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Extended summary 

The European construction sector was called to lead the implementation of nearly Zero Energy 

Buildings (nZEB) with the well-known EPBD Directive 31/2010. Seven years later, the adaptation 

of the nZEB principles to the local conditions of the European Members States is still ongoing. In 

the case of Spain, the adaptation of the nZEB requirements is being considerably delayed 

because of the economic context and the slow recovery of the construction sector after the 

explosion of the housing bubble in 2008, dragging the sector to conservative designs and little 

innovation.  

Single-family houses are a crucial typology for the European strategy, because despite their 

limited number in the Spanish housing building stock, their energy consumption is very high. At 

present, the average Spanish single-family house can almost double the greenhouse gas 

emissions of a standard multifamily apartment. In order to significantly cut down this energy 

demand, this study analyzed the capacity of adaptation of the Passive House design principles 

to the cool-temperate climates in Spain.  

Firstly, one of the first passive houses built in Spain was monitored in detail to evaluate the real 

performance of this type of constructions in the local context. The long-term monitoring was 

based on a multilevel analysis of the indoor air, the thermal envelope, the ventilation unit and 

the heating system. 18 air DB sensors were used to control the indoor air temperatures in every 

room of the house, including some additional ones to control the air stratification in the biggest 

rooms. 6 relative humidity sensors registered the moisture levels in the house. To complete the 

evaluation of indoor conditions, two sets of thermal comfort sensors were installed for at least 

one week of winter, spring, summer and fall. The envelope was controlled by a large set of 

surface temperature sensors located in the walls, floors and ceilings, together with 3 thermal 

flux meters in the North East and West façades, and some sensors placed on the outer side. The 

local climatic conditions were measured by a climate station and a solar radiation meter 

mounted on-site.  

The study confirmed a good winter performance with a very low heating use of 17.6 kWh/m², 

slightly over the PH limit. The monitoring permitted to improve several aspects of the house 

thermal behaviour. For instance, the temperature gradient among distant rooms which was 

caused by the pellet stove heating. It was solved by the installation of supplementary electric 

heaters in the opposite side of the house. The thermal envelope of the house fulfilled the 
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expectations of the design but some moderate thermal bridging was detected in the ground 

contact of the building walls. 

The thermal behaviour of the house during summer was more complex. During the majority of 

temperate summer days, the operation of the MVHR with the summer bypass was able to 

provide enough free-cooling. The evaluation according to PMV indicated warm discomfort for 

3.7% of annual hours, but the EN15251 assessment evidenced how the occasional ventilation 

permitted to avoid overpassing the upper temperature limits.  

Thus, the occasional natural ventilation periods applied by the inhabitants to cool down the 

indoor were advantageous but also insufficient to maintain the indoor temperatures inside the 

PMV range. Overall, the observations suggested the high potential of the natural ventilation but 

also underlined the difficulties to apply it regularly. 

Secondly, after studying the monitored thermal response of the house, a dynamic Building 

Energy Performance Simulation (BEPS) was developed. The purpose was to represent as well as 

possible the measured thermal behaviour of the case study. The calibration was complex and 

the iteration process was driven by the parameters of heating use and indoor temperatures, 

supported by the potential of graphical analysis. The reference model was verified monthly with 

the Mean Bias Error (MBE) and the Coefficient of Variation of Root Mean Square Error, 

CV(RMSE).  

Based on this model, certain measures were implemented intending to fix the problems 

identified during the monitoring. For example, the hot hours registered during summer or the 

cool temperatures in some rooms during winter. 

The improvement of the MVHR unit maximising the airflow of the summer bypass permitted to 

boost the free-cooling and reduce almost by 20% the indoor hours above 25 °C. However, the 

limited cooling capacity of the summer bypass was insufficient for the hottest months and still 

would require the use of natural ventilation. With respect to the natural ventilation, the cooling 

capacity would be more than enough. However, there were issues related with the manual 

operation of the ventilation which limited its use in this type of houses.  

The tested solar shading devices were supplementary and lightweight, to follow the 

non-invasive approach. The obtained shading was low and despite its combination with the 
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enhanced MVHR it would be unable to cool down the temperature inside the desirable range. 

Thus, it would still require occasional heat purge with natural ventilation for the warmest weeks. 

Thirdly, another modelling study was applied in a broader perspective, considering the most 

common features of the single-family passive houses built in Spain in recent years. This way a 

detailed review of the passive houses permitted to define three simplified reference models 

with the average characteristics of size, window to floor ratios, construction materials and 

ventilation. The levels of thermal insulation were calculated in order to comply with the main 

PH requirements. A short review of the Spanish cool-temperate climates was done, showing the 

winter and summer severity levels. The study selected three locations: Bilbao as a capital with 

Atlantic climate in the coast, Burgos as typical cold-continental climate city and Madrid as a 

warm-continental area.  

The winter analysis established the minimum thermal insulation levels of the models. These 

were approximately 15 cm in detached housing and 10 cm in attached housing in medium 

severity climates (Bilbao and Madrid). These values increased up to 20 cm for detached housing 

and 15 cm for attached housing in the coldest areas (Burgos). This way, both the requirements 

for the heating demand and the heating load could be met with an average design. 

The summer analysis of the selected models was improved with the implementation of several 

passive measures. The results confirmed that all the cases in the studied climates could 

completely avoid the use of active cooling with the proper combination of supplementary 

feasible measures of ventilation and solar shading.  

Regarding the future climate and global warming effect in these buildings, the selected cases 

showed increases of the indoor temperatures in summer by about 1-2 °C by 2040 and around 

2-5 °C by 2080. These higher temperatures may deteriorate considerably the indoor 

environment in many cases and all new designs should verify the resilience of the buildings for 

this reality. Unless these climate scenarios are applied in the early building design, frequent 

indoor temperatures over 30 °C may be common in the new constructions inside the Spanish 

continental climates. 

 

Keywords: Building monitoring; Thermal comfort; Overheating; Building energy simulation; 

nZEB. 
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Resumen 

El sector de la edificación fue convocado para liderar la implementación de los Edificios de 

Consumo de Energía Casi Nula (nZEB) a través de la Directiva 31/2010 EPBD. Siete años más 

tarde, la adaptación de los principios nZEB a las condiciones particulares de los Estados 

Miembros está todavía en proceso. En el caso de España, esta adecuación de los requisitos nZEB 

está siendo considerablemente retrasada por el contexto económico y la lenta recuperación del 

sector de la construcción desde la explosión de la burbuja inmobiliaria en 2008, que arrastró a 

todo el sector hacia posiciones conservadoras de diseño y poca inversión en innovación. 

Las viviendas unifamiliares son una tipología crucial para la estrategia europea, debido a que, 

pese a su reducido peso en el parque inmobiliario español, su consumo energético es muy 

elevado. En la actualidad, la vivienda unifamiliar media puede emitir casi el doble de gases de 

efecto invernadero que un apartamento medio en España. Para reducir significativamente su 

consumo energético, este estudio analizó la capacidad de adaptación de los principios de diseño 

Passive House a los climas templados de España. 

En primer lugar, se monitorizó en detalle una de las primeras viviendas pasivas construidas en 

España, para evaluar el comportamiento real de este tipo de construcciones en un contexto 

local. La monitorización se prolongó por 14 meses y se basó en un estudio múltiple del aire 

interior, los cerramientos, el sistema de ventilación y el sistema de calefacción. Se instalaron 18 

sensores de bulbo seco para conocer las temperaturas en todas las habitaciones, incluyendo 

algunos sensores adicionales para analizar la estratificación del aire en las mayores habitaciones. 

Mediante 6 sensores de humedad relativa se monitorizó el contenido de humedad en distintos 

puntos de la casa. Los cerramientos fueron controlados mediante un gran número de sondas de 

temperatura superficial ubicados en las paredes, suelos y techos, combinados con la medición 

del flujo térmico en 3 puntos de las fachadas Norte, Este y Oeste; así como la medición de las 

temperaturas superficiales exteriores de las fachadas. Las condiciones climáticas fueron 

registradas in-situ mediante una estación meteorológica y un solarímetro. 

El estudio confirmó el buen comportamiento térmico en invierno con un consumo energético 

muy bajo de 17,6 kWh/m², ligeramente por encima del límite PH. La monitorización permitió 

aplicar ciertas mejoras al comportamiento térmico inicial. Por ejemplo, el gradiente térmico 

entre habitaciones causado por la calefacción mediante estufa de pellets fue compensado con 

unos pequeños calefactores eléctricos ubicados en la parte opuesta de la casa. El 
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comportamiento de la envolvente térmica de la casa cumplió las expectativas de diseño, con la 

salvedad de algunos puentes térmicos moderados detectados en el encuentro entre las 

fachadas y el terreno. 

El comportamiento térmico de la casa en verano fue más complejo. Por un lado, el 

funcionamiento de la unidad de ventilación mecánica con recuperación de calor (VMC-RC) en 

modo bypass aportó una refrigeración gratuita suficiente en la mayor parte del verano. Por otro 

lado, la evaluación del confort térmico mediante el modelo del voto medio estimado (PMV) 

mostró un 3,7% de las horas anuales por encima de los valores admisibles y la norma EN 15251 

evidenció que los pequeños ciclos de ventilación natural nocturna fueron los que evitaron 

sobrepasar los límites de temperatura superior. 

Por lo tanto, los periodos de ventilación natural aplicados ocasionalmente por los habitantes 

para refrescar la casa fueron beneficiosos, pero también insuficientes para mantener las 

temperaturas interiores dentro del rango recomendado por el PMV. En general, las 

observaciones sugirieron que la ventilación natural tiene un alto potencial pero también ciertas 

dificultades para su aplicación real. 

En segundo lugar, tras estudiar la respuesta térmica de la casa mediante la monitorización se 

desarrolló un modelo de simulación del rendimiento energético (BEPS). Su propósito era 

representar con la mayor fiabilidad posible el comportamiento medido en la casa. LA calibración 

del modelo es un proceso complejo y el proceso de iteración fue guiado por los valores de 

consumo energético y temperaturas interiores, apoyado por análisis gráficos avanzados. El 

modelo de referencia fue validado mensualmente mediante el “Mean Bias Error” (MBE) y el 

“Coefficient of Variation of Root Mean Square Error”, CV(RMSE).  

A partir de este modelo se pudieron implementar ciertas medidas pasivas para solucionar los 

problemas detectados en el comportamiento térmico del edificio real durante la monitorización. 

Por ejemplo, las horas de verano por encima de las temperaturas admisibles o las temperaturas 

bajas en algunas habitaciones durante el invierno. 

La mejora de la VMC-RC aplicando un aumento del flujo de aire cuando se activa el bypass 

permitió ampliar un 9% la refrigeración gratuita de todo el verano y reducir un 20% el número 

de horas por encima del límite superior de confort. Sin embargo, su limitada capacidad era 

insuficiente para los meses más cálidos del año y seguiría necesitando la ventilación natural. Si 
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bien la capacidad de refrescamiento de la ventilación natural sería suficiente, los problemas 

prácticos de operación manual, ruido y seguridad limitan su uso en esta tipología. 

Los sistemas de sombreamiento analizados en este modelo fueron ligeros a modo de medidas 

no-invasivas para un edificio existente. Por ello, el sombreamiento obtenido era menor que en 

otros sistemas de obra nueva y pese a su combinación con la VMC-RC mejorada seguiría 

necesitando la ventilación natural en las semanas más cálidas a modo de purga de calor. 

 En tercer lugar, se realizó otro estudio con una perspectiva mayor, considerando las 

características más comunes de las viviendas unifamiliares pasivas construidas en España en los 

últimos años. De este modo, se definieron 3 modelos de referencia con las principales cualidades 

de las casas pasivas existentes con los valores medios de dimensiones, proporción de ventanas, 

materiales de construcción, sistemas de ventilación y calefacción. Los niveles de aislamiento se 

ajustaron para cumplir los requisitos principales del estándar PH. Estos niveles se ajustaron en 

base a las tres principales zonas climáticas aplicadas en el estudio. Se seleccionaron 3 ciudades: 

Bilbao como una capital de la zona Atlántica, Burgos como una típica ciudad de la zona 

continental fría y Madrid como indicador de la zona continental-cálida. 

El análisis de invierno estableció los niveles mínimos de aislamiento por tipología y zona. Siendo 

aproximadamente 15 cm para las casas aisladas y 10 cm para las casas adosadas en las zonas de 

severidad climática invernal media (Bilbao y Madrid). Así como 20 cm y 10 cm aproximadamente 

en las zonas más frías (Burgos). De este modo, se cumplirían los dos criterios de carga máxima 

diaria de calefacción y de demanda anual máxima de calefacción. 

Posteriormente, el análisis de verano de los modelos seleccionados fue mejorado mediante 

combinaciones de mejoras de ventilación, sombreamiento solar e inercia térmica. Los resultados 

confirmaron que es posible evitar la necesidad de refrigeración activa en todas las zonas 

climáticas estudiadas mediante una selección adecuada de medidas de refrescamiento pasivo. 

Respecto al comportamiento frente al clima futuro el efecto del calentamiento global en esta 

tipología, los cases estudiados mostraron aumentos de la temperatura interior de entre 1-2 °C 

para 2040 y entre 2-5 °C para 2080. Estos elevados valores podrían deteriorar 

considerablemente el confort térmico en muchos casos lo que indica que los diseños actuales 

deberían verificar la resiliencia de los edificios a esta realidad. Si no se aplican estos escenarios 

futuros en los edificios actuales, las temperaturas interiores por encima de 30 °C podrían ser 

frecuentes en los nuevos edificios ubicados en las zonas de España con clima continental. 
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1. Introduction 

1.1. Background and motivation 

In 2010, the European Union made public a new ambitious goal for constructions: by 2050 the 

EU must reduce their CO₂ emissions up to 80% below the levels established in 1990. This was far 

from the conditions of the present average constructions, but it was the first and global 

definition of the nearly Zero Energy Buildings (nZEB) in the EU. According to this policy agenda, 

every new construction should be a nZEB by the end of 2018 for public buildings and by the end 

of 2020 in the case of private constructions (Directive 2010/31/EU, 2010). Despite to the fact 

that many policies have reinforced this main concept (Directive 2009/28/EC, 2009) (Directive 

2009/125/EC, 2009) (Directive 2012/27/EU, 2012), the real implementation along the European 

Member States (MS) has been diverse and the results in many countries have not been 

satisfactory from the European Commission point of view (ECOFYS et al., 2014) (EPISCOPE & 

BPIE, 2015). For that reason, in 2016 the European Commission published a new 

Recommendation with some guidelines for the promotion of nZEB and best practices to ensure 

that, by 2020, all new buildings would be nZEB (European Commission, 2016b). This way, it is 

patent that many MS are struggling to implement the nZEB solutions described by the EU 

framework. The present study analyses the features of residential single-family nZEB in northern 

Spain climates and offers a common ground to develop a proper definition of local nZEB.  

It is very important to understand the reasons behind this nZEB policy and keep in mind the big 

picture of this nZEB strategy. The effects of the Climate Change (CC) are now present all over 

the world, and our decisions today will limit greatly the possibilities to keep a good quality of life 

of our future generations. After many years of discussion between believers and sceptics of the 

CC, a large amount evidence about climate, human impact and scenarios was collected 

worldwide which lead to a global consensus. Firstly, this is not just a periodical or seasonal 

warming. The last report of the Intergovernmental Panel on Climate Change (IPCC) has 

presented countless real evidence and future scenarios simulations, which demonstrate that the 

“scientific evidence for warming of the climate system is unequivocal” (IPCC et al., 2013), see CO₂ 

levels in Figure 1.1. Secondly, even though the cause of this change was discussed for a long 

time, the scientific community now accepts that the main factor is actually human. Recent 

research about all the studies published in peer-reviewed scientific journals shows that at least 

90% of the studies point to human activities as the main driving factor of the climate warming 



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

4 

phenomena (Cook et al., 2016). A key year was 2013, when abundant evidence was published 

in the IPCC last report (IPCC et al., 2013) and the World Meteorological Organization (WMO) also 

declared that “there is a strong scientific consensus that the global climate is changing and that 

human activity contributes significantly” (WMO, 2013). It is important to keep in mind that this 

consensus required a very long time to settle. Already in 2005, the Academies of Sciences of the 

world’s main countries warned saying that “climate change is real” and asked Nations to 

“prepare for the consequences of climate change” (Joint Science Academies, 2005). To sum up, 

nZEB design will face a progressive climate warming in upcoming years and the constructions 

should be adaptive.  

 
Figure 1.1. Reconstruction of worldwide CO₂ from ice cores  

(taken from National Oceanic and Atmospheric Administration, NOAA). 

