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SUMMARY

Circadian clocks have evolved as time-measuring
molecular devices to help organisms adapt their
physiology to daily changes in light and temperature.
Transcriptional oscillations account for a large frac-
tion of rhythmic protein abundance. However,
cycling of various posttranslational modifications,
such as ubiquitylation, also contributes to shape
the rhythmic protein landscape. In this study, we
used an in vivo ubiquitin labeling assay to investigate
the circadian ubiquitylated proteome of Drosophila
melanogaster. We find that cyclic ubiquitylation af-
fects MEGATOR (MTOR), a chromatin-associated
nucleoporin that, in turn, feeds back to regulate the
core molecular oscillator. Furthermore, we show
that the ubiquitin ligase subunits CULLIN-3 (CUL-3)
and SUPERNUMERARY LIMBS (SLMB) cooperate
for ubiquitylating the TIMELESS protein. These find-
ings stress the importance of ubiquitylation path-
ways in the Drosophila circadian clock and reveal a
key component of this system.

INTRODUCTION

Cycling transcripts are a key feature of circadian clock output

and rely on both transcriptional and post-transcriptional mecha-

nisms (Keegan et al., 2007; Abruzzi et al., 2011; Hughes et al.,

2012; Koike et al., 2012; Kojima et al., 2012; Le Martelot et al.,

2012; Menet et al., 2012; Rodriguez et al., 2013). The cycling

proteome and translatome of specific tissues have, however,

pointed to large differences between mRNA and protein cycling

profiles (Reddy et al., 2006; Møller et al., 2007; Deery et al., 2009;

Huang et al., 2013; Jouffe et al., 2013; Robles et al., 2014; Guer-

reiro et al., 2014; Mauvoisin et al., 2014, 2015; Neufeld-Cohen

et al., 2016). For example, about 50% of rhythmic proteins in

the liver cannot be accounted for by corresponding mRNA

rhythms (Mauvoisin et al., 2014), indicating a major role for

cycling protein synthesis or degradation (L€uck et al., 2014).

Extensive circadian post-translational modifications such as
Cell
This is an open access article under the CC BY-N
acetylation (Masri et al., 2013) and phosphorylation (Robles

et al., 2017; Wang et al., 2017) have been observed in the liver.

However, little is known about the circadian control of ubiquity-

lation, which is the main protein degradation signal (Clague

and Urbé, 2010; Kleiger and Mayor, 2014). This even holds for

core clock proteins, whose oscillations depend on several ubiq-

uitin (Ub) ligases and proteases (Chiu et al., 2011; Grima et al.,

2012; Luo et al., 2012; Hirano et al., 2013, 2016; Yoo et al.,

2013; Stojkovic et al., 2014). We therefore set out to understand

how theDrosophila clock might govern daily rhythms in ubiquity-

lation by searching for circadian oscillations in the amount of

ubiquitylated proteins.
RESULTS AND DISCUSSION

Characterization of the Circadian Ubiquitylated
Proteome
We took advantage of the biotinylated Ub (bioUb) system to

