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What if gravity becomes really repulsive in the future?
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Abstract The current acceleration of the Universe is one of
the most puzzling issues in theoretical physics nowadays. We
are far from giving an answer in this letter to the question of its
nature. Yet, with the observations we have at hand, we analyse
the different patterns that the gravitational potential can show
in the future. Surprisingly, gravity not only can get weaker in
the near future, it can even become repulsive; or equivalently,
the gravitational potential may become negative. We show
this remark by using one of the simplest phenomenological
model we can imagine for dark energy. We have also reviewed
the statefinder approach of these models. For completeness,
we have also showed the behaviour of the density contrast of
dark matter and dark energy for these simple (yet illustrative
models). Our results are displayed and we see how they shall
evolve in the future.

1 Introduction

Hubble’s discovery was crucial for our understanding of the
Universe. He showed that the Universe was evolving and not
static as it was believed at that time [1]. His discovery was
based on observing that the spectrum of far away galaxies was
red-shifted which implied that those galaxies were moving
away from us. He even measured the galaxies radial outward
velocities and realised that it followed a rule: (1) the veloci-
ties were proportional to the distances at which the galaxies
were located from us and (2) the proportionality factor was
a constant, the Hubble constant. About 70 years later, two
independent teams [2,3] realised that by measuring further
objects, SNeIa, the Hubble constant was not quite constant,
as was already expected. The issue was that the deviation
from the constancy was not in the anticipated direction. It
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was no longer enough to invoke only matter to explain those
observations. A new dark component had to be invoked, inter-
acting as far as we know only gravitationally, and named
dark energy. This component started recently fuelling a sec-
ond inflationary era of the visible Universe. Of course, all
these observations, and subsequent ones, are telling us how
gravity behaves at cosmological scales through the kinematic
expansion of our Universe [4–9].

This kinematic description is linked to the dynamical
expansion through the gravitational laws of Einstein the-
ory. To a very good approximation, we may assume that
our Universe is homogeneous and isotropic on large scales
and that it is filled with matter (standard and dark) and dark
energy, where their relative fractional energy densities are
Ωm = 0.309 and Ωd = 0.691, respectively, at present. In
addition, the current Hubble parameter is of the order of
H0 = 67.74 km s−1 Mpc−1. We have fixed those values
by using the latest Planck data [7] but please notice that our
conclusions in this paper are unaltered by choosing other val-
ues for these physical quantities. As regards dark energy, we
will assume its energy density to be evolving (or not) in time
and its equation of state (EoS) parameter, w, to be constant;
i.e. we will consider the wCDM model as a natural candidate
describing our Universe. As is well known: (1) for w < − 1
the Universe would face a big rip singularity [10–12], i.e.,
the Universe would unzip itself in a finite time from now, (2)
for w = − 1 the Universe would be asymptotically de Sitter,
and finally (3) if w > − 1 the Universe would be asymptoti-
cally flat locally; i.e. the scalar curvature and the Ricci tensor
would vanish for large scale factors. As we next show this
pattern is shown also by the behaviour of the gravitational
potential.

The paper is organised as follows: in Sect. 2, we review
briefly the models to be considered and compare them using a
cosmographic/statefinder analysis. In Sect. 3, we present the
cosmological perturbations of the models focussing on the

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-018-5728-x&domain=pdf
http://orcid.org/0000-0003-4278-9372
http://orcid.org/0000-0002-1529-1889
http://orcid.org/0000-0001-5090-8015
mailto:albarran.payo@ubi.pt
mailto:mariam.bouhmadi@ehu.eus
mailto:jviegas001@ikasle.ehu.eus


260 Page 2 of 7 Eur. Phys. J. C (2018) 78 :260

asymptotic behaviour of the gravitational potential. Finally,
in Sect. 4, we conclude. In Appendix A, we include some
formulae useful in Sect. 2.

