking, to the clusters set.
In other words, we partition our 14014 clusters set. The blocking is applied to every
partition of clusters resulting from the cross validation partitioning.
The reason of making partition this way is that otherwise some comparisons needed
to recreate a cluster could be in another test partition. We need all original cluster
comparisons to be in the same test partition in order to get accurate results4. The
140002 records is the result of blocking and combining 9199 accommodations. How-
ever, a cluster of four elements can generate up to 6 records. When doing the cross
validation nothing enforce those 6 records to be in the same partition. With the sec-
ond option, we are enforcing it because we first partition the clusters set and after
that, we apply the blocking and combine the accommodations for that partition.
Another side effect of this decision is that we will have fewer combinations. For
instance:
The combinations resulting from mixing 100 accommodations between each other and later
partitioning in 10 partition will be greater or equal to the number resulting from partitioning
the 100 accommodations in 10 partitions and then combining the accommodations within
those 10 partitions.
However, we have to take into account that, as a drawback, we are missing compar-
isons. We won’t lose comparisons that would result in a duplicate, but some of them
could have an impact in the classifier.
For example, let’s suppose that we have originally 4 clusters {A1, B1}, {A2, B2}, {A3,
B3}, A4, B4, being A and B two different providers. Let’s also suppose that cluster
1 is close to cluster 2, meaning that our blocking predicate will compare their ele-
ments and cluster 3 and 4 are also close. To simplify, our blocking predicate doesn’t
compare two elements in the same cluster, neither the same provider.
The total of comparisons by the blocking predicate in our first evaluation mode
would be

• A1-B1

• A1-B2

• A2-B1

• A2-B2

• A3-B3

• A3-B4

• A4-B3

• A4-B4

No matter how we group these comparisons we will have all of them in our first
evaluation mode. However in our second evaluation mode if we group the first
cluster with the third cluster, and the second with the fourth. We will only have the
comparisons:

• A1-B1
4The effect of missing comparisons is treated in Appendix D.

40 Chapter 4. Experiments

• A2-B2

• A3-B3

• A4-B4

Technically we could do some kind of stratified cross validation trying to group
together for each cross validation fold clusters close to each other. Again, we would
come back to the problem of clustering our clusters and getting a similar size for
them.

4.4.2 Hyperparameters optimization

In the clustering, we do a grid search for these three classifiers optimizing our cluster
evaluation measurement. We also take into consideration the prediction probability.

Thresholds

A classifier can give a value indicating the class predicted: "true" for duplicate and
"false" for not duplicate but some of them also compute a probability for both classes,
we will call this the probability distribution. For example the probability for true could
be 0.8, and for false 0.2. The default value to classify something as true or false will
be 0.5, note that the sume of probability for true and false must be 1. That means
that a probability of 0.5 or more for true will result in the instance being classified as
duplicate (true). That value (0.5) is our prediction threshold.
Depending on our strategy it could be convenient to modify the prediction thresh-
old for our model (when probability distribution available). If the strategy tries to
maximize precision, we could allow edges with less weight to give some margin to
the strategy to compensate, or the opposite.

FIGURE 4.1: Prediction distribution by real duplicate

4.4. Clustering 41

In the Figure 4.1 is an example of the density for the estimated duplicate == true
probability for records that we know that they are duplicates (in green), and records
that we know that in fact they are not duplicates (in red). We can see that most of
the duplicates have a probability near one, and most of the non-duplicates have a
probability near zero 5. We can move the prediction threshold in order to classify
more records as duplicate or not duplicate. The final impact as commented will
depend on the clustering strategy in use. We will see later that performance in some
strategies is optimal at a low threshold.

FIGURE 4.2: ROC

Another more common representation for the previous graph is a ROC curve like in
Figure 4.2. Area under the curve: 0.9998.

5It is a density graph so the peak of densities are found in zero an one.

42 Chapter 4. Experiments

4.4.3 Clustering Results

One interesting note is that the ranking for the best classifiers in cluster evaluation
mode and pair wise comparisons evaluation is different. Remember that for the pair
classification, we are using as metrics precision and recall and for the clusters evalu-
ation our measures are splits and VI. We will see in the following cluster evaluation
results that the best performance is achieve by Xgboost, while Adaboost is second.

Adaboost

We tested values between 8 and 64 iterations with different thresholds obtaining best
results with 32.
The best result obtained considering splits and VI is using providers strategy as we
can see in Table 4.3.

strategy threshold splits merges VI

cliques 0.343 3 177 0.0453
providers 0.356 3 103 0.0269
basic 0.356 15 96 0.0295

TABLE 4.3: Adaboost splits / VI results

Random forest

The results from random forest are good also. Again, the best combination is the
providers’ strategy as shown in the Table 4.4. We tested values for iterations (number
of trees) from 95 to 100. For features, we tested from five to seven and thresholds
between 0.33 and 0.53. All the results in the Table 4.4 shares the same configuration,
98 iterations, 6 features and a threshold of 0.526.
We can see the evolution of VI for the different strategies by threshold, and without
considering the splits, in figure 4.3.
As we can see the clique strategy has an optimum in a very low threshold. The basic
strategy optimum is near to 0.5. The VI for the providers strategy is near constant in
the chosen range of threshold thought it has a increasing trend.
Figure 4.3 is an example for random forest, but the graph is similar for others models.

There are several implications in the selection of our strategy.

strategy splits merges VI

cliques 6 207 0.0541
providers 7 92 0.0307
basic (plain clustering) 32 106 0.0374

TABLE 4.4: Random forest splits / VI results

XGboost

The best results obtained by strategy are shown in Table 4.5. The best configuration
is the same as for the pair evaluation (nrounds = 150, lambda = 1e-04, alpha = 0 and
eta = 0.3).