analyze the circadian control of protein ubiquitylation in clock-

containing cells of the Drosophila head. bioUb allows Ub purifi-

cation based on BirA-mediated in vivo biotinylation of Ub fused

to AviTag (Franco et al., 2011; Martinez et al., 2017; Pirone

et al., 2017). First, we asked whether overexpression of tagged

Ub would perturb endogenous timekeeping. When we ex-

pressed aGAL4-inducible transgene that encoded biotinylatable

Ub (upstream activating sequence [UAS]-(bioUb)6-birA) or the

control UAS-birA with the clock cell-specific driver tim-gal4,

only one insertion of the UAS-(bioUb)6-birA transgene length-

ened the period of sleep-wake cycles, measured as daily

changes in locomotor activity (Table S1, bioUb insertion on chro-

mosome II). At the molecular level, TIMELESS (TIM) and PERIOD

(PER) oscillations on western blots of head extracts of w; tim-

gal4/+ and w; tim-gal4, UAS-(bioUb)6-birA/+ (tim>bioUb) flies

were very similar (Figure 1A). Clock proteins in head extracts

mainly derive from the retina, which houses its own clock,

whereas locomotor activity rhythms in constant darkness largely

depend on the small lateral ventral neuron (sLNv) oscillator of the

brain clock network. Different effects of bioUb expression may

thus occur because of the different cell types. For example, Ub

overexpression could slightly affect clock protein accumulation

or modify cell physiology to produce sLNv-specific period
Reports 23, 2273–2282, May 22, 2018 ª 2018 The Author(s). 2273
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:aszabo0514@yahoo.com
mailto:rouyer@inaf.cnrs-gif.fr
https://doi.org/10.1016/j.celrep.2018.04.064
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2018.04.064&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B

C ED

F

G H

Figure 1. Identification of the Rhythmic Ubiquitylated Proteome

CT means circadian time. Gray and black bars represent subjective day and subjective night, respectively.

(A) PER and TIM western blots (WBs) ofw; tim-gal4/+ (tg4/+) andw; tim-gal4, UAS-(bioUb)6-birA/+ (tim>bioUb) head extracts. CB denotes a Coomassie-stained

band as a loading control. Two independent experiments were done.

(B) Coomassie-stained PAGE gel of ubiquitylated proteins from w; tim-gal4, UAS-(bioUb)6-birA/+ (bioUb) and w; tim-gal4, UAS-birA/+ (BirA) control flies. Left:

protein markers (in kilodaltons). The PCB band itself was not excised. NeutrAvidin contaminates the 15- to 30-kDa region. The gel is representative of three

independent experiments.

(legend continued on next page)
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changes. Nevertheless, the bioUb system can be applied to

clock studies with minimal perturbation of the timekeeping

mechanism, at least in the retina. To capture the ubiquitylated

proteome, tim>bioUb and w; tim-gal4, UAS-birA/+ (tim>birA)

control flies were entrained to 12 hr:12 hr light-dark (LD) cycles

and were collected on the first day of constant darkness (DD1).

NeutrAvidin-bound fractions of head lysates were separated

by SDS-PAGE (Figure 1B). Two gel regions (50–130 kDa

and >130 kDa) were selected to avoid inclusion of the 130-kDa

band corresponding to the abundant, endogenously biotinylated

PYRUVATE CARBOXYLASE (PCB) protein (Tong, 2013). Pro-

teins of three replicates were in-gel digested with trypsin and

subsequently identified and quantified using nano-liquid chro-

matography-tandem mass spectrometry and label-free quantifi-

cation (Schilling et al., 2012).

Approximately 300 different proteins were identified exclu-

sively in bioUb-purified eluates at each of two time points where

BirA-only controls were available (Figure 1C). We compared the

ubiquitylome of tim+ clock cells with two recent datasets from

embryonic neuronal cells and adult photoreceptors (Ramirez

et al., 2015). 91 ubiquitylated proteins were found in both photo-

receptors and clock cells, whereas 123 proteins were identified

in clock cells only (Figure 1D; Table S2), providing a proxy to

identify the clock cell-specific proteome in flies. Notably, ubiqui-

tylated TIM and the clock kinase SHAGGY (SGG) were only

found in tim+ cells aswell as four subunits of the proteasome reg-

ulatory complex. Quantitative intensities in replicates displayed

strong reproducibility (Figure S1A; Supplemental Experimental

Procedures). 344 proteins were significantly more abundant at

circadian time (CT) 0 (beginning of the subjective day on DD1)

in the bioUb samples compared with the BirA control (p < 0.05,

fold change >2) (Figures S1B and S2C). Pairwise comparison

of bioUb time points resulted in the identification of several differ-

entially represented bioUb-ylated proteins (p < 0.05) (Figure 1E).

Ubiquitylated proteins were found to be enriched at CT6 relative

to other times (Figure S1D). Subsequently, the fitting of changes

in protein abundance to theoretical cosine curves (adapted from

Robles et al., 2014) was evaluated at four phases 6 hr apart.

