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Laburpena
Lan honetan, hizkuntza naturalaren sorrera automatikoan informazio ez-egituratuaren
esplotazioak izan dezakeen eragina aztertzen da. Bere helburu nagusia, sistema batek

aurrez ikusi gabeko informazioa erabiliz testu koherentea sortzeko duen gaitasuna
ebaluatzea da. Corpus berri bat ere aurkezten da, zeregin honetarako bereziki

prestatutako Amazon Review corpusaren aldaera bat, produktuen deskribapenak input
gisa erabiliz, erabiltzaileen iritziak automatikoki sortzeko erabiltzen dena. Hainbat deep

learning ereduk eginkizun honetan lortzen dituzten emaitzak konparatzen dira eta
informazio ez egituratua ustiatzeko gaitasun maila ezberdina dutela erakusten da.

Abstract
In this work, we present a novel task for automatic natural language generation, based on
the exploitation of unstructured contextual information. The main aim of the task is to

enable the evaluation of a system’s capability to generate coherent text based on
previously unseen and unstructured information. A new corpus was prepared specifically

for the task, based on the Amazon Review corpus with product descriptions used as
input for the generation of user reviews. Different deep learning generation models were

implemented and compared under the proposed task, with significant differences in terms
of their ability to exploit unstructured contextual information.
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1 Introduction

One of the biggest challenges in the age of Big Data is the interpretation of the generated
data stream. Textual descriptions of the data would help to understand and exploit the
available information, but with currently large and growing data volumes, the generation of
text from data cannot be performed manually. In this type of scenarios, Natural Language
Generation (NLG) technology becomes necessary.

NLG is defined as a subfield of Natural Language Processing (NLP) and Artificial
Intelligence (AI) that consists in automatically generating understandable coherent text
from raw data or abstract meaning representations. Through the use of NLG technology,
data can be expressed in a more practical way for human understanding and use. The
input data can be textual or not, and text-to-text and data-to-text generation are thus
both instances of NLG. Some examples of NLG applications are automatic generation of
meteorological reports and textual explanations of numerical graphs. Additionally, NLG
can be used to produce texts that would otherwise not be written, with NLG being used for
instance to automatically generate articles for secondary sport games or news that are not
covered by journalists. In 2014 for example, the Los Angeles Times became the first media
outlet to communicate a minor earthquake that took place in California, reported within
3 minutes of the occurrence using a previously written algorithm and the automatically
registered earthquake data.

An NLG system could also produce different texts from the same input data, personal-
ising the texts depending on the expected reader. For instance, in clinical contexts, it seems
appropriate to explain medical data with more technical details if the expected reader is
medical staff, and with more explanatory words if it is written for the patient. Whereas it
would be remarkably time-consuming for a person to create all these adapted texts, this is
feasible via an adequate NLG system.

Although the field of NLG originated several decades ago, for historical reasons, and
because of the complexity of the task itself, it has remained in the background within
NLP. With the recent success of deep learning in NLP (automatic translation, speech
recognition, etc.), however, key NLG tasks have been given a new impulse, with the hope
that this new paradigm of artificial intelligence will be able to resolve them. This new
approach to NLG has been successful and has become an important component in multiple
applications including dialogue systems, text summarisation, image captioning or video
description, with considerable commercial interest in different NLG applications such as
summarisation of financial and business data. It is therefore of importance to carry out
research that explores the capabilities and limitations of deep learning for NLG.

The objective of this work is to develop and adapt a methodology and training frame-
work for NLG using deep learning techniques. More specifically, the goal of this study
will centre on the generation of book reviews using input information composed of book
descriptions and user ratings. Automatic review generation has gained interest in the last
years, with the rapid growth of e-commerce that has produced millions of human-written
reviews of multiple products that enable the training of deep learning systems on this task.

Despite the large volumes of available information, the input information related to
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products is very restricted in most recent studies. The most common approach involves
the use of a numerical value that identifies the product, but since this number does not
provide any information about the product, this procedure prevents the system from gen-
eralising to new products that do not appear during training. Since using some predefined
characteristics of the product has already been explored in the literature, we aim to explore
the capabilities of using unstructured data as input to enable the evaluation of a system’s
capability to generate text, based on previously unseen and unstructured information.

In this work, book descriptions are selected as unstructured input and, to our knowl-
edge, this is the first work that explores the use of this type of data to generate reviews
without the aforementioned dependency on previously observed training instances. We
also aim to analyse ways to resolve some of the current limitations of using deep learning
for NLG, such as out-of-vocabulary words or the balance between generated text coherence
and output variability. Additionally, we also perform an exhaustive analysis of different
evaluation methods in order to highlight the challenges in NLG evaluation, with an empha-
sis on several automatic metrics and the relationships between them. Finally, we evaluate
different deep learning NLG architectures on the proposed task based on unstructured
input.

To complete our goals, we prepare and describe a new corpus, which has been structured
and prepared for the analysis of the performance of NLG systems on the specific task of
generalising to new products. The dataset is composed of online book reviews and product
overlaps between the different sets in the data partition are avoided, providing robust
training and evaluation data for the task. The dataset notably includes different test sets
split in terms of content complexity via perplexity measures.

Various well-known NLG architectures are selected with the aim to exploit the in-
formation provided by the descriptions and trained on this dataset, via the inclusion of
state-of-the-art mechanisms in the NLG domain. Additionally, we develop and evaluate an
architectural variant based on Latent Dirichlet Allocation which has not been previously
explored for the automatic review generation task. The impact of each architectural vari-
ant on the task is measured by means of different metrics on various test sets to support a
fine-grained analysis of the results, thus testing their respective generation capabilities on
unseen products via the unstructured contextual information provided by the descriptions.

This work is structured as follows: Section 2 describes the theoretical framework and the
state of the art in NLG, with an emphasis on automatic review generation; in Section 3, we
present the current evaluation methods for NLG systems; Section 4 describes the different
types of input data for NLG with their respective pros and cons, together with a detailed
description of the corpus that has been used and how it has been prepared; Section 5
describes the architectures used in the experimentation, which is presented in Section 6;
Section 7 presents the results, their evaluation and an error analysis; finally, Section 8
summarises the conclusions from this study and discusses future work.
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2 Theoretical Framework

This section provides the basic background on deep learning needed to understand the
methodology and experiments in this work. It also describes the evolution of NLG systems,
from the first traditional approaches to more recent neural methods based on deep learning.
Additionally, the state of the art in NLG and automatic review generation is addressed.

2.1 Deep Learning

Deep Learning (DL) is a subset of machine learning techniques, and thus an aspect of
artificial intelligence, that composes multiple non-linear transformations with the goal of
yielding more abstract and useful representations of data (Bengio et al., 2013), such as
word embeddings vectors used in NLP to represent words instead of a unique dimension
via one-hot vectors. The term deep refers to the composition of multiple levels, each of
them learning to transform the input into a more abstract representation. A good data
representation assigns greater weight to different aspects of the input depending on the
task. For image classification, for example, it has to highlight those attributes that are
helpful to determine the object in the picture and overlook irrelevant ones, such as the
background.

Conventional machine-learning techniques require feature engineering to obtain good
feature combinations that can introduce more dimensions to the input, transforming it
into a space where the data-points are closer to being linearly separable (Goldberg, 2016).
Therefore, it is essential for the proper functioning of this methods to come up with an
effective combination of features within a very large space of possibilities. DL, on the
contrary, allows the automatic discovering of good representations of the data using a
general learning procedure that is capable of learning complex functions without the need
for hard feature engineering.

DL models are based on artificial neural networks, a biologically-inspired programming
paradigm which enables a computer to learn from observational data (Goodfellow et al.,
2016). As they constitute part of machine learning, they can be trained using supervised
or unsupervised learning processes, depending on whether the training data is labelled or
not. In supervised methods, the algorithm learns a function to map the input into the
output, while in unsupervised ones, it learns the implicit structure of the input data (e.g.
clustering). Other techniques such as semi-supervised learning or reinforcement learning
are out of the scope of this work, which is mainly focused on supervised learning since it
is the approach used in our experiments.

2.1.1 Artificial Neural Networks

According to Schmidhuber (2015), an artificial neural network is a learning model that
consists of many connected units called neurons, each taking one or various inputs and
producing an output. Both the inputs and the outputs take real values, and the output is
computed by means of a non-linear function which is called the activation function.
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The neurons are arranged in layers indicating the course of information: the first and
the last layers are the input and the output of the network respectively, and the layers that
may be between them are called hidden layers. Neural networks containing several hidden
layers are called deep neural networks and they can approximate complex mathematical
functions, provided they contain a sufficient number of neurons.

Artificial neural networks have evolved over the years, from the perceptron, a precursor
to the current neural networks Rosenblatt (1958), to the first practical multilayer networks
of Ivakhnenko and Lapa (1965). After years of being relatively left aside, the active interest
that neural networks have recently generated has led to the current existence of many types
of neural networks.

Artificial neural networks are classified as feedforward or recurrent networks, depending
on their internal connections and on how the information flows within them. We describe
each one in turn below.

Feedforward Neural Networks

Feedforward neural networks (FNN) map a fixed-size input to a fixed-size output. For that
aim, each unit computes a weighted sum of the outputs in the previous layer and applies
an activation function to the result.

Although this is the simplest type of neural network, with the composition of enough
hidden layers a FNN may be able to distort the input and convert non-linearly separable
problems into higher dimensional linearly separable ones.

FNNs are very effective for classification tasks, where the number of neurons in the input
is the number of features, and each neuron in the output layer corresponds to a different
class. In this case, the activation function of the output layer is typically a softmax function
for multi-class classification and a sigmoid function for binary classification. Both functions
return a value between 0 and 1 that can be understood as the probability of the input to
belong to the corresponding category.

Hidden layers

Input
layer

Output  
layer 

Figure 1: MLP with two hidden layers
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A common FNN is the multilayer perceptron (MLP) (Figure 1), a type of FFN with
at least one hidden layer and fully connected layers, i.e. where each neuron is connected to
all of the neurons in the subsequent layer. They have achieved better results than linear
models on various tasks including syntactic parsing and sentiment classification (Goldberg,
2016), and they are also referred to as “vanilla” neural networks when they have a single
hidden layer.

Equation 1 describes the calculations made by a hidden unit with n inputs, where wi

are the weights of the inputs, b an optional bias term associated with the neuron and ϕ
the activation function.

y = ϕ

(
n∑

i=1

wixi + b

)
(1)

The computation of the whole layer can be expressed together using matrix notation
as in the following equation:

y = ϕ (Wx + b) (2)

In what follows, we will use this conventional matrix notation, where bold capital letters
represent matrices and vectors are represented by lower case bold letters. More specifically,
W will refer to the matrix containing the weights of the inputs and b will refer to the vector
containing the biases. All vectors and matrices can take real values.