This way, the social consciousness was slowly growing during decades together with the 

scientific evidence and eventually the governments also got involved in CC strategies. Since the 

Kyoto protocol of 1997, many organizations have helped developing the basic principles of that 

first agreement, like the United Nations Framework Convention on Climate Change (UNFCCC), 

WMO, IPCC, National Aeronautics and Space Administration (NASA) and many others. Finally, 

despite all the economic and political impediments, a first global and binding agreement became 

true in Paris in 2015. A document consisting of obligations for the countries and tools to hold 

global warming below 2 °C was established. The contents of this document was negotiated and 

approved by consensus of the 195 countries present in the 21st Conference of the Parties of the 

UNFCCC (COP21). Afterwards, these measures were ratified by each country and the Paris 
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agreement entered into force on the 4th of November 2016, when a sufficient number of 

countries had ratified it, accounting for almost the 55% of global emissions. As a consequence, 

there are two clear aspects of future building regulations: the emissions related with the 

construction and use of buildings should be kept as low as possible, and at the same time the 

design of buildings must take into consideration the predicted scenarios of global warming and 

permit future adaptations. 

Going back to the EU context, buildings are one of the most relevant aspects to minimise the 

human impact. According to the European Commission “buildings are responsible for 40% of 

energy consumption and 36% of CO₂ emissions in the EU” (Directive 2010/31/EU, 2010). The 

challenge of this sector is precisely that the building stock across Europe is heterogeneous and 

diverse. The present study focuses on the residential sector as the European building stock is 

mainly residential. The European Commission created a building stock observatory and the most 

recent results show that the residential sector accumulates on average 75.82% of the total EU-

28 floor area (EC Building Stock Observatory, 2013). Moreover, the type of dwelling affects 

greatly the energy consumption. For instance, recent studies have pointed out that the final 

energy demand for heating and cooling in single-family dwellings is considerably higher than the 

demand in multifamily blocks (EPISCOPE & BPIE, 2015) (Zangheri et al., 2014). A very detailed 

state of art conducted by the European Commission about the influence of building typologies 

on energy consumption has concluded that in the case of detached housings in rural areas the 

final energy demand can be double (European Commission, 2016c). Therefore, the energy 

reduction of the typology of detached single-family housing is one of the main challenges of the 

present and future European construction sectors.  

At a Spanish scale, this typology is also very important for the global energy consumption in 

buildings. Firstly, the ratio of residential buildings is higher in Spain than in Europe. Many studies 

indicate that residential buildings constitute around the 82% of the Spanish total net floor area 

(ENTRANZE Project, 2012) (BPIE, 2011) (Eurostat, 2013). Secondly, the presence of this typology 

of dwellings is smaller than in average EU-28, that is around a 30% of single-family housing and 

70% of multifamily blocks (SECH Project -SpaHousec, 2011). Besides, this presence changes 

depending on the part of Spain, and while in the north-Atlantic areas it is 26%, in the continental 

areas it is about 29% and in Mediterranean areas it reaches up to a 31%. However, the Spanish 

dwellings of this typology are much bigger (140.2 m2) than apartments (86.5 m2). As a result of 

this size difference, the net floor area of single-family dwellings account as much as the 35% of 
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the total Spanish residential area (ENTRANZE Project, 2012). With regard to the energy 

consumption, the impact of this typology is indeed higher, see Figure 1.2. The SECH project 

(development of detailed Statistics on Energy Consumption in Households) reviewed the 

consumption of housing typologies and identified the main energy end-uses of European 

countries between 2009 and 2011. The study indicates that this typology consumes up to the 

46% of the final energy use of Spanish residential buildings and also that the heating need of an 

average single-family dwellings quadruplicates the heating need of average apartment (SECH 

Project -SpaHousec, 2011). This higher energy demand was included in the limits of maximum 

energy demand of the Spanish Building Code. This surface factor for small buildings means that 

a new single-family housing of 150 m2 is allowed to consume 15-38% more heating/cooling than 

a 1000 m2 multifamily block.  

 
Figure 1.2. Energy consumption of average dwellings in Spain (taken from SECH-SPAHOUSEC, 2011) 

The present study was strongly motivated by the great changes which happened in the 

residential sector of Spain during the last decade. These changes turned upside down the 

traditional construction sector and remodelled the features of new dwellings, as well as the 

requirements for existing building renovations. Among other small reasons, there were three 

main causes: (i) the world financial crisis which provoked the collapse of Spanish “housing 

bubble” in 2008, (ii) the new European regulation to reduce the energy consumption of buildings 

and (iii) the late spread of high energy performance buildings with international certificates like 

Passivhaus, MINERGIE, LEED, BREEAM, etc. 

Firstly, the world financial crisis of 2007 whose effects landed in Spain in 2008. This crisis 

provoked the burst of the existing “housing bubble” and as a consequence, the Spanish 
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construction sector was swept and reduced to its minimum expression. According to official data 

from the Spanish National Statistics Institute (“Instituto Nacional de Estadística”, INE), the 

number of dwelling licenses, including new and renovated works, dropped up to 86% in only 4 

years: from the peak of 820.000 dwellings in 2006, to 667.000 in 2007, 232.000 in 2008, 111.000 

in 2009 and below 50.000 in 2016. These small numbers are considered to be insufficient to 

cover the housing need. Actually, before the “housing bubble”, the number of dwelling licenses 

was 287.000 between 1980-1997 (García Montalvo, 2006). In brief, the paralysis affected the 

new developments and renovations all around the country, as it can be observed in Figure 1.3.  

This analysis is also supported by many publications like the last review published by Housing 

Europe (Housing Europe, 2015). In this context, the law of supply and demand increased the 

market competition and increasingly led to a higher specialization of architects, engineers and 

builders. The main two objectives for the construction sector stakeholders are the buildings with 

high Energy Efficiency (EE) and the renovation of the existing building stock (Consejo Económico 

y Social, 2016). At social level, the destruction of the construction sector was very dramatic and 

it boosted the unemployment level to more than 25% of the active people in 2012 and 2013.  

 
Figure 1.3. Monthly dwelling projects in Spain (1995-2016). Monthly project licences and finished 

constructions, including new and renovated housing (data source INE, 2016). 

Secondly, another difficulty in Spain has been the slow application of the ambitious European 

plans to improve the Energy Performance of Buildings (EPB), as pointed out in a number of 

reports and publications (BPIE, 2011)  (ECOFYS et al., 2014) (RePublic_ZEB Project, 2015) 

(EPISCOPE & BPIE, 2015). The European policy kept rising the EPB threshold every few years 

through a number of directives and this strategy has completely changed the requirements for 
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new constructions and renovations. Meanwhile, the implementation of these directives into the 

Spanish regulation took very long time in most of the cases (between 3 and 5 years, as explained 

in the next paragraph). This fact, in combination with the aforementioned financial crisis, 

provoked a considerable delay in the adaptation of the construction sector to the new strategy. 

The first requirements established by the EBPD (Directive 2002) were transposed to Spanish 

legislation 4 years later. They were included in two documents: the first Technical Building Code 

(CTE) (Royal Decree 314/2006, 2006) and the updated Regulation of Building Heating Systems 

(RITE) (Royal Decree 1027/2007, 2007). The CTE became mandatory for the licences given after 

the 29th of September 2006, less than two years before the burst of the “housing bubble”. So 

there was almost no time to implement these improvements in new projects and the majority 

of ongoing constructions were based on older regulations. In any case, little by little the new 

regulations were applied in the scarce construction works and the society started to hear about 

more thermal insulated buildings and advanced HVAC systems. However, these changes were 

very slow and designers and builders were reluctant to change their conventional solutions 

(RePublic_ZEB Project, 2015). Many improvements of the energy performance like thermal 

bridging reduction or ventilation with heat recovery were often rejected due to the 

incomprehension of the real benefits and the additional expenses of the new solutions (NEEAP 

Spain, 2014).  

The next update of the European requirements was made public in 2010 through the Recast 

EPBD, also known as the 20-20-20 Directive (Directive 2010/31/EU, 2010). In brief, it included 

specific new requirements to reduce the energy consumption and also the obligation to achieve 

nearly Zero Energy Buildings (nZEB) by the end of 2018 and 2020, for public and private 

constructions, respectively. According to the European timeline summarized in Figure 1.4, MS 

should publish their National Energy Efficiency Action Plans (NEEAP) in 2015. Unfortunately, the 

Spanish NEEEP published in 2014 (NEEAP Spain, 2014) didn’t include a clear nZEB definition, only 

some guidelines (Observatorio Vasco de la Vivienda, 2016).  Since the publication of the EPBD in 

2010, the Spanish regulation has improved many aspects of the regulation framework to update 

the requirements and get closer to the nZEB objective (Orden FOM 1635/2013, 2013) (Royal 

Decree 238/2013, 2013). Moreover, a number of economic measures have been applied to 

promote the renovation of existing buildings, including aids for energy efficiency (Royal Decree 

233/2013, 2013), ICO credit line for private housing, tax incentive for renovation works, PAREER 

and PAREER-CRECE aid programs as well as some others (RePublic_ZEB Project, 2015).  
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The last news from the nZEB strategy indicates that the present requirements on energy savings 

regulation in Spain are far from the nZEB horizon. The European Commission in July of 2016 

published a brief assessment of the nZEB implementation and confirmed that the “progress by 

Member States has slowly improved but should be accelerated” (European Commission, 2016b). 

For that reason, they have provided many guidelines the MS should follow, including the specific 

ranges of energy demand and energy consumption of offices and single-family houses. Several 

months after this EC recommendation, in December 2016, the Spanish government published a 

draft of the updated nZEB indicators (Ministry of Development, 2016) and an EPB visualization 

tool (Ministery of Development, 2017). According to the Minister participation in the last nZEB 

workshop in Madrid in 2017, the ventilation update will come out in late 2017 and the Spanish 

nZEB definition in 2018 (7th EECN Workshop, 2017). The chapter 2 of this thesis gathers further 

details about the current regulation frame. Probably, this late nZEB definition in Spain is going 

to postpone the adaptation of the construction sector to the future nZEB scenario. 

 
Figure 1.4. EPBD National implementation keystones (source: RePublic_ZEB,2015). 

Thridly, another third special issue was the low acquaintance with the Energy Performance of 

Buildings (EPB) of Spanish citizens and private owners, as recognized by the National Energy 

Efficiency Action Plan (NEEAP Spain, 2014), in contrast with a great awareness of the private big 

companies, despite of the lack of economic aids (Observatorio de Eficiencia Energética, 2016). 

The public knowledge on this field was also diminished by the absence of any kind of public 

registry of the Energy Performance Certificates (EPC) until recent times. The public registry of 

EPC became mandatory only since 2013 (Royal Decree 235/2013, 2013). This way, the society 
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for now is rather unfamiliar with the EPCs and the construction market doesn’t commit with 

high EPC levels. In fact, the majority of the new constructions built in 2013, 2014 and 2015 ended 

getting a D or worse qualification, as shown in Figure 1.5. This problem has been analysed in 

detail in the annual report of the Spanish Institute for Energy Diversification and Saving (Instituto 

para la Diversificación y Ahorro de la Energía, IDAE) (IDAE, 2014) (IDAE, 2015a) (IDAE, 2015b). 

Despite the improvement of regulations, the final EPC at present are far from meeting the 

expected minimum performance. As aforementioned, the public awareness of building’s energy 

performance is still in general low and insufficient, and the agents involved in construction 

haven’t taken the risk to invest on projects with high Energy Efficiency.  

           
Figure 1.5. EPC levels of new dwellings in Spain in years 2013-2015 (data source: IDAE). 

At the same time, some international standards such as Passivhaus, MINERGIE, LEED and 

BREEAM became the only alternative to identify low energy consumption buildings among the 

conventional construction sector. As seen before, the regulation was being slowly applied and 

this way the international standards took control as the reference for future nZEBs. In the last 

decade, the increase of international standards in Spain has been remarkable.  

The first Passive House (PH) or Passivhaus building in Spain was finished in 2009, the first 

certificate was obtained in 2010 and one year later the first guide about Passivhaus in Spain  was 

published (FENERCOM, 2011). The Spanish Passivhaus Platform (PEP, 2017) in their annual 

conference of 2015 presented the numbers of the finished PH buildings in recent years, 

demonstrating how the standard PH has multiplied its presence in all over Spain, see Figure 1.6 

(PEP, 2017) (Wassouf et al., 2013). More recently, in 2015 and 2016 numerous projects have 

followed the PH design, especially in the northern Spain. The delay of the official regulation has 
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convinced many local governments to apply these volunteer standards in order to reduce the 

energy consumption and boost local construction sector. In Euskadi, the Basque region, the 

social and protected housing company known as VISESA is building a big project of two high-rise 

towers with 361 dwellings in Bolueta (near Bilbao). In Navarra, another social and protected 

housing company known as NASUVINSA, has begun another project of 600 dwellings designed 

with PH standard. Regarding to the MINERGIE standard, the number of registered projects is 

very low. The first certificate building was a single-family dwelling in Bizkaia in 2012, and the 

second was a student residence in Barcelona. At present, there are approximately 23 certified 

and 29 non-certified passive houses in Spain, see Section 2.2.2 for further details.  

 
Figure 1.6. Map of Spanish PH buildings in 2015 (taken from PEP, 2017). 

The sustainability certificates also gained a position in the construction sector. The BREEAM 

certificate created a Spanish division in 2010 and in two years they already had more than 60 

projects certificated. Later on they kept increasing their presence and by January of 2017 there 

were 304 BREEAM certified projects according to the official database (BREEAM, 2016). Even 

though most of them are tertiary, there are also 46 residential projects, the 15% of the total 

BREEAM certificates. On the other hand, the LEED certificate has a considerable presence too. 

A decade ago there were less than 10 registered buildings in the whole Spain, but since 2008 the 

increase has been exponential. Nowadays more than 400 registered buildings demonstrate the 

importance of this certificate (SpainGBC, 2016). This is especially important in a country whose 

construction sector has been deeply affected by the recession.  

After analysing the conditions of the Spanish construction sector, it was crucial to experience 

the real performance of low energy housing in order to improve the designs of single-family 
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dwellings. This possibility appeared in 2012, after the construction of two Passivhaus single-

family housings in the Basque region, see Figure 1.7. The building company and the architects 

were interested in collaborating with researchers in order to analyse the real performance of 

the buildings and detect improvement gaps for their future projects. To do so, the quality control 

laboratory studied the case and offered a monitoring campaign for the Passivhaus certified nZEB 

on-use. The planned monitoring system was oriented to verify the real heating performance and 

measure the heat losses of the house. Eventually, some additional objectives were reviewed as 

well, such as the air stratification, the thermal comfort, indoor air quality, ventilation 

performance and overheating risk. The monitoring campaign permitted the identification of the 

most relevant research areas for future single-family housing, included in the present PhD work. 

 
 

 
Figure 1.7. Monitored case study house in winter (top) and summer (bottom). 

From this overview of regulations and passive housing perspectives, one can be sure that the 

housing development is still going through a period of uncertainty. The Spanish construction 

sector has experienced quite bad times in recent years and the sector is little by little overcoming 

the financial crisis. During this time, even though some projects have adopted standards of high 

performance, the mainstream of construction follows the current regulations without further 
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improvements. In reality, despite the fulfilment of the renovated Spanish building codes (Orden 

FOM 1635/2013, 2013) (Royal Decree 238/2013, 2013), the EPC levels of new constructions are 

mostly D and E, far below the European expectations.  

Therefore, most of the buildings are not applying properly the criteria to reach the nZEB horizon. 

This situation required a deep study about the single-family housing features in northern Spain, 

to find out the best design conditions in this climate and guarantee high levels of thermal 

comfort. Additionally, it was also mandatory to analyse the present designs in the future 

scenarios of climate change in order to be aware of the adaptation potential of our future 

homes.  
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1.2. Research areas 

The works conducted during this PhD study were focused on the thermal behaviour of single-

family dwellings. As seen before, this typology has a great potential and also a high risk of failure 

of future designs. The works were based in several fields of knowledge, to support them and 

guide the tasks towards the main challenges. Below, a brief outline of the topics analysed during 

the PhD is given. For further details of any of them see the next chapter.  

Climate change and global warming scenarios 

In the last decade, the scientific consensus about human influence on global warming has 

reached an enormous 97% (Cook et al., 2016). According to the future climate scenarios 

calculated in the last IPCC review, there is a severe risk of extreme conditions in southern 

European countries (IPCC et al., 2013). These scenarios will probably lead to more frequent heat 

waves and the consequent increases of cooling need and warm discomfort in buildings (Hacker, 

Holmes, Belcher, & Davies, 2005) (Zampieri, Russo, Michetti, Scoccimarro, & Gualdi, 2016).  

Thermal comfort and summer overheating risk 

The majority of the European regulations for new constructions include indoor environment 

requirements which are essentially simplifications of the models of Thermal Comfort (Attia & 

Carlucci, 2015). In the case of Spanish regulation, the maximum and minimum acceptable indoor 

air temperatures for winter and summer are approximations of PMV model (ISO 7730, 

2005)(European Committee for Standardization (CEN), 2005) (Royal Decree 238/2013, 2013). 

Besides, in the case of housing constructions there is no further verification of summer TC if the 

annual cooling load doesn’t overpass 15 kWh per year (Orden FOM 1635/2013, 2013)(Ministerio 

de Fomento, 2013). This lack of control of the summer behaviour together with the global 

warming can lead to important problems in the future. 