Oscillation in abundance was observed for 52 proteins (15% of

all bioUb-ylated proteins) (Table S3) when using cutoffs of ‘‘dis-

tance’’ <0.15 for curve fitting and p < 0.2 for opposing time points

(Supplemental Experimental Procedures). Megator (MTOR), a

nuclear pore complex (NPC) component (Zimowska et al.,

1997), stood out, showing robust cycling with very high (29-

fold) peak-to-peak amplitude (Figure 1F). Generally, fold

changes in abundance of ubiquitylated proteins were centered

below 2 (Figure 1G), which is similar to the circadian cycling of

total protein levels in the mammalian liver (Mauvoisin et al.,

2014; Robles et al., 2014). Oscillations of all 52 candidates
(C) Venn diagrams showing the number of proteins identified in bioUb versus co

(D) Comparison of proteins found in previous bioUb purifications from elav-gal

(GMR+ adult head) neurons (Ramirez et al., 2015) with our dataset (tim+ adult he

(E) Venn diagram of protein species found in bioUb eluates and not in control pu

(F) Average abundance profile (with SD) of MTOR.

(G) 83% of cycling ubiquitylated proteins change in abundance less than 2-fold

(H) Number of oscillating ubiquitylated proteins showing maximum abundance a

See also Figures S1 and S2.
were manually checked. We observed a non-uniform phase dis-

tribution of ubiquitylated proteins (Figure S1D; Table S3); most

peaked at CT6 (n = 43), followed by CT12 (n = 9) (Figure 1H).

We conclude that protein ubiquitylation in clock cells is concen-

trated around daytime hours. In contrast, circadian-controlled

protein synthesis is positioned mostly at CT7 (noon) and CT19

(midnight) in a bimodal fashion (Huang et al., 2013). Interestingly,

three proteins (ARR1, NMDMC, and HN) showed cycling in both

SDS-PAGE gel regions (50–130 kDa and >130 kDa) (Table S3),

suggesting that highly ubiquitylated forms of these low-molecu-

lar-weight (33–52 kDa) proteins are also rhythmically regulated.

The cycling pool of 52 ubiquitylated proteins was enriched for

neuronal and memory proteins versus all ubiquitylated entries

(Figure S2A). Gene Ontology (GO) terms for the proteasome reg-

ulatory particle subunits and synaptic proteins were also more

represented in the cycling ubiquitylome than in the total tim+

cell translatome (Huang et al., 2013; Figure S2B).

Subsequently, we compared the cycling translatome (Huang

et al., 2013) and the cycling ubiquitylome of tim+ cells. Only three

proteins showed both rhythmic translation and ubiquitylation:

W (a transporter for eye pigment precursors), PVR (a receptor

tyrosine kinase), and RAB32/LTD (a synaptic Rab GTPase).

Their translation phases (maximum at CT21, CT14, and CT17,

respectively) appeared offset from their ubiquitylation phases

(maximum at CT6 in all cases). The delay between peak transla-

tion and ubiquitylation suggested a rather long half-life for these

rhythmically translated proteins. 10 of the cycling candidates

also showed significant (p < 0.05) abundance changes between

opposing phases (Table S4; Figure S2C).

MTOR Is Cyclically Ubiquitylated and Affects the Core
Pacemaker
To verify the oscillations that were identified by mass spectrom-

etry, we tested seven proteins by western blotting (HSP83, AP-

2a, ARI-1, INX3, MTOR, and SGG) based on the strength of their

oscillations (low distance value [<0.055] or significant amplitude

[p < 0.05]; Table S3) and availability of specific antibodies. Four

(HSP83, NRV2,MTOR, and SGG) showed recognizable ubiquity-

lation on immunoblots of purified bioUb extracts (Figure 2A; Fig-

ures S3A and S3C). NRV2, despite being ubiquitylated, did not

show cycling ubiquitylated states (Figures S3A and S3B). The

ubiquitylated form of the SGG46 isoform of the SGG kinase

(Ruel et al., 1993; Martinek et al., 2001) and the HSP83 chap-

erone demonstrated dispersed phases of oscillation among rep-

licates, although a clear cyclingwas observed in each time series

of samples (Figures S3A, S3C, and S3F). These proteins did not

significantly cycle in head extracts (Figures S3B and S3D) and

neither did total levels of ubiquitylated proteins in the same

material (Figure S3E). In contrast, anti-MTOR immunoblotting
ntrol (BirA) pull-down at CT0 and CT18.