4.5. Results by dataset 43

FIGURE 4.3: Random forest VI by threshold

Xgboost allows a wide range in the threshold, the reason is that the dispersion of
the prediction for duplicates and no duplicates is high; most of the classified as no
duplicate have a prediction very close to 0, and those classified as duplicate are very
close to 1.

strategy threshold splits merges VI

cliques 0.22 1 135 0.0336
providers 0.42 1 85 0.0210
basic 0.22 5 85 0.0231

TABLE 4.5: Xgboost splits / VI results

4.5 Results by dataset

In section 4.1 we showed our final dataset composition, that is a mix of several
datasets. Some experiments indicate that different models by city would predict
better the clusters for that city instead of using a unique model trained on the com-
bination of data from all cities. For example, a test with Adaboost with all 3 cities
excluding the worldwide mix gives us a result of 4 splits and a VI of 0.0159. The Ta-
ble 4.6 shows the best result by city using Adaboost, the results are consistent with
section 4.3 being always the providers strategy the best one.
However, we know also that applying a model from one city in samples of another
city will give us a worst result. As we don’t have samples from all cities worldwide
it is better to use the data combined in all cities in order to reduce the bias. It is also

44 Chapter 4. Experiments

city splits VI

Madrid 0 0.0208
Barcelona 0 0.0161
Amsterdam 2 0.0421

TABLE 4.6: Best splits/VI values in different datasets

possible a mix of both solutions, in case we have a model for one city use it, if not,
use a generic one.

45

Chapter 5

Analysis

In the Section 3.5 we introduced several predicates that would define our clustering
strategy. This chapter it is about the results from the previous chapter, we analyze
the attribute selection and the behavior of the different strategies defined.

5.1 Attributes

For the attribute selection, we have used the importance computation given by the
random forest and xgboost. The conclusion is that all attributes count.

5.1.1 Random Forest Attribute Importance

Weka defines the attribute importance as “Attribute importance based on average
impurity decrease (and number of nodes using that attribute)”.
We can see the results from that computation in the Table 5.1. 1

0.46 (4351) distance
0.44 (2033) addressLevenshteinDistance
0.44 (362) sameType
0.43 (1448) expandedAddressLevenshteinDistance
0.43 (3023) nameLevenshteinDistance
0.37 (1177) addressNameLevenshteinDistance
0.37 (626) sameChain
0.33 (749) typeIntersection
0.31 (816) sameStars
0.31 (3678) nameCosineSimilarity
0.29 (352) sameImages
0.28 (1719) addressCosineSimilarity
0.28 (1524) providers
0.27 (1404) expandedAddressCosineSimilarity
0.27 (618) sameGoogleAddressNumber
0.27 (1012) googleLevenshteinDistance
0.24 (780) sameAddressNumber
0.21 (332) isSameGoogleAddress
0.18 (48) sameUnit
0.18 (111) sameLevel

TABLE 5.1: Attribute importance by Weka random forest

1raw output from Weka

46 Chapter 5. Analysis

5.1.2 xgboost Attribute Importance

The attribute importance calculated for the xbgoost is shown in figure 5.1 2. Accord-
ing to it the attribute sameUnit has 0 value. A lot of them have an importance near 0
except for nameCosineSimilarity,distance and isSameGoogleAddress.

FIGURE 5.1: Attribute Importance xgboost

5.2 Clustering Strategies

First, we can try to answer the question: is it possible a priori to know what strategy
suits better for our deduplication?
The answer would be that we must consider too many parameters in order to get an
approximation.
It is worthy in our case to apply the different strategies and check the results.
Some of the different parameters that can affect our strategies are:

• precision and recall

2raw output from R

5.2. Clustering Strategies 47

• distribution of erroneous vertex degree3

• real cluster size proportion

5.2.1 Precision and Recall

If we see our classifier as a probabilistic function of assessing the right class for a pair,
we can say that in our Adaboost classifier a 99.3% (recall, r) of times it classifies a pair
as a duplicate correctly. In addition, a 0.7% of times (1 - precision, p) it classifies a
pair as a duplicate when it is not.
Let’s focus on our classifier recall and its impact in the strategy. Let’s suppose we
have

497 ·
(

2
2

)
+ 399 ·

(
3
2

)
+ 1182 ·

(
4
2

)
= 8786

We have 497 clusters of 2 elements, 399 clusters of 3 elements and 1182 clusters of 4
elements. 8786 pairs.
The expected occurrence (X) of a cluster of size s not being complete (a clique) be-
cause of a miss-classification error (recall) would be:

E(Xs) = N(1− (1− 1
N
)n) (5.1)

n = (1− r) · N ·
(

s
2

)
Being N = number of clusters of size s.
We can approximate the expected number of incomplete clusters applying the equa-
tion 5.1 as:

4

∑
s=2

E(Xs) ≈ 3.47 + 8.3 + 48.64 ≈ 60.41

With a 99.3% of precision we also get 8786 pairs classified as a duplicate. From those
only a 99.3% will be truly a duplicate.
Analogously to get the number of clusters of size s being oversized (having edges to
vertices not in the original cluster) we substitute p (precision) for r (recall). However,
we have another component, the number of isolated elements, lets suppose a 30%
(Pc) of our accommodations are isolated (I). In our example that would be:

I = Pc ·
4

∑
s=2

s · Ns

I = 0.3 · (497 · 2 + 399 · 3 + 1182 · 4) = 2076

We don’t know either the comparisons configuration. We will assume that there is
no blocking predicate at all, our total comparisons would be(

8996
2

)
= 40459510

We know that we have 0.007 · 8996 ≈ 63 erroneous pairs distributed along the
40459510− 8786 = 40450724 pairs.