Local climate potential of passive measures 

One of the best ways to prevent the issues of TC and minimise the OH risk consists of the 

improvement of building design to mitigate the upcoming warmer climate (McLeod, Hopfe, & 

Kwan, 2013). There are many different strategies to face this challenge and this study is focused 

on the passive measures which require the minimum intervention and the minimum amount of 

energy. The purpose is to show the potential of these aspects to adapt new buildings to changing 
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climate and compensate the cooling need. This study includes several measures based on 

ventilative cooling (Kolokotroni & Heiselberg, 2015), solar shading (REHVA & ES-SO, 2010) and 

to smaller degree, some thermal mass and infiltration verifications (McLeod et al., 2013). 

Passive House design 

One of the most well-known standards to design low energy houses is Passivhaus (FENERCOM, 

2011). It began 25 years ago in continental Europe and in the last 5 years it was also exported to 

warmer climates like Spain (Wassouf et al., 2013). This PhD work analysed in detail a real 

Passivhaus certified single-family housing (SFH) in order to measure and understand the real 

benefits and limitations achieved with this standard in southern latitudes (Bruno, Arcuri, & 

Carpino, 2015). The assessment is completed with simulations of feasible improvements and the 

evaluation of a general case located in northern Spanish climate. 

Building Monitoring  

The monitoring of a housing on-use is a big challenge, conditioned not only by the available 

instruments, the timeframe or the budget, but also by user’s involvement and climate (Krüger 

& Givoni, 2008) (Guerra-Santin, Tweed, Jenkins, & Jiang, 2013). The house was monitored for 14 

months and a number of verification tests and surveys were done to get a holistic perspective 

of the thermal behaviour of the house. The presented data is the result of a deep analysis and 

evaluation of the indoor environment of the real case. 

Building Energy Performance Simulation (BEPS) 

A detailed EnergyPlus® model was defined in order to evaluate the margin of improvement of 

the monitored performance of the real case. It permitted to apply different passive measures 

and operational configurations. The verification or calibration of the BEPS with the 

measurements was a long process with many challenges to solve (Coakley, Raftery, & Keane, 

2014). As a result, the comparison of the real case measurements and the predicted indoor 

environment helped to specify a method to identify the best passive strategies. 
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1.3. Research aim and objectives 

The main purpose of this research was to improve the adaptation of passive single-family 

houses to the climatic conditions of cool-temperate climates in northern Spain, considering 

their capacity to provide optimal thermal comfort with an ultra-low energy demand. The 

intention was to identify the most relevant parameters which affect the thermal performance 

of these constructions and provide guidance about the optimisation of their passive design. This 

way, the conducted assessment aimed to provide knowledge for the next steps towards the 

nZEB objective in a global warming scenario.  

Thus, the main research question was: 

How can passive house design adapt to the cool-temperate climates in Spain, minimising the 

energy need and providing optimal comfort also in summer? 

 

To answer this question, a stepwise study has been conducted. Firstly, it was essential to know 

the real performance of these constructions and understand the potentials and limitations of 

this standard. To do that, a long-term monitoring of a local building on-use was planned and the 

following question was addressed:  

Is the performance of the passive house as good as it was expected, considering the heating 

operation, the performance of the thermal envelope, the operation of ventilation and the 

thermal comfort? 

 

Based on these findings, several aspects of the building design were found in need of 

improvement. To solve or minimise the identified issues, a detailed building energy performance 

simulation (BEPS) was defined as a tool to test the implementation of different passive measures 

in the case study. The simulations were oriented to answer the next question:  

Would it be possible to implement non-invasive measures in the monitored passive house in 

order to reach an optimal thermal comfort during winter and summer without increasing the 

energy demand? 
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After the detailed survey of a particular case, the next step was to analyse the general features 

of single family passive houses and assess the need of passive cooling strategies. The purpose 

was to adapt these designs to the local climatic conditions of cool-temperate areas in Spain 

considering that these problems will probably increase due to the global warming scenario. In 

order to do so, the last question was intended to be answered: 

Which passive cooling measures would be more appropriate to be installed in this housing 

typology to reach an optimal thermal comfort during winter and summer in the 

cool-temperate regions of Spain? 
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1.4. Structure of the Thesis 

The thesis is divided into six chapters and several annexes.  

The first chapter is the introduction. It includes the description of the background and the 

motivation for the study, the identification of the areas of research and the general aim and 

particular objectives of this work.  

The second chapter is the state of the art of single-family dwellings. Firstly, the regulation frame 

is described, from the European EPBD to latest Spanish nZEB definition update. Secondly, the 

general definition of Passivhaus standard is presented with an outline of the principal criteria. 

Thirdly, the global warming scenarios for the European and Spanish climates are described, 

including the impact of the climate change on the building energy demand. Fourth, a review of 

the monitored passive houses is done which permitted to highlight the main problems detected 

in the previous studies. To conclude, there is a compilation of the methodologies to assess 

thermal comfort and overheating. It describes the formulas and the methods applicable for the 

analysed single-family housing typology.  

The third chapter analyses the real performance of a case study on-use, through the monitored 

data of 14 months and a number of carried out tests. It begins with a description of the 

Passivhaus certified building, the monitoring system and the analysing method. Next, the 

experimental results are explained with a summary of all the monitored data sorted by the 

aspects and elements measured during the field works. Finally, the obtained results are 

discussed and compared with other recent works.  

The fourth chapter aims to solve the problems detected in the monitored case using the 

potential of building energy performance simulations (BEPS). It starts with a detailed model 

definition, defining the building features, the systems and the inner activity templates. Later on, 

the model is tested under theoretically improved features to calculate the potential of each 

aspect. Then, the features are combined to find out the optimal integrated solution.  

The fifth chapter optimises the energy demand of single-family passive houses in the 

cool-temperate climates of Spain in order to identify the best combinations to provide as much 

thermal comfort as possible. The assessment is applied to three reference models which contain 

the most common features of single family houses in Spain. The first stage calculates the 

minimum level of thermal insulation in each location and case. The second stage evaluates the 
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capacity of different passive cooling measures to provide indoor thermal comfort in summer. 

The third stage calculates the risk of overheating according to PH standard and CIBSE TM52 

method. The final stage analyses the impact of future climate on these buildings, based on the 

scenarios of the IPCC for 2040 and 2080.  

The sixth chapter describes the general conclusions, distinguishing the main outcomes of the 

thesis and proposing future work. 
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2. Review of single-family passive houses, monitored cases and 

situation in Spain 

2.1. Single-family housing regulation frame 

2.1.1. European policy 

The progress achieved by the European regulation of the Energy Performance of Buildings since 

the first regulation in 2002 is remarkable (Directive 2002/91/EC, 2002). Figure 2.1 below shows 

the main milestones of the EPBD strategy as planned by the EPBD recast of 2010 (Directive 

2010/31/EU, 2010). The implementation of this regulation in the MS has been irregular and a 

review published in REHVA magazine in 2012 highlighted the considerable differences in the 

requirement levels and the implementation delays (Erhorn & Erhorn- Kluttig, 2012). They 

underlined the case of Denmark as the best nZEB approach and the German case as the most 

common progressive increase of the minimum thermal insulation levels.  

 
Figure 2.1. Timeline of the Energy Performance of Buildings Directive and its implementation  

(source: The Path towards 2020, Nearly Zero-Energy Buildings, REHVA 2012). 

The primary objective of this regulation will be achieved soon, in 2018, with the implementation 

of nZEB definitions in every European MS.  For now, many countries are working on these 

definitions. A number of reviews have updated the level of development of the nZEB rules in 

each country (EPBD Concerted Action, 2013) (ECOFYS et al., 2014) (RePublic_ZEB Project, 2015) 

(CA EPBD, 2015) (Agostino, 2016). The last updates evidence a general improvement from the 

previous Commission report of 2013. It shows how almost all countries, with the exception of 

Greece, Romania, and Spain, have submitted consolidated information about nZEB levels 

through the EC templates, as shown in Figure 2.2. However, it also recognises that Spain and 

Romania have already submitted national plans (NEEAP). These reports include multiple details 
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and analysis of the definitions of EPBD and nZEB in each country, including the used metrics, the 

tolerated ranges, the typologies, EPC levels and controls, the calendar of application and many 

other details. 

 
Figure 2.2. Status of development of the NZEB definition in EU Member States 

(source: Agostino, 2016). 

Together with the EPBD, the Energy Efficiency Directive (EED) (Directive 2012/27/EU, 2012) and 

in an indirect way the Renewable Energies Directive (RED) (Directive 2009/28/EC, 2009) have 

reinforced the strategy to reduce the GHG emissions of European buildings (EC, 2016). Table 2.1 

includes the main aspects promoted by the EPBD and EED regulations.  

Table 2.1. Main aspects promoted by European EPBD and EED (source: EC, 2016). 

Main aspects promoted by the EPBD  
 

Main aspects promoted by the EED 

Energy Performance Certificates (EPC) are to be 
included in all advertisements for the sale or 
rental of buildings. 

EU countries make energy efficient renovations 
to at least 3% of buildings owned and occupied 
by central government. 

EU countries must establish inspection schemes 
for heating and air conditioning systems or put in 
place measures with equivalent effect. 

EU governments should only purchase buildings 
which are highly energy efficient. 
 

All new buildings must be nearly zero energy 
buildings by 31 December 2020 (public buildings 
by 31 December 2018). 

EU countries must draw-up long-term national 
building renovation strategies which can be 
included in their National Energy Efficiency 
Action Plans (NEEAP). 

EU countries must set minimum energy 
performance requirements for new buildings, for 
the major renovation of buildings, and for the 
replacement or retrofit of building elements 
(heating and cooling systems, roofs, walls, etc.). 

 

EU countries have to draw up lists of national 
financial measures to improve the energy 
efficiency of buildings. 

 

 

Recently, the publication of the Clean Energy for All Europeans (European Commission, 2016a) 

proposed a deep review of most of the regulations related with the energy use. The purpose of 
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the EC was to update the regulations, become the world leaders of the clean energy transition 

and coordinate all the European actions against global warming. One of the main assets was the 

reduction of building energy consumption, which in 2010 accounted for 40% of total GHG 

emissions in Europe (Directive 2010/31/EU, 2010). According to the EU surveys, approximately 

75 % of buildings are energy inefficient. To improve this situation, the EC defined a program of 

investments and the implementation of a specific financing tool for deep renovations which will 

manage 10 billion of euros, this was known as the European Buildings Initiative. This initiative 

would work in co-operation with the European Investment Bank (EIB) and the MS. This way EC 

aimed to boost building refurbishments, renewable energy implementations and other projects 

to replicate the ideas tested in the successful pilot projects during the last decade. 

As a result, the improvements observed in European construction sector since the first EPBD 

implementation in 2006 are most likely going to be overwhelmed by a radical boost of 

technologies as a reaction to the requirements imposed by all MS. The improvements will have 

to solve questions in every part of the nZEB definition in order to achieve cost-optimal buildings,  

as explained by the review of REHVA about nZEB (Kurnitski, 2013) and presented in Figure 2.3. 

 
Figure 2.3. nZEB system boundaries and technical definitions by REHVA (source: Kurnitski, 2013). 
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2.1.2. Spanish regulation 

As aforementioned, the implementation of European Directives into the Spanish regulation had 

been slow since the first EPBD. The last NEEAP of the Spanish government published in 2014 

(NEEAP Spain, 2014) recognised this problem but justified it due to the economic context and 

the weakness of the construction sector. In any case, from a technical point of view the adopted 

measures to guarantee the nZEB implementation on time were rather insufficient to the eyes of 

the majority of the reviews (European Commission, 2016b) (Corrado & Paduos, 2015) 

(D’Agostino, 2015).  

The first aspect to consider is the low efficiency level of the building stock in Spain. A study 

conducted by the Spanish Ministry of Development for EUROSTAT (SECH Project -SpaHousec, 

2011) showed high energy uses on Spanish average dwellings, between 7859 kWh and 13141 

kWh per dwelling, as shown in Table 2.2. This fact may probably be influenced by the large 

building stock of old constructions in Spain (Terés-Zubiaga, Campos-Celador, González-Pino, & 

Escudero-Revilla, 2015), but considering that the new housing is also achieving low EPC levels 

(Figure 1.5), it can be said that that Spanish construction sector has a lot to improve - specially 

in order to achieve enforcement of nZEB limits (on the 1st of January 2019 and 2021). 

Table 2.2. Spanish housing average sizes and energy uses by typologies (data source: SECH project). 

Spanish 
dwellings  

Net 
floor 

Average 
consumption 

Heating DHW Electricity 

 
(m²) Final use 

(kWh) 
ratio 
(%) 

Final use 
(kWh) 

ratio 
(%) 

Final use 
(kWh) 

Final use 
(kWh) 

By zones: 
       

North-Atlantic 93.7 10331 40.1% 4,143 21.9% 2,262 3,926 

Mediterranean 103.8 8959 40.9% 3,664 19.6% 1,756 3,539 

Continental 103.5 13141 55.3% 7,267 17.4% 2,287 3,587 

By typology: 
       

Multifamily 86.5 7859 32.2% 2,531 26.0% 2,043 3,285 

Single-family 140.2 17012 63.9% 10,871 10.7% 1,820 4,321 

Total average 102.4 10521 47.0% 4,945 18.9% 1,988 3,588 

 

The present energy requirements of housing buildings were defined in 2013 with and update of 

the original CTE (Orden FOM 1635/2013, 2013), the main energy parameters and indicators are 

summarised in Table 2.3. Applying these formulas to the case of single-family dwellings and 

considering an average net floor of 150 m², the annual heating demand limit should be below 

15 kWh/m² and 60 kWh/m² for the warmest and the coldest climate zones respectively. In a 
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similar way, the limits of Primary Energy (PE) oscillate between 47 kWh/m² and 97 kWh/m², 

including heating, cooling and domestic hot water systems (DHW), see Figure 2.4.  

Accordingly, these values are still considerably far from the nZEB values recommended for 

Mediterranean or Atlantic regions (European Commission, 2016b), summarised in Table 2.4.  

Table 2.3. Main energy requirements for housing buildings in Spain (source DB-HE 2013). 

Housing energy limits (DB-HE 2013) Climate zone reference values and factors 
 

Heating demand  limits:       

           
Dcal,lim: Heating demand limit of the building 
Dcal,base: Reference heating demand of each climate 
Fcal,sup: Net floor factor 
S: Conditioned net floor of the building 

 

 
 

Cooling demand limits:  
15 kWh/m²/y zones with summer severity 1, 2, 3 
20 kWh/m²/y zones with summer severity 4 
 

 

Primary Energy limits, incl. heating, cooling and DHW: 

            
Cep,lim: PE limit of the building 
Cep,base: Reference PE of each climate 
Fcal,sup: Net floor factor 
S: Conditioned net floor of the building 

 

 
 

 
Figure 2.4. Energy requirements for housing according to the net floor and climate, in Spain  

(source DB-HE 2013). 

 
Table 2.4. EC recommended nZEB limits applicable in Spanish climates (source EC 2016). 

Climate zones 
(example of Spanish cities) 

Mediterranean 
(Barcelona, Malaga) 

Oceanic 
(A coruña, Bilbao) 

Continental 
(Madrid, Valladolid) 

Net PE use (non-renew.) (kWh/m²/y) 0 – 15 15 – 30 20 – 40 
Total PE use (kWh/m²/y) 50 – 65   85 – 100 50 – 70 
Renewable on-site gen.(kWh/m²/y) 50 45 30 
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At present, the indicators of the nZEB definition are almost ready and the involved Ministries 

are calculating the cost-optimal requirements. The draft of the new nZEB indicators was 

published in December 2016 by the Spanish Ministry of Public Works and Transport (Ministry of 

Development, 2016), see Table 2.5 below. Unfortunately, the values of these indicators are not 

published yet. 

Table 2.5. Indicators of Spanish nZEB definition, proposal (source Ministry of Development, 2016). 

Requirements Indicators 
 

Energy use Net Primary Energy use 
Total Primary Energy use 
Renewable source implementation: 
- Minimum contribution of renewable energies 
- Swimming pool heated with solar energy 
- Open space heating with RES (halls, terraces, …) 

Energy performance of thermal envelope Building global transmittance value (K) 
Solar control (maximum heat gain in July) 
Maximum transmittances in housing enclosures 
Verification of moisture risk  

Energy performance of systems Minimum energy efficiency of HVAC systems 
Minimum energy efficiency of lighting 

 

The situation of the EPC of existing buildings is complex because there are considerable 

discrepancies depending on the available certification tools, as underlined in a recent study 

conducted within QUALICHeCK project (Molina, Álvarez, & Salmerón, 2017). They found that the 

majority of the analysed EPC of existing dwellings bade with simplified EPC methods had 1 or 2 

levels lower than the ones done with the detailed methods. According to the study, it was mainly 

due to inaccuracies of geometry or construction definition. The authors didn’t find significant 

problems of the simplified calculation methods. 