2 Background approach

The geometry of the cosmological background is adequately
given by the Friedmann–Lemaître–Robertson–Walker line
element:

ds2 = − dt2 + a2δi jdx
idx j , (1)

where t is the cosmic time,a(t) is the scale factor and δi j is the
flat spatial metric. On the other hand, the matter content of the
Universe can be separated in three main components: radia-
tion, nonrelativistic matter (baryons and dark matter (DM))
and dark energy (DE). For simplicity, we model these three
components using a perfect fluid description where each fluid
has energy density ρi and pressure pi = wiρi. Here, i stands
for radiation (r) with wr = 1/3, for nonrelativistic matter (m)
with wm = 0, and for DE (d) with wd = w. The Friedmann
equation for such model can be written as

H2

H2
0

= Ωr,0

(a0

a

)4 + Ωm,0

(a0

a

)3 + Ωd,0

(a0

a

)3(1+w)

,

(2)

where the various Ωi,0 := κ2ρi,0/(3H2
0 ) represent the

present day fractional energy density of the different fluids
and satisfy the constraint 1 = Ωr,0 + Ωm,0 + Ωd,0. In this
work, we adopt three different values for w: {− 0.99, − 1,

− 1.01}, in order to obtain three qualitatively different types
of late-time behaviour for DE: quintessence (w � − 1),
cosmological constant (w = − 1) and phantom behaviour
(w � − 1).

In a cosmographic approach [13–16], the scale factor is
Taylor expanded around its present day value a0 := a(t0) as

a (t)

a0
= 1 +

∞∑
n=1

An (t0)

n! [H0 (t − t0)]
n . (3)

Here, H0 is the present day value of the Hubble rate H :=
ȧ/a, where a dot represents a derivative with respect to
the cosmic time, and the cosmographic parameters An are
defined as An := a(n)/(a Hn), n ∈ N, where a(n) is the
nth derivative of the scale factor with respect to the cos-
mic time.1 Based on the cosmographic expansion (3), the

1 The parameters A2, A3, A4, A5 are also known as the deceleration
parameter q = −A2, the jerk j = A3, the snap s = A4 and the lerk
l = A5, respectively [13].

statefinder hierarchy was developed as a tool to distinguish
different DE models [17–21]. In fact, the statefinder parame-
ters are defined as specific combinations of the cosmographic
parameters:

S(1)
3 = A3, (4)

S(1)
4 = A4 + 3 (1 − A2) , (5)

S(1)
5 = A5 − 2 (4 − 3A2) (1 − A2) , (6)

such that, by construction, S(1)
n |ΛCDM = 1, i.e., the

statefinder hierarchy defines a null diagnostic for the ΛCDM
model [20]. It is also convenient to introduce the statefinder
parameter s defined in [17,18] as

s = 1 − S(1)
3

3
(
A2 + 1

2

) . (7)

For the case of a wCDM model with a radiation compo-
nent, such as the models considered in this paper, we present
in Appendix A the full expressions of the statefinder parame-
ters as functions of the scale factor a/a0 and the cosmological
parameters {Ωi,0, w}. In the limit a → +∞ the expressions
found reduce to

S(1)
3 |wCDM =1 + 9

2
w (1 + w) , (8)

S(1)
4 |wCDM = 1 − 9

4
w (1 + w) (7 + 9w) , (9)

S(1)
5 |wCDM = 1 + 9

4
w (1 + w)

(
41 + 87w + 54w2

)
, (10)

s|wCDM = 1 + w. (11)

We thus find that as w deviates from the nominal value − 1 the
asymptotic values of the statefinder parameters S(1)

i run away
from unity. In fact, for small deviations Δw := |w + 1| � 1
the statefinder parameters depend linearly on Δw and we
find that S(1)

n < 1 for quintessence models and S(1)
n > 1 in

the case of phantom behaviour. On the other hand, it can be
shown that asymptotically s vanishes for ΛCDM, and it gets
negative for w < − 1 and positive for − 1 < w. We have
assumed in all our conclusions the presence of radiation no
matter how tiny its contribution.