3In graph theory, the degree (or valency) of a vertex of a graph is the number of edges incident to
the vertex.

48 Chapter 5. Analysis

The proportion of elements by size would be:

• 23.08% for size 1

• 11.05% for size 2

• 13.31% for size 3

• 52.56% for size 4

We could expect that the erroneous pairs maintain the previous percentages.

• 15 erroneous pairs within clusters of size 1

• 7 erroneous pairs within clusters of size 2

• 8 erroneous pairs within clusters of size 3

• 33 erroneous pairs within clusters of size 4

Nevertheless, the elements will be paired with other elements already clustered, ex-
cept for the isolated, so the total number would be ≈ half of the numbers above,
without considering that one single element could be paired several times.
As said in the beginning we have to know too much detail in order to do a right
guessing.

5.2.2 Erroneous Vertices Degree

The purpose of the previous calculations was to illustrate the impact of precision
and recall in our strategy. However, the final solution is more complex than that. For
example, the precision doesn’t act randomly at a pair level, not all the pairs have the
same chance of being miss-classified, some elements are incomplete or have weird
data and any comparison done for that element even in the same "real" cluster will
result in being classified as false.
Let’s suppose that we have an element with a completely wrong address that is part
of a cluster of size 4. In theory it doesn’t matter if you loss one edge for one pair, we
still would have 2 more edges connected to the rest of the elements of the clusters.
However, as said before, there exist the possibility of not having any edges because
it is the element itself what is different from the rest of the cluster. Even worse, it
is possible that if it fails with one of the elements it could fail for the rest if they are
similar. The same principle applies to the error of adding edges, if some element is
classified as true for a comparison with a cluster it is possible that comparisons with
other elements in the cluster could be also classified as a duplicate.
Example:
Having a sample of clusters with the following distribution:

• Size 2: 100

• Size 3: 91

• Size 4: 248

The number of elements will be: 100 · 2 + 91 · 3 + 248 · 4 = 1465
Those clusters should be clique so our degree4 distribution should be:

4the degree of a vertex is the number of edges incident to the vertex

5.2. Clustering Strategies 49

• degree 1: 100·2
1465 = 0.1365188

• degree 2: 91·3
1465 = 0.1863481

• degree 3: 91·3
1465 = 0.6771331

If the blocking predicate includes all the pairs that are duplicated the distribution
should be the one expressed by the previous figures, but it is not the case, it is very
close but the real distribution is:

• 1 edges: 0.1378840

• 2 edges: 0.1918089

• 3 edges: 0.6703072

If we apply our xgboost model, our predicted degree distribution is:

• 1 edges: 0.1468579

• 2 edges: 0.2076503

• 3 edges: 0.6454918

In this case, our model predictions has less vertices of degrees 3, and the 2 degrees
vertices and 1 degree vertices have been increased.
The degree distribution for the false negatives is:

• 1 edges: 0.81395349

• 2 edges: 0.16279070

• 3 edges: 0.02325581

That means that contrary to what we said before there is a high chance that the
false negative errors don’t remove completely a vertex for big size clusters, like the
3 edges clusters (4 elements).

5.2.3 Clique

Regarding the splits, the clique strategy have big chances of removing edges not
pertaining to the original graph, but it will greatly depend in the probability of a
wrong edge (miss classification) having a weight (prediction) greater than any other
edge in the graph. However, none of this applies to the case of generating a cluster
from a pair of single isolated elements. The clique strategy wouldn’t cut these cases.
We haven’t treated the case of mixing the errors of missing edges and wrong added
edges, neither the case where we have more than one of those errors, the impact for
our case is not big enough to take it into account. For the sake of simplicity, we have
omitted it.
We can conclude that the clique strategy:

• has very low tolerance to bad recall; one single missing edge causes a split of
the graph.

50 Chapter 5. Analysis

• it is biased, tends to broke edges, reducing the final splits but potentially in-
creasing the merges because we have no control of the edges selected to cut.
However, it will depend on the probability that a wrong edge has a weight
(capacity) greater than a right one.

• it doesn’t have an impact in clusters of size 2, a pair will always be a clique.

• It will give us in return a good precision (less splits). In order to add a wrong
element to a cluster, the classifier has to classify as duplicate that element with
the total of the rest of the elements in the clusters. For big size clusters, it is
even harder that any error could be unnoticed.

• as we don’t compare accommodations from the same providers, it is not pos-
sible to have a clique with the provider repeated. Originally, no comparisons
with the same providers are done, so, that case won’t ever be a cluster.

5.2.4 Basic

The number of splits and merges will be proportional to the number of clusters over-
sized and incomplete.
Conclusions:

• The cluster is not enforced to be compliant with our blocking predicate, as
it assume transitiveness, there are relations in the cluster that were not even
compared, like the same provider repeated.

• It isn’t biased, the number of splits and merges should be directly proportional
to the recall and precision because don’t apply any correction from the pair
classification results, In other words, we don’t cut neither add new edges to
the graph built based in the pair classification.

• Robust to missing edges. It doesn’t need all the edges in order to cluster a
graph.

5.2.5 Providers

The strategy will correct the clusters oversized that have more than one provider.
Conclusions:

• It is biased, tends to broke edges.

• It enforces the providers to not be repeated. Whenever we have two vertex
with the same provider attribute, that graph is broken.

• Similarly to the basic strategy the graphs with missing edges should be auto
corrected whenever there are not too many missing that split the graph. The
bigger the cluster size the more robust it is.