Besides, another main challenges for the future constructions and renovations is the compliance 

between EPC and reality (QUALICHeCK, Kurnitski, Kuusk, & Simson, 2015). For this reason, the 

author of this thesis also participated in the development of a methodology to improve the 

quality control of new constructions in the Basque region (Hidalgo-Betanzos, Iribar-Solaberrieta, 

& de Lorenzo Uríen, 2016). The methodology included a guidebook which describes how to 

control the thermal aspects of new housing constructions. Actually, the Basque region became 

one of the first regions to pay special attention to the compliance of EE features in project and 

reality. This work applies many of the aspects studied within the QUALICHeCK project and 

creates a set of checklists to control each stage of the construction process.  
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2.2. Passive House review 

2.2.1. Passivhaus concept  

 “A Passive House is a building in which thermal comfort can be guaranteed solely by heating or 

cooling of the supply air which is required for sufficient indoor air quality without using additional 

recirculated air” (W. Feist, 2007). This is the most common definition of PH, explained by one of 

the founders of the Passive House concept, Dr Wolfgang Feist. The concept of Passivhaus was 

developed through state-funded research projects in the 80s and the first Passivhaus project 

was built in 1990. The project was coordinated by Professor Bo Adamson of Lund University 

(Sweden), and Dr Wolfgang Feist of the Institute for Housing and the Environment. It was a four-

unit terrace house in Darmstadt-Kranichstein (Germany) and it was inhabited in 1991, see Figure 

2.5. It became the first inhabited multi-family house achieving a recorded heating energy 

consumption of below 12 kWh/m²y - around 10% of a standard German house at that time. The 

annual energy use of the house is presented in Figure 2.6. 

 
Figure 2.5. First Passive House in Darmstadt-Kranichstein (source www. passivehouseplus.ie) 

 
Figure 2.6. Energy consumption of the first PH (taken from V. Sariri, Passipedia, 2017) 
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Some years later, Dr Wolfgang Feist created the Passive House Institute (PHI) in Darmstadt 

(Germany) in 1996. In present days, according to PHI there are more than 20.000 certified 

buildings around the world, and the main features of more than 4000 are published in the PH 

database online (PH database, 2017). The main principles of PH design are shown in Figure 2.7: 

continuous thermal insulation, high-performance components, balanced MVHR, airtightness, 

solar shading and thermal bridge minimisation.  

 

 
Figure 2.7. PH principles (source: Passipedia, 2016) 

In any case, this concept wasn’t new at all, since it was based on the historical cases of vernacular 

architecture and the findings of a number of experimental buildings. A long review of preceding 

projects and singular cases can be reviewed in (Passipedia, 2016), see Figure 2.8. 

   
  . 

   
Figure 2.8. Experimental passive cases before PH definition from 1976 to 1991  

(taken from Passipedia, 2016). 



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

2. Review of single-family passive houses, monitored cases and situation in Spain  |  31 

Apart from the Passive House standard, there are many other building types which can be 

considered passive to some degree, such as vernacular architecture, sustainable buildings, 

bioclimatic buildings, solar passive buildings, low energy buildings, self-sufficient buildings, zero 

energy buildings, net zero energy buildings, etc. All these building types share the importance 

of reducing the energy needed to provide good indoor comfort to inhabitants. The main 

difference was the common objectives for all passive house designs, using a simplified method 

which could be followed by building designers. 

On the other hand, the passive concept is referred to a large variety of building features which 

can help reducing the thermal energy need: thermal mass, ground contact maximisation, earth 

sheltering, vegetal roofs, trees or vegetation shading-protections, solar shading, natural 

ventilation elements (solar chimney, wind tower, etc.), Canadian wells, earth to air exchangers, 

evaporative cooling, desiccant cooling, etc. (B. Givoni, 1984) (Mohammad Arif Kamal, 2012). 

Figure 2.9 shows several of these strategies in a modern housing.  

 

 
Figure 2.9. Passive design strategies (taken from www.inhabitat.com). 

The requirements of PH for housing buildings are summarised in Table 2.6. For further details, 

review the  specifications of PHI (Passive House Institute, 2016) and recent PH publications 

(Cotterel & Dadeby, 2012) (Wassouf, 2014) (Hopfe & McLeod, 2015) (Rodriguez Vidal, 2015).  
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Table 2.6. PHI criteria for PH Classic new housing buildings (source PHI, 2016). 

PH Classic criteria for new housing buildings 
 

Secondary criteria 

Heating demand 
alternative: Heating load 

≤ 15 kWh/m²y 
≤ 10 W/m² 

Min. surf. temp. 
Min. HR eff. 
Max. FPS 
Max. load by air 
Max. TB Ψe 

Max. hours>25 
 

≥ 17 °C 
≥ 75 % 
≤ 0.45 W/m³h 
≤ 10 W/m² 
≤ 0.010 W/mK 
≤ 10 % (876 h) 
 

Cooling demand 
alternative: Heating load 

≤ 15 + 0.3·DDH kWh/m²y 
≤ 10 W/m², only if also: 
Cd ≤ 4·θe + 0.3·DDH - 75 kWh/m²y  
Cd ≤ 45 kWh/m²y 

Primary Energy Use ≤ 120 kWh/m²y 
Airtightness n50 ≤ 0.6 h-1 

The PH method to verify these requirements is implemented in a tool named the Passive House 

Planning Package (PHPP) which is basically a set of Excel spreadsheets in one workbook. The 

PHPP prepares an energy balance and calculates the annual energy demand of the building 

based on the user input relating to the building's characteristics. Additionally, it applies the 

monthly EN 13790 methods to verify the heating and cooling needs (EN-ISO 13790, 2008). The 

first version was released in 1998 and the last version v.9 was released in 2005. In the last 

version, the complementary 3D tool Design PH was presented as a new way to input the 

geometry of the house and make preliminary corrections through Google Sketch Up software. 

For further details and examples see Lewis book (Lewis, 2014). 

 
Figure 2.10. PHPP sequence of data entry for housing projects (taken from Lewis, 2014). 
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2.2.2. Spanish single family Passive Houses 

As explained in the introduction, the Passive House standard settled in Spain less than a decade 

ago, in 2009. In the last years, the number of PH projects in Spain has been increasing rapidly 

and there is still little information about the features of these constructions. This section 

presents a full review of the 52 single-family passive houses built in Spain until January 2017. 

The information has been gathered from project sheets published in the Spanish Platform of PH 

(PEP, 2017) and the international database of PHI (PH database, 2017). Later, this information 

was compared with the websites of the architects and completed with the descriptions of the 

construction materials and systems from the websites of different manufacturers.  

The analysis evaluates the most relevant characteristics of the Spanish stock of single-family 

passive houses. It checks if there is a predominant location or climate zones, which are the most 

common construction materials, what features the typical HVAC systems has, what is the energy 

performance of these houses and some other features. All the data used for this study are listed 

in detail in four tables in Appendix II. 

After the analysis, the most frequent characteristics and the average values were used to define 

two cases with the most common features of the detached and attached single-family passive 

houses, these details are presented in Table 2.7. These two cases incorporate the average size 

and floor number, the typical construction materials, the common system and the average 

energy performance values.  

  
Figure 2.11. Number of single-family PH dwellings depending on their type  

(data source: PEP & PHI, 2017). 

According to PH official websites, there are in total 52 single-family passive houses. This includes 

23 certified SF houses and 29 non-certified SF cases. The majority of the designed houses are 

detached. Actually, there are four times more detached PH in Spain than semidetached ones. 

Besides, these numbers also indicate that actually less than a half of the designed and published 

cases obtain the PH compliance certificate in the end. Such situation is present due to two main 
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reasons. On the one side, the certification means additional costs, and on the other hand, the 

final construction quality might not accomplish all the requirements.  

The fast expansion of PH standard can be seen in Figure 2.12, which evidences a fast growth 

since 2014. According to the quantity of projects presented in the Spanish PH conference in 

2016, the number of PH dwellings should be over 15 in 2017 (PEP, 2016).  

 
Figure 2.12. Number of SF PH dwellings by year of construction (data source: PEP & PHI, 2017). 

The location of the passive houses is prevalent in colder climate zones of Spain. The dwellings in 

Figure 2.13 are sorted from the warmest climate zone (on the left) to the coldest one (on the 

right). Clearly, the implementation of PH design for now has been much larger in the cold areas. 

 
Figure 2.13. Number of SF PH dwellings by climate zone (data source: PEP & PHI, 2017). 

Regarding the structural materials, the use of wood frames is the most frequent type, see Figure 

2.14. The second and third most common types are solutions with concrete pillars and slabs 

combined with masonry or wooden enclosures. The rest of options are considerably less 

common. Figure 2.16 shows two typical houses with wooden elements 
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Figure 2.14. Number of SF PH dwellings by structural materials (data source: PEP & PHI, 2017). 

With respect to the thermal mass of the houses, they have been studied classifying them into 

three categories: high, medium and low thermal mass houses. Dwellings are considered as high 

thermal mass if they had heavy construction elements in the structure and the envelope, low 

thermal mass if they didn’t have any masonry, concrete or heavy wood elements, and of medium 

thermal mass if they had part of the elements with significant thermal mass. The medium level 

includes the houses which have heavy structural slabs (e.g. concrete) and also have the rest of 

the envelope made of lightweight elements (e.g. wooden frame elements). Even though 

majority of the cases have a low thermal mass, the diversity of cases suggests that there is no 

clear trend regarding this aspect (Figure 2.15).  

 
Figure 2.15. Number of SF PH dwellings by thermal mass (data source: PEP & PHI, 2017). 

Regarding the materials selected for the windows, the majority of the cases used wooden frames 

or hybrid wooden-aluminium frames. Only few cases selected PVC units and a single case 

installed aluminium frames, see Figure 2.17. 
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Figure 2.16. Examples of wooden structure in “casa entre encinas” (left side)  

and “Cagical Passivhaus” (right side) (data source: PEP & PHI, 2017). 

 
Figure 2.17. Number of SF PH dwellings by window frame (data source: PEP & PHI, 2017). 

The ventilation with high ratio of heat recovery (HR) is one of the key principles of PH. For the 

Spanish cases, the majority of the SF PH dwellings present high HR ratios: between 80% and 85% 

(Figure 2.18). Some other cases have HR ratios even above 85 % and just a few have HR ratios 

below 80%.  

 
Figure 2.18. Number of SF PH dwellings according to efficiency of HR (data source: PEP & PHI, 2017). 

26

17

7

1

0

5

10

15

20

25

30

Wood Wood-alum. PVC Aluminium

N
u

m
b

e
r 

o
f d

w
e

ll
in

gs

Semi-detached

Detached

12

31

3 2
4

 -

 5

 10

 15

 20

 25

 30

 35

> 85 % 80 - 85 % 75 - 80 % < 75 % Non specified

N
um

be
r o

f d
w

el
lin

gs

Energy efficiency of Heat Recovery unit [%]

Semi-detached

Detached



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

2. Review of single-family passive houses, monitored cases and situation in Spain  |  37 

Another key principle of PH is the airtightness of the building envelope. Figure 2.19 

demonstrates that majority of the cases achieved the objective of a very airtight enclosure. 

Unfortunately, around 25% of all the single-family dwellings overpassed the limit. 

  
Figure 2.19. Number of SF PH dwellings according to airtightness (data source: PEP & PHI, 2017). 

Regarding the types of systems installed in houses, Figure 2.20 shows the frequency of each type 

and evidence that there is a considerable variety of system types. It is important to notice that 

many of the cases actually combined two or more systems to satisfy the heating need. The 

numbers indicate that the majority of the constructions used small electric heaters located in 

bathrooms or certain spaces of the house to balance the heat distribution in coldest rooms.   

Apart from these complementary devices, the most used heating systems are stand-alone pellet 

stoves and Heat Pumps (HP) connected to a post-heater battery inside the ventilation unit. To a 

smaller degree, there is a large diversity of systems, including electric post-heaters in the 

ventilation, Ground Source Heat Pump (GSHP), Canadian wells, pellet boilers and low 

temperature radiant floors with HP, GSHP or even gas condensing boilers. 

 
Figure 2.20. Number of SF PH dwellings by heating generation system (data source: PEP & PHI, 2017). 

39

3 3
1

6

0

5

10

15

20

25

30

35

40

45

≤ 0.6  (0.6-1.0]  (1.0-2.0] > 2.0 Non specified

N
u

m
b

e
r 

o
f d

w
e

ll
in

gs

Airtightness n50 [h-1]

Semi-detached

Detached

17
15

11

6 5 5 4 3 3 2 1 1

0
2
4
6
8

10
12
14
16
18
20

N
u

m
b

e
r 

o
f d

w
e

ll
in

gs

Semi-detached

Detached



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

38 

The generation of DHW is handled by a smaller variety of systems. In the majority of the cases 

DHW is provided by a HP, see Figure 2.21. The other cases used direct electric hot water systems, 

hybrid heat pump solar units (HPSU), pellet boilers, GSHP or gas condensing boilers. Additionally, 

many of these systems have support of thermal solar panels, as presented in Figure 2.22. The 

use of solar systems is generally quite high, however, 40% of the cases don’t include any solar 

contribution. 

 
Figure 2.21. Number of SF PH dwellings by DHW generation type (data source: PEP & PHI, 2017). 

  
Figure 2.22. Number of SF PH dwellings by solar harvesting type (data source: PEP & PHI, 2017). 

Regarding the amount of energy needed for heating and cooling, the majority of the cases have 

a low heating energy demand: annual values between 10 - 15 kWh/m² and maximum daily 

heating loads between 10 - 15 W/m², see Figure 2.23.  

  

                
Figure 2.23. Number of SF PH dwellings according to heating needs (data source: PEP & PHI, 2017). 
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In general, houses don’t include any cooling system. Only 29% of the cases have post-cooling 

batteries connected to HP units, that is 12 cases out of 52, see Figure 2.24.  

 
Figure 2.24. Number of SF PH dwellings by cooling types (data source: PEP & PHI, 2017). 

To understand this lack of cooling system, Figure 2.25 indicates that majority of the cases have 

very low cooling loads, below 5 W/m², and this reduced cooling load can be easily compensated 

by occasional natural ventilation. In a similar way, the ranges of annual cooling demand are also 

low or very low - below 5 kWh/m²y. In any case, there is a larger uncertainty than with respect 

to heating analysis because many of the cases didn’t specify their cooling needs. 

 

                
Figure 2.25. Number of dwellings according to the cooling needs (data source: PEP & PHI, 2017). 

As a consequence of the high performance of all the analysed cases, the annual Primary Energy 

use (PE) of almost all the cases fulfils the PH primary objective of 120 kWh/m²y. Actually, only 
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Figure 2.26. Number of SF PH dwellings according to annual PE (data source: PEP & PHI, 2017). 

Regarding the cost of construction, it is commonly around 1000-1200 €/m². However, this value 

can be affected by the large number of non-specified cases, as shown in Figure 2.27.  

 
Figure 2.27. Number of SF PH dwellings according to construction costs (data source: PEP & PHI, 2017). 

After the analysis, the most frequent characteristics of these houses were used in Chapter 5 to 
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Table 2.7. Average values of single-family PH dwellings in Spain (data source PEP & PHI, 2017). 

General features or average values Detached Semi-detached 

Number of buildings in Spain 41 11 

Number of floors 1.7 2.1 

Net floor area [m²] 161 153 

Structure materials Wood Wood. masonry 

Type of construction New New / renovated 

Passivhaus certified Yes No 

Thermal mass Low High 

Construction thermal insulation   

U wall [W/(m²K)] 0.204 0.168 

U ground [W/(m²K)] 0.290 0.243 

U roof [W/(m²K)] 0.172 0.146 

U window [W/(m²K)] 1.109 1.102 

U frame [W/(m²K)] 1.159 1.199 

U glass [W/(m²K)] 0.767 0.780 

Window g-value 0.53 0.51 

Window frame material Wood Wood-aluminium 

Ventilation and airtightness   

ACH 50 Pa [h-1] 0.57 0.77 

MVHR Maximum air flow (m3/h) 341 337 

HR sensible recovery efficiency [%] 91.9% 92.0% 

HR efficiency PHI method [%]  82.4% 85.2% 

Bypass Yes Yes 

Systems definition   

Heating systems Pellet stove. post-heater HP 
and small electric heaters 

Post-heater HP and small 
electric heaters 

Cooling systems No cooling No cooling 

DHW generation HP HP / electric 

Heating thermal power [kW] 5.7 9.3 

Hot water storage [l] 261 250 

Solar harvesting Thermal panels Thermal panels 

Other devices - - 

Building energy needs   

Heating, annual demand [kWh/m²y] 12.4 17.1 

Heating, max. daily load [W/m²] 12.1 12.8 

Cooling, annual demand [kWh/m²y] 7.1 5.2 

Cooling, max. daily load [W/m²] 6.6 3.2 

Primary Energy annual use [kWh/m²y] 88.7 80.0 

Construction costs   

Average cost per treated floor 1283 € 1075 € 
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2.2.3. Monitored single-family passive dwellings 

After the analysis of the main principles of Passive House design, the present section aims to 

review the real monitored performance of this typology of dwellings and compare the 

theoretical calculations of PH projects with the real monitored performance. 