On Fig. 1, we present the evolution of the statefinder hier-
archy {S(1)

3 , s} (top panel), {S(1)
3 , S(1)

4 } (middle panel) and

{S(1)
3 , S(1)

5 } (bottom panel) for the three models considered:
w = − 0.99 (blue), w = − 1 (green) and w = − 1.01 (red).
When the Universe is dominated by radiation and matter the
three models are indistinguishable and can be seen to follow
the same straight line trajectory in the {S(1)

3 , s}, {S(1)
3 , S(1)

4 }
and {S(1)

3 , S(1)
5 } planes. However, as DE starts to dominate

at late time the differences between the three models become
apparent. The trajectory {S(1)

3 , s} evolves towards the point
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Fig. 1 This figure shows the trajectory of the three models considered
in this work in the {S(1)

3 , s}, {S(1)
3 , S(1)

4 } and {S(1)
3 , S(1)

5 } planes, which
characterise the statefinder hierarchy. The coloured points indicate the
asymptotic values of the statefinder parameters as presented in Eqs. (8)–
(10). The dependence of these points on the deviation of w from the
ΛCDM value − 1 is illustrated by the dashed lines. The black stars
indicate the present day values of the statefinder parameters for each of
the models

(1, 0) for the ΛCDM model, then for a quintessence model
that trajectory evolves towards the second quadrant in the
plane {S(1)

3 , s}, i.e. S(1)
3 < 1 and 0 < s, and, finally, for a

phantom scenario the trajectory {S(1)
3 , s} heads towards the

fourth quadrant, i.e. 1 < S(1)
3 and s < 0. For the second

group of trajectories, ({S(1)
3 , S(1)

4 } and {S(1)
3 , S(1)

5 }), the tra-
jectories of the model with w = − 1 evolve towards the point
(1, 1) that characterises ΛCDM, in the quintessence model
the trajectories evolve towards the third quadrant in both pan-

els (S(1)
n < 1 for n = 3, 4, 5). In contrast, for the model with

phantom behaviour the trajectories evolve towards the first
quadrant in the {S(1)

3 , S(1)
4 } and {S(1)

3 , S(1)
5 } planes charac-

terised by S(1)
n > 1 for n = 3, 4, 5. Finally, by looking at

Fig. 1, it seems that the pair {S(1)
3 , S(1)

5 } are suitable to dis-
tinguish the model with w < − 1 from − 1 < w.

3 Cosmological perturbations: from gravity to DM
and DE

The gravitational potential can be described through the
time–time metric component as

ds2 = a2
[
− (1 + 2Φ) dη2 + (1 − 2Φ) δi jdx

idx j
]
, (12)

where η is the conformal time, δi j is the flat spatial metric and
Φ the gravitational potential. For simplicity, we assume the
absence of anisotropies; i.e. the spatial and temporal compo-
nent of the gravitational metric are equal in absolute values
at first order in the cosmological perturbations.

In order to tackle the cosmological perturbations of a per-
fect fluid with a negative and constant EoS some care has
to be taken into account [22]. In fact, unless non-adiabatic
perturbations are taken into account a blow up on the cos-
mological perturbations quickly appears even at scales we
have already observed. Please notice that this is so even for
non-phantom fluids, i.e., for w ≥ − 1. This will be our first
assumption and therefore non-adiabatic perturbations will be
considered. The non-adiabaticity implies the existence of two
distinctive speed of sounds for the dark energy fluid: (1) its
quadratic adiabatic speed of sound c2

a = w (in our case) and
(2) its effective quadratic speed of sound, c2

s , whose deviation
from c2

a = w measures the non-adiabaticity in the evolution
of the fluid [23]. For simplicity, we will set the latter to one
which fits perfectly the case of a scalar field, no matter if it
is a canonical scalar field of standard or phantom nature.2 In
addition, we will solve the gravitational equations describing
the cosmological perturbations at first order using the same
methodology we presented in [22]. We remind the reader
that the temporal and spatial components of the conservation
equation of each fluid imply [22]

δ′
r =4

(
k2

3
vr + Φ ′

)
, (13)

2 As long as the speed of sound c2
s is not too close to zero and w � − 1,

the value of c2
s will not much affect the perturbations of dark matter.