5.3 Min-cut Error analysis

The max flow / min cut implementation that we use have some limitations to our
interests. Let say that in a graph we have several absolute predictions (= 1). The
algorithm could cut some of these edges if there is not a better option.

5.4. Deduplication Update 51

Let’s comeback to an example in previous chapter.
We have the Table 5.2 defining the edges, vertices and capacity for the graph shown
in the Figure 5.2. If we try to partition this table applying our cut algorithm we
will cut A1–D1, it is mandatory, it has a capacity of 0.9. After that, there are two
options for cutting. We can cut either A1–B1 or B1–D1. By default it cuts B1–D1,
the algorithm implementation used doesn’t specify the behavior for this scenario.
Having a capacity of 0.9999 in A1–B1 would force A1–B1 to be cut. We haven’t
provided any solution for this scenario.

TABLE 5.2: Table representation for problematic graph
from to capacity

1 A1 B1 1
2 B1 D1 1
3 A1 D1 0.9
4 A1 B2 1
5 A1 C2 1
6 B2 C2 1

FIGURE 5.2: Problematic partitioning

5.4 Deduplication Update

We can have a deduplication scenario where there is already a deduplication that
isn’t complete. We can adopt several strategies in order to incorporate our results to
an existing base depending on the confidence that we have for the existing one.

52 Chapter 5. Analysis

For example, we will usually have some data and we incrementally add elements to
that base. . Either any new inclusion will be part of an existing cluster or we have to
create a new one. We could have several alternatives:

• Deduplicate all again from scratch.

• Compare the new element with the nearest elements or clusters and update in
case of being necessary.

The first option could have a big cost depending on the rate of new elements ar-
riving. And the last one implies comparisons in some cases redundant over time.
In cases of having incongruences in the last option usually due to splitting of ex-
istent clusters, we have to act accordingly and take into account our confidence in
the existing clusters. We can opt for ignoring the splits, modifying the clusters or
reviewing manually.
In our case we have seen that applying the clique strategy and merging any non-
conflicting result with the basic strategy gives the same results as the provider strat-
egy, but no further improvements has been achieved using the provider strategy.

53

Chapter 6

Conclusion and future work

6.1 Conclusions

We have analyzed the deduplication problem in accommodations from the machine
learning perspective. Some of the contributions done compared to past works are:

• A new definition for blocking

• A dynamic blocking strategy based on distance

• New features based on address standardization and decomposition

• A framework for the commons phases in the deduplication process. It includes
also utilities for calculating generic features, dataset creation, model creation
and evaluation.

• We showed that Adaboost and Xgboost (not previously considered) can have
a good performance comparable to random forest.

• Emphasis in the clustering phase

• A resolution strategy for clustering with GMD

• We provide a reinterpretation and implementation of GMD

6.2 Future work

Entity resolution in different scopes sometimes has commons elements. It would be
interesting the possibility of generating models as reusable components that can be
composed in order to build a final model. For example:
The address resolution for accommodations will possibly be the same as the address
resolution for a restaurant, a hospital, etc... Is it possible to generate a model that
given two address it return the similarity? We have to take into account that only for
address we have 10 different features without considering the geo-location.
The name is a similar case. We could consider that the name of a person is different
to the name of an accommodation, but is it different the name of an accommodation
to the name of a restaurant? possibly there are common strategies in order to learn
the similarity for a restaurant name.
With the existence of those reusable components, maybe it would be enough with a
dozen of features in order to deduplicate any commercial premise as aimed in other
works (Zheng et al., 2010).
Currently our framework is coupled with Weka. However, there are other ML li-
braries also supported for Java. We have seen that xgboost has a good performance

http://github.com/francetem/deduper

54 Chapter 6. Conclusion and future work

but we have not generated a model for xgboost even when there is a Java implemen-
tation for it. We have here several alternatives:

• Make the framework generic and add extensions in order to support several
implementations, which implies that we will have a cost to add the extensions.

• Give up on the idea of having the entire pipeline within the framework and
accept that any step of the pipeline (blocking, feature deriving, dataset genera-
tion, train and evaluations) could be done outside. That is currently supported
but has some limitations. It will be more complex to tune the model according
to our cluster evaluation if the evaluation is done with the framework but we
build the model outside1.

• If we do the previous one should we rely on Weka or use some standard-
ized representation? Like PMML (Predictive Model Markup Language) and
assume that the model will always be provided in that format.

1In fact this is what we did with xgboost

http://dmg.org/pmml/v4-3/GeneralStructure.html

55

Appendix A

GMD considerations

In “Evaluating Entity Resolution Results” (Menestrina, Whang, and Garcia-Molina,
2010) there are some definitions that we change.
The definition for a split operation given is:
Definition 4.1: A split is an operation c→ c1, c2 where c1 ∩ c2 = ø, c1 ∪ c2 = c, and c1,
c2 6= ø. The result of applying a split to a partition P is (P - { c }) ∪ { c1, c2 }. A split is a
valid operation on P if and only if c ∈ P.

My proposal is:
A split is an operation c→ c1, c2 .. Cn where c1 ∩ c2 . . . ∩ Cn = ø, c1 ∪ c2 . . .∪ Cn = c,
and c1 ,c2. . . Cn 6= ø. The result of applying a split to a partition P is (P - { c }) ∪ { c1
,c2. . . Cn }. A split is a valid operation on P if and only if c ∈ P.

Analogously to the merge operation.

Why? Because of:
Definition 5.7.: We say that a function F is operation order independent if it satisfies F(x,
y) + F(x + y, z) = F(x, z) + F(x + z, y) for all x, y, z.