Recurrent Neural Networks

A limitation of FNNs is that the input is assumed to have a fixed dimension specified
before training. However, in NLP, we often need to handle sequences of indeterminate
sizes like texts. Besides, FNNs encode sequences as fixed size vectors, sacrificing most of
their structural information. Recurrent neural networks (RNN) are specifically designed to
preserve the temporal information of sequences and deal with inputs of arbitrary lengths.

Recurrent layers

Figure 2: RNN with three hidden layers
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The idea behind RNNs was introduced by Elman (1990) and consists in running the
network several times, feeding it with an element of the input sequence at each time step.
Recurrent architectures can be viewed as extremely deep neural networks with weight
sharing across time, because in addition to passing the output of the hidden units to the
next layer, they also provide feedback to themselves at each time step, as depicted in
Figure 2.

RNNs have produced remarkably strong results for multiple NLP tasks including lan-
guage modelling, machine translation, dependency parsing, sentiment analysis, noisy text
normalisation and response generation (Goldberg, 2016).

x

y

xt−1

y
t−1

xt

y
t

xt+1

y
t+1

U

V

W

U

W

U

W

U

W

V V VV
⋯ ⋯

Figure 3: A hidden unit of a RNN, unrolled

There are various types of RNN neurons, but perhaps one of the most famous is the
long short term memory unit (LSTM) (Hochreiter and Schmidhuber 1997). It has
been essential to the success or RNNs, as it produces better results than the standard
version in many tasks, mainly because they are capable of learning long-term dependencies
that are difficult for standard RNNs.

The core idea behind LSTMs is that there is a cell state that stores all the information
accumulated by the unit, and the neuron has the ability to learn the information that
needs to be removed or maintained in the cell state. The flow of information is regulated
by three structures called gates: the forget gate decides what information must be removed
from the cell state, the input gate decides what new information is going to be stored and,
finally, the output gate selectively decides which part of the cell state to output as the new
hidden state.

For each element in the input sequence, each neuron computes the following equations,
where: ht, ct and xt are the hidden state, cell state and input at time t; it, ft, ot are the
input, forget, and output gates; and σ is the sigmoid function:1

it = σ(Wiixt + Whih(t−1) + bi) (3)

ft = σ(Wifxt + Whfh(t−1) + bf ) (4)

ot = σ(Wioxt + Whoh(t−1) + bo) (5)

1The sigmoid function is defined as: σ(x) = 1
1+e−x
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ct = ftc(t−1) + it tanh(Wigxt + Whgh(t−1) + bg) (6)

ht = ot tanh(ct) (7)

2.1.2 Supervised learning, gradient descent and backpropagation

The objective of DL is to accurately assign weights to make the neural network exhibit the
desired behaviour (Schmidhuber, 2015), and supervised learning is the most common form
of achieving this goal. During supervised training, outputs produced by the network are
compared to ground truth results, and the generated error is measured using a function
which is called the objective function (also known as loss function or cost function). The
network then adjusts its internal parameters (weights and biases) to reduce the error, and
the process is repeated until the errors produced by the network in terms of the objective
function do not decrease anymore.

The parameters of the network can be properly adjusted and thus, the cost function
minimised, via gradient descent. This procedure consists in modifying the weights ac-
cording to the gradient of the cost function, which indicates, for each weight, by what
amount the error would increase (or decrease) if the weights were increased by an infinites-
imal amount (LeCun et al., 2015). Each weight is adjusted in the direction opposite to the
gradient, according to the following equation, where θ is the parameter we want to update,
J the cost function and α a real-valued number.

θ := θ − α d

dθ
J(θ) (8)

To intuitively understand gradient descent, the cost function can be seen as an irregular
landscape in the high-dimensional space of weights. The gradient vector indicates the
steepest slope, and thus, the direction that conducts us closer to the minimum we want to
achieve. The size of the step is controlled by a hyper-parameter called learning rate, which
is represented as α in equation 8. Figure 4 illustrates gradient descent when the number
of parameters to update is one or two, keeping in mind that neural networks used in real
applications typically have millions of parameters.

A limitation of this method is that computing the gradient over the entire training set
can make the convergence very slow. Stochastic gradient descent (SGD) makes use of a
subset of the training instances to calculate an estimation of the gradient, which is much
faster. On the other hand, if we perform SGD to compute the gradient and perform an
update for each training example, the high variance of the updates makes convergence
difficult.

Performing an update for every n instances (mini-batch gradient descent) is the most
used approach by DL practitioners, because it reduces the variance of the updates, leading
to a more stable convergence. However, there are still some challenges that need to be
addressed, such as the possibility of getting stuck in a local minimum when the error
surface is non-convex, or the selection of the learning rate. While an excessively small
learning rate can lead to slow convergence, if it is too large gradient descent can overstep
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Initial weight

Figure 4: Schema of gradient descent with one and two dimensions

the minimum and even diverge. However, it has been shown that decreasing the learning
rate during training helps SGD to converge to a minimum (Krogh and Hertz, 1992).

In order to perform gradient descent, we need to calculate the gradients of the objective
function with respect to all the parameters in the network. Backpropagation (Rumelhart
et al., 1986) is an efficient method to compute them, based on the application of the chain
rule for derivatives. Applying it repeatedly, gradients can be propagated through all layers,
all the way to the input. The computation of the network is therefore composed of a
forward pass (computing the output using the input features) followed by a backward pass
(calculating the gradient via backpropagation and updating parameters).

Backpropagation can be applied to train RNNs if we consider the outputs of a unit at
different time steps as outputs of different neurons in a deep network. Nevertheless, it has
been difficult to train standard RNNs because the gradients either grow or decrease at each
time step, so over many time steps they typically explode or vanish (Bengio et al., 1994;
Pascanu et al., 2012). While exploding gradient problem can be easily solved by clipping
the gradients at some maximum value, the vanishing gradient is effectively addressed by
LSTMs due to their design that mitigates this issue (Karpathy et al., 2015).

2.2 Natural Language Generation

Advances in hardware and the increasing quantity of available data have led to signifi-
cant progress in DL techniques, which have drastically transformed the NLP field in the
last decade. As a consequence, NLG systems can be classified as traditional or neural,
depending on whether they use deep learning to generate language or not.

2.2.1 Traditional NLG

First works on NLG, which go back to the beginning of the 70s, were based on hand-
crafted rules. Winograd (1972) describes a computer system that answers questions on a
particular domain using simple patterned responses such as “ok.” or “I understand.”, and

Language Analysis and Processing



NLG with Unstructured Contextual Information 9/66

slightly more complex responses filling the blank in some predefined sentences. Templates
are efficient and allow a control of the the quality of the output by avoiding the generation
of ungrammatical structures.

Another approach is the one followed by the automatic novel writer presented in Klein
(1973), which uses an English grammar to create murder stories where the motivation, the
killer and the victim can vary. The stories are composed of very simple short sentences and
they lack fluency, as shown in the example in Table 1, an extract of a story automatically
written by this system.

FLORENCE TALKED WITH THE COOK ABOUT THE MURDER.
THE COOK WAS UPSET ABOUT THE MURDER.
JAMES SAID THAT RONALD KILLED DR. HUME.
RONALD DENIED THE ACCUSATION.
RONALD SAID THAT JAMES WAS STUPID.

Table 1: Extract of the output of Klein (1973)

The generation models became more sophisticated in the following years, but continued
being fundamentally based on hand-crafted grammars or predefined templates designed by
humans (McRoy et al., 2000; Piwek, 2003). These methods are effective when application
domains are small and little variation is needed, but they are hard to generalise to other
task or domains.

During decades, NLG systems have followed a pipeline architecture. This traditional
architecture is divided into different successive tasks, and even though not all systems
conform completely to the same stages, there is a consensus regarding the three principal
modules described in Figure 5 (Reiter and Dale, 2000).

One of the first and most famous systems that follows the traditional modular archi-
tecture is FOG (Goldberg et al., 1994), a bilingual system that generates weather forecast
reports in French and English. It is an example of a data-to-text system that takes as in-
put a numerical value of how various meteorological phenomena may vary in a region in a
specified time interval, and produces a textual summary of this information after deciding
how detailed the information it provides should be. The system was put into commercial
use in 1993. Since then, more commercial NLG systems have been developed, such as those
offered by the Arria company2.

Surface realisation, the last standard module that converts text specifications into a
correct natural text, addresses issues such as word order determination, inflection or para-
phrasing. This stage has triggered specific interest, with recent workshops and shared
tasks dedicated to this aspect of the NLG process (Surface Realization Shared Task 2018
and Workshop on Multilingual Surface Realization3 held at ACL2018). Several attempts
have been made to create flexible and domain-independent templates and grammars to
perform surface realisation (Mann, 1983; Elhadad and Robin, 1996; Mcroy et al., 2003),

2https://www.arria.com/
3http://taln.upf.edu/pages/msr2018-ws/

Language Analysis and Processing



NLG with Unstructured Contextual Information 10/66

MICROPLANNING:
Finding the words and phrases to express information and deciding which information to present in which sentence. 

SURFACE REALISATION:
Combining all words and phrases into well-formed coherent sentences with an adequate structure. 

DOCUMENT PLANNING: 
Deciding which information to include and in which order.

TEXT

Figure 5: Architecture of traditional NLG systems

but hand-crafting this type of system is often time-consuming, requires expert knowledge
of linguistic representation, and the generated outputs still lack the large variations of
human-written texts.

As an alternative, statistical systems that do not need such complex rules have been de-
signed. One of the first systems of this type is NITROGEN (Knight and Hatzivassiloglou,
1995), a sentence generator that uses very simple and generic grammars to generate multi-
ple sentences and then selects the best one using a corpus and a statistical model based on
bigrams. One of the shortcomings of this system, the lack of syntactic information in the
generation process, is addressed in HALOGEN (Langkilde, 2000), a system with a similar
approach but which represents the generated sentences as sets of syntactic trees. The tree
sets are then classified using a statistical n-grams model.

These traditional approaches are now being replaced with neural NLG and end-to-end
data-driven methods, which jointly learn all the stages of NLG directly from data.

2.2.2 Neural NLG

Along with the success of neural approaches in many areas like machine translation or auto-
matic speech recognition, the number of studies that explore different neural architectures
for NLG has increased in recent years. DL approaches rely on statistical learning of direct
correspondences between inputs and outputs, putting into question the traditional divi-
sion into modules of NLG systems, and, currently, non-modular end-to-end architectures
represent the dominant trend (Gatt and Krahmer, 2018).

Systems that take advantage of DL techniques have demonstrated significant improve-
ments over traditional ones, in particular in terms of generalization to new domains and
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scalability, and consequently, NLG has regained weight in the community. Examples the
of success of this new paradigm in NLG include its application in dialogue systems (Tran
et al., 2017), text summarisation (Chopra et al., 2016), image captioning (Xu et al., 2015)
and video description (Yu et al., 2016).