4-expressing embryonic (elav+ embryo) and GMR-gal4-expressing adult eye

ad). Numbers correspond to protein species.

rifications at the four time points.

across the cycle (1.7 on average).

t the indicated phase. Ubiquitylation peaks at CT6 for 78% of proteins.
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unequivocally confirmed an oscillation of ubiquitylation in puri-

fied bioUb samples (Figures 2A and 2B). To control for a possible

rhythmicity in total protein levels, we blotted head lysates with

anti-MTOR. Protein levels did not cycle (Figures 2C, S3G, and

S3H), indicating that cycling ubiquitylation of this protein is not

a mere consequence of rhythmic total protein levels. MTOR is

the innermost nucleoporin forming the nuclear basket with

NUP153 (Zimowska et al., 1997). It is involved in the control of

cell division (Zimowska et al., 1997; Qi et al., 2004; Liu et al.,

2015) and has additional roles in chromatin modulation (Mendjan

et al., 2006; Lagarou et al., 2008; Vaquerizas et al., 2010).

To gauge whether MTOR feeds back onto the core molecular

oscillator, we used clock cell Gal4 drivers to express two UAS-

RNAi insertions targeting distinct regions of Mtor. Both caused

behavioral period lengthening and decreased the amplitude of

rhythmicity (Figure 2D; Table S1). To rule out gross neuronal

morphology defects as a cause of the behavioral phenotype,

we stained key pacemaker neurons, sLNvs, for the neuropeptide

pigment dispersing factor (PDF). PDF-expressing cells showed

normal projections (Figure S3I). Western blots of head extracts

fromMtorRNAi flies showed strongly reducedMTOR levels (Fig-

ure S3J) and uncovered increased PER and TIM levels at

daybreak (CT0) (Figure 2E), in agreement with the lengthening

of the behavioral period. The observed lag in PER and TIM disap-

pearance on western blots in the morning is likely to induce a

sustained transcriptional repression by PER, explaining the

long behavioral period of Mtor RNAi flies.

The function of MTOR as a nucleoporin prompted us to inves-

tigate the subcellular localization of PER, TIM, and CLK in the

sLNvs of Mtor RNAi flies. We stained for these proteins at times

when PER and TIM are predominantly nuclear in wild-type

animals, at CT24 (beginning of day 2 of DD) and CT45 (end of

day 2) in control (w; UAS-Dcr-2/+; gal1118/+) and experimental

Mtor RNAi knockdown (w; UAS-Dcr-2/+; gal1118/ Mtor RNAi)

flies. PER and TIM normally undergo finely regulated cyto-

plasmic-to-nuclear transition from CT18 onward to fulfill their

roles as transcriptional repressors. TIM and PER showed a

more cytoplasmic localization at both time points in Mtor RNAi

sLNvs (Figures S4A–S4D) compared with the wild-type, sug-

gesting that defective nuclear localization of these proteins could

contribute to the behavioral period lengthening (0.9 hr in this

genotype; Table S1). The nuclear localization defect of the clock

proteins in Mtor RNAi flies might thus be involved in the broad-

ening of the PER/TIM peak and hence contribute to the length-

ening of the behavioral period. Nup153, another basket nucleo-

porin, was recently shown to be involved in the control of PER/

TIM nuclear translocation (Jang et al., 2015).
Figure 2. Rhythmic Ubiquitylation of MTOR Unveils a Core Clock Com

Three independent experiments were performed for each blot.