The Passive House Institute (PHI) has made many studies regarding the real performance. One 

of the most relevant monitoring campaigns was conducted by the CEPHEUS project (Cost 

Efficient Passive Houses as European Standard), carried out from 1999 to 2001. the purpose was 

to extend the PH standard and demonstrate that it was suitable for the future social, ecological 

and economic sustainability (Schnieders, 2003). 

This study was based on 14 projects with a total number of 221 dwellings to monitor. The 

majority were located in Germany and Austria, but also in Switzerland, France and Sweden. 

Different typologies were included, such as single-family and multifamily housings, as shown in  

Figure 2.28 below. 

 
Figure 2.28. CEPHEUS project monitored cases (taken from Schnieders, 2003). 

The heating consumption was monitored from November to February and the results were 

normalised to a standard value of 20 °C (Figure 2.29). The average consumptions were 



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

2. Review of single-family passive houses, monitored cases and situation in Spain  |  43 

considerably over the expected value of 15 kWh/m²y. The average values of each location 

ranged from the lowest 12.3 kWh/m²y in Hörbranz, to the highest 35.4 kWh/m²y in Egg or 35.1 

kWh/m²y in Gnigl. The average heating demand of all the locations was 24.8 kWh/m²y, what 

means an increase of 9.8 kWh/m²y or an additional 65% of energy need. 

 
Figure 2.29. Measured space heating consumption of CEPHEUS dwellings,  

measured data normalised to 20 °C (taken from Schnieders, 2003). 

In any case, the results showed the influence of occupant’s behaviour and the final behaviour 

and the PHI made additional efforts to explain to the users how to use properly their passive 

houses (Hopfe & McLeod, 2015). 

The next EU funded project was the Passive House Regions with Renewable Energies (PassReg) 

(PassREg, 2015). The project was developed from 2012 to 2015 and the focus was kept on 

making the Passivhaus solutions more accessible and implementing Renewable Energy 

Technologies into ultra-low energy buildings. Around 30 sites in 11 European countries were 

included in the project. One of the outcomes of this project was the new definition of PH Classic, 

PH Plus and PH Premium. Unfortunately, for now there is no monitored information about these 

cases. 

More recently, between 2013 and 2016 the EuroPHit project was coordinated by PHI and PH 

related institutions with EU funding. This project was oriented to demonstrate the possibilities 

to refurbish the existing buildings in Europe in line with EU 2020 objectives. It defined how to 

conduct step-by-step refurbishment processes applying the PH principles. 13 buildings were 

renovated in all Europe, including four cases in Spain (see the database of previous Section 

2.2.2). The outcome of the project was a series of examples showing how to turn the building 

stock into nZEB. Part of the monitored data was published in the International Passive House 
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conference in 2016 (I.P.H. conference, 2016), but as the cases are being renovated step-by-step, 

the results will be presented in the future editions. 

Regarding the scientific publications, analysing the real monitored behaviour of passive houses, 

there are some studies measuring the heating performance. However, only few of them involve 

a thermal comfort approach. In the following paragraphs, the cases which involve thermal 

comfort monitoring of Passive houses in different European climates are summarised. 

One of the first passive houses constructed in Denmark was monitored for two years by (Larsen 

& Jensen, 2011). The authors found out that “several house owners from the first generations 

of Danish passive and low energy houses had overheated houses during several months during 

the summer period”. They provided some guidance about design stage verification with a 

simplified “24- hour average” method to calculate the average indoor temperatures. However, 

they recognised that the prediction of the maximum temperatures with this tool were still not 

accurate. They also analysed the thermal behaviour with dynamic simulations and concluded 

that a detailed calculation with summer occupant behaviour patterns would be sufficient to 

predict the real risk of too warm indoor environments. 

There are several studies conducted in UK, probably motivated by the higher awareness about 

OH risk after the heat wave of 2003. The first PH certified new house in UK was studied in detail 

by Ridley et al. (Ridley et al., 2013). It was based on a detailed analysis of the electricity use and 

indoor environment conditions. After the monitoring, they concluded that the Camden Passive 

House presented a good performance, in correspondence with the PHPP calculations to a great 

extent. The work suggested that with careful design, robust testing and commissioning of 

heating and hot water services, it should be possible to deliver dwellings with total energy 

consumption of 60 kWh/m² in the UK. They also underlined some measured higher internal gains 

of 3.65 W/m², which means 43% more than the standard PHPP value of 2.1 W/m². The measured 

thermal losses with a co-heating test were lower than the project calculations. The study is very 

detailed and it also analyses other aspects, like the CO₂ levels, the electricity use or DHW 

consumption. Regarding the OH, the house failed CIBSE, PHPP and EN 15251 overheating 

criteria. However, the occupants reported a positive summer environment and didn’t complain 

of overheating or any cool winter periods. As a solution, frequent natural ventilation and solar 

shading would be advisable, but occupants didn’t plan to modify their use of blinds or ventilation 

patterns.  
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Another comparative study conducted in UK (Ridley, Bere, Clarke, Schwartz, & Farr, 2014) 

analysed two analogous houses in Wales, one built following the passive house standard and 

anther as a low carbon house. They monitored the performance of the houses for almost 2 years 

and analysed the differences between both houses, as well as between occupants’ behaviour, 

paying special attention to summer overheating aspects. The study demonstrated that both 

houses have much larger internal gains than the PHPP design calculations, namely 6 W/m² and 

5 W/m² in contrast with the PH typical value of 2.1 W/m². They analysed the origin of these 

deviations and discovered that many appliances in the houses were poorly energy efficient. 

Overall, they recommend verifying the summer OH risk at design stage with internal gains of 4.0 

W/m², to detect risks before construction and install efficient passive cooling measures. They 

found many user behaviour issues, including winter natural ventilation and insufficient solar 

shading, which provoked considerable discomfort hours. The authors also analysed the target 

of PE consumption (120 kWh/m²) and estimated that social conventional usage should be 

reduced by approximately 25% – 45% without any PV panel generation or 13% – 34% with PV 

generation. The authors acknowledged that this study of two cases is limited, but as the number 

of passive houses in the UK was still relatively small, they considered it as a good first step for 

passive house research in the UK. It showed the performance of some of the first buildings and 

identified insights and research themes. The findings might be useful to the passive design and 

construction sector, and they should be explored in larger samples in the future. 

More recently, another study in the UK monitored 4 low energy social dwellings for 2 years 

(Sodagar & Starkey, 2016). The dwellings were designed to meet the Level 5 of the Code for 

Sustainable Homes (the required performance would be similar to EnerPHit targets). The total 

gas use (heating and DHW) in the houses was 29%, 93%, 16% and 22% higher than the 

predictions. The families displayed significant differences with respect to their behaviour and 

activities at home, which affected the thermal comfort and the energy and water consumptions. 

The Post-Occupancy Evaluation (POE) also confirmed that the impact of occupants’ behaviour 

on the real energy use was substantial. They recommended that focus should shift towards 

adopting a socio-technical approach to the procurement of sustainable low-energy homes, 

instead of too much reliance on technology alone. 

Another house in Oslo was monitored two identical PH with two different renewable 

technologies for heating and DHW (Rekstad, Meir, Murtnes, & Dursun, 2015). One house was 

equipped with solar thermal heating and the other house with an air-to-water heat pump (HP). 
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The auxiliary heating demand was found to be below the PHPP calculations and the internal 

average temperatures were over 22 °C every month during the cold season. The overall results 

showed that solar thermal heating could be competitive to heat pump technology in the 

buildings for the Nordic climate. One major weak point was found to be the under-dimensioned 

76 l DHW boiler, which operated at very high temperature and caused the increase in thermal 

losses.  

One more study of a passive house located in Næstved (Denmark) used the monitored data to 

calibrate a Building Energy Performance Simulation (BEPS) (Paliouras, Matzaflaras, Peuhkuri, & 

Kolarik, 2015). They showed the steps to calibrate a model using Mean Bias Error (MBE) and the 

Coefficient of Variation of the Root Mean Square Error (CV(RMSE)). As authors explain, new 

measures or improvements can be implemented in order to improve the thermal comfort or 

avoid OH in the house. This method was also used to adjust and calibrate the model of the case 

study analysed in the present theses and is presented in Chapter 4. 

Another PH monitoring case showed how to complement the monitored data gaps with building 

energy simulations (Rehab et al., 2015). This study didn’t present thermal comfort details, but 

verified the annual energy balance of the house. The authors used a model in TRNSYS to identify 

all the energy flows in the annual performance of the passive house. The tools and adjustment 

methods presented in this work were a good base for the Chapter 4 of the present thesis.  

Regarding warmer locations, there is an extensive study conducted in the first PH built in Cyprus 

(Fokaides, Christoforou, Ilic, & Papadopoulos, 2016). The monitoring included air temperature, 

air velocity and relative humidity values in four thermal zones. They detected some initial 

overheating problems in all zones during summer. These issues were partly solved using natural 

night time ventilation. This study presented some insightful details about the commissioning of 

a low energy house in warm climates.  

Another work conducted in Portuguese climate monitored during short periods of one or two 

weeks a passive house under real occupancy (A. Figueiredo, Kämpf, & Vicente, 2016). These 

periods were used to calibrate a model and analyse the annual performance. The purpose was 

to test the performance of this typology in 4 regions of Portugal and assess the adaptability of 

PH design to local climates. This study was a good base to define the simulation series of Chapter 

5.  
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2.3. Global warming and future climate scenarios 

The future climate scenarios for Europe indicate a great risk of extreme conditions in southern 

Europe. For example, heat waves or storms are predicted to have a direct impact on economies, 

agriculture and fresh water availability (Climate NASA Gov., 2017), see Figure 2.30. At the 

construction level, these scenarios will increase the overheating risk (McLeod et al., 2013). 

 
Figure 2.30. EU roadmap 2050 information about CC threatening future economic growth  

(taken from EC DC Climate Action, 2017). 

The climatic conditions are going to keep changing in the upcoming years, this is the first fact 

architects and engineers should be aware of. The XXI century is a period affected by an 

anthropogenic global warming, which means that the climatic conditions are becoming warmer 

for future decades. The consensus about this fact is overwhelming: more than the 90% of the 

studies published during the last decade have concluded that the causes of this phenomenon 

are mainly human-related (Cook et al., 2016). Figure 2.31 and Figure 2.32 represent a variety of 

indicators of global warming and shows the impact of climate change on temperatures, sea level, 

sea ice extension, snow cover and glacier mass. This humongous evidence explain why the 

biggest economies in the world have finally joined in a real committing agreement in Paris in 

2016 (UNFCCC, 2015).  This way, all the countries are obliged to reduce the emissions of 

greenhouse gases (GHG) to a great extent and also to implement mitigation measures 

worldwide. There are specific common funding programmes for the developing countries. The 

reasons to act now were already explained in the Stern review on the Economics of Climate 

Change of 2006  (Stern, 2006). That well-known study compared the costs of early action to the 

business as usual (BAU). The conclusions showed a clear benefit of early actions.  
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Figure 2.31. Global warming scenarios (source FigTS-15 of IPCC, 2013). 

According to World Meteorological Organization (WMO), the measurements indicate that the 

global average temperatures have raised approximately 0.6 °C during the last century and 2001-

2010 was “the warmest decade on record since modern temperature monitoring began around 

160 years ago” (WMO, 2013). The future projections estimate a faster increase of temperatures 

in next decades with different scenarios according to the actions taken from now on. In the best 

scenario, the warming is already around 1 °C (CIMP5 simulations, RCP2.6) while the worst 

scenario attains three times higher increases, around 3.7 °C (CIMP5 simulations, RCP8.5).  
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Figure 2.32. Global warming scenarios and temperature increase with different scenarios 

(source FigTS-15 of IPCC, 2013). 

With regard to building design, the increase of temperatures has already affected directly to the 

heating and cooling demand. Figure 2.33 shows how all the European countries have reduced 

their Heating Degree Days (HDD) since the 80s. This change is higher in the northern countries 

which usually had a bigger heating need. 

 
Figure 2.33. Trend in heating degree days in the EU-27 (1980-2009) (source EEA & EUROSTAT). 

In a closer look, the average values of HDD and CDD of EU countries indicated that the change 

begun in the 80s of the XX century, see Figure 2.34. It shows a considerable reduction of HDD 
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and a smaller increase of CDD. For now, the CDD value is considerably small, but it is worth 

paying attention to the ratio between HDD/CDD which was reduced by half in the last 30 years, 

namely from 34 to 17. Since 1983, there was an average reduction of 10 HDD per year and an 

increase of 0.7 CDD per year. 

 
Figure 2.34. Weighted HDD (left side) and CDD (right side) in EU (1950-2015) (source EEA & EUROSTAT). 

Apart from the aforementioned increase of the average temperature, all the studies announce 

that the extreme events like heat waves will occur with a higher frequency and longer duration 

in the future (IPCC Table SPM.1, 2013) (WMO, 2013). The reason is explained briefly in Figure 

2.35. This future background will complicate the design of highly insulated buildings (Zaki, 

Nawawi, & Sh.Ahmad, 2012) due to their small cooling loads and long response time. Indeed, all 

constructions will have to deal with longer and more frequent heat waves in the close future.  

 
Figure 2.35. Extreme events (source IPCC WG1 AR4, 2007). 

Unfortunately, there is strong evidence showing that the worst scenarios of IPCC are probably 

going to be real (IPCC et al., 2013). A revised study of the atmospheric CO₂ concentrations 
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indicated that most likely the CO₂ levels will remain over 650 ppm by the end of the present 

century (Anderson & Bows, 2008). In such scenario, the temperature increase will largely 

overpass the expected increase of 2 °C of the global warming and it will highly likely reach a 

dangerous increase of 4 °C (Meinshausen, 2006).   

This proven change of the heating and cooling needs is one of the most challenging aspects for 

nZEB design. It can become especially critical due to the more frequent heat waves and the 

exposure of highly insulated buildings to longer warm periods without enough night cooling. A 

deep study (McLeod et al., 2013) applied a parametric study for passive houses and low energy 

dwellings in the UK and evidenced how the warm discomfort will increase in the future decades. 

It pointed out that low energy houses in the UK can face severe risks after 2050, with significant 

number of hours with indoor temperatures over 28 °C. The authors warned about the 

importance of including the future scenarios in the present designs: “Unless there is a move 

towards whole life design optimisation based on minimising future over- heating risks, active 

cooling systems may become a de-facto requirement in urban Passivhaus and low energy 

dwellings in the UK within the next 30-40 years”. The authors suggested that the consequences 

of the climate change in buildings are exponential, as presented in Figure 2.36 below. 

 
Figure 2.36. Transitional overheating risk for 4 dwellings at 50th (left) and 90th (right) percentile TRY 

under ‘High Emissions’ scenario (1980e2080) (source McLeod et al., 2013). 

One of the last books for PH designers (Hopfe & McLeod, 2015) also underlined the influence of 

climate change in passive house design and pointed to possible variations of heating and cooling 

needs, see Figure 2.37. 
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Figure 2.37. Trajectories for total domestic heating demand (left side) and cooling demand (right side) 

under four levels of climate change in the UK (taken from Hopfe & McLeod, 2015). 

Consequently, if the IPCC A2 scenario becomes true, the European climates would become 

warmer and the climate of European cities wouldn’t be the same at all. A study presented by 

EUROSTAT in 2014 showed the apparent climate shift between 2070 and 2010, which would 

reconfigure the location of the main capitals in similar climates of the present, see Figure 2.38. 

 
Figure 2.38. Apparent southward shift of European cities due to climate change, 2070-2100  

(source EUROSTAT, 2014). 

In a local context, the Spanish Meteorological Organization AEMET (AEMET, 2016) has also 

calculated a number of scenarios for the largest Spanish cities (Morata Gasca, 2014). They are 

based on three Representative Concentration Pathways (RCP) of the last assessments of IPCC 

(IPCC, 2013). All the scenarios conclude that northern regions of Spain will face a considerable 
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warming. As an example, Figure 2.39 shows the future conditions of Bilbao, Burgos and Madrid. 

These cities represent the variety of climate conditions in the Atlantic and continental areas of 

northern and central Spain. Accordingly, the constructions located in northern and central Spain 

will have to face a significant change. By the end of 2050, the maximum temperatures in Spain 

will probably increase by 2 °C and the duration of heat waves will be two or three times higher 

than at the present.  

  

  

   

Figure 2.39. Future climates of Burgos, Bilbao and Madrid, showing the change of the maximum 

temperatures (left side) and the length of heat waves (right side) (taken from AEMET, 2017). 
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A recent thesis analysed in detail the adaptability of multifamily blocks designed according to 

present Passivhaus criteria in the Basque region and Navarra (Rodriguez Vidal, 2015). The 

research presented a large amount of results and included the assessments of passive house 

apartments in the scenarios of the IPCC for 2040 and 2080. According to its conclusions, there 

will be serious difficulties of OH in the majority of the analysed cities due to long warm periods 

without night-time cooling potential. Also, the problems related with excess of humidity in 

coastal locations were highlighted.  