Architectures

Within the advances in DL, the development of RNNs and their variants has been of
particular importance for NLG, as they implicitly encode temporal information of sequences
of variable size. They have achieved new state-of-the-art results in handling natural texts
in areas such as language modelling and automatic speech recognition (Mikolov et al.,
2010). Additionally, RNNs are able to model the generation process of text sequences by
generating one word at each time step, therefore becoming the dominant paradigm in the
field of NLG over the last few years. Examples include Sutskever et al. (2011) and Karpathy
and Fei-Fei (2015), which generate texts using two variants of RNNs, i.e., multiplicative
and bidirectional RNNs.

Since Graves (2013) proposed to generate sequences using LSTMs, this particular type
of RNN has been the most successful and has achieved promising results generating texts in
very different domains such as machine translation (Sutskever et al., 2014), video captioning
(Venugopalan et al., 2015b) or dialogue systems (Wen et al., 2015).

Most recent NLG models follow the encoder-decoder architecture introduced by
Sutskever et al. (2014), which has been particularly successful in machine translation and
forms the basis of most neural machine translation variants (Bahdanau et al. (2015); Wu
et al. (2016)).

Encoder-decoder models are composed of two RNNs. The encoder RNN reads the
input data and transforms it into a fixed-length internal representation, from which the
decoder RNN generates the desired output. The decoder predicts the next word based not
exclusively on the encoded contextual information given by the encoder, but also taking
into account all the previously generated words (Figure 6).

This architecture is explored in many NLG studies such as Dušek and Jurcicek (2016)
or Nallapati et al. (2016). and is also referred to as sequence-to-sequence architecture.

z

x1 x2 xn < STR >

y1
y2 < EOS >

y1
y
m

⋯ ⋯

Figure 6: Architecture of a sequence-to-sequence model. z is the internal representation of
the input.

Language Analysis and Processing



NLG with Unstructured Contextual Information 12/66

z

< STR >

y11
y12 < EOS >

y11
y1n

⋯

< STR >

y21
y22 < EOS >

y21

⋯

y2m

⋯

Figure 7: Architecture of a hierarchical decoder. z is the internal representation of the
contextual information.

However, variations in the architecture of the encoder make these models capable of dealing
with non-sequential input, and thus they are appropriate also for data-to-text generation.

Contextual information can be encoded by means of a MLP if it is discrete (Dong et al.,
2017), whereas images are typically encoded using a variety of FNN called convolutional
neural network (CNN) (LeCun et al., 1999), which has shown impressive results in pattern
recognition, by means of a set of filters using convolutions.

A combination of CNN+RNN has been adopted by multiple image and video captioning
studies such as Venugopalan et al. (2015a) or Karpathy and Fei-Fei (2015).

Although they can produce coherent sentences, the difficulty of propagating the con-
textual information along the decoder makes the quality of encoder-decoder models decay
as the target sequence length increases (Bengio et al., 1993).

An approach to address the long-term dependency issue is the generative concatena-
tive network introduced by Lipton et al. (2015), which simply concatenates the encoded
contextual information with the decoder’s input at each step of the generation process.
Despite its simplicity, this approach has demonstrated robust results in Costa et al. (2018)
and Ni et al. (2017).

A more extended solution is to use attention mechanisms. Initially introduced by
Bahdanau et al. (2015) to improve automatic translation systems, this mechanism has been
applied also in NLG (Mei et al., 2016; Dong et al., 2017) and in addition to dealing with
the difficulties of learning long-term dependencies, it learns to focus on specific parts of the
input at each step of the decoding. The most relevant parts of the input are thus selected
at each time step and then used to feed the decoder.

Challenges for sequential generation models to handle long texts can be alleviated also
with hierarchical decoders (Sordoni et al., 2015), which generate sentences one by one,
instead of generating the whole text at once. As depicted in Figure 7, the decoder is divided
into two parts, a sentence level RNN and a more general one, sometimes called paragraph
generator. The sentence level RNN works just like a ordinary decoder but each generated
sentence is used to update the general RNN, and its output, in turn, is used to feed the
sentence level RNN at the next step. In this manner, the system takes into account the
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already generated sentences to generate the next one and thus makes it possible to maintain
coherence for the whole text without the need to handle one extremely long sequence. The
hierarchical structure can be extended also to the decoder and combined with attention as
in Li et al. (2015).

Aside from encoder-decoder models, unsupervised learning methods have also been
tested recently in the NLG field. Rajeswar et al. (2017) and Yu et al. (2017) for example,
make use of generative adversarial networks (GAN) to generate texts. These sys-
tems consist of two neural networks competing with each other. While a network tries to
generate realistic outputs, the other one tries to distinguish the generated outputs from
real examples. By training both networks jointly, the generator learns to produce realistic
outputs.

Semeniuta et al. (2017) on the other hand, employs a variational autoencoder (VAE)
to generate tweets. VAEs are recently introduced generative models that in addition to
encoding real data and reconstructing it via a neural decoder, are able to learn a prob-
ability distribution of encoded real data. New data is then generated by taking samples
from this probability distribution and passing it through the decoder. These unsupervised
methods must be studied further yet, specially for the generation of longer sequences, since
Semeniuta et al. (2017) reported issues to generate texts of more than 50 characters, and
Rajeswar et al. (2017) trains its model with sentences of up to 11 words only.

Limitations

Although DL has been a breakthrough in NLG, it still has some strong limitations, such
as the issue of out-of-vocabulary (OOV) words.

In domains with very heterogeneous texts, the vocabulary can have more tokens than is
feasible to model. One simple approach to deal with this issue is to establish a vocabulary
with the most frequent terms and assign all remaining tokens to the special token <UNK>.
Although this technique has been often employed, it can lead to a poor performance of
the system if the vocabulary is very varied. Different solutions have been proposed to
address this problem in other fields such as machine translation, but not all of them are
applicable to NLG. For example, substituting each OOV word in the target sentence with
its corresponding word in the source sentence (Gülçehre et al., 2016; Luong et al., 2015)
is not possible in NLG because there is not a direct correspondence between input and
output data.

Another alternative is to generate texts at character level instead of token level, as in
Goyal et al. (2016). This approach is computationally efficient because the vocabulary
is much smaller and OOVs are totally avoided. It allows the generation of new strings
which can be interesting, but can also produce nonsense words and, as a consequence,
usually provides worse performance. In addition, the number of steps that are necessary
to create a text is much greater at the character level. An intermediate approach between
character and token-level generation is the use of word segments of variable size. This can
be accomplished via the byte pair encoding (BPE) compression algorithm (Gage, 1994),
which splits words of an open vocabulary into learned character sequences within a fixed-
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size vocabulary. This method has been used effectively in neural machine translation, for
instance Sennrich et al. (2016).

Handling information from the input during the generation process can also be problem-
atic for some neural NLG systems. Generated texts can thus miss important information
or introduce again content that has already been mentioned. Specially when constructing
long texts or when there are multiple input sources, maintaining coherence and avoiding
duplication is challenging for RNNs (Kiddon et al., 2016; Tu et al., 2017). Despite the
contribution of attention and gating mechanisms to dynamically control the contribution
of contextual data to the generation process, this problem is still far from being solved.

2.2.3 Evaluation

Regarding evaluation, there is no gold-standard metric to measure the naturalness and the
quality of the generated texts. In the absence of adequate automatic metrics to automati-
cally evaluate NLG (Reiter and Belz, 2009; Novikova et al., 2017), most NLG systems are
evaluated using perplexity (Lipton et al., 2015; Tang et al., 2016) or machine translation
metrics like BLEU or METEOR (Kiddon et al., 2016; Dong et al., 2017; Zang and Wan,
2017), in addition to human evaluation.

Some recent studies have suggested the use of referenceless metrics to evaluate NLG in
the context of dialogue systems (Dusek et al., 2017; Tao et al., 2018). The main advantage
of these metrics based on neural networks is that they learn to measure the quality of the
output texts without requiring human ground-truth references, but their use is not quite
extended yet.

Since evaluation has become an important topic in NLG, Section 3 is devoted entirely to
this subject, with an explanation of the most extended metrics (both human and automatic
metrics) with their pros and cons and the influence that the data selected to evaluate the
models have on the results.

2.2.4 Automatic Review Generation

The task of generating product reviews has gained attention as an application of NLG,
particularly in relation with neural approaches, due to the large quantity of available
reviews and their continuous generation.

In addition to data availability, there are other properties that make automatic review
generation interesting within NLG. Language changes depending on the particular context
in which it is generated (e.g. the language we use changes depending on the sentiments we
have in a specific moment). This aspect is an important factor in the generation of natural
language and should not be ignored in NLG. When writing a product review, our goal is
not only to generate semantically and syntactically coherent texts, but also to express a
sentiment with respect to the product or some of its aspects. Since this sentiment is usually
related to auxiliary information such as a product rating, this data can be very useful to
study the generation of texts based on a predefined values representing a sentiment.
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In this scenario, multiple studies centre on generating reviews conditioned on product
ratings (Tang et al., 2016) or sentiments (Radford et al., 2017). In addition to affective
NLG, stylistic variations with the use of additional attributes such as user identification
or product characteristics have also been shown to improve the quality of the generated
reviews (Lipton et al., 2015; Dong et al., 2017).

Attribute-conditioned review generation can be integrated into different NLG architec-
tures. While Hu et al. (2017) generate movie reviews via VAEs and control the sentiment
and the verbal tense of the generated reviews, Ficler and Goldberg (2017) generate them
by means of an LSTM and condition them on six parameters simultaneously. The LSTM
is thus fed with a content-related attribute, a sentiment (positive neutral or negative) and
four stylistic parameters including the length of the review and whether the writing style
is professional or not.

Alternatively, Dong et al. (2017) propose an encoder-decoder model for book review
generation. In this case, stylistic conditioning includes the reviewer identifier, while the
rating modulates the sentiment of the output. In addition, an identifier of the criticized
product helps to determine the content of the review. GANs can be also used to create
positive and negative reviews, as in Rajeswar et al. (2017).

One of the biggest challenges in review generation is handling the enormous variety
of candidate reviews that satisfy the input attributes. Apart from the explicitly given
attributes, there are other factors that influence the generated reviews, making the gener-
ation process non-deterministic and the possible results extremely diverse. For example,
different users tend to describe different aspects of a product and use different sentiment
words to express the same rating score. An adequate evaluation method is crucial to handle
this problem and decide which output is correct and which one is not.

Long review generation is also a challenging task due to the aforementioned issues that
make it difficult to maintain coherence, though there is little work on this specific issue at
present. Lipton et al. (2015) generate short texts for various aspects of the product and
join them as a single long review, whereas Zang and Wan (2017) generates long reviews
from aspect-sentiment scores, using a hierarchical structure within the encoder-decoder
framework.

Finally, another additional issue is that review data feature a significant quantity of
proper nouns and slang, which contributes to an enormous vocabulary difficult to deal
with.