With the new proposal, there is no need for several splits / several merges
hence no need to satisfy order independent property.
Another auto-imposed limitations is that the functions receive the resulting splits or
sourcing merges size, not the cluster itself, it could be useful to redefine it for clusters
not size because other properties of the cluster could be useful to calculate the cost.
The changes to adapt the current algorithm to another one following these changes
are minimal and doesn’t affect the performance.
The basic idea of the algorithm is conceptually quite simpler than the original algo-
rithm:

Definition. Given the non-empty intersections between the clusters in an entity resolution
E, and the clusters in the ground truth G. Those intersections can be grouped by the source
clusters (splits) or by the target clusters (merges). The GDM cost will be the sum of applying
the split and merge cost functions to those groups respectively.

Doing it efficiently is a matter of indexing/hashing the elements.1

In the original paper an example is include that we are going to reproduce with our
algorithm variation. The example is:

E = {〈a, c, e〉, 〈b, d, f 〉}

G = {〈a, b, c〉, 〈d, e, f 〉}
1https://github.com/francetem/deduper/blob/master/src/main/java/org/ehu/dedupe/

metrics/distance/GMD.java contains a Java implementation

https://github.com/francetem/deduper/blob/master/src/main/java/org/ehu/dedupe/metrics/distance/GMD.java
https://github.com/francetem/deduper/blob/master/src/main/java/org/ehu/dedupe/metrics/distance/GMD.java

56 Appendix A. GMD considerations

The first step is get the intersections of the clusters within E with the clusters within
G.

{(〈a, c, e〉 ∩ {〈a, b, c〉), (〈a, c, e〉 ∩ {〈d, e, f 〉), (〈b, d, f 〉 ∩ {〈a, b, c〉), (〈b, d, f 〉 ∩ {〈d, e, f 〉)}

I = {〈a, c〉, 〈e〉, 〈b〉, 〈d, f 〉 } (A.1)

Equation A.1 shows the resulting intersections (I). If we group those intersections by
the predicted clusters in E we get the splits:

e1 = {〈a, c〉, 〈e〉 }

e2 = {〈b〉, 〈d, f 〉 }

If we group those intersections by the real clusters in G we get the merges:

g1 = {〈a, c〉, 〈b〉 }

g2 = {〈e〉, 〈d, f 〉 }

Given a split cost function fs and a merge cost function fm the final cost would be:

fs(e1) + fs(e2) + fm(g1) + fm(g2)

For the basic merge distance fs and fm would be defined as

fs(x) = fm(x) = |x| − 1

The final value would be = 4.

57

Appendix B

Resources

Attached we can find the following resources:

• all.arff contains a dataset with after applying the blocking and feature deriving
in arff format

• https://github.com/francetem/deduper link to the deduper framework,
contains generic utilities that have been use to do the blocking and generate
the dataset, can be used also to train and evaluate models in Java.

• gmd.R contains the gmd VI variation.

• xgb.R train and evaluate a xgb using all.arff file and compute attribute impor-
tance

• rf.R train and evaluate a rf using all.arff file and compute attribute importance

https://github.com/francetem/deduper

59

Appendix C

High Density Zones

We know that the following scenario exists: the distribution of the dataset could
have high-density zones and our blocking is based on distance, so for those zones
the number of comparisons can be very high. If we reduce the maximum distance,
it will affect to every single accommodation independently of the zone because we
don’t take into account the density.

FIGURE C.1: Rome density

The figure C.1 illustrates the density for the center of Rome.
The ideal is that the level of granularity should be small enough to avoid this prob-
lem. In other words, instead of choosing a whole city to compare, we could decide
to use a zone within that city. We could deduplicate at a neighborhood level instead
of city for example. If it is not the case, one option is to create clusters of data by
distance using some clustering algorithm like canopy, EM, Kmeans. The one that
fits best to our expectations. In (Christen, 2012) we can find several related blocking
techniques. These options would be a previous step to our blocking predicate.
Figure C.2 shows the centers for a kmeans clustering run. The clustering sometimes
is a little tricky because we can in most of the cases; specify the number of clusters
to use, but not the size of those clusters. In table C.1 we can see an example of the
disparity of lengths. We have always the option of clustering iteratively any group
bigger than a specific size. Alternatively, we can apply some logic to a hierarchical
cluster.

60 Appendix C. High Density Zones

FIGURE C.2: Rome kmeans centers

TABLE C.1: Kmeans clusters size and center
lat lon size

1 41.87 12.47 849
2 42.02 12.35 60
3 41.89 12.47 2623
4 41.91 12.46 2264
5 41.90 12.45 1643
6 41.81 12.46 162
7 41.88 12.54 318
8 41.92 12.53 609
9 41.90 12.42 443

10 41.00 12.00 7
11 41.87 12.45 311
12 41.95 12.42 182
13 41.90 12.48 2289
14 41.85 12.57 227
15 41.86 12.65 96
16 41.93 12.58 105
17 41.76 12.53 50
18 41.90 12.49 1914
19 42.00 12.50 92
20 41.91 12.50 1474
21 41.74 12.31 254
22 41.88 12.51 906
23 41.84 12.36 98
24 41.93 12.47 321
25 41.89 12.51 1747

Appendix C. High Density Zones 61

Another option is to limit the number of comparisons using a logic like the X near-
est accommodations. In this option it is important to have into account that the X
nearest accommodations for an accommodation, let’s say A, could include another
one B, but the opposite won’t always be true, B could not include A as one of the
nearest accommodation. This is important in order to have a blocking algorithm not
dependent on the order.