One of the main findings of the work conducted by Rodriguez was that after 2080, many of the 

cities will probably require the use of cooling systems in the houses to be able to reduce the 

hottest hours of summer. Figure 2.40 below shows the number of hours when indoor 

temperatures are over 25 °C in the case of an apartment with North-South orientation and using 

night natural ventilation. It includes the present and future climates for many cities in the North 

of Spain and demonstrates the expected high increase in 2080. This may be very complicated to 

solve in buildings without any cooling system, especially if the CO₂ emissions keep the trend of 

medium-high emissions scenarios (A1B or A2). 

 
Figure 2.40. Climate change scenarios in several northern Spanish cities, number of hours over 25 °C in a 

North-South oriented apartment with intensive night natural ventilation. Present climate (2000-2009), 

2040 (A1B, A2 and B1) and 2080 (A1B, A2 and B1) of Meteonorm (taken from Rodriguez Vidal, 2015). 

For all the presented reasons, it is crucial to verify the resilience of the new projects to the 

upcoming conditions of global warming. The present thesis includes the analysis of some cases 

within the main scenarios developed by the IPCC. To do that, the data of the B1, A1B and A2 

scenarios for 2040 and 2080 was obtained from METEONORM data series.  



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

2. Review of single-family passive houses, monitored cases and situation in Spain  |  55 

2.4. Thermal comfort and overheating assessment methods 

The Thermal Comfort (TC) in buildings is an essential part of the Indoor Environment Quality 

(IEQ) and it is considered as one of the key principles of the EU nZEB strategy. For instance, the 

last EC recommendation for the EPBD strategy compelled MS to ensure the TC and IEQ as a 

compulsory condition to achieve the low energy requirements of nZEB: “Proper indoor 

environment should be ensured to avoid deterioration of indoor air quality, comfort and health 

conditions in the European building stock” (European Commission, 2016b). A literature review 

on how different factors affect human comfort in indoor environments, concluded that “building 

users consider thermal comfort to be the most important parameter influencing overall 

satisfaction with IEQ” (Frontczak & Wargocki, 2011). 

This concept indicates the degree of satisfaction of users with regard to the indoor thermal 

conditions. This means that this concept is rather complex because it relates a number of 

physical parameters with the uncertainty of human feelings and individual behaviour. In the 

technical-scientific world, it is commonly defined as “that condition of mind which expresses 

satisfaction with the thermal environment and is assessed by subjective evaluation” (ASHRAE, 

2013b).  

In the beginning, the studies of TC were focused on predicting the best indoor environments for 

workers, as a way to increase their productivity. In late 60s, Fanger published what it would 

become the reference for many years later on (Fanger, 1970). This method permitted to predict 

the response of the majority of people inside a certain thermal environment with specific 

activities and clothing levels. This was especially useful for HVAC designers to define and 

dimension the HVAC systems. Since then, many other studies proposed improvements for the 

PMV model in order to extend the application of the PMV model to a larger variability of people 

needs and other climates. These publications were summarised in a review after the 40 years of 

PMV model applications (Van Hoof, 2008). In brief, this review reminds that the PMV was 

validated through many studies during following decades. At the same time, it also referred to 

many studies which revealed discrepancies of PMV or PPD estimations, the range of application, 

the value for the neutral thermal comfort, etc. This collection of works confirmed that after 40 

years of practical experience, the PMV model can be trusted as one of the best tools to assess 

TC in mechanically cooled or heated buildings.  
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However, the aforementioned review also recognised that TC is affected by numerous aspects 

and it may need additional verifications if the particular conditions of a case differ greatly from 

the assumptions of the PMV model. One of the possibilities, suggested to compensate this 

personal discomfort risks, was the implementation of individual controls. This way, it states that 

it should be possible to create indoor environments that provide nearly 100% acceptability and 

comfort to all, based on the PMV model. 

Accordingly, the present calculation methodologies are based on decades of testing and 

statistical studies about personal human feelings inside buildings and climate chambers, as 

described in (Carlucci, 2013) (Tabatabaei Sameni, Gaterell, Montazami, & Ahmed, 2015) (Danca, 

Vartires, & Dogeanu, 2016). It depends on a large number of personal and surrounding factors 

and it is limited by possible local discomfort situations. The main inputs or factors to evaluate 

TC according to PMV model are included in Table 2.8 and it also includes some local discomfort 

conditions included in (ISO 7730, 2005).  

Table 2.8. Main indoor factors of PMV model and local discomfort conditions (source ISO 7730, 2007). 

PMV model 
 
Personal factors 

 
 
Environmental factors 

Local discomfort conditions 

Activity level Air dry bulb temperature Air stratification  

Clothing insulation  Mean radiant temperature Radiant temperature asymmetry 

Thermal sensitivity Relative humidity Draft 

 Air velocity Floor surface temperatures 

 

Apart from the mainstream PMV model, there is a number of international standards and 

methods to assess TC with different criteria and weighting factors. Carlucci made a long review 

and a classification of the methods (Carlucci, 2013). He differentiated methods based on the 

heat balance of the human body, the physiological strain or the physical parameters. He also 

reminded that the assessment can be referred to specific instant conditions or to a long-term 

evaluation. He also proposed new methods to integrate the personal feelings and physical 

parameters in a general evaluation. 

Another relevant question in the TC assessment is the importance of the surroundings. Even 

though PMV model focuses on indoor parameters, it is also recommended to study the outdoor 

conditions which can affect the users’ perception of comfort. This approach is known as the 

adaptive method and at present it is defined by two similar standards in American regulation 
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(ASHRAE, 2013b) and European regulation (EN-15251, 2007). Table 2.9 below summarises the 

most common methods to assess TC. The present study compared the obtained results with the 

Fanger and adaptive methods applied to a northern Spanish passive house and discussed the 

applicability of them and the challenges for future nZEB single-family dwellings. 

Table 2.9. Most common Thermal Comfort assessment methods for buildings. 

TC methods 
 

Year Description 

Fanger (PMV/PPD) 1970 Based on the heat balance of human body, calculates the 
instant indoor comfort range with formulas applicable only 
for spaces with heating/cooling. 

ISO 7730 2005 Updates the Fanger method with several types of long-term 
evaluation and local discomfort conditions. 

EN 15251 2007 Based on Fanger, it specifies the adaptation limits in free-
running or naturally ventilated buildings, according to the 
outdoor running mean temperature. 

ASHRAE 55 2010 Based on Fanger, it calculates the Standard Effective 
Temperature and calculates the adaptation limits for free-
running or naturally ventilated buildings.  
Includes the Graphical Comfort Zone Method for main 
cases and the Computer Model Method for other specific 
designs. 

CIBSE Guide A 2016 Similar to ISO 7730 and EN 15251, it calculates the indoor 
air temperature ranges and establishes some criteria for the 
long-term assessment of TC. 

 

The selection of one or another method can lead to truly different results, as demonstrated 

through many empirical studies (Pfafferott, Herkel, Kalz, & Zeuschner, 2007) (Attia & Carlucci, 

2015) (Schnieders, 2015) (Hidalgo-Betanzos et al., 2015). In theory, the PMV method should only 

be applied to mechanically cooled or heated environments and the adaptive method should be 

applied to free-running buildings. However, the use of adaptive method can lead to the 

acceptability of considerably high indoor temperatures, meaning that in constructions placed in 

warm climates with long warm outdoor temperatures, the upper limits of indoor temperatures 

can overpass 30 °C. Especially if users don’t have direct access to window openings or if they 

have to close all natural ventilation overnight to avoid street noises... These aspects are both 

considered for the TC assessment in the present study.  

Comparing the boundaries of TC according to PMV model and adaptive model, the comfort 

ranges vary considerably, see Figure 2.41. The adaptive method increases the ranges in winter, 

with 0.9 °C higher minimum and 0.2 °C maximum values. Note that these values for winter 

EN 15251 are fixed, but in the case of the PMV they are calculated with an average RH of 45% 

and with very low air velocity. In summer the EN 15251 values are highly influenced by the 
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running mean temperature (RMT) and a direct comparison is not advisory. To understand the 

influence of RMT in adaptive boundaries and RH in PMV, the winter and summer boundaries are 

plotted in Figure 2.42 (for the PMV) and Figure 2.43 (for the adaptive method). This way, it can 

be observed clearly how the boundaries of winter PMV are at least 0.5 °C below the adaptive 

ones. In summer, when outdoor RMT is 13 °C, both upper boundaries of PMV and adaptive 

method are equal. If the environment get warmer than this value, the use of ventilation under 

those ranges may keep the TC within the acceptable range. 

 

 
Figure 2.41. Comparison between winter operative temperature boundaries for every category  

of EN 15251 and ISO 7730 (taken from Carlucci, 2013). 

 

 
Figure 2.42. PMV acceptability boundaries by temperature and RH, cat. B (based on ISO 7730, 2005). 
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Figure 2.43. EN 15251 acceptability boundaries by RMT (based on EN 15251, 2007). 

As a result, summer limits can vary remarkably according to one or another method, as 

summarised in Figure 2.44, taken from the book of Carlucci (Carlucci, 2013). 

 
Figure 2.44. Comparison of the upper boundary temperatures of POR and CIBSE indices calculated for 

the climate of Rome (Italy) (taken from Carlucci, 2013). 

Apart from the selection of the method, there are some other important details which can 

considerably affect the TC assessment.  

Firstly, the occupancy levels of a building or a dwelling can show useful information for many 

purposes. Also, it shows a clearer image of the profile of the building use and internal gains 

which impact greatly OH risks at midday. On the other hand, the use of passive measures often 

requires the action of users. For this reasons, many standards and methods don’t include the 

unoccupied hours in the indoor assessment (EN-15251, 2007) (CIBSE, 2013a). Besides, if the use 

of natural ventilation is limited to short hours, the capacity to control TC in free-running 

buildings is dramatically reduced.  
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Secondly, the period identification can also hide to some degree the warm discomfort. As 

presented in (Hidalgo-Betanzos et al., 2015) there are many interpretations, which refer to the 

use of heating or not (ISO 7730), a fixed period (CIBSE TM52) or the identification of the warm 

period, when outdoor conditions overpass the comfort range. This last option was proposed by 

(Carlucci, 2013) and used in a recent study for Spanish Mediterranean climate (Ortiz et al., 2016). 

Since many assessments are based on a maximum percentage of discomfort hours in summer 

period, the proper identification of the period is a primary aspect which has to be clearly 

justified. An example of these variations is presented in Figure 2.45.  

 
Figure 2.45. Periods of verification for summer TC conditions (taken from Hidalgo et al., 2015). 

Thirdly, the compliance between the projected use of passive measures and the real final use 

has to be taken into account. A recent publication of QUALICHeCK project analysed the methods 

and indicators for OH assessment for 9 European building codes (Kuusk, 2016). In most of the 

countries there is no further verification of compliance, except Belgium and partly France, where 

a national sample control is applied. According to this study, the requirements for TC and OH in 

the analysed 9 European countries are these: 

- Indoor temperature based requirements: Austria, France 

- Indoor temperature excess based requirements: Belgium, Estonia 

- Maximum cooling energy need based requirements: Spain 

- Summer thermal comfort is regulated within the overall indoor climate requirements: 
Cyprus, Greece, Romania, Sweden 

Additionally, in the last decade another concept has become increasingly relevant: building 

overheating (OH). Overheating can be defined as “that state of mind that expresses 

dissatisfaction with the environment caused by prolonged high temperatures” (Race, Balian, & 

Davies, 2010). According to CIBSE, “ever increasing winter energy efficiency measures and 

external temperatures as a result of intense urbanisation and climate change will increase the 
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risk of overheating in buildings especially in homes that primarily depend on passive measures 

to achieve year-round internal comfort”.  

This topic relevance increased rapidly as consequence of the raise of highly-insulated buildings 

(McLeod et al., 2013) and their exposure to gradually more frequent heat waves, like the ones 

in 2003, 2006, 2010 and 2015  (IPCC, 2017) (Zampieri et al., 2016)  (Russo et al., 2015). 

Consequently, the number of publications related to this topic increased exponentially since the 

heat wave of 2003, see Figure 2.46 based on SCOPUS® database (SCOPUS-ELSEVIER, 2017). 

 
Figure 2.46. Documents indexed in SCOPUS with “overheating” keyword and “building” in the abstract  

(data source SCOPUS, 2017). 

There are two main approaches for OH avoidance: fixed limits of indoor operative temperatures 

and adaptive limits. The first one limits the periods over 25 or 28 °C to a percentage of the total 

hours, while the second ones defines flexible limits based on outdoor conditions, like CIBSE 

TM52 (IES, 2013) or EN 15251 (EN-15251, 2007). This second group permits warmer thresholds 

in warmer locations with longer outdoor warm periods, as explained in the detailed review of 

the methods to assess long-term TC by Carlucci (Carlucci, 2013). In Table 2.10 a summary of the 

most common OH detection models is represented.  

Despite the importance of this question, the strategies developed by European countries to 

avoid OH are not developed to the same degree. A recent review of thermal comfort approaches 

in Europe (BPIE, 2015) indicated that most of the central and northern countries have limits for 

the indoor air temperatures in housing constructions, either mandatory or recommended. 

However, the passive measures are still rarely included in most of their regulations and their use 

is rather uncommon. In southern European countries the situation is opposite, most of them 

don’t have any specific requirements for OH but it is common to implement some passive 

measures such as the solar shading, thermal mass or natural ventilation strategies.  
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Table 2.10. Most common overheating detection methods for buildings. 

OH methods 
 

Year Description 

CIBSE Guide J  2002 Indoor air temperature limit is 25°C, exceeded less than 5% of 
summer hours.  

CIBSE Guide A 2006 Indoor air temperature maximum limit is 28°C, exceeded less than 
1% of summer hours. 

EN 15251 2007 Formulas for adaptive limits, less than 3% of summer hours (or 5% 
for specific building typologies). 

Passivhaus criterion 2007 Indoor air temperature limit is 25°C, exceeded less than 10% of 
total annual hours. 

CIBSE TM52 2013 Only occupied hours, if 2 criteria are failed it is considered as OH: 
- Hours over limits < 3 % summer occupied h. 
- Daily weighted exceedance ∑ (hi · wf) ≤ 6  
- Upper max. limit ≤ 4K over adaptive limit 

 

Regarding the application of these concepts to passive house buildings, several publications 

have analysed different points of view and limits to apply the PH principles.  

A recent study of the PHI (Schnieders, Feist, & Rongen, 2015) shows the capability to adapt the 

PH standard to 6 climates in different locations all over the world: Yekaterinburg (very cold 

climate), Tokyo (subtropical warm climate), Shanghai (subtropical warm climate), Las Vegas (hot 

and dry climate), Abu Dhabi (hot and humid climate), and Singapore (tropical climate). The study 

concludes that PH classic standard can be achieved in all those extreme climates. In any case, it 

recommends that building design should define the building’s layout, shape, orientation and 

solar shading situation according to local climate and practices.  

Many other studies have also shown the potential and the risks to adapt PH principles for 

warmer European climates, like the Passive-On project (Ford, Schiano-Phan, & Zhongcheng, 

2007a), a parametric study for the southern Italy (Bruno et al., 2015) and a simulation study with 

a sensitivity analysis for several locations in Portugal (A. A. Figueiredo, Figueira, Vicente, & Maio, 

2016). All these cases show how PH design can be implemented with a careful control of solar 

gains and addition of extra ventilation recommendations. 

Nevertheless, the risk of global warming is presented in Section 2.5 and a very detailed study 

conducted for the UK climate has proven that there is a clear risk of OH in all low energy houses 

due to the internal gains, high insulation and considerable warmer conditions which greatly 

diminish the potential of thermal mass and natural ventilation (McLeod et al., 2013).  

Some studies have proposed a general approach to prevent OH, providing some practical 

guidance to consider in the design, construction and early occupation stages (Wright, 
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Henderson, & Swainson, 2016). They point to the lack of integration as one of the main issues 

for TC and OH in houses in the UK. To detect the main issues, they presented a decision tree  

 
Figure 2.47. Decision tree (taken from Wright, Henderson & Swainson, 2016). 