(A) MTORWB of tim > bioUb and tim > birA NeutrAvidin-purified samples. Input o

confirmed by mass spectrometry quantification of eluted ubiquitin (see Figure S1

(B) Ubiquitylated MTOR was quantified in tim>bioUb pull-downs (n = 3). Error ba

(C) MTOR WB of w1118 flies with O-glycosyl transferase (OGT) as loading contro

(D) Double-plotted averaged actograms of control and two different Mtor RNAi-e

(E) PER and TIMWB of w Clk-GAL4/Y;; UAS-Dcr-2/+ (C) and w Clk-GAL4/Y;; UAS

control. Clkout (C/O) served as negative control for PER and TIM immunoreactivi

See also Figures S3 and S4.
CUL-3 and SCFSLMB Play a Partly Redundant Role in the
Rhythmic Ubiquitylation of TIM
We noticed that TIM was detected with two peptides specific to

the bioUb-purified mass spectrometry samples only at CT18.

Although quantification of peptide intensities did not show a sig-

nificant oscillation in TIM levels, we endeavored to analyze the

temporal dynamics of TIM ubiquitylation. We observed slowly

migrating TIM bands in tim>bioUb pull-downs (Figure 3A). The

bulk of the TIM signal in NeutrAvidin eluates was concentrated

around the highest phosphorylated forms of non-ubiquitylated

TIM in the input. A roughly 10-kDa difference between the lowest

bands in the input and pull-down strongly suggested that TIM is

modified by at least one Ub moiety at all circadian times. In the

late night and morning, putative polyubiquitylated TIM (Ub-

TIM) species were observed. Although Ub-TIM quantity ap-

peared to cycle with a peak at CT15–CT21 (Figure 3A), TIM

was found to be substantially more ubiquitylated at CT0, CT3,

and CT6 after normalization to total TIM levels (Figure 3B). This

enrichment in TIM ubiquitylation temporally correlated with the

strong decrease in TIM levels that occurs at the night/day transi-

tion, supporting that TIM ubiquitylation cycling drives its protea-

somal degradation.

To independently validate the results obtainedwith bioUb pull-

down of TIM, we explored other Ub purification possibilities.

In vivo expression of tagged cognate Ub receptors showing af-

finity to ubiquitylated TIM forms could also allow the isolation

of Ub-TIM by tag-specific affinity chromatography (Low et al.,

2013). Knockdown of known polyubiquitin receptors (Table S1)

revealed that all of them participated in the circadian control

of activity rhythms. Adult-restricted downregulation of the ex-

tra-proteasomal polyubiquitin receptor Dsk2/Ubiquilin (Ubqn)

increased TIM levels during the daytime and early evening, sug-

gesting that it was involved in TIM degradation (Figure 3C). We

thus used FLAG-Dsk2 to pull down Ub-TIM. Head extracts

from flies expressing FLAG-Dsk2 only in tim+ cells were pre-

pared under mild conditions to preserve the Dsk2-Ub-TIM inter-

action. TIM co-precipitated with FLAG-Dsk2 and showed daily

cycling (Figures 3D and 3E), in agreement with the Ub-TIM oscil-

lations in bioUb precipitates. Expression of a tagged version of

the proteasomal Ub receptor p54/Rpn10 and subsequent pull-

down also resulted in purification of Ub-TIM in the morning

(Figure 3F).

Substrates of Ub ligases can be modified by Ub in various

forms. Besides the addition of a single Ub moiety to the target

lysine, the attached Ub can be further polyubiquitylated on its in-

ternal lysines (for example K48, K11, or K63), resulting in Ub

chains or on its N-terminal methionine, which yields a linear chain
ponent

f tim>bioUb is shown on the left. Equal binding and elution in each sample were

D for an example).

rs represent SEM. Values at CT0 were scaled to 100.

l. The arrow indicates MTOR.

xpressing genotypes. t indicates the period (hours).