63

Appendix D

Workflow Measurements

A deduplication process includes several phases or steps. All of those phases can
be evaluated individually but previous steps affects the next steps. That means that
if for example there is a bad blocking, some duplicates comparisons won’t be done,
the fact of missing comparisons will affect the pair classification, missing pairs and
miss classifying pairs will also result in a worst clustering.

D.1 Pair Classification / Clustering Evaluation

There is a link between precision and recall as metric for the pair classification and
GMD as measure for the clustering. The pair classification generates duplicate rela-
tionships between entity representations. The results from the pair classification can
be considered edges in the graph pre-clustering, being the vertex the elements.
If there is a perfect precision and recall any reasonable strategy applied will give us
a perfect clustering because all the edges would be detected and no one would be
miss classified. so there would be no need to split any graph neither merge.
If the precision is perfect, it means that there is no need to cut any edge. So no splits
are needed.
If the recall is perfect, there is no need to merge any graph. All the edges between
elements that are the same would be identified.
In conclusion: the precision is directly related to splits and recall is related to merges,
a low recall requires merges to be done and a low precision will result in more splits.
All of this only applies if the blocking predicate provides all the relevant pair com-
parisons.

D.2 Blocking Predicate / Clustering evaluation

If the elements {A1, B1, C1} are duplicates and the blocking predicate generates the
comparisons {A1, B1} and {B1, C1}, and if the classifier detects all duplicates the
graph in figure D.1 will be generated after the pair classification.
Depending on the chosen strategy there can be a merge in the cluster evaluation
because there is a missing edge between A1 and C1.
To conclude: the blocking predicate could potentially have the same effect as the
precision. The less it pairs duplicated elements the more merges will be needed in
the clustering evaluation.

64 Appendix D. Workflow Measurements

FIGURE D.1: Uncomplete graph

R GMD (With Modifications) VI
Francis Perez
03-06-2018

#auxiliar function to calculate the cost for merges or splits
calculateCost <- function(to, by, costFunction) {

splits <- split(to, by)
cost <- 0
for(n in names(splits)){

groups <- splits[[n]]
intersections <- split(groups$elem, groups[,1])
cost <- cost + costFunction(intersections)

}
cost

}

#cl1 and cl2 must have the same length
gmd <- function(cl1, cl2, fs, fm){

intersections <- data.frame(stringsAsFactors=FALSE)

for(i in 1:length(cl1)){
intersections <- rbind(intersections, c(cl1[i], cl2[i], i))

}

names(intersections) <- c("ori", "dest","elem")

to <- intersections[,c(2,3)]
by <- intersections[,1]

splitCost <- calculateCost(to, by, fs)

to <- intersections[,c(1,3)]
by <- intersections[,2]

mergeCost <- calculateCost(to, by, fm)

return (c(splitCost, mergeCost))

}

#Variation of Information function
vi <- function(N){

target <- function(elems){
sizes <- sapply(elems, length)
total <- sum(sizes)

freqs <- sizes / total

entropies <- -(sizes * sapply(freqs, log2)) / N

1

65

return(sum(entropies))
}
return(target)

}

#use sample, compared to another library for calculating VI

library(mcclust)

Loading required package: lpSolve
numElements <- 10

cl1 <- sample(1:3,numElements, replace=TRUE)
cl2 <- c(cl1[1:5], sample(1:3,5,replace=TRUE))

#vi.dist value
vi.dist(cl1,cl2)

[1] 1.836453
#gmd vi value
gmdCost <- gmd(cl1, cl2, vi(numElements), vi(numElements))

#splits + merge cost
gmdCost[1] + gmdCost[2]

[1] 1.836453

2

66

XGB
Francis Perez
03-06-2018

#allows to read arff files
library(foreign)

all <- read.arff("all.arff")

library(caret)

Warning: package 'caret' was built under R version 3.3.2

Loading required package: lattice

Loading required package: ggplot2

Warning: package 'ggplot2' was built under R version 3.3.2

Warning in as.POSIXlt.POSIXct(Sys.time()): unknown timezone 'default/
Europe/Madrid'
library(xgboost)

Warning: package 'xgboost' was built under R version 3.3.2
#xvalidation 10 folds
ctrl <- trainControl(method = "cv", number = 10)

#fix values
xgb.grid <- expand.grid(nrounds = c(150),

lambda = c(1e-04, 1),
alpha = 0,
eta = c(0.3))

predictors <- all[,3:22]
xgb.train <- train(

x = data.matrix(predictors),
y = data.matrix(all[,23]),
trControl = ctrl,
method = "xgbLinear",
tuneGrid = xgb.grid,
verbose = 1

)

#Print confusion matrix
confusionMatrix(xgb.train, norm = "none")

Cross-Validated (10 fold) Confusion Matrix
##
(entries are un-normalized aggregated counts)
##
Reference
Prediction false true

1

67

false 131166 74
true 60 8702
##
Accuracy (average) : 0.999
plot(varImp(xgb.train))

Importance

sameUnit
sameLevel
sameType

sameImages
sameChain

typeIntersection
expandedAddressLevenshteinDistance

providers
addressNameLevenshteinDistance

addressLevenshteinDistance
sameGoogleAddressNumber

googleLevenshteinDistance
sameStars

addressCosineSimilarity
expandedAddressCosineSimilarity

nameLevenshteinDistance
sameAddressNumber

isSameGoogleAddress
distance

nameCosineSimilarity

0 20 40 60 80 100

2

68

RF
Francis Perez
03-06-2018

#allows to read arff files
library(foreign)

all <- read.arff("all.arff")

library(caret)

Warning: package 'caret' was built under R version 3.3.2

Loading required package: lattice

Loading required package: ggplot2

Warning: package 'ggplot2' was built under R version 3.3.2

Warning in as.POSIXlt.POSIXct(Sys.time()): unknown timezone 'default/
Europe/Madrid'
library(randomForest)

randomForest 4.6-12

Type rfNews() to see new features/changes/bug fixes.