Thus, despite the fact that many highly-insulated cases can maintain the indoor environment 

inside the acceptable TC range at present, it is also certain that the risk of OH due to global 

warming is going to be severe in the next decades. For this reason, building design should verify 

TC in detail in order to identify the likely discomfort situations and provide complementary 

measures to occupants in order to avoid or minimise any additional energy use for active 

cooling.  
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2.5. Potential of passive measures in local climate conditions 

This section analyses some of the most common measures to minimise the usage of cooling, 

while maintaining the passive heating capacity as much as possible. The concept of passive 

design of buildings takes advantage of the climate to maintain a comfortable temperature range 

in buildings (Zaki et al., 2012) (Wassouf et al., 2013). These strategies were common in 

vernacular architecture, but for years their potential was substituted by technologies and 

systems of modern constructions (Rodriguez Vidal, 2015). In recent years, the higher cost of 

energy, as well as the European policy has once again raised the importance of passive 

measures. Indeed, the passive measures are also recommended in many guidebooks of the most 

relevant engineering organizations, like CIBSE (Race et al., 2010), (CIBSE, 2013a) and REHVA 

(REHVA & ES-SO, 2010). It is not surprising that some European projects, such as VENTICOOL 

and QUALICHeCK, are working hard to improve the methods to design and verify these passive 

measures and collaborate with organizations like ES-SO and REHVA. Indeed, these measures are 

crucial for the EPC compliance, as stated in recent European reviews (QUALICHeCK, Bbri, 

Chalmers, & Cetiat, 2015) (QUALICHeCK, Kurnitski, et al., 2015). For all these reasons, passive 

design can make the reduction of energy use in nZEB. In order to do so, it needs to adjusted to 

the local climate conditions to achieve resilient constructions.  

The basic passive principles of single-family dwelling designs are: solar harvesting, solar shading, 

thermal mass management and natural ventilation (Wassouf, 2014). The control of these 

aspects can lead to the reduction of the energy needs of a house to a great extent. There are 

some other possible hybrid systems that could be implemented in the envelope or the HVAC 

systems, as described in the study for Portuguese climate by (A. A. Figueiredo et al., 2016). The 

authors explain that passive design and the implementation of hybrid measures are especially 

interesting in warmer regions. A recent workshop of QUALICHeCK (Álvarez & Molina, 2016) 

ppresented some prototypes of active facades to boost natural ventilation and the use of 

evaporative cooling devices to cool down the facades exposed to direct sun. Both cases have 

proven to contribute greatly to reduce the cooling need. Even though these hybrid features for 

now are limited to the testing facilities only, soon they will probably be applicable to 

conventional constructions as well.  

This way, Spain and Southern European countries, in general, have a considerable challenge to 

properly select and adjust the passive measures in the future nZEB. The present study analyses 
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the benefits of the most feasible passive measures for the selected typology of single-family 

dwellings.  

2.5.1. Ventilation strategies 

As seen before, ventilation can contribute greatly to TC extending the limits of acceptable 

temperatures much further than the PMV assumption for mechanically ventilated buildings. This 

section reviews all the strategies related with ventilation to reduce the cooling need and provide 

an optimal indoor environment to users. 

Natural ventilation is a key aspect which can contribute to reduce the cooling demand and it is 

recommended by the standards of adaptive thermal comfort (EN-15251, 2007) (ASHRAE, 

2013b). There are a number of different ventilation strategies. On the one side, the ventilation 

airflow can be driven by different the natural forces like wind, solar radiation or pressure 

difference (stack effect). On the other side, these strategies can be controlled either manually, 

scheduled or automatically adjusted by different parameters. All these ventilation strategies 

oriented to provide cooling (not only natural ventilation but also mechanical ventilation) are 

denominated Ventilative Cooling (VC).  

The study of Artmann, Manz and Heiselberg made one of the first studies about the free cooling 

potential of the natural ventilation across all Europe (Artmann, Manz, & Heiselberg, 2007). They 

used the climatic cooling potential (CCP) index to integrate the cooling capacity of night time 

hours and the temperature differences, as shown in Figure 2.49 below. 

 
Figure 2.48. Maps of differences between minimum and maximum temperatures (left side) and  

mean climatic cooling potential (Kh/night) (right side) in July, based on Meteonorm  

(taken from Artmann, Manz, & Heiselberg, 2007). 



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

66 

After that study, many other works have assessed the best operation of natural ventilation in 

certain typologies. In general, a large number of aspects can limit the use of natural ventilation 

and so the ventilative cooling potential. A long review of the potential and limitations of VC is 

available in the Chapter 2 of the recent state of the art of VC (Kolokotroni & Heiselberg, 2015) 

and several tests were also presented in two works related with QUALICHeCK project (Wissen, 

2016) (Álvarez & Molina, 2016). In a general approach, the principal limitations for VC are:  

- outdoor climate (temperatures at night-time),  

- fresh air need,  

- maximum number of air changes per hour (ACH),  

- thermal mass,  

- flow pattern (convective heat transfer coefficients)  

- and time span between dissipation period and cooling needs.  

Therefore, these strategies are very related with climate and in the case of warm location they 

may be unavailable. To analyse this, Chiesa and Grosso have published recent studies about 

ventilative cooling strategies. They use a two stories office model in different locations of 

Mediterranean area (Chiesa & Grosso, 2015). In this work, they studied the potential 

applicability of controlled natural ventilation (CNV) comparing the wind-driven and the gradient 

temperature dependant operation. The authors found that climatic-dependent potential due to 

temperature gradient correlates with the simulation results of applying a CNV strategy, while it 

is less valid when considering a potential based on wind velocity. As a result, the cooling 

potential with CNV is considerably high in Mediterranean locations. Later, they repeated the 

methodology in central and southern Europe (Chiesa & Grosso, 2016) using a similar real office 

model and studying the potential of passive ventilative cooling (PVC). In this case, they showed 

that if wind-driven and buoyancy-driven controlled natural ventilation is applied, the potential 

of PVC is significantly high in the whole central and southern European territory. 

An experimental study about the potential of night time ventilation on a full-scale test room (Le 

Dreau, Heiselberg, & Jensen, 2013) analysed the different convective heat transfer coefficients 

(CHTC) with different ventilation types (displacement and mixing ventilation), air change rates, 

temperature differences between the inlet air and the room, and floor emissivity values. Several 

indications regarding night time ventilation are underlined. The study reviews in detail the 

accuracy of existing CHTC correlations and analyse alternatives to model more accurately the 
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heat transfer under relatively high airflows. They also confirm that when the thermal mass is 

located at the ceiling, the efficiency of night-time ventilation should not be affected by the 

presence of furniture.   

Bearing in mind the publication of the European nZEB strategy in 2010 (Directive 2010/31/EU, 

2010), the relevance of VC for the energy demand of buildings was becoming increasingly more 

important. Two years later, in 2012, the partners of INIVE EEIG helped creating the International 

Platform for Ventilative Cooling (Venticool) (Venticool, 2017), in order to address the growing 

need for international collaboration on VC.  

The main purpose of this platform was to accelerate the uptake of VC, raising awareness about 

the strategies of ventilation to reduce the energy need of buildings and provide good indoor air 

quality (IAQ) and thermal comfort (TC). The international platform supported numerous events, 

training programmes and several AIVC conferences. During these years, a considerable number 

of studies and documentation has been supported by Venticool platform, including new 

methods to calculate VC potential and tools to improve the compliance of ventilation and 

airtightness in building construction.  

Probably, the most relevant project developed within the platform was the Annex 62 ‘ventilative 

cooling’. It was initiated in 2013 through the funding of the IEA and the Energy in Buildings and 

Communities Programme (EBC). One year later, the platform also collaborated in the creation 

of the IEE project named QUALICHeCK, in order to improve the compliance of Energy 

Performance Certificates (EPC) and the quality of works, including ventilation and airtightness 

(QUALICHeCK, 2017). Recently, ANNEX 62 Venticool published a reviewed version of the state 

of the art of VC, including definitions of Climatic Cooling Potential (CCP) and a review of 26 case 

studies with VC strategies (Kolokotroni & Heiselberg, 2015). Figure 2.49 represents the ranges 

of applicability of ventilative cooling strategies. 
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Figure 2.49. Ranges for heating, free-cooling and mechanical cooling when the free-running 

temperature is higher than the outdoor temperature (taken from Kolokotroni & Heiselberg, 2015). 

Regarding the present implementation of ventilative cooling strategies in European countries 

legislation, a survey conducted in 2015 confirmed that despite their potential to reduce the 

energy use, the majority of the energy performance regulations only consider ventilative cooling 

in a simplified way (M. Kapsalaki, F. R. Carrié, 2015-2). The study shows wide differences along 

Europe and five out of eight countries already take into account some type of ventilative cooling 

in their national EPBD versions. Besides, they present different level of characterization for the 

ventilative cooling devices and natural ventilation is only required in Belgium and Denmark.  

In general, the input parameters for ventilation units are basically the energy use and the control 

options, followed by fewer cases which also account the SFP in W/(m³/h) and the peak power 

demand. They conclude recommending further studies to face the complexities of ventilative 

cooling and find a more pragmatic way of implementing these strategies in the Energy 

performance regulations.  

However, the industrial manufacturers of domestic AHU and MVHR units are also developing 

more detailed interfaces to control and program VC strategies in small housing buildings. The 

implementation of user-friendly scheduling of the ventilation in residential constructions can 

help reducing the overheating risk and the energy use. Figure 2.50 represents the scheduled 

control possibilities in a control unit developed by Mitsubishi. In this example, the air volume 

level can be defined hourly up to 8 different stages for each day of the week (LOSSNAY LGH-

15RX5-E). 
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Figure 2.50. Example of an advanced control unit with scheduled airflows for MVHR  

(source mitsubishielectric.com). 

Considering the development of EPBD implementation, Venticool platform also contributed 

analysing the current situation of VC strategies towards nZEB objective (M. Kapsalaki, F. R. 

Carrié, 2015). They reminded that overheating has become a key concern in Nearly Zero-Energy 

Buildings with serious socio-economic implications, which could be avoided without additional 

active cooling if the ventilative cooling principles are followed. To do so, summer comfort criteria 

need to be properly implemented in all member states for non-air-conditioned buildings.  

However, the current situation of the VC strategies indicates that they are poorly rewarded in 

the regulations and standards related with the nZEB targets. For instance, designers must 

compensate the VC strategies with other conventional cooling systems to meet the regulatory 

requirements. Besides, ventilative cooling can help mitigating the peak load issues on electricity 

grids, especially in the case of Southern countries. 

2.5.2. Solar shading control 

Solar control is one of the most important aspects to prevent OH. Countless works have been 

published about solar design and still the majority of new designs don’t include detailed 

dimensioned solar shading devices. The usage of overhangs, louvers and awnings have to 

become more common in building design. The European Solar Shading Organization (ES-SO) 

published in 2010 a guidebook useful tools and solar shading principles (REHVA & ES-SO, 2010) 

and keeps demonstrating in later studies the importance of dynamic shading calculation 

(Melorose, Perroy, & Careas, 2015). The use of one or another measure is largely conditioned 

by the features of each project. 
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Figure 2.51. Summary of solar shading products and benefits (taken from REHVA & ES-SO, 2010) 

Later, ES-SO published an update with a solar shading database in collaboration with 

QUALICHeCK project (ES-SO & Eycken, 2017). All these strategies are necessary to prevent OH 

risk, as explained in (Kuusk, 2016) (Álvarez & Molina, 2016) (Hacker et al., 2005). Figure 2.51 

shows a large variety of possibilities with general benefits and functions by orientation.  

2.5.3. Thermal mass management 

Thermal mass refers to the parts of the building with have a higher thermal capacity and permit 

heat storage in the short term. This inertia is often used to lower the peak indoor temperatures 
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and reduce the cooling load. One of the main limitations of this feature is that the thermal mass 

is often concentrated in the external walls and structural elements, which are not directly 

exposed to the ventilation air flow (Álvarez & Molina, 2016).  

So, additional measures have to be taken to activate these elements and ensure the real 

outcome. A recent PhD study about Passivhaus multifamily blocks in northern Spain 

demonstrated that the potential of thermal mass is low in that climate and, in general, only 

provides a significant improve when it is combined with night-time natural ventilation 

(Rodriguez Vidal, 2015). 

2.5.4. Case studies of combination of passive measures 

This section reviews the most relevant studies addressing the combination of passive measures 

like ventilation, solar shading and thermal mass. They help understanding the potential of these 

measures for passive houses and future nZEB. 

A study presented in 2012 analysed the situation of low energy terraced houses in the UK and 

simulated the climate conditions of the heat wave of 2003 (Porritt, Cropper, Shao, & Goodier, 

2012). To solve the general problems of this typology they proposed a set of interventions to 

add or improve the existing solar shading, thermal insulation or ventilation measures. According 

to their findings, it would be possible to eliminate fully the OH in most of the cases with a proper 

operation and several improvements. 

Another study of UK terraced houses (van Hooff, Blocken, Timmermans, & Hensen, 2016) 

calculated the potential reductions of the cooling needs with passive climate change adaptation 

measures. The reduction of cooling estimated to be between 59 % and 74 % with the use of 

external solar shading and natural ventilation. Besides, they checked that these measures may 

affect only around 2 % of the heating needs of well-insulated terraced houses. They also warn 

about lower thermal mass and indicate that cooling need may increase in 16 % with low thermal 

mass constructions. In the best tested case with well insulated, high thermal mass, natural 

ventilation and solar shading, the energy demand is reduced up to a remarkable 88 %. However, 

they also comment that these calculations are only applicable for limited similar constructions 

and they recommend further research and monitoring data. 

In Scandinavian countries, many studies have analysed these combinations of passive measures. 

A monitoring campaign conducted by (Foldbjerg, Worm, & Feifer, 2012) in the first Active House 
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built in Denmark - a standard based on low energy use and high IEQ, see (Active House Alliance, 

2013) - found a good correspondence between window openings and acceptable thermal 

comfort. Which indicated that window openings contributed to achieving and maintaining good 

thermal conditions. The use of solar shading was in this case less relevant. Another study made 

in other two Active houses located in Denmark (Foldbjerg, Rasmussen, & Asmussen, 2013) 

confirmed the relation between window opening and good TC, especially in summer. Comparing 

the relevance of solar shading and ventilative cooling, they consider more important the use of 

ventilation to maintain the acceptable thermal comfort. 

Another study of 3 Active Houses in Austria, Germany and Denmark. The study review the 

comfort in detail, including the opening of windows for natural ventilation. The optimal results 

demonstrate that despite the generous daylight conditions, very little OH was seen. So, the 

passive measures with an automatic control are providing an excellent result for summer 

comfort (Foldbjerg, Asmussen, & Holzer, 2014).  

A study conducted in Holland climate indicated that uncontrolled natural ventilation could lead 

to several OH during summer with more than 10 % of hours over 28 °C (Barbosa, Bartak, Hensen, 

& Loomans, 2015). However, they comment that it may be very influenced by the lack of solar 

shading. As a solution, users may apply some predictive measures and close windows during 

daytime before the warm weeks arrive.  

The review of passive measures potential conducted by (Tejero-gonzález, Andrés-chicote, 

García-ibáñez, Velasco-gómez, & Rey-martínez, 2016) presented an updated psychrometric 

chart with the more suitable strategies for different outdoor conditions, see Figure 2.52 below. 

This plot helps understanding the most suitable conditions for the passive solutions applied in 

the studies of this section, namely the boundaries of free-cooling, daytime natural ventilation, 

night time ventilation and evaporative cooling. 

In warm locations like Israel or Greece, some studies have also analysed some less conventional 

passive cooling strategies. For instance, the study conducted by Givoni presented a detailed 

review of bioclimatic measures and uses data from both test cells and monitored real buildings 

to assess the benefits for the indoor thermal comfort (Baruch Givoni, 2011). The measures 

included are: natural ventilation, night time natural ventilation, radiant cooling, direct 

evaporative cooling with cooling towers, indirect evaporative cooling with roof ponds and 



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

2. Review of single-family passive houses, monitored cases and situation in Spain  |  73 

cooled soil as a cooling source. Even though these measures prove being useful in extreme 

climates, they are suitable for the Spanish climate and construction background. 

 
Figure 2.52. Comfort zone and boundaries for passive strategies application  

(taken from: Tejero-gonzález, Andrés-chicote, García-ibáñez, Velasco-gómez, & Rey-martínez, 2016) 

 

Regarding south West European climates, the work of Bruno et al. analysed the design 

parameters for a generic prefabricated passive house suitable in southern Europe climates 

(Bruno et al., 2015). The authors highlight that fixed roof extensions don’t help significantly but 

acknowledge the role of night time VC as a substantial feature to maintain the summer comfort. 

They also propose the use of wood panels with inner sand filling in order to provide enough 

thermal mass and reduce peak loads. 

The work of Figueiredo et al. studied the adaptation capacity of PH design to Portuguese climate 

(A. A. Figueiredo et al., 2016). They used dynamic simulations to analyse the thermal loads, 

thermal energy balance and ventilation systems. Regarding the ventilation types, they observed 

that the lack of a MVHR unit could lead to high discomfort periods in both winter and summer, 

together with a higher energy need. They pointed out to some issues modelling the night time 

ventilation driven by wind and they finally considered only the natural ventilation due to stack 

effect. Additionally, they also recommended a medium level of thermal inertia in lightweight 

constructions to reduce the discomfort of temperature swing and the use of solar shading 

activated automatically when outdoor temperature is high. 