-Dcr-2/Mtor RNAi HMS00735 (R) with myosin heavy chain (MHC) as a loading

ty.
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Figure 3. Cyclic TIM Ubiquitylation Can Be Revealed by bioUb Purification, Ub Receptor Pull-Down and Ub Chain-Specific Antibodies

At least two independent experiments were performed for each blot.

(A) TIMWB of NeutrAvidin-purified samples from tim > bioUb and tim > birA flies. Inputs are shown below as well as on the same gel for two time points. Ub-TIM

means ubiquitylated TIM. Asterisks mark non-specific bands in the input.

(B) Ubiquitylated TIM (framed in the inset) was quantified and normalized to total TIM (input). Error bars represent deviation from themean (n = 2). Themean ratio at

CT0 was scaled to 100.

(legend continued on next page)
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Figure 4. Deciphering the Roles of

Cognate Ubiquitin Ligases of TIM in TIM

Ubiquitylation

At least two independent experiments were per-

formed for each blot.

(A and B) Head extracts of flies with (A) Cul-3 or (B)

Slmb inhibition were blotted for TIM.

(C) TIM WBs of NeutrAvidin-purified samples from

various ubiquitin ligase mutants in a bioUb back-

ground (see full genotypes in the Experimental

Procedures). Input was also loaded next to the

purified material (In). Asterisks marks non-specific

bands in the input. w; tim > bioUb, Cul-3DN sam-

ples and their controls were run on a separate gel.

(D) Ubiquitylated TIM was quantified and normal-

ized to total TIM (input). The ratio in tim>bioUb at

CT24 was set to 1. Circles indicate individual data

points. Paired two-tailed t test was used for sta-

tistics. *p = 0.0143; n.s., not significant.
conformation (Kwon and Ciechanover, 2017). To decipher the

Ub code on TIM, we immunoprecipitated hemagglutinin (HA)-

tagged TIM from w; tim0/+; timHA flies and revealed Ub chain

types by western blotting with Ub linkage type-specific anti-

bodies. K48-linked polyubiquitylation is a classical proteasomal

degradation signal. Intriguingly, we found K48-linked polyubiqui-

tylation on TIM only at CT12 (evening), when freshly synthesized

TIM is presumed to undergo heavy degradation to delay protein

accumulation as opposed to the peak production of the tim

mRNA (Figure 3G). The hypo-phosphorylated TIM that is present

at this time is preferentially bound by CUL-3 Ub ligase com-

plexes (Grima et al., 2012). Taken together, combined data

from three approaches strongly support an oscillation of TIM

ubiquitylation during a circadian cycle.

A number of Ub ligases (Grima et al., 2002, 2012; Ko et al.,

2002; Koh et al., 2006; Peschel et al., 2006, 2009; Knowles

et al., 2009; Lamaze et al., 2011; Ozturk et al., 2013; Guo et al.,

2014) and proteases (Luo et al., 2012) are implicated in the

Drosophila circadian oscillator and its synchronization by light.

However, actual ubiquitylation of TIM has only been reported

by the SCFJETLAG E3 ligase as a consequence of a light pulse

(Naidoo et al., 1999; Koh et al., 2006). SCFSLMB and CUL-3 Ub

ligases were found to control TIM oscillations in constant dark-

ness (Grima et al., 2002, 2012). Therefore, we aimed to distin-

guish the contributions of SLMB and CUL-3 to the ubiquitylation

state of TIM in vivo. Expression of dominant-negative forms of

SLMB (UAS-slmbDF) and CUL-3 (UAS-Cul-3K717R) on the bioUb

background led to behavioral arrhythmicity of flies (Table S1; Ko
(C) TIM andDsk2WBs ofw; tim-gal4/+; tubulin-gal80ts/+ (tg4/+, tg80ts/+) andw; t

were grown at 18�C to repress Gal4 with Gal80ts, and emerged adults were tran

S staining.