##
Attaching package: 'randomForest'

The following object is masked from 'package:ggplot2':
##
margin
#xvalidation 10 folds
ctrl <- trainControl(method = "cv", number = 10)

#fix values
rf.grid <- expand.grid(mtry = 6)

predictors <- all[,3:22]
rf.train <- train(

x = data.matrix(predictors),
y = data.matrix(all[,23]),
trControl = ctrl,
method = "rf",
tuneGrid = rf.grid,
ntree = 99,
verbose = 1

)

#Print confusion matrix
confusionMatrix(rf.train, norm = "none")

1

69

Cross-Validated (10 fold) Confusion Matrix
##
(entries are un-normalized aggregated counts)
##
Reference
Prediction false true
false 131155 89
true 71 8687
##
Accuracy (average) : 0.9989
plot(varImp(rf.train))

Importance

sameUnit
sameLevel

sameImages
sameType

sameChain
typeIntersection

providers
addressNameLevenshteinDistance

addressLevenshteinDistance
sameStars

expandedAddressLevenshteinDistance
sameGoogleAddressNumber

expandedAddressCosineSimilarity
addressCosineSimilarity

googleLevenshteinDistance
sameAddressNumber

nameLevenshteinDistance
isSameGoogleAddress

distance
nameCosineSimilarity

0 20 40 60 80 100

2

70

71

Bibliography

Aha, David W, Dennis Kibler, and Marc K Albert (1991). “Instance-based learning
algorithms”. In: Machine learning 6.1, pp. 37–66.

Benjelloun, Omar et al. (2009). “Swoosh: A Generic Approach to Entity Resolution”.
In: The VLDB Journal 18.1, pp. 255–276. ISSN: 1066-8888. DOI: 10.1007/s00778-
008-0098-x. URL: http://dx.doi.org/10.1007/s00778-008-0098-x.

Bottou, Léon (2010). “Large-scale machine learning with stochastic gradient de-
scent”. In: Proceedings of COMPSTAT’2010. Springer, pp. 177–186.

Bouckaert, Remco Ronaldus (1995). “Bayesian belief networks: from construction to
inference”. PhD thesis.

Breiman, Leo (1996). “Bagging predictors”. In: Machine learning 24.2, pp. 123–140.
— (2001). “Random forests”. In: Machine learning 45.1, pp. 5–32.
Bron, Coen and Joep Kerbosch (1973). “Algorithm 457: finding all cliques of an undi-

rected graph”. In: Communications of the ACM 16.9, pp. 575–577.
Chen, Tianqi, Tong He, Michael Benesty, et al. (2015). “Xgboost: extreme gradient

boosting”. In: R package version 0.4-2, pp. 1–4.
Christen, P. (2012). “A Survey of Indexing Techniques for Scalable Record Linkage

and Deduplication”. In: IEEE Transactions on Knowledge and Data Engineering 24.9,
pp. 1537–1555. ISSN: 1041-4347. DOI: 10.1109/TKDE.2011.127.

Cooper, Gregory F and Edward Herskovits (1991). “A Bayesian method for con-
structing Bayesian belief networks from databases”. In: Uncertainty Proceedings
1991. Elsevier, pp. 86–94.

Dalvi, Nilesh et al. (2014). “Deduplicating a places database”. In: Proceedings of the
23rd international conference on World wide web. ACM, pp. 409–418.

Freund, Yoav, Robert E Schapire, et al. (1996). “Experiments with a new boosting
algorithm”. In: Icml. Vol. 96. Bari, Italy, pp. 148–156.

Friedman, Jerome H (2001). “Greedy function approximation: a gradient boosting
machine”. In: Annals of statistics, pp. 1189–1232.

Getoor, Lise and Ashwin Machanavajjhala (2012). “Entity resolution: theory, practice
& open challenges”. In: Proceedings of the VLDB Endowment 5.12, pp. 2018–2019.

Hare, Jonathon S., Sina Samangooei, and David P. Dupplaw (2011). “OpenIMAJ and
ImageTerrier: Java Libraries and Tools for Scalable Multimedia Analysis and In-
dexing of Images”. In: Proceedings of the 19th ACM International Conference on Mul-
timedia. MM ’11. Scottsdale, Arizona, USA: ACM, pp. 691–694. ISBN: 978-1-4503-
0616-4. DOI: 10.1145/2072298.2072421. URL: http://doi.acm.org/10.1145/
2072298.2072421.

Kozhevnikov, Ivan and Vladimir Gorovoy (2016). “Comparison of Different Ap-
proaches for Hotels Deduplication”. In: Knowledge Engineering and Semantic Web.
Ed. by Axel-Cyrille Ngonga Ngomo and Petr Křemen. Cham: Springer Interna-
tional Publishing, pp. 230–240. ISBN: 978-3-319-45880-9.