A full discussion on the effect of the speed of sound of DE on the
perturbations of the late Universe can be found in [24–26]. Therefore,
our choice c2

s = 1 is not crucial in our study, it was taken just for
simplicity and because it is common to use it in codes like CAMB and
CLASS, though there is no fundamental reason for such a choice.
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v′
r = −

(
1

4
δr + Φ

)
, (14)

δ′
m = 3

(
k2

3
vm + Φ ′

)
, (15)

v′
m = − (H vm + Φ) , (16)

δ′
d = 3 (w − 1) δd

+ 3 (1 + w)

{[
k2

3
+ 3H 2 (1 − w)

]
vd + Φ ′

}
,

(17)

v′
d = −

(
1

1 + w
δd + Φ

)
+ 2H vd, (18)

while the (00) and (0i) components of the Einstein equations
lead to [22]

H Φ ′ +
(
H 2 + k2

3

)
Φ = − 1

2
H 2δtot, (19)

Φ ′ + H Φ = − 3

2
H 2 (1 + wtot) vtot. (20)

In the previous equations, H := a′/a is the conformal Hub-
ble rate, δi and vi correspond to the density contrast and
peculiar velocity of the fluid i, and we have decomposed all
the perturbations into their Fourier modes. The total quan-
tities wtot, δtot and vtot found in (19) and (20) are defined
through a proper averaging of the individual fluid values:

wtot =
∑

i=r,m,d ρi wi∑
i=r,m,d ρi

, (21)

δtot =
∑

i=r,m,d ρi δi∑
i=r,m,d ρi

, (22)

vtot =
∑

i=r,m,d ρi (1 + wi) vi∑
i=r,m,d ρi (1 + wi)

. (23)

In order to integrate (13)–(18) [after assuming (19) and
(20)] we impose the standard adiabatic initial conditions [22]

3

4
δr,ini = δm,ini = δd,ini

1 + w
≈ 3

4
δtot,ini (24)

and

vr,ini = vm,ini = vd,ini ≈ vtot,ini, (25)

while Eqs. (19) and (20) imply

Ψini ≈ −1

2
δtot,ini, (26)

Ψini ≈ −2Hinivtot,ini. (27)

Fig. 2 The evolution of the Fourier mode of the gravitational poten-
tial Φk (top panel), the DM perturbation δm (middle panels) and the
DE perturbation (bottom panel), from the matter era to the far future
for the mode k = 10−3 Mpc−1 and for three dark energy models:
(blue) w = − 0.99, (green) w = − 1 and (red) w = − 1.01. For the
quintessence model (blue) the gravitational potential evolves towards
a constant in the far future without changing sign, while for ΛCDM
(green) Φk vanishes asymptotically. In the phantom model (red), Φk
also evolves towards a constant in the far future but a change of sign
occurs roughly at log10 a/a0 � 2.33, corresponding to 8.84 × 1010

years in the future. A dashed line indicates negative values of Φk

These initial conditions are fully fixed by the Planck obser-
vational fit to single inflation [7]:

Φini = 2π

3

√
2As

(
k

k∗

)ns− 1

k−3/2, (28)

where As = 2.142 × 10−9, ns = 0.9667 and the pivot scale
is k∗ = 0.05 Mpc−1.