Recent work on review generation has centred on text generation from fixed attribute
vectors, as exemplified by the use of ratings and product identifiers. These contributions
have shown that end-to-end DL architectures are suitable for the generation of natural
language descriptions from this type of input. However, under these experimental set-
tings, the generation process crucially depends on previously seen items and models are
taught to generate text from data similar to that on the training set. As a result, these
approaches cannot be evaluated on related but unseen input, such as a new products that
may be similar to other previously reviewed items. Such a conditioning makes it difficult
to evaluate the generalisation potential of different NLG architectures. The advantages
and disadvantages of different types of input data are further discussed in section 4.
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Generalisation beyond training data is a challenge for DL methods, which extends to
other domains outside of NLG. In image captioning, a method called zero-shot learning
learns to recognise new concepts that have not been seen during training, by using a
description of them (Romera-Paredes and Torr, 2015). Inspired by this approach, this
work tries to exploit unstructured information as product descriptions in order to test the
capability of NLG architectures to generalise to unseen products.

Language Analysis and Processing



NLG with Unstructured Contextual Information 17/66

3 Evaluation of NLG systems

The evaluation of NLG systems is a central matter in the field, with several studies focused
exclusively on this topic (Reiter and Belz, 2009; Novikova et al., 2017). In this section, we
describe the core aspects involved for a proper evaluation of NLG systems.

In addition to describing and discussing the adequacy of the evaluation methodology,
including the employed techniques and metrics, it is necessary to emphasize the influence of
the data we use to evaluate the systems. The results may vary considerably depending on
the test data, so it is crucial to select them properly, taking into account the peculiarities of
the task and the domain on which the system works. Finally, once the scope and validity
of the different techniques and metrics are established, we discuss the use of common
evaluation criteria, in order to facilitate comparisons between systems.

3.1 Methods

Evaluation methods are classified into intrinsic and extrinsic methods. While intrinsic
methods explicitly evaluate the quality of the generated text by means of different metrics,
extrinsic evaluation is dependent on the application domain of the system and measures
the output’s effectiveness in achieving its specific goal (Gatt and Krahmer, 2018).

An example of extrinsic evaluation for NLG appears in Bartoli et al. (2016), where
restaurant reviews are generated, and the system is evaluated by measuring its ability to
influence the decision of a user about going or not to a restaurant. Extrinsic or task-based
evaluation needs to control all intervening variables in order to carry out the study in a
realistic context. For example, Portet et al. (2009) generated summaries from patient data
and was evaluated with medical staff making decisions based on the generated summaries.
However, this scenario was not completely realistic, since decisions were taken without
direct access to the patient, which is a very important source of information in medical
decision making.

In addition to an exhaustive control of the variables, extrinsic evaluation is usually
highly time consuming and requires a large number of adequate users in order to achieve
sufficient statistical power, so it is often considered the most expensive and difficult eval-
uation method (Carenini and Moore, 2006). Therefore, there is little discussion in the
literature about extrinsic evaluation methods for NLG and how they should be carried
out.

Intrinsic methods, on the other hand, have been discussed by quite a few studies in the
NLG community. These methods measure the performance of a system analysing factors
related to text quality, such as correctness of the output or its readability.

This is the approach adopted to evaluate most NLG systems, and almost all review
generation systems rely on it. Intrinsic methods are divided on two principal subsets
depending on the employed methodology, which can rely on human ratings or on automated
metrics based on corpora. In recent years, there has been an increasing interest in corpus-
based automatic metrics due to their cheapness, but there is not a consensus regarding
their validity and their correlation with human evaluation, and there has thus been a
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considerable amount of discussion in the NLG community about their appropriate use.

3.1.1 Human evaluation

In evaluation based on human judgements, different people rate systems’ outputs quan-
titatively on some predefined criteria or compare them with other outputs. Common
evaluation criteria are divided in two sets:

• Criteria measuring the linguistic quality of the output (e.g. fluency, readability).

Examples of studies using these criteria to evaluate the generated texts include Kid-
don et al. (2016) and Costa et al. (2018), who measure their outputs by means of
grammaticality and readability, respectively.

• Evaluation of the relevance or correctness of the output’s content (e.g. accuracy,
adequacy).

In addition to readability, Zang and Wan (2017) evaluate the accuracy of the reviews
generated by their system in order to measure how well the review text matches the
given input values.

Quantitative evaluation methods help to measure whether an NLG system is working
correctly or not, but when the system fails, they do not help to understand why. An
advantage of human assessment is that, besides the quantitative evaluation given by ratings,
evaluators can be asked to perform a qualitative evaluation and explain why they prefer
some outputs over the rest, which provides information about possible improvements for
the system.

On the other hand, according to Belz and Reiter (2006) and Reiter and Belz (2009),
there are large differences in how different human subjects rate texts, so if the evaluation
is conducted with a small number of subjects, the expressed preferences may not be repre-
sentative of users in general. These differences can be controlled using many subjects, but
this can result in an expensive evaluation of the cases when the evaluators must be experts
in a certain domain (e.g. medical staff), and it is therefore difficult to execute this type of
evaluation.

3.1.2 Automatic evaluation

Automatic evaluation metrics are widespread in many areas of NLP because they are
cheaper and faster to run than human evaluation, and thus allow researchers to easily
estimate the impact of new algorithms and datasets and to identify weaknesses in a system
during the development process.

As described in Section 2, there is currently a lack of consensus regarding NLG-specific
evaluation metrics, and automatic metrics drawn from machine translation are frequently
employed in the field. Most of these methods measure n-gram overlap between the gener-
ated text and human-written references on a corpus. We follow this approach and employ
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some of the most popular metrics in machine translation which are BLEU, NIST and
METEOR.

• BLEU (Papineni et al., 2002), the standard automatic metric in machine translation,
is also the most used automatic metric in NLG. It measures the similarity between
the output of the system and one or more ground-truth references in terms of length,
word choice and word order. BLEU counts n-gram overlaps, (position independent)
between a candidate sentence and the references using a modified version of precision
and gives a score between 0 and 100, with reference sentences scoring 100. It is
standardly used with n-grams up to order 4 (BLEU-4), which obtains best correlation
with human judgements evaluating machine translation systems.

BLEU is usually computed at corpus-level, because the metric is based on the geo-
metric mean of different n-gram order matches, making it less reliable at the sentence
level where missing higher order matches result in a score of 0.

• The NIST score (Doddington, 2002) is based on BLEU but differs from it in its
use of the arithmetic mean and its emphasis on lower frequency n-grams, yielding a
metric where more informative words have a higher impact on the final score. While
BLEU uses the geometric mean of the n-gram precisions to increase the influence of
the larger n-grams, NIST uses the arithmetic mean and its brevity penalty is less
sensitive to the impact of small length variations.

• An important development of automatic metrics is the use of semantic resources
beyond literal n-gram overlap, as in the case of METEOR (Lavie and Agarwal, 2007),
a metric which notably includes stem, synonym and paraphrase matching to account
for surface variations not accounted for by strictly word-based metrics. METEOR
gives a sentence-level similarity score based on unigram recall and precision, where
matches in content words have more influence.

All the automatic metrics, however, must be validated analysing how well they correlate
with human preferences. Therefore, multiple studies have examined correlations between
human judgements and automatic evaluation metrics in NLG, with varying results:

Belz and Gatt (2008) found that there was no significant correlation between the re-
sults of an extrinsic evaluation and metrics like BLEU and NIST in a referring-expression
generation task. Reiter and Belz (2009) on the contrary, conclude that these two metrics,
and specially NIST, are able to measure the linguistic quality of generated texts in the
domain of weather forecasts. However, this study suggests that the analysed metrics do
not provide a useful measure of content quality, because none of them exhibits a significant
correlation with human accuracy judgements.

In the machine translation field, NIST for unigrams correlates better than BLEU with
human judgements of adequacy, and METEOR consistently demonstrates a high correla-
tion with various human judgements in independent evaluations such as thos performed in
EMNLP WMT 2011 (Denkowski and Lavie, 2011).
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“I loved the idea of a person who tries to murder but is continuously unsuccessful. I also like the
twists and turns and the surprise at the end. But I did think of a better ending...”

“I truly enjoy most of Mr. Wilde’s writing. I enjoyed reading this. I have read most of Oscar’s
stories and find most of them quite a good read.”

Table 2: Examples of positive human reviews of the same book in the dataset

Novikova et al. (2017) suggest that automatic evaluation metrics can help detect cases
where the system performs poorly and Reiter and Belz (2009) confirm that they can be
reliable at system-level. According to the latter, although results are data- and system-
specific, automatic metrics facilitate the development process by offering a way to easily
evaluate the impact of small changes in systems and algorithms.

3.2 Impact of Test Data

One substantial difference between the machine translation and NLG tasks is worth noting,
as it impacts the use of the aforementioned metrics. In machine translation, the references
used as ground-truth and the generated translation should contain the same information,
even though they can use different words to express it, and this information has been given
as input in the source language. In many NLG tasks, however, and particularly in review
generation, the information that can appear in the output texts is not restricted in that
manner.

Thus, one of the major problems when automatically evaluating a review generation
system is that two reviews expressing an opinion about the same product may have little
to nothing in common even when they share the same rating, as shown in the examples
of Table 2. Therefore, the range of possible outputs is wide, and when evaluating results
on review generation, the ground-truth references used to evaluate the output acquire a
significant importance.

Although vocabulary variability is preferred by many human evaluators, automatic
evaluation metrics assign high ratings to systems that maximise the likelihood of the cor-
pus generating outputs with the highest frequency and penalises those that tend to use
different words and phrases. This problem is addressed in Novikova et al. (2017), where a
grammatically correct output that expresses the intended meaning well, and which indeed
is very highly rated by human evaluators, obtains a very low score from the automatic
metrics described above, because the generated text has low overlap with the reference to
which it is compared (Table 3).

Using a high-quality test set with multiple references can provide reasonable coverage
of possible variations and mitigate this issue. in this work, we follow this approach by
providing a minimum number of four references for the test set when we employ the
automatic word-based metrics to identify relative weaknesses and key strengths of different
approaches.
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INPUT: inform(name = the donatello, hasinternet = yes)
OUTPUT: “well there is a hotel with internet access called the donatello”
REFERENCE: “the donatello has internet”

AUTOMATIC EVAL.: 1.4/6
HUMAN EVAL.: 6/6

Table 3: Example of disagreement between automatic and human evaluation, from
Novikova et al. (2017)

Obtaining good reference texts can be expensive, specially in domains where texts must
be written by experts, and for this reason, referenceless metrics are gaining interest in NLG
(Novikova et al., 2017; Dusek et al., 2017). In addition to n-gram-based metrics, we will
therefore also include results in terms of perplexity of the generated sentences to measure
output fluency without requiring references. Perplexity measures how well a language
model trained over the training set predicts the generated texts, where low values indicate
that the probability distribution of the language model is good at predicting the sample.