(D) TIM and Dsk2 WBs of w; tim-gal4/+ (w; tg4) and tim>FLAG-Dsk2 anti-FLAG p

20 mg of input were blotted for TIM (input) and Dsk2 (Dsk2 input).

(E) Ubiquitylated TIM was quantified and normalized to total TIM (input). The rati

(F) TIM and p54 WBs of w;;daughterless (da)-gal4 (+) and da>FLAG-p54 (FLAG-

(G) Anti-HA immunoprecipitates of w and w;tim0/+;timHA extracts were blotte

exposition image of the input is shown compared with the precipitate lanes for e
et al., 2002; Grima et al., 2012). Phosphorylated TIM accumu-

lated inCul-3K717R flies (Figure 4A), as reported previously (Grima

et al., 2012), whereas slmbDF flies showed accumulation of hy-

perphosphorylated TIM (Figure 4B), similar to slmb0 mutants

(Grima et al., 2002, 2012). Ubiquitylated TIM did not decrease

in Cul-3K717R flies, indicating that CUL-3 inhibition does not

induce changes in TIM ubiquitylation levels (Figures 4C and

4D). In slmbDF flies, we observed an increase of ubiquitylated

TIM that mostly reflected increased TIM levels (Figures 4C and

4D). However, the inhibition of both enzymatic activities in

slmb0 Cul-3K717R flies led to reduced ubiquitylated TIM levels,

indicating that CUL-3 and SCFSLMB are the main E3 ligases for

the circadian control of TIM ubiquitylation and play at least a

partly redundant or cooperative role in the ubiquitylation of TIM

sites (Figures 4C and 4D). Interestingly, SCFSLMB mainly assem-

bles K11-based Ub chains on CUBITUS INTERRUPTUS,

whereas CUL-3Rdx prefers building K48-linked chains on the

same protein (Zhang et al., 2013). It is tempting to speculate

that TIM is subject to the same modifications by the SCFSLMB

and CUL-3 Ub ligase complexes, with one partially substituting

for the other. Further investigations are required to elucidate

the chain-building specificities of SCFSLMB and CUL-3 on TIM;

nonetheless, we demonstrated the presence of K48-linked Ub

chains on TIM specifically in the evening.

In this study, we describe a layer of circadian output organiza-

tion in the form of rhythmic ubiquitylation with a peak of prote-

ome ubiquitylation around CT6. In the mammalian liver, the

phase distribution of cycling proteins shows a peak around
im-gal4/UAS-Dsk2 RNAi 16/1; tubulin-gal80ts/+ (tg4/Dsk2 RNAi, tg80ts/+). Flies

sferred at 29�C for analysis at DD1 after LD entrainment. PS means Ponceau

recipitates. A tim>FLAG-Dsk2 CT0 input (In) is loaded next to the precipitates.

o at CT0 was set to 100.

p54) anti-FLAG precipitates.

d for TIM and for K48-linked Ub chains. Note that, for anti-Ub K48, a lower

asier discrimination of individual ubiquitylated bands.
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CT20 (Reddy et al., 2006; L€uck et al., 2014; Mauvoisin et al.,

2014; Robles et al., 2014), whereas one-third of Ub ligase

mRNAs peak around CT6 (Hughes et al., 2009). These putatively

antiphasic oscillations between synthesis and degradation are

predicted to promote strong oscillations (L€uck et al., 2014). A

proteome-wide analysis of circadian protein cycling is currently

missing in flies, but our results with TIM reveal a large phase

delay between the peak of TIM levels (CT18) and TIM bulk ubiq-

uitylation (CT0). However, K48-linked ubiquitylation, a major

degradation signal, rather peaks at CT12 on TIM, according to

our results, possibly preventing TIM from accumulating synchro-

nously with its mRNA, which peaks at CT12. The Ub chain type

that drives quantitative elimination of TIM in the morning remains

enigmatic, but the K11 linkage type could contribute (Kwon and

Ciechanover, 2017). Using a proteomics approach, we identified

52 rhythmically ubiquitylated proteins. The notion of circadian

control of these oscillations is reinforced by differential TIM ubiq-

uitylation in DD2 that is approximately in sync with TIM ubiquity-

lation patterns throughout DD1 (Figures 3A and 4C).