The behaviour of the gravitational potential and the per-
turbations is shown in the top panel of Fig. 2 for a given scale.
We choose as an example k = 10−3 Mpc−1. As it must, the
gravitational potential is constant during the matter era and
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starts decreasing as soon as dark energy goes on stage. This
behaviour is independent of the dark energy model consid-
ered. However, shortly afterwards, i.e., in our near future, the
gravitational potential will depend on the specifically chosen
EoS for dark energy. In fact: (1) it will decrease until reach-
ing a positive non-vanishing value at infinity for w > − 1,
(2) it will vanish asymptotically for w = − 1, and amaz-
ingly (3) it will vanish and become negative for w < − 1!
This is in full agreement with the fact that close to the big
rip the different structures in our Universe will be destroyed
no matter their sizes or bounding energies. When could the
gravitational potential vanish and flip its sign? Of course, the
answer is model and scale dependent [22]. For the model
we have considered, the gravitational potential for the mode
k = 10−3 Mpc−1 will vanish in 8.84 × 1010 years from the
present time or equivalently when the Universe is roughly
213 times its current size. Furthermore, numerical results
show that the smaller the scale that is considered (larger k),
the later the gravitational potential will flip sign [22].

In addition to the gravitational potential, we present in
the second and third panels of Fig. 2 the behaviour of the
density contrast of DM. We observe that the growth of the
linear perturbations is very similar in all models, with dif-
ferences of � 0.2% with regards to ΛCDM. However, when
comparing the phantom DE model with ΛCDM we find that
until the present time there is an excess in the growth of
the linear perturbations of DM in the phantom DE case. In
the case of quintessence the opposite behaviour is observed:
until the present time δm is smaller in the quintessence case
when compared with ΛCDM. This effect, which depends on
the qualitative behaviour of DE, was first noted in [10]. Sur-
prisingly, these deviations peak around the present time and
their sign reverses in the near future. On the bottom panel of
Fig. 2 we present the evolution of δDE for the different mod-
els. Of course, for the ΛCDM case the perturbations remain
at 0 as the cosmological constant does not cluster. In good
agreement with observations, for the quintessence and phan-
tom DE models we find that the DE perturbations remain
small, with small variations of the initial value, throughout
the whole evolution of the Universe.

Finally, and most importantly, all these models are in full
agreement with observations. In Fig. 3, we show the evolu-
tion of the observable f σ8 for the three models mentioned
above. This combination of f , the relative growth of the lin-
ear matter perturbations, and σ8, the root-mean-square mass
fluctuation in spheres with radius 8 h−1 Mpc, was proposed
in [27] as a discriminant for different models of late-time
acceleration that is independent of local galaxy density bias.
On the top panel of Fig. 3, we contrast the f σ8 curves of the
three models with the available observational data (cf. Table I
of [22]). All the three curves, which are practically indistin-
guishable for the naked eye, are within the error bars of nearly
all the points. On the bottom panel of Fig. 3, we present the

Fig. 3 (Top panel) evolution of f σ8 for low red-shift z ∈ (0, 1.4) for
three dark energy models: (blue) w = − 0.99, (green) w = − 1 and
(red) w = − 1.01. White circles and vertical bars indicate the available
data points and corresponding error bars (cf. Table I of [22]). (Bottom
panel) Evolution of the relative differences of f σ8 for each model with
regard to ΛCDM (w = − 1). Δ f σ8 is positive in the phantom case and
negative in the quintessence case. For all the models, it was considered
that σ8 evolves linearly with δm and that σ8 = 0.816 at the present time
[7]

relative difference, Δ f σ8, of the results of each model with
regards to ΛCDM.3 Despite the small values found in terms
of amplitudes, the behaviour observed suggests that the sign
of Δ f σ8 can distinguish between a phantom (positive Δ f σ8)
and a quintessence model (negativeΔ f σ8). As a consequence
of this difference in sign, the growth of the linear matter per-
turbations is stronger in a phantom scenario as opposed to
ΛCDM and quintessence. This is in full agreement with the
results presented in [10] where the decay of the growth sup-
pression factor of the linear matter perturbations is found
to be faster in quintessence models and slower in phantom
models.