The similarity between the data used to train and to test the system also influences
the results of the NLG systems. Elliott and de Vries (2015) create image descriptions,
and their results notably change depending on the data they use for evaluation, with
better performance on images depicting people performing actions than in a more varied
dataset, where the training data result less useful. To take this aspect into account in
our evaluations, we will also include a perplexity-based split of the test set to evaluate the
results on reviews of varying complexity.
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4 Structured and Unstructured Input

By definition, the output of NLG is always a text, but the input can vary considerably from
one system to another. This variability, which does not exist in other fields of NLP where
the source of information is always the same (e.g., textual input for natural language
understanding or audio files for automatic speech recognition), becomes visible in the
classification of NLG systems, which are divided, depending on the type of input, in data-
to-text and text-to-text systems. This is mainly due to the wide range of tasks for which
NLG is used, since it is evident that the same type of input cannot be used for image
captioning and for automatic text summarisation, but even within the same task, different
approaches tend to represent the same source data in different ways.

Although this topic has generated interest for a long time, and there are related studies
since the beginning of the 90’s (McDonald, 1993), the ideal input format for NLG is still
undetermined. Each system tries to express the input in a format that is practical to its
specific application and it is hard to define a general-purpose representation of data.

The importance of this issue is that the nature of the data directly influences the type of
architectures to be used, and therefore, produces an impact on the ultimate results achieved
by the system. As a consequence, a good selection of the input type can lead to improve-
ments on a given task. Additionally, being able to deal with different representations of
the data can make it easier to reuse different DL methods across systems.

The most common input data consist of numerical data or categorical features that can
be easily expressed by means of a fixed-size vector (e.g., a one-hot vector expressing a class).
In NLG for dialogue systems, the input is usually a meaning or semantic representation of
the dialogue act (Wen et al., 2015) and recently, the growing interest in image and video
captioning has made the task of generating text from visual input an important task within
NLG. All these types of inputs can be divided into structured and unstructured data, each
with its advantages and disadvantages, where the type of task is decisive.

4.1 Structured Input

With structured data, each of the features has a well-defined meaning and structure. The
price of a product or the age of a person, for example, can be expressed with simple
structured input features, via a number that takes real and discrete values, respectively.
The data structure used for the task can be a discrete variable (e.g., movie rating) or a
continuous variable (e.g., temperature). Class membership can also be represented using
a fixed-size vector and one-hot encoding. For instance, a vector of size 2 can express the
gender of a person or indicate if a sentiment is positive or negative.

In automatic review generation, it is very common to use one-hot encoding to feed
the system with a discrete variable like the rating of the reviewed product or the user or
product identifier (Tang et al., 2016). In fact, besides review generation, a large amount
of affective NLG work relies on human ratings. This type of data is easy to obtain and
cheap, does not require hard preprocessing and is also easy to understand.

On the other hand, this type of input makes it difficult to generalise to new instances.
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For example, in order to train a review generator with reviews of 100 different products,
we can use a vector of size 100 and one-hot representation to feed product information to
the system. But, what if after training the model, we want to generate a review about
a new product? We cannot express this product by means of the input vector, because
it would then be a vector composed entirely of zeros and therefore, with no associated
information. A possible solution is to feed the model with different characteristics of the
products. In this manner, the model would be able to learn the relation between some
specific characteristics of the products and the output text, and we could therefore create
a review for a new product, unseen during training, provided we have the appropriate
information about it. These characteristics, however, would need to be defined before
training.

Another example of structured data is semantic or meaning representation. Table 4
shows an example of this type of input in the restaurant review domain. As we can see, it
is also very simple to understand, but it requires more preprocessing than raw numerical
data.

MR: name[The Wrestlers]
priceRange[cheap]
customerRating[low]

NL: The Wrestlers offers competitive prices,
but isn’t rated highly by customers.

Table 4: Example of meaning representation (MR) and its corresponding natural language
output (NL), from Novikova et al. (2016)

Abstract Meaning Representation (AMR) is a semantic representation language intro-
duced by Banarescu et al. (2013), widely used as input for NLG (e.g. Pourdamghani et al.
(2016); Flanigan et al. (2016); May and Priyadarshi (2017)). Using rooted, labelled, di-
rected, acyclic graphs, AMR aims to abstract away from syntax and represent sentences
according to their meaning. The graph notation, which is very useful for computer pro-
cessing, is adapted to the PENMAN notation4 for human reading and writing.

This type of input, as well as logical formulae that can also be used as input in NLG
(El Ghali, 2002), expresses the intended meaning of the desired text. This means that
sentences with similar meaning have the same semantic representation, even if they are
worded in a different way. Intuitively, it seems very logical to use this type of data as input
for NLG, but it is less interesting if one objective of the system is learning to decide which
part of the data is important and which one is not before writing the text.

4https://www.isi.edu/natural-language/penman/penman.html
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When generating reports of financial data for example, the system must select which
part of a large quantity of data can be useful to the user, and use only this information
to generate the output. This step corresponds to the first stage of the traditional NLG
architecture, but if the production of text starts from a meaning representation, this part
of document planning is already done, and the system only covers the micro-planning and
final surface realisation tasks (McDonald, 1993). Thus, this approach, which has proved
very useful for dialogue systems, is less helpful if the objective is to use NLG to create
summaries of data that are difficult to understand by people.

4.2 Unstructured Input

Unstructured data refers to different types of data like raw audio, images, or text of variable
size with an open vocabulary. In the NLG domain, the latter two are the most common
examples of this type of input and possible features are the words in a piece of text or the
pixel values in an image (Venugopalan et al., 2015a; Chopra et al., 2016; Karpathy and
Fei-Fei, 2015).

While humans are really good at interpreting unstructured data (we easily understand
audio files as well as images and texts), computers are more suited to dealing with struc-
tured input. Despite the incredible success of DL exploiting structured data with, for
example, its ability to make accurate predictions from giant databases that are almost
impossible to understand by people, successes on unstructured data seem to be more im-
pressive. Perhaps because of the natural ability of humans to understand this type of data,
people are often surprised that a neural network can recognize an image or understand a
text. These advances can give the impression that computers really can “understand”
things as humans do, and are assigned human capabilities when in reality their achieve-
ment is the discovery of patterns in data via mathematical calculations.

The principal reason behind the necessity of exploring NLG architectures that are able
to exploit unstructured input is that such data is necessary for text-to-text NLG tasks such
as automatic summarisation. Additionally, unstructured input can be useful also in data-
to-text generation, providing the possibility, for example, of generalising to new inputs.
Going back to the example of generating reviews of previously unseen products, the model
can be trained with textual descriptions of the products instead of using an identifier or
some characteristics defined a priori. Using this approach, the model should be able to
create a review about a new product by taking advantage of its description, even if the
product has not been seen during training.

Moreover, the use of unstructured data like texts makes it possible to evaluate some
techniques that have been proved useful in other domains. This is the case of attention
mechanisms, which are applied in systems with sequential input such as texts, and are an
essential component of current machine translation systems.
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4.3 An Unstructured Input Task for NLG

As previously mentioned, most recent work in review generation is based on fixed attribute
vectors. Consequently, the task of exploiting unstructured data to test the generalisation
capability of NLG systems to similar but different items has not yet been addressed. One
of the principal objectives of this work is to fill this gap, by providing the means to evaluate
the ability of various approaches to exploit latent information in unstructured data for the
generation of reviews of unseen products.

To realise this objective, the proposed task provides as input both product descriptions
and user ratings, excluding other possible inputs such as product identifiers and review
titles, as conditioning on the former would prevent generalising to unseen products and
using the latter would not provide input-level information independently of the content of
the reviews.

Note that the use of unstructured contextual information could be extended to other
aspects of interest, such as information on other viewed products, for instance. We focus
on a variant of the task based on product descriptions as they provide the largest amount
of textual semantic information in the datasets and thus allow for a first evaluation on
the impact of unstructured contextual information for review generation. We expect the
architectures to be able to extract valuable information from the product description and
to generate reviews that cover the topics derived from it, expressing at the same time a
certain sentiment indicated by the input rating.

A dataset has been prepared with the aim of testing different DL architectures in this
task. The structure of the corpus has been explicitly designed for this task and its partition
allows for a robust evaluation of the results.

4.3.1 Dataset preparation

#reviews
Review length

#products
Description length

min max average min max average
train 747513 25 97 47.24 30924 25 150 78.24
dev 99668 25 95 49.03 8696 25 150 77.08
test 111876 25 98 49.18 12804 25 150 77.56
total 959057 25 98 47.65 52424 25 150 77.85

Table 5: Statistics of the dataset

The dataset used to perform the experiments in this work is a subset of the Amazon
Product Review corpus (McAuley et al., 2015). While the original dataset contains millions
of reviews of various products, this subset contains only book reviews and is composed of
about 960K reports, which refer to more than 52K books. The subset is prepared for our
specific task, each review being paired with the corresponding description of the product
and a rating that expresses the user’s feeling towards the product by means of a score
ranging from 1 to 5 (from negative to positive sentiment).
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Noisy instances have been removed from the dataset by selecting only those reviews
and descriptions where at least 50% of the words were in English. All texts have also been
filtered so that they have a delimited length (between 25-100 words for reviews and 25-150
words for descriptions).

The selected data have been split into three different subsets: the TRAIN set, which
contains the instances that are used to train the system; the DEV or development set, which
is used to monitor the progress of the system while training and to select the optimal model;
and the TEST set, to evaluate the final model.

In order to adequate this corpus to the task of measuring the ability of a system to
generalise to unseen products, each product description appears only in one of the sets,
i.e. there is no product overlap between the partitions. Additionally, all entries in the test
set have at least four references for each generated review, in order to perform a strong
evaluation that takes variability into account.

Table 5 describes the corpus in terms of number of reviews, description length and
review length5.

Since the data is notably unbalanced6, and with the goal of performing a consistent
evaluation, we attempted to maintain the same distribution of ratings over the three sets
of the corpus. However, this proved difficult due to the limited number of negative reviews,
as most of them have less than four references and therefore cannot be part of the test
set. Despite some differences between the sets, it has nonetheless been possible for all the
ratings to be represented in every set (see Table 6). Note that even a small percentage like
0.40% represents hundreds of reviews due to the large size of the corpus.

R=1 R=2 R=3 R=4 R= 5
train 3.95% 3.59% 7.42% 18.58% 66.45%
dev 4.36% 3.53% 6.95% 17.57% 67.59%
test 1.74% 0.40% 1.82% 14.54% 81.50%

Table 6: Distribution of ratings over different sets

Finally, the test set was further split into three additional subsets, based on perplexity
scores, with the aim of having test sets of varying complexity: TEST-LOW-PPL , TEST-
MEDIUM-PPL and TEST-HIGH-PPL. A 5-gram language model was first trained with
the KenLM toolkit (Heafield, 2011) over all the reviews in the TRAIN set. Based on this
language model, all the reviews in the TEST partition were then sorted according to their
perplexity and divided into three equally numbered groups. The reviews were again filtered
in order to have at least four references for each output in every group. The main goal of
this new partition was to evaluate the results in a more fine-grained manner, as simpler
and shorter reviews, with lower perplexity, might be less useful for instance to compare
different architectures. Table 7 describes the perplexity-based test sets in terms of number
of reviews, number of products and perplexity scores.