In addition to controlling rhythmic protein degradation, circa-

dian regulated ubiquitylation is likely to direct oscillations of pro-

tein function, as exemplified by the robust rhythmic ubiquityla-

tion of MTOR. Constant steady-state levels of MTOR make it

improbable that its cycling low-level ubiquitylation would target

it for degradation. Our data thus suggest that its nucleoporin or

chromatin regulator activity is circadian controlled, and it will

be interesting to see whether it contributes to the circadian mod-

ulation of the nuclear protein accumulation, which concerns

13% of the liver proteome in mammals (Wang et al., 2017).

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in the

Supplemental Experimental Procedures.

Experimental Model and Subject Details

Adult Drosophila melanogaster were used throughout this study. Flies were

1–4 days old at the start of experiments. Stocks were maintained on a

12 hr:12 hr LD cycle on standard corn meal-yeast-agar medium at 25�C. w;

tim-gal4, UAS-(bioUb)6-birA/+, w; tim-gal4, UAS-birA/+, and w;; UAS-FLAG-

Cul-3K717R, slmb8, hs-slmb were created by standard meiotic recombination.

slmb0 (slmb8 hs-slmb) adults were produced by providing HS-SLMB expres-

sion with daily heat shocks (1 hr 15 min, 37�C) during development, as

described by Grima et al. (2002). Flies were entrained to 4 complete LD cycles

at 25�C and collected on DD1 unless stated otherwise.

Genotypes commonly used in this study were as follows:

w; tim-gal4, UAS-birA/+ (w; tim > birA)

w; tim-gal4, UAS-(bioUb)6-birA/+ (w; tim > bioUb)

w; tim-gal4, UAS-birA; UAS-FLAG-Cul-3K717R (w; tim > birA, Cul-3DN)

w; tim-gal4, UAS-(bioUb)6-birA/tim-gal4; UAS-FLAG-Cul-3K717R (w; tim >

bioUb, Cul-3DN)

w; tim-gal4, UAS-birA; UAS-slmbDF (w; tim > birA, slmbDN)

w; tim-gal4, UAS-(bioUb)6-birA/tim-gal4; UAS-slmbDF (w; tim > bioUb,

slmbDN)

w; tim-gal4, UAS-(bioUb)6-birA/tim-gal4; UAS-FLAG-Cul-3K717R, slmb8,

hs-slmb (w; tim > bioUb, Cul-3DN, slmb0).

Quantification and Statistical Analysis

All statistical analyses for mass spectrometry were done on biological tripli-

cates with the Perseus 1.5.1.6 software (Max Planck Institute of Biochemistry).

A p value of 0.2 from Welch’s t test between time points (CT6 versus CT18 or
2280 Cell Reports 23, 2273–2282, May 22, 2018
CT0 versus CT12 depending on the phase) was used as cutoff for significance

of the peak-to-peak amplitude.

Error bars in other experiments represent SD unless stated otherwise

(defined in the figure legends). For comparison of protein abundances in Fig-

ure 4D, we used paired two-tailed t tests. For experiments on nucleocytoplas-

mic clock protein localization (Figure S4), we first tested for normal distribution

of intensity values under each condition with the D’Agostino-Pearson

normality test. In case of normal distribution, Welch’s unpaired two-tailed

t test was applied for pairwise comparison between wild-type and Mtor

RNAi conditions. In the absence of normal distribution, we used the Mann-

Whitney test. The significance threshold in each case was established as

p < 0.05. Calculations were done, and the graphs in Figure 4D were created

in Prism 7.0c (GraphPad).

DATA AND SOFTWARE AVAILABILITY

The accession numbers for the mass spectrometry proteomics data reported

in this paper are ProteomeXchange Consortium: PXD005015 and 10.6019/

PXD005015.
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four figures, and four tables and can be found with this article online at
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