Köpcke, Hanna and Erhard Rahm (2010). “Frameworks for entity matching: A com-
parison”. In: Data & Knowledge Engineering 69.2, pp. 197 –210. ISSN: 0169-023X.
DOI: https://doi.org/10.1016/j.datak.2009.10.003. URL: http://www.
sciencedirect.com/science/article/pii/S0169023X09001451.

http://dx.doi.org/10.1007/s00778-008-0098-x
http://dx.doi.org/10.1007/s00778-008-0098-x
http://dx.doi.org/10.1007/s00778-008-0098-x
http://dx.doi.org/10.1109/TKDE.2011.127
http://dx.doi.org/10.1145/2072298.2072421
http://doi.acm.org/10.1145/2072298.2072421
http://doi.acm.org/10.1145/2072298.2072421
http://dx.doi.org/https://doi.org/10.1016/j.datak.2009.10.003
http://www.sciencedirect.com/science/article/pii/S0169023X09001451
http://www.sciencedirect.com/science/article/pii/S0169023X09001451

72 BIBLIOGRAPHY

Le Cessie, Saskia and Johannes C Van Houwelingen (1992). “Ridge estimators in
logistic regression”. In: Applied statistics, pp. 191–201.

Meilă, Marina (2007). “Comparing clusterings—an information based distance”. In:
Journal of multivariate analysis 98.5, pp. 873–895.

Menestrina, David, Steven Euijong Whang, and Hector Garcia-Molina (2010). “Eval-
uating Entity Resolution Results”. In: Proc. VLDB Endow. 3.1-2, pp. 208–219. ISSN:
2150-8097. DOI: 10.14778/1920841.1920871. URL: http://dx.doi.org/10.
14778/1920841.1920871.

Quinlan, Ross (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann Publishers.

Ristad, Eric Sven and Peter N Yianilos (1998). “Learning string-edit distance”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 20.5, pp. 522–532.

Sarawagi, Sunita and Anuradha Bhamidipaty (2002). “Interactive deduplication us-
ing active learning”. In: Proceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining. ACM, pp. 269–278.

Stoer, Mechthild and Frank Wagner (1997). “A simple min-cut algorithm”. In: Journal
of the ACM (JACM) 44.4, pp. 585–591.

Ting, Kai Ming (2010). “Precision and Recall”. In: Encyclopedia of Machine Learning.
Ed. by Claude Sammut and Geoffrey I. Webb. Boston, MA: Springer US, pp. 781–
781. ISBN: 978-0-387-30164-8. DOI: 10.1007/978- 0- 387- 30164- 8_652. URL:
https://doi.org/10.1007/978-0-387-30164-8_652.

Wang, Hongzhi (2014). Innovative Techniques and Applications of Entity Resolution. 1st.
Hershey, PA, USA: IGI Global. ISBN: 1466651989, 9781466651982.

Whang, Steven Euijong et al. (2009). “Entity resolution with iterative blocking”. In:
Proceedings of the 2009 ACM SIGMOD International Conference on Management of
data. ACM, pp. 219–232.

Wikipedia contributors (2018a). Cluster analysis — Wikipedia, The Free Encyclopedia.
[Online; accessed 18-June-2018]. URL: https://en.wikipedia.org/w/index.
php?title=Cluster_analysis&oldid=845086044.

— (2018b). Levenshtein distance — Wikipedia, The Free Encyclopedia. [Online; accessed
3-July-2018]. URL: https : / / en . wikipedia . org / w / index . php ? title =
Levenshtein_distance&oldid=846659618.

Zheng, Yu et al. (2010). “Detecting nearly duplicated records in location datasets”.
In: Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems. ACM, pp. 137–143.

http://dx.doi.org/10.14778/1920841.1920871
http://dx.doi.org/10.14778/1920841.1920871
http://dx.doi.org/10.14778/1920841.1920871
http://dx.doi.org/10.1007/978-0-387-30164-8_652
https://doi.org/10.1007/978-0-387-30164-8_652
https://en.wikipedia.org/w/index.php?title=Cluster_analysis&oldid=845086044
https://en.wikipedia.org/w/index.php?title=Cluster_analysis&oldid=845086044
https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=846659618
https://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=846659618

	Abstract
	Acknowledgements
	Introduction
	Problem Description
	Example

	Motivation
	Goals

	State of the Art
	Deduplication Framework
	Blocking
	Matching
	Feature Extraction
	Classification

	Clustering

	Regarding Accommodations Domain
	Blocking
	Classification
	Clustering

	Methodology
	Data Description & Preprocessing
	Address Parsing
	Libpostal
	Geocoder

	Duplicates Information

	Blocking
	Feature Extraction
	PHash (Perceptual Hash)
	Levenshtein Distance
	TF-IDF
	Cosine similarity
	Features
	Dataset Format

	Pair Classification
	Clustering
	Predicate + Cut
	Basic Predicate
	Providers
	Clique
	Min-cut
	Examples

	Interpretation

	Evaluation Metrics
	Pair Classification
	Clusters
	GMD
	VI
	Combination of GMD and VI

	Experiments
	Accommodation Data Description
	Duplicates Comparisons/Records

	Tools & technologies
	Pair Classification
	Evaluation
	Hyperparameters optimization
	Pair Classification Results
	BayesNet
	IBK
	xgb
	Random Forest
	Adaboost
	Logistic
	Multilayer Perceptron
	SGD

	Clustering
	Evaluation
	Hyperparameters optimization
	Thresholds

	Clustering Results
	Adaboost
	Random forest
	XGboost

	Results by dataset

	Analysis
	Attributes
	Random Forest Attribute Importance
	xgboost Attribute Importance

	Clustering Strategies
	Precision and Recall
	Erroneous Vertices Degree
	Clique
	Basic
	Providers

	Min-cut Error analysis
	Deduplication Update

	Conclusion and future work
	Conclusions
	Future work

	GMD considerations
	Resources
	High Density Zones
	Workflow Measurements
	Pair Classification / Clustering Evaluation
	Blocking Predicate / Clustering evaluation

	Bibliography