5The length of the texts indicates the number of words before tokenisation.
6More than 80% of the ratings have a score of 4 or higher.
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# reviews # products ppl
test-low-ppl 19951 3814 24.12
test-medium-ppl 17191 3594 57.12
test-high-ppl 19191 3772 152.20

Table 7: Test set size of low/medium/high perplexity

The prepared datasets thus support our established goals of providing unstructured
input information which can be used for a fine-grained comparison of different NLG archi-
tectures.
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5 Neural NLG Architectures

This section describes the neural network architectures employed in the experimentation
in Section 6. Each one of the following four variants was meant to test different ways of
exploiting product descriptions: LSTM-LSTM, LSTM-Att, LSTM-Conc and LDA-
Conc. An additional architecture, productID, that uses the product identifier instead of
the description, was defined as baseline throughout the experiments.

The presented DL architectures are all variations of the basic encoder-decoder model,
and the decoder is in all the cases formed by two recurrent layers with LSTM units (equa-
tions 9-13).

it = σ(Wiixt + Whih(t−1) + bi) (9)

ft = σ(Wifxt + Whfh(t−1) + bf ) (10)

ot = σ(Wioxt + Whoh(t−1) + bo) (11)

ct = ftc(t−1) + it tanh(Wigxt + Whgh(t−1) + bg) (12)

ht = ot tanh(ct) (13)

The decoder predicts the following word of the review using the information about the
product, the rating, and all the previous words of the review.

As the goal of these experiments is to explore different ways to exploit the non-
structured data provided by item descriptions, the manner in which the decoder is fed
with the current word and the rating attribute (structured data) remains the same across
all architectural variants. At each time step of the decoder, the rating, which is represented
by the one-hot vector r, is concatenated to the embedding of the current word and to the
product information given by the encoder.

We describe below the three essential components common to all variants.

Softmax

A softmax layer stacked over the decoder outputs the probability of being the next gener-
ated item for each word in the vocabulary.

Softmaxi((x1, . . . , xn)) =
exi

n∑
j=1

exj

(14)

The softmax function is defined by equation 14 and it is very commonly used for multi-
class classification tasks. For a k-dimensional vector, it returns k values between 0 and 1
where all outputs sum to 1, so they can be seen as the probabilities of k different categories.
To obtain a probability for each word of the vocabulary, the decoder’s output is resized to
the size of the vocabulary before introducing the values to the softmax layer.
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Drop-out

All the architectures have a special layer called drop-out between the two layers of the
decoder. Dropout layers (Hinton et al., 2012) randomly annul some of the elements of the
input in order to prevent overfitting, an issue typically present in large neural networks
with good results obtained on the training data but poor ones on test data. Overfitting is
greatly reduced by randomly omitting some of the neurons in the network on each training
instance, with large improvements obtained on many DL tasks like speech and object
recognition.

Word embeddings

As in most DL architectures that deal with textual data, the tokens in both the descriptions
and the reviews are represented by a one-hot vector which is then transformed using an
embedding layer. Embedding vectors represent the semantics of a word using dense vectors
that take continuous values, instead of using sparse vectors as in one-hot encoding. In
addition to taking advantage of the semantics of the words, where words with similar
meanings have a similar representation, this representation reduces the size of the vectors,
which goes from being equal to the size of the vocabulary (usually thousands of units),
to having a pre-determined smaller size. These new vectors, which are used to feed the
encoder and decoder, are calculated by a linear layer that is trained along with the rest of
the network.7.

The description of the product is represented by the sequence of embedding vectors
D = (d1,d2, . . . ,dM), and wi denotes the embedding of wi, the ist word of the review.
<STR> and <EOS> are special tokens that are added to all reviews to indicate the be-
ginning and the end of the review, respectively.

While the base architecture is the same for all variants, differences between the descrip-
tion encoding mechanism and the decoder architectures produce different models. We now
turn to describe each architectural variant in detail.

5.1 ProductID

This is the simpler architecture, meant to provide a baseline upon which to measure the
usefulness of textual descriptions for review generation, in the scenario of generalising to
new products. For this reason, it does not exploit any product-related latent information
from the description and instead of using the item description D, each product is repre-
sented by an identifier, using a unique one-hot vector pid. This vector is passed through an
embedding layer and concatenated to the current word and the rating (Figure 8) at each
time step, in order to predict the next word.

7The embedding layers used to encode the words and the softmax functions do not appear in the
schemas of the architectures since the objective of these figures is to highlight the differences between the
different variants and these layers are the same in all cases
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Due to the nature of the task, with no overlapping items between the partitions of the
corpus, the size of the one-hot vector is equal to the number of products in the training
set. Therefore, when introducing a new product, the corresponding pid vector is composed
of only zeros and consequently does not provide any information about the product. Thus
this variant will learn the most common expressions according only to the given user rating.

[< STR >; r;p][ ; r;p]w1 [ ; r;p]wn…

w1 w2 < EOS >p

Embedding  
layer

pID

LSTM LSTM LSTM

LSTM LSTM LSTM
⋯

⋯

encoder
decoder

⋯

Figure 8: ProductID architecture

The results obtained with this architecture are used as a baseline and compared to
the ones obtained using the description of the product, in order to determine whether the
latter contributes to generalising to new products.

5.2 LSTM-LSTM

The second approach leverages the description of the product using a standard encoder-
decoder model as depicted in Figure 9.

The encoder is a single LSTM layer that transforms the descriptionD = (d1,d2, . . . ,dM)
into a new sequence hD = (hD

1 ,h
D
2 , . . . ,h

D
M).

In this architecture, the hidden vector of the decoder is initialised with the last output
hD
M of the encoder, which encodes the information of the whole description. The decoder

thus generates a text according to the input rating, but with its internal parameters con-
ditioned also on the description of the reviewed product.

If the number of units is not equal in both the encoder and the decoder, an additional
layer will be needed to resize the vector hD

M and make it possible to use it as the initial
hidden vector in the decoder. This transformation is performed by a simple linear layer.

Since LSTMs have some limitations regarding the propagation of the input over the
decoder, particularly with long sequences, which are numerous in the corpus we use, two
additional variants were built and evaluated, as described in the next two sections.
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[< STR >; r] [ ; r]w1 [ ; r]wn…

w1 w2 < EOS >

LSTM LSTM LSTM

LSTM LSTM LSTM
⋯

⋯ decoder

⋯

d1 d2 dM…

h
D

1 h
D

2 h
D

M

LSTM LSTM LSTM
⋯

encoder

⋯

Figure 9: LSTM-LSTM architecture

5.3 LSTM-Att

LSTM-Att uses the attention mechanism introduced by Bahdanau et al. (2015) to address
the problems of RNNs to propagate the information over long sequences. This model
can attend to different parts of the sequence hD at each decoding step, inducing a soft
alignment model that scores how well the inputs around position j and the output at
position i match.

This is carried out by computing, at each decoding step, the context vector c, a weighted
sum of the decoder’s outputs, via equations 15-18, where hj is the jst output of the encoder
and st the hidden vector of the decoder at time t.8

ct =
M∑
j=1

αtjh
D
j (15)

αtj = Softmaxj((et1, . . . , etM)), ∀j = 1, . . . ,M (16)

etj = Woe tanh(Wsest−1 + Wheh
D
j ), ∀j = 1, . . . ,M (17)

s0 = Wheh
D
M (18)

Once the context vector is calculated, it is concatenated to the rating and to the previous
word forming the vector [wt−1; r; ct] which is the input of the decoder. Finally, the current
hidden vector of the decoder is employed together with the context vector, the previous
word and the rating of the review to predict the next word of the review via equation 19,
where vk is the kst word of the vocabulary.

p(wt = vk|w1, . . . , wt−1, D, r) = Softmaxk [Wop(Wspst + Wcpct + Wxp[wt−1; r])] (19)

8As in LSTM-LSTM, the hidden vector of the decoder is initialized using the last output of the encoder
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Figure 10: LSTM-Att architecture - Prediction of wt
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Figure 11: LSTM-Conc architecture
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5.4 LSTM-Conc

This architecture, unlike LSTM-Att, uses a Generative Concatenative Network (Lipton
et al., 2015) to avoid the long-range dependency problem. In this approach, which is much
simpler than the attention mechanisms, the encoded description is concatenated to the
input of the decoder at each step of the generation process.

As shown by Figure 11, the last output of the encoder, hD
M , is transmitted to the

decoder together with the one-hot vector of the rating r and the embedding vector of the
previous word, wt−1, to predict the next word wt.

This variant ensures the propagation of the input along the decoder. However, it does
not focus its attention on different parts of the input at each step as attention mechanisms
do, but rather uses the entire information of the encoder as it is passed to the decoder at
each time step.

5.5 LDA-Conc

Finally, LDA-Conc provides a different way of encoding the description of the product.
Instead of using a RNN, this variant makes use of Latent Dirichlet Allocation (Blei et al.,
2003) to encode the unstructured information of the description.

Latent Dirichlet Allocation (LDA) is a generative probabilistic model for collections
of discrete data such as text corpora. Having a vocabulary and a predefined number of
topics K, LDA selects a topic mixture for each document by sampling from a Dirichlet
distribution over the K topics. Then, each word of the document is generated by sampling
a topic from this mixture and picking a word according to a multinomial distribution
conditioned on the selected topic.

[< STR >; r; ]dLDA [ ; r; ]w1 dLDA [ ; r; ]wn dLDA…

w1 w2 < EOS >dLDA

LDA

D

LSTM LSTM LSTM

LSTM LSTM LSTM
⋯

⋯

encoder
decoder

⋯

Figure 12: LDA-LSTM architecture

Assuming that a corpus is generated using this process, LDA can infer the topic rep-
resentation of each document and the words associated to each topic. Computing the
desired distribution is intractable, but it can be approximated using simpler distributions
via different methods like collapsed Gibbs sampling (Xiao and Stibor, 2010) or the varia-
tional Bayes algorithm (Hoffman et al., 2010). Thus, LDA is able to extract the topics of
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a text and represent it by means of a vector that indicates in what amount these topics
are present in the text, which can be understood as a probability distribution over a fixed
set of topics.

In the LDA-Conc architecture, an LDA model has been trained on all the descriptions
of the training set. The inferred parameters have been used to encode the input description
D into the fixed-sized vector dLDA that represents its topics. This vector is resized so that
its minimum component is always 0 and the maximum 1, concatenated to the rating and
added directly as input to the decoder as depicted in Figure 12.
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6 Experiments

A set of experiments was prepared to evaluate the different architectures on the task. In
this section, we describe the data preprocessing steps, the selection of hyperparameters,
and the procedure to train the models.

6.1 Data Preprocessing

Before training the neural networks, a preprocessing of the data is required to reduce input
data sparsity and normalise the sentences with respect to casing and tokenisation.

Reviews and descriptions were thus lowercased and tokenised. All numbers were sub-
stituted with the special token <num>, while punctuation marks and stopwords were re-
moved from the descriptions. Additionally, <STR> and <EOS> were added to indicate
the beginning and end of each text in the corpus.