4 Concluding remarks

Summarising, what we have shown is that after all gravity
might behave the other way around in the future and, rather
than the apple falling from the tree, the apple may fly from
the earth surface to the branches of the tree, if dark energy
is repulsive enough, as could already be indicated by current
observations.4

3 Δ f σ (model)
8 (%) := 100[( f σ (model)

8 )/( f σΛCDM
8 ) − 1].

4 Repulsive gravity could occur as well if the effective gravitational
constant changes sign. This could happen, for example, in scalar–tensor
theories, in particular, for a non-minimally coupled scalar field [28].
However, an anisotropic curvature singularity arises generically at the
moment of this transition.
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To illustrate these observations, we have considered three
models where DE is characterised by a constant parameter
of EoS w with values w = − 0.99,− 1,− 1.01. After com-
paring the present and future behaviour at the background
level by using a statefinder approach, as illustrated in Fig. 1,
we have considered the cosmological perturbations of these
models. We have shown that for models with w < − 1 the
gravitational potential changes sign in the future (cf. Fig. 2).
We have as well analysed the behaviour of the DM and DE
perturbations as shown for example in Fig. 2. Finally, we have
proven that no matter the future behaviour of the gravitational
potential depicted in Fig. 2, the three models discussed above
are in full agreement with the latest observations of f σ8 (cf.
Fig. 3).

Before concluding, we would like to recall that in this
work, we have considered the existence of phantom matter;
however, it might be possible that Nature presents rather a
phantom-like behaviour as happens in brane world-models
[29,30] where no big rip takes place and where the perturba-
tions can be stable. In addition, even the presence of phantom
matter might not be a problem at a cosmological quantum
level where the big rip or other kind of singularities can be
washed away [31–33].
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Appendix A: Statefinder parameters in wCDM

For a wCDM model with a radiation component the
statefinder parameters defined in Eqs. (4), (5), (6) and (7)
read

S(1)
3 = 1 + 2Ωr,0

a0
a + 9

2w (1 + w) Ωd,0
( a0
a

)3w

Ωr,0
a0
a + Ωm,0 + Ωd,0

( a0
a

)3w
, (A.1)

S(1)
4 = 1 −

[
Ωr,0

a0

a
+ Ωm,0 + Ωd,0

(a0

a

)3w
]−2

×
{[

10Ωr,0
a0

a

+ 9Ωm,0 +
(

9 + 3

2
w (14 + 3w (7 + 3w))

)

× Ωd,0

(a0

a

)3w
]

+ 9

4
w (1 + w)

×
[

(7 + 6w)Ωm,0 + (7 + 9w) Ωd,0

(a0

a

)3w
]

× Ωd,0

(a0

a

)3w
}
, (A.2)

S(1)
5 = 1 +

[
Ωr,0

a0

a
+ Ωm,0 + Ωd,0

(a0

a

)3w
]−2 {[

76Ωr,0
a0

a

+ 60Ωm,0 +
(

60 + 3

2
w

(
37 + w

(
59 + 39w + 9w2

) ))

× Ωd,0

(a0

a

)3w
]
Ωr,0

a0

a
+ 9

4
w (1 + w)

×
[

(41 + 3w (17 + 6w)) Ωm,0 +
(

41 + 87w + 54w2
)

× Ωd,0

(a0

a

)3w
]
Ωd,0

(a0

a

)3w
}
. (A.3)

s =4Ωr,0
a0
a + 9w(1 + w)Ωd,0

( a0
a

)3w

3Ωr,0
a0
a + 9wΩd,0

( a0
a

)3w
. (A.4)

Due to the Friedmann constraint 1 = Ωr,0 +Ωm,0 +Ωd,0 we
can eliminate one of the fractional energy density parameters.
It can be checked that, for the ΛCDM model, where Ωr,0 = 0
and w = −1, the previous expressions reduce to S(1)

n = 1
and s = 0.
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