The large size of the vocabulary means that selecting the most frequent tokens and
replacing the others with a unique special token is not optimal. Instead, we opted to
address the OOV word problem using the approach presented in Sennrich et al. (2016),
which is based on the Byte Pair Encoding compression (BPE) algorithm described in Gage
(1994).

BPE is a simple method for data compression, where the most common pair of consec-
utive bytes of data is replaced with a byte that does not occur within the data. Sennrich
et al. (2016) noted that this method could enable neural machine translation systems to
operate with an open vocabulary, even though the systems require a fixed input vocabu-
lary. Words of low frequency, such as proper names, can thus be segmented after learning
an optimal compression on a training corpus.

BPE can be applied in two ways: learning one encoding for the source language and
another for the target language, or learning a single encoding on the union of the two
vocabularies. While the usage of two independent encodings creates more compact texts
and vocabularies, it may segment the same word differently in the two languages and insert
or delete characters when copying names. Learning BPE jointly on the concatenation of
the two languages reduces this problem and is therefore effective in tasks where source and
target texts share names that can simply be copied into the output text.

This procedure could be used for our NLG task, where descriptions and reviews share
numerous proper names such as authors’ or characters’ names. We therefore followed this
approach and calculated BPE jointly on descriptions and reviews. 30K BPE operations
were executed, which resulted in ∼ 30K instances in the new vocabulary (number of merge
operations plus the character vocabulary).

We went further and reduced the vocabulary to those symbols that appear in the
training set, since they also cover all the vocabulary in DEV and the number of components
is reduced considerably, particularly for reviews (see Table 8).

Table 9 shows some examples of how infrequent terms of the descriptions are split after
applying BPE.
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# tokens # segments (after BPE)
Descriptions 83734 27523
Reviews 305232 19266

Table 8: Vocabulary of TRAIN set

Original After BPE
embarrasment → embarrass/ment

sacrament → sacra/ment
sacraments → sacra/ments
republished → re/published

instrumentalist → instrum/en/ta/list

Table 9: Words split by BPE

6.2 Model Training

The architectures are trained using mini-batches of 50 instances to speed up convergence
and the employed error measure is cross entropy (equation 20). This measure is widely
used as loss function when the output can be understood as a probability distribution, as
is the case with neural networks which have softmax activations in the output layer.

H(ŷ, y) = −
∑
i

ŷilog(yi) (20)

To perform gradient descent, the Adam method is used (Kingma and Ba, 2015), which
computes individual learning rates for different parameters instead of using the same to
update all the weights.

6.3 Hyperparameters

The learning rate is initialized at 0.001 and it decays at each epoch using a multiplicative
factor of 0.998. All the gradients are clipped at a threshold of 5.

Hyperparameters related to the number of layers and their size are summarised in Table
10.9 The embedding layer, through which all the tokens pass before going to the LSTMs,
is composed of 200 units.

6.3.1 Number of LDA topics

One of the most important parameters in LDA models is the number of topics. Although
there are some methods to select the best number of topics (Griffiths and Steyvers, 2004;
Arun et al., 2010; Deveaud et al., 2014), selection is almost always performed intuitively,
depending on the characteristics of the data.

9In the table, “att.” refers to the attention mechanism specified by equations 15-18.
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Encoder Decoder
Layers # units/layer Layers # units/layer Drop-out

ProductID 1 embedding 200 2 LSTM 512 20%
LSTM-LSTM 1 LSTM 256 2 LSTM 512 20%
LSTM-Att 1 LSTM 256 2 LSTM (+att.) 512 20%
LSTM-Conc 1 LSTM 256 2 LSTM 512 20%
LDA-Conc LDA model 144 topics 2 LSTM 512 20%

Table 10: Hyperparameters of all the architectural variants

The heuristic method used in this work to select the number of topics for the LDA-
Conc architecture is based on finding the maximum amount of topics that are linearly
independent in the training set.10 This was done by means of grid search, analysing the
topic-word matrices of various LDA models constructed over the product descriptions in
TRAIN.

After training the models with different quantity of topics between 100 and 200, the sin-
gular value decomposition (SVD) of the topic-word matrices is then used to check whether
the extracted topics are linearly independent or not.

The number of non-zero singular values of a matrix is equal to the rank of the matrix,
which is also the number of linearly independent rows. Since singular values are positive,
the simple verification that the minimum singular value is different than zero establishes
that the extracted items are linearly independent.

Figure 13: Minimum singular values for different number of topics

The results on our dataset suggested that the maximum number of linearly independent
topics was 144 (see Figure 13), and the corresponding model was used to encode the

10This idea was suggested to us by Manex Serras (personnal communication).
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descriptions (note that the results may change depending on the learning algorithm and
other hyperparameters selected to train LDA).

Examples of the dominant topics of two training descriptions extracted using 144 topics
are shown in Table 11.

Description Topics

“Panurat Poladitmontri, chef-owner of the Lemon Grass Grill Restaurant in
Seattle, is proud of his Thai heritage. Recognized as one of the leading Thai
chefs in America, he has authored cookbooks...”

t88, t118

“Ian Cinnamon is a 15-year old phenom who has been programming for over
7 years, and is certified in both Java and C++. He is currently a sophomore
at Harvard-Westlake School.”

t17, t88

t17: university, health, professor, medical, research, center, medicine, dr, school, nutrition.
t88: writing, first, books, author, lives, years, also, two, children, time.
t118: food, cook, chef, kitchen, andrew, specializing, low, culinary, cookbooks, dishes.

Table 11: Dominant topics in each description and the top 10 keywords of the topics

6.3.2 Temperature

The output of the decoder is the probability distribution of the words in the vocabulary, so
the most straightforward way to generate reviews is to maximize the likelihood by selecting
the most probable word. However, under this approach, the generated texts tend to be
very conservative and repetitive. On the other hand, using random sampling to select a
word depending on its probability can result in chaotic and incoherent texts.

We addressed this problem via temperature (Hinton et al., 2015), a hyperparameter
that is meant to control the diversity of the predictions made by random sampling.

p(wt = vk|w1, . . . , wt−1) = Softmaxk(ht/τ) (21)

Temperature (τ) divides the non-normalised probability distribution returned by the
last layer of the decoder before applying the softmax activation function (equation 21).
This division by a value in the range (0, 1) increases the probability of the most likely
words, thus making random sampling (RS) more conservative, but still with more vari-
ability than maximum likelihood (ML). Within this range, temperatures closer to 0 imply
more conservative predictions, while higher temperatures will imply more variability in
the generated words. Figure 14 shows how probabilities change using different values for
temperature.

After training all the architectural variants, the results obtained on the development
set will be used to select the best value for temperature.
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Figure 14: Change in the probabilities depending on the temperature value

6.4 Training Execution

All the models were trained using Pytorch11, an open source DL framework for Python
developed by Facebook’s AI research group, and the training process is carried out using
a GPU with 12GB.

All the architectures are trained end-to-end, except LDA-Conc, where the LDA model
was pre-trained on the descriptions of the TRAIN set, using the scikit-learn library (Pe-
dregosa et al., 2011) using the variational Bayes algorithm.

The minimum number of training epochs is 5, and the neural networks continue training
until the loss on the DEV set does not decrease in two consecutive epochs, an early stopping
rule used to avoid overfitting. All training processes are summarized in Figure 15. Once the
training process finished, the best model for each architecture was determined by means
of the loss on the DEV set (Table 12).

Epoch Training time
Loss

TRAIN DEV
ProductID 12 ∼ 4 h/epoch 3.51 4.00
LSTM-LSTM 20 ∼ 3 h/epoch 3.51 3.81
LSTM-Att 10 ∼ 20 h/epoch 3.29 3.78
LSTM-Conc 18 ∼ 3 h/epoch 3.43 3.84
LDA-Conc 20 ∼ 4 h/epoch 3.48 3.85

Table 12: Best model for each architecture

11https://pytorch.org/
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Overall, LSTM-Att needed less time than the other models to train and obtained better
loss scores on both TRAIN and DEV datasets. However, processing time of each epoch
was much larger in this architecture, as it needs to compute the context vector at each
decoding step.

The other models took similar processing time to reach comparable scores on the devel-
opment set, to the exception of the ProductID baseline, which obtained the worst scores.
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Figure 15: Training process
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7 Results and Discussion

The systems were tested by generating new reviews with the ratings and the product
descriptions of the test set. Although the maximum sequence length of the decoder was
set to 135 tokens, the generation process ends if the special token <EOS> is predicted.
Before introducing the description to the model, it is split using the BPE model trained
with on the training descriptions, or, in the case of LDA-Conc, is directly encoded using
the pre-trained LDA model. Once the reviews were generated, the evaluation methods
described in Section 3 were applied.

7.1 Results

For the results reported here, the temperature parameter was set to τ = 0.3, as it provided
an optimal balance between text coherence and output variability in our experiments on
the development set (Figure 16). Examples in Table 13 show how the temperature value
affects the generation process.

Description: “The classic 1959 Christie tale is revisited in this utterly charming and
intriguing murder mystery in which two teachers find the body of...”

ML: “i have read all of the books in this series and they are all great . i have read all of
them and have enjoyed them all .”

τ = 0.3: “i have read all of agatha christie ’s books and i have to say that this one is my
favorite . i love the characters and the mystery . the story line is well written and the
characters are well developed . i really enjoyed this book .”

RS: “to say that suspense got a “ feel good ” tome eh is not a great puzzle for me . not
an avid reader , requiring lots of interesting ideas about this tale . i am a mystery reader
and especially of agatha christie ’s favor . the book really intrigues me , and i read a lot
of books in the newspaper . i recomend this book read to a one-dimensional class and up
there with the new rules ! !”

Table 13: Examples of reviews generated with different temperature values

Table 14 presents the results obtained by each architectural variant on the test set.
Statistical significance tests were computed via bootstrap resampling (Koehn, 2004). The
first noticeable result is that variants differ in terms of their exploitation of the unstructured
information provided by the descriptions. Thus, the LSTM-LSTM architecture does not
benefit from it, as it obtained similar or lower results than the ProductID baseline across
the board. The other three variants, on the contrary, obtained significantly better results
overall, demonstrating the benefits of including this type of unstructured information,
provided the architecture enables its proper propagation to the decoder level.
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Figure 16: Results on DEV with different temperature values

METEOR BLEU-4 BLEU-1 NIST-4 NIST-1
ProductID 12.15 9.90 64.58 5.3191 4.3957
LSTM-LSTM 12.00 9.56 61.74 5.1749 4.3062
LSTM-Att 12.99* 11.87* 65.3*† 5.8889*† 4.8072*†

LSTM-Conc 12.97* 12.11*† 64.71 5.7805* 4.6937*

LDA-Conc 12.38* 11.00* 61.69 5.4910* 4.4977*

*: Significantly better than the baseline (p < 0.05)
†: Significantly better than all other systems (p < 0.05)

Table 14: Results on the test set
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Description: “Mindy Starns Clark is the author of many books (more than 450,000 copies
sold), which include A Pocket Guide to Amish Life, Shadows of Lancaster County, Whispers
of the Bayou, and The Amish Midwife. In addition, Mindy is a popular inspirational
speaker and playwright.”

ProductID: “i read this book when i was a teenager and i read it at least <num> times
. i was so excited to find out what happened to the characters and the story was so good
that i could n’t put it down . i have read it many times and i am sure i will be reading it
again . i will be reading it again .”

LSTM-Att: “i really enjoyed this book . i have read all of the amish books and this one
was a great one . i really enjoyed the way the author made the characters come alive .
the author did a great job of keeping the reader interested and wanting to get to the next
book . i would recommend this book to anyone who likes amish christian fiction .”

Table 15: Examples of reviews generated by ProductID and LSTM-Att

The impact of description information on the generated output is visible in the example
of Table 15. While the review generated by ProductID is very generic, the information from
the description is employed by LSTM-Att to create a more specific review, with expresions
like “all of the amish books” or “amish christian fiction”.

Different results are obtained by the variants that do exploit the contextual informa-
tion provided by the descriptions, depending on the considered metric. When considering
BLEU-4, LSTM-Conc was the optimal variant, with better results than those obtained
with LSTM-Att. On the rest of the metrics however, LSTM-Att outperformed all other
architectures.

Table 16 shows the results in terms of perplexity and statistics of the generated reviews.
Results in terms of perplexity indicate opposite results to those obtained with the other
metrics, in terms of the relative ranking of the models. LSTM-LSTM obtained the lowest
results, which indicates that the reviews generated by this variant are more in line with
the language model trained on the reviews of the TRAIN set. This can be attributed to

PPL #voc avgLength
ProductID 5.37 1245 38.49
LSTM-LSTM 4.94 1991 40.36
LSTM-Att 5.73 3874 40.71
LSTM-Conc 5.34 3416 41.62
LDA-Conc 5.19 2699 41.78

Table 16: Perplexity and statistics of generated reviews. #voc indicates the number of
different words generated by the models and avgLength the average length of the generated
reviews.
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Description: “As many as one in 10 women suffer from Polycystic Ovary Syndrome
[PCOS] and Colette Harris explains how with the right nutritional approach sufferers can
lose weight, improve their skins, overcome exhaustion, depression and mood swings.”

r = 1 : “i was very disappointed with this book . it was very poorly written and the
author did n’t seem to understand the information . i would not recommend this book to
anyone .”

r = 5 : “i have been using this book for a couple of years and it has helped me to understand
my body and how to handle my life . i am very happy with the results .”

Table 17: Examples of reviews generated by LSTM-Att with different ratings

the fact that variants such as LSTM-LSTM generate consistently simple reviews, without
veering towards the more variable output produced by the other models that exploit the
available contextual information. This is confirmed by the number of different words used
to generate reviews, where LSTM-Att uses three times more vocabulary than the baseline,
as shown in Table 16. The low perplexity obtained overall by all variants also indicates
that the use of contextual information provides slightly more unexpected output, as far as
the language model is concerned, but keeps the productions within the range of expected
content.

As expected, given the use of rating information in the input, the ability to generate
reviews that reflect the sentiment expressed by user ratings was not affected by the use
of contextual information. Table 17 shows examples of two opposite reviews on the same
description to illustrate this point.

To confirm this intuition, we performed sentiment analysis on the generated reviews
using the NLTK toolkit (Bird et al., 2009). After training a VADER model (Hutto and
Gilbert, 2014), a rule-based method that proved efficient for sentiment analysis precisely in
the Amazon product domain, the reviews were analysed and the system provided a value
in the range [−1, 1], indicating a sentiment that goes from very negative to very positive.
Boxplots in Figure 17 show the correlation between the input rating and the output of
the sentiment analyser. Results are very similar in all the architectures, and the lower
the rating of a review, the more difficult it was for the sentiment analyser to detect its
sentiment. This latter fact is not due to the systems having issues generating negative
reviews, since similar results were obtained analysing the sentiment of real reviews in the
corpus. Interestingly, negative reviews generated by LSTM-Att were better classified as
negative by the sentiment analyser, even better than human-written reviews.

The results on the complete test set might conflate more fine-grained distinctions re-
garding the output produced by architectural variants, as simple reviews might be pro-
duced similarly by the different models, for instance. Table 18 presents the results on the
partitioned test set, which provides information to analyse this issue.

Language Analysis and Processing



NLG with Unstructured Contextual Information 49/66

Figure 17: Correlation between ratings and sentiment analysis results

On this test set partition, and except for perplexity measures, all variants see their
scores drop significantly as the perplexity on the test reviews increases. The different
models are impacted by the increased complexity of the test set partition and the relative
hierarchy between them remains similar overall on all three subsets. However, it seems that
LSTM-Att is more capable to generate complex reviews, something that we had already
observed when analysing the vocabulary and the length of its reviews. This is confirmed by
the results on the TEST-HIGH-PERPEXITY set, where LSTM-Att is significantly better
than all the other systems in terms of METEOR and NIST-4, which was not the case
on the TEST-LOW-PERPLEXITY set. The fact that perplexity scores remain relatively
constant for all variants across this partition reinforces our previous interpretation of the
results for this metric, indicating that the generated reviews by the different variants closely
follow the sequential patterns of the training corpus.

7.2 Discussion

Overall, the LSTM variant with attention obtained the best results on most measures,
significantly outperforming the other models, in particular on the NIST metric. Given
that this metric favours informational content, these results tend to indicate that the use
of an attention mechanism allows for the better exploitation of unstructured contextual
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test-low-perplexity PPL METEOR BLEU-4 BLEU-1 NIST-4 NIST-1
ProductID 5.38 13.14 9.44 61.86 4.7790 3.9832

LSTM-LSTM 4.9 13.15 9.98* 59.56 4.6892 3.9187
LSTM-Att 5.18 14.16* 13.21* 62.97*† 5.4010* 4.4047*†

LSTM-Conc 4.95 14.14* 13.39* 62.26 5.3684* 4.3461*

LDA-Conc 4.99 13.46* 11.96* 59.82 5.1326* 4.2003*

test-medium-perplexity PPL METEOR BLEU-4 BLEU-1 NIST-4 NIST-1
ProductID 5.39 10.9 7.39 57.31 4.6786 3.9749
LSTM-LSTM 4.99 10.69 6.92 54.7 4.504 3.8544
LSTM-Att 6.05 11.67* 8.21* 57.48 5.027*† 4.2495*†

LSTM-Conc 5.54 11.62* 8.48*† 57.06 4.9314* 4.1533*

LDA-Conc 5.44 10.95 8.03* 55.42 4.8045* 4.047*

test-high-perplexity PPL METEOR BLEU-4 BLEU-1 NIST-4 NIST-1
ProductID 5.41 9.27 5.05 53.56 4.4732 3.9143
LSTM-LSTM 4.99 9.23 4.8 51.38 4.2759 3.7591
LSTM-Att 5.92 10.06*† 5.61* 54.46*† 4.7525*† 4.1368*†

LSTM-Conc 5.61 9.91* 5.86* 53.43 4.646* 4.0345*

LDA-Conc 5.53 9.47* 5.85* 52.59 4.5413* 3.941*

*: Significantly better than the baseline (p < 0.05)
†: Significantly better than all other systems (p < 0.05)

Table 18: Results on the perplexity-split test sets

information in the experiments reported here. Nevertheless, the scores for this system are
closely followed by those obtained with LSTM-Conc, a simpler approach that outperforms
LSTM-Att in terms of BLEU-4.

The similarity between the results of LSTM-Att and LSTM-Conc are rather surprising.
While the former uses a complex attention mechanism, which gives excellent results in
machine translation, the latter uses a simpler concatenation mechanism to propagate the
encoded information. This similarity may be due to the fact that, as has been verified
through a qualitative analysis of the generated reviews, there is no alignment between the
information of the description and the review, contrary to the type of relation between
the input and the output of machine translation systems. In our task, the context vector
is very similar for all generation steps. Therefore, although it encodes the input better
than the LSTM and gives better results in terms of the informational content, the main
advantage of the attention mechanism, i.e. focusing attention on different points of the
input throughout the process, is less useful for the generation task.

The different results obtained on the various test sets reveals the importance of the
evaluation data, since the BLEU-4 score of the same system falls by more than 7 points
from one set to another. For instance, LSTM-ATT goes from 13.21% to 5.61% depend-
ing on the evaluation being performed on TEST-LOW-PERPLEXITY OR TEST-HIGH
PERPLEXITY.

Beyond comparisons with the baseline, the lack of a gold-standard metric to evaluate
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NLG systems makes it difficult to directly compare our results to those obtained in other
studies. Note though that the BLEU results we obtained are in line with those obtained in
reference NLG papers on review generation (Dong et al., 2017; Zang and Wan, 2017), which
are typically lower than the scores obtained in neural machine translation, where there is
stronger conditioning on the source language information to produce a more controlled
output.
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8 Conclusions and Future Work

In this work, we presented a novel task for natural language generation, based on the
exploitation of unstructured contextual information. The aim of the task is to provide
a test bench to compare different architectures, as it enables an evaluation of a system’s
capability to generate coherent text based on unseen and unstructured information.

We described a variant of the Amazon Product Review corpus for the task, with product
descriptions used as input for the generation of reviews. The corpus was prepared to enable
fair evaluations of different architectures, notably including different partitions of the test
set in terms of review complexity and enforcing an adequate number of review references
per description.

To evaluate the discriminative power of the proposed task and measure the impact of
different NLG architectural variants, we built different deep learning generation models
and compared their results on different metrics. Although the nature of the NLG task
and the currently available metrics make it rather difficult to measure the impact of model
variants, the proposed task enabled us to assess significant differences between the tested
architectures, showing that the model doted with an attention mechanism was the best
variant among the tested ones overall.

However, our results also indicate that a much simpler architecture using a RNN with
concatenated encoder information is able to take advantage of the unstructured information
and achieve comparable results. Although the results are slightly worse than those obtained
with attention, it is a much faster architecture both to implement and to train. Depending
on the needs of the task and the available computational resources, it can end up being a
more useful architecture than the one endowed with an attention mechanism.

Although we showed that several of the variants were able to exploit the provided
unstructured contextual information, these results are preliminary and future work will
address shortcomings of the current task, such as the inclusion of descriptions and reviews
that bear no relation to each other. We also aim to explore the performance on this
task on other novel architectures, such as hierarchical models, variational autoencoders
or generative adversarial networks. It would also be interesting to try an architecture
that encodes the description in a similar way to the one used in the attentional variant,
but without recomputing at each generation step, as we demonstrated that this does not
improve the results while lengthening considerably the training process. Finally, we aim
to improve the evaluation of this task by means of human evaluation and extend the use
of unstructured input to other data-to-text tasks, to further expand the available options
for the comparison of NLG architectures.
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