In Spanish climates, the work of Ortiz et al. studied the potential of different passive measures 

in the refurbishment of multifamily blocks in Catalonia (Ortiz et al., 2016). They used multiple 
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simulations and economic analysis to assess the applicability of solar shading, thermal mass and 

natural ventilation. This study concluded that natural ventilation is one of the best strategies, 

especially because its impact on the thermal comfort is positive in warm season and also in cold 

season. On the other hand, the optimal use of the solar protection provided interesting 

improvements during the warm season, especially when there is no natural ventilation. They 

also underlined that internal thermal insulation and the consequent reduction of thermal mass 

activation can lead to overheating problems in many cases. 
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CHAPTER 3 

CASE STUDY: MONITORING AND EVALUATION 

OF A SINGLE-FAMILY PASSIVE HOUSE  
 

 

 

 

 

Abstract 
This chapter describes the experimental part of the thesis which monitored and analysed the real thermal 
behaviour of one of the first single-family passive houses built in Spain. The detailed monitoring campaign 
for 14 months registered the indoor air conditions of every room, the surface temperatures of the main 
walls, floors and ceilings, the heat flux in facades, the heating power, the local weather conditions and 
solar radiation with a meteorological station mounted on-site. Some verifications were done to test the 
performance of the ventilation and the thermal insulation of the house. Complementary particular 
measurements permitted a more detailed evaluation of the local thermal comfort conditions in winter, 
summer and shoulder seasons.  
The results confirmed a good winter performance of the house with a very low heating use of 17.6 
kWh/m², slightly over the PH limit. The monitoring permitted to improve several aspects of the house 
thermal behaviour, such as the cool temperatures in certain rooms or the ventilation system unbalance. 
The summer performance of the house was analysed using the PMV method and the EN 15251, analysing 
the use of natural ventilation by the inhabitants and the operation of the summer bypass of the MVHR 
unit. No overheating risk was detected according to CIBSE TM52 method. The thermal envelope of the 
house fulfilled the expectations of the design, but some moderate thermal bridging was detected in the 
ground contact of the building walls with an infrared thermography survey. The differences between 
observed building energy performance and PHPP calculations were evaluated. 
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3. Case study: monitoring and evaluation of a single-family PH 

3.1. Introduction 

This chapter illustrates the main experimental part of the thesis.  

The selected case of this study was the first Spanish Passivhaus dwelling monitored in detail. For 

this reason, there were a number of questions related with the suitability of Passivhaus design 

for warmer countries, which hadn’t been answered before in the other European PH cases, as 

explained in Chapter 1.  

Achieving a very low energy demand is a must in order to be able to construct real nZEB 

(European Commission, 2016b). The conducted study will clarify the benefits and drawbacks of 

a single-family passive house thermal performance, taking into consideration the real conditions 

of use and the northern Spanish climatic conditions. 

3.2. Aim and objectives 

The main goal consists on the analysis of the real performance of one of the first single-family 

houses with a very low energy demand built in northern Spanish climates. It is based on a long-

term monitoring campaign conducted under real conditions of use. This detailed control will 

permit to detect the main issues related with the thermal behaviour of the building and evaluate 

the capacity of this design to provide an adequate thermal comfort. 

To reach this goal, the next objectives are proposed: 

Objective 3.1.  Compare the measured heating demand with the estimated annual demand 

in the PHPP. 

Objective 3.2.  Assess the long-term thermal comfort for heating season and summer period.  

Objective 3.3.  Analyse the performance of the thermal envelope and the passive design of 

the building, evaluating the impact of thermal bridges and heavyweight 

structure. 

Objective 3.4.  Verify the ventilation rates, the efficiency of the HR and the by-pass operation. 

Objective 3.5.  Measure the differences between the thermal comfort provided by a stand-

alone pellet stove and several electric space heaters. 

Objective 3.6.  Evaluate the influence of inhabitants’ behaviour on the thermal performance. 
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3.3. Case study definition 

3.3.1. Description of the building 

The analysed single-family dwelling is located in a village near the city of Vitoria-Gasteiz. This 

area is on the north of Spain and it belongs to the southern part of Euskadi, see Figure 3.1. The 

morphology of the place is flat and it is rounded by several chains of mountains. The climate can 

be classified as Cfb, that is warm temperate with fully humid winters and warm summers, 

according to the updated Köppen-Geiger scale (F. Rubel et al., 2017). Further details of the 

climatic conditions are analysed within the experimental results of the Section 3.4.2.  

                 

Figure 3.1. Situation of the case study. 

The project was constructed between January and July of 2012, including a set of three detached 

houses with similar construction features. The three single-family buildings were designed 

following the Passivhaus criteria (PHPP v.7, 2012) and two of them obtained successfully the 

certification from the PHI in 2013.  

The bioclimatic design of the passive dwellings was based on a long plan placed in a clear North-

South orientation, so that it can maximise the solar harvesting and minimise the solar gains from 

the sides. The pitched roof works as the only solar shading element of the building from the 

outside. The angle of the roof was mandatory by the local regulation who obliges to keep the 

traditional architectural shapes in every new construction. This way, the roof has some 

remarkably longer overhangs above every southern window. The length of this roof extensions 

was calculated to allow the capture of winter solar radiation and avoid the direct radiation in 

summer, as shown in Figure 3.4. Apart from these features included in the calculations of the 
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Passive House Planning Package (PHPP), the design also implemented a and foldable glazing 

enclosure in the entrance hall. This glazing can remain opened or closed to create a buffer zone 

and increase to certain degree the solar harvesting with a greenhouse effect. 

    

Figure 3.2. Aerial view of the dwellings and South-Western facade of the case study 

The house plan is rectangular with a net floor area of 176.05 m² and a total heated volume of 

500.58 m³. The general image and shape of the buildings is due to the requirements of local 

regulations, which require a certain angle and a tile roof. In the inside, there are suspended 

ceilings to correct partly the roof angle and reduce the maximum height of spaces. This way, the 

height of the rooms range from the lowest 2.30 m to the highest 3.60 m. The plans with general 

dimensions, elevations and a cross-section are shown in Figure 3.3. 

The dwelling was built with high levels of thermal insulation, as usual in a Passivhaus housing, 

but in this case the construction materials were heavy and medium weight. The structure of the 

dwelling was made of reinforced concrete, as a very common construction style in the rural 

houses of the region. The foundations are a monolithic ground slab and there are three lines of 

columns to support the upper roof slab. The external walls were made of lightweight concrete 

blocks and the internal walls were made of lightweight aluminium stud frames with 

plasterboards.  

The majority of the thermal insulation is placed on the outside. The external walls and the roof 

slab include 16 cm of EPS and the foundation slab is separated from the ground by 16 cm of XPS. 

On the other hand, there are also some layers of thermal insulation on the inner side of the 

thermal envelope. All the inner walls are filled with mineral wool and the wooden floor was 

placed over a layer of 5 cm of XPS. In Figure 3.4 a detail of the external wall cross-section shows 

the place of the materials. The composition of the main elements is described in Table 3.1, 

including the material characterization and global thermal transmittances. 
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Figure 3.3. Plans of the monitored case study (plans provided by CliM arquitectura S.L.)  
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Figure 3.4. Construction detail of roof façade, window, roof overhang and sidewalk.  

(plans provided by CliM arquitectura S.L.) 
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The airtightness solutions implemented during the construction to reach the Passivhaus 

requirements were diverse. First, rubber bands were mounted in every concrete block wall 

corner and also in the top and bottom of the walls. Second, specific sealing bands were applied 

around all exterior openings. Third, a layer of plaster lining was extended along all the inside to 

guarantee the airtightness layer continuity. As a result, the Blower Door test (BDT) conducted in 

the end of works certified a very high level of airtightness, i.e. an Air Exchange Rate of 0.21 h-1 

at 50 Pa (the threshold of PHI states an ACH 50 Pa < 0.6 h-1).  

Table 3.1. Building external constructive elements 

FACADE WALL 
 

0.143 W/m²K 46.2 cm 

Components: λ [W/(mK)] thickness [mm] 

External coating 0.870 6 

EPS Graphite 0.032 160 

Adhesive mortar 1.500 5 

Mortar, waterproof 1.300 15 

Lightweight concrete block wall 0.460 200 

Internal gypsum plaster 0.570 15 

Rock wool 0.036 46 

Gypsum board 0.250 15 
   

ROOF 
 

0.111 W/m²K 50 cm 

Components: λ [W/(mK)] thickness [mm] 

EPS Graphite 0.032 120 

Reinforced concrete slab 2.400 220 

EPS Graphite 0.032 160 
   

GROUND SLAB 
 

0.160 W/m²K 57.5 cm 

Components: λ [W/(mK)] thickness [mm] 

XPS Styrodur 0.036 160 

Reinforced concrete slab 2.400 300 

XPS Styrodur 0.036 50 

Mortar levelling 1.300 50 

Floating wood floor 0.130 15 

   

WINDOWS 
 

0.9 W/m²K g 0.50 

Components: U [W/(m2K)]  

Wood frame, aluminium coating 1.073 - 

Glazing, 3pan, argon/Low E. 0.600 - 

Installation thermal bridging Side 0.032 Upper 0.036 
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Table 3.2: Building internal constructive elements 

PARTITION Wall 
 

0.603 W/m²K 7.6 cm 

Components: λ [W/(mK)] thickness [mm] 

Gypsum board 0.250 15 

Rock wool 0.036 46 

Gypsum board 0.250 15 

   

PARTITION Music r. w. 0.302 W/m²K 24.2 cm 

Components: λ [W/(mK)] thickness [mm] 

Internal gypsum plaster 0.570 15 

Rock wool 0.036 46 

Lightweight concrete block wall 0.460 120 

Rock wool 0.036 46 

Internal gypsum plaster 0.570 15 

 

The potential thermal bridges of the building have especial solutions to compensate the possible 

negative effect to a great extent. The majority of the geometrical joints were calculated in the 

project and Table 3.3 shows the list of all the solutions. It is worth mentioning that with this level 

of thermal insulation many of them have a positive effect, since they reduce the heat losses of 

their adjacent walls, floors or ceiling elements.  

Table 3.3: List of the thermal bridges of the case study 

 

Thermal bridge description Type* Quantity Unit 
length 

(m) 

Total 
length 

(m) 

Ψexternal 
(W/mK) 

Ψinternal 
(W/mK) 

Sidewalk-Porch GF 1 14.5 14.5 0.049 0.206 

Roof overhang RE 1 78.2 78.2 0.036 0.156 

Wall internal corner WIC 2 3.9 7.8 0.031 -0.020 

Wall internal corner (West) WIC 1 4.8 4.8 0.031 -0.020 

Wall external corner WEC 6 2.6 15.7 - 0.066 0.042 

Roof ridge RR 1 26.3 26.3 - 0.032 0.011 

Sidewalk-Facade GF 1 63.7 63.7 - 0.010 0.147 

Wall facade column WC 8 2.6 20.8 0.012 0.012 

Window to wall at head 
(spacer + installation) 

WH 1 18.75 18.75 0.076 0.076 

Window to wall at jamb WJ 2 22.12 44,24 0.076 0.076 

Window to wall at cill WC 1 18.75 18.75 0.076 0.076 

Door threshold (entrance) DT 1 1.1 1.1 0.124 0.124 

Door to wall at jamb DJ 1 2.1 2.1 0.025 0.025 

Door to wall at head DH 1 1.1 1.1 0.023 0.023 

* The thermal bridges are classified according to PH designer’s manual (Hopfe & McLeod, 2015) 
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The inner distribution is structured by two corridors and the rooms are grouped by use. In the 

centre, the dining room is united with the living room to create the core of the house. The west 

side contains basically the main bedroom with its bathroom and a toilet. The East side contains 

the rest of uses and if the kitchen and service room on the north side, the children rooms face 

the south, together with the music room. The dimensions are described in Table 3.4 below. 

Table 3.4: Case study room identification with net floor and volumes 

Room ID Description Net floor  
(m²) 

Air volume 
(m³) 

1 Dining room 27.54 76.98 

2 Music room 19.64 60.68 

3 Bedroom 1 10.43 30.72 

4 Bedroom 2 10.37 30.45 

5 Bedroom 3 10.43 30.72 

6 Dressing room 17.45 49.02 

7 Bathroom 2 5.76 13.43 

8 Service room 7.76 19.89 

9 Kitchen 10.70 27.63 

10 Toilet 2.87 7.47 

11 Bathroom 1 4.41 11.50 

12 Main bedroom 17.25 50.76 

13 Living room 28.00 82.60 

14 Corridor 3.44 8.73 
 

TOTAL HEATED ROOMS 176.05 500.58 

15 Porch (buffer zone) 9.15 26.82 

 

The ventilation system is provided by a unit of Mechanical Ventilation with Heat Recovery 

(MVHR), a typical system in Passivhaus designed buildings. It is located in the service room, more 

or less in the centre of the house and from there multiple ducts deliver the fresh air to each final 

room. The efficiency of heat recovery is 93 % at 145 m³/h, according to the Passivhaus method 

(ƞWRG,t,eff) and the electricity consumption is 0.24 W/m³ at 100 Pa of pressure difference.  

The ventilation unit incorporates a by-pass module to supply fresh air directly from the outside 

(without HR). It is activated manually in summer and it reduces the cooling need of the house in 

summer when the outdoor temperature is cooler than the exhaust air temperature. In summer 

mode, it is automatically open whenever the indoor air temperature is over 18 °C (to prevent 

overcooling) and outdoor temperature is over 13 °C (to avoid condensing).  
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The operation of this ventilation unit is controlled manually, selecting one out of 7 power levels 

which can supply a wide range of air flow, from 75 to 300 m³/h. During the monitoring of the 

dwelling the ventilation was always set on 4th position, to maintain a constant air flow and 

facilitate the comparison of the Heat Recovery (HR) and by-pass unit. In the 4th position, the MV 

provides 182.3 m³/h with the 63 % of unit’s nominal power.  

It is important to specify that this ventilation rate was slightly over dimensioned in comparison 

with the values demanded by PHPP ventilation sheet, included in Figure 3.5. Considering that 

the maximum fresh air needed is 220 m³/h, the PH design criteria would recommend to use a 

combination of position 4 during day-time, supplying 82.9 % of the ventilation need, and 

position 3 during night-time, providing 68.2 % of the ventilation need. Therefore, the ventilation 

rate during the monitoring is 7.9 % over the basic ventilation need of the PHPP calculations. 

 
Figure 3.5. Case study PHPP v.7 ventilation calculation sheet. 

In order to analyse he ventilation properly, the ventilation rates were verified and characterised 

by several procedures, as explained in Section 3.3.1.1. The monitoring of the ventilation system 

is focused on the efficiency of the Heat Recovery (HR) and the capability of the bypass to reduce 

the cooling demand. 

The heating need of the monitored house is very low in this house, namely 13 kWh/m² per year. 

For this reason, the original design included only one stand-alone pellet stove in the living room. 

The project estimated that the heat can be distributed to the other rooms through ventilation 

in order to keep home inside TC ranges. The pellet stove has a controlled combustion process 

with variable thermal power between 2.4 and 9.0 kW. The fresh air is taken directly from the 

Ventilation System Design - Standard Operation

Occupancy m²/P 35
Number of occupants P 5.0

Supply air per person m³/(P*h) 30

Supply air demand m³/h 151
Extract air rooms Kitchen Bathroom Shower WC Vest+Est+Inst

Quantity  1 2 1 1

Extract air demand per room m³/h 60 40 20 20 60

Total extract air demand m³/h 220

Design Air Flow Rate (Maximum) m³/h 220

Average Air Change Rate Calculation

Daily Operation Factors Referenced to Air Flow Rate Air Change Rate

Duration Maximum

Type of Operation h/d m³/h 1/h

Maximum 1.00 220 0.50

Standard 24.0 0.77 169 0.38

Basic 0.54 118 0.27

Minimum 0.40 88 0.20
Average Air Flow Rate (m³/h) Average Air Change Rate (1/h)

Average value 0.77 169 0.38
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outside and there is an independent circuit to exhaust the combustion gases safely. During the 

monitoring period, the pellet stove was analysed in the first weeks and afterwards it was turned 

off and replaced by a set of individual electric heaters. This was necessary to keep more balanced 

the inner temperatures in every room, stablishing a common set-point (20 °C) and measuring 

the heating provided instantly.  

The Domestic Hot Water (DHW) is provided by a combination of a solar thermal panel and an 

air to water Heat Pump (HP) with a storage of 300 l of DHW. In a first stage, the solar panel 

supplies warm water to a complementary tank of 150 l. This solar storage permits to preheat 

the fresh water and save the 32 % of DHW need. The Coefficient of Performance (COP) of the 

HP is higher than 3.75. Overall, the renewable share of DHW is around 80 %.  

The calculations of the PHPP indicated that the detached dwelling approves the PHI criteria 

successfully. Figure 3.6 includes the main results: 13.1 kWh/m²a of heating demand, 9.0 W/m² 

of maximum heating load (on daily average), 66 kWh/m²a of primary energy demand and 0 % 

hours of overheating with 4 W/m² of maximum cooling load (on daily average). 

 

Figure 3.6: Case study PHPP v.7 sheet with the main values. 
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3.3.1.1. Verification of the ventilation 

As seen before, the case study presented a very low energy demand according to PHPP. In order 

to be able to monitor and evaluate the real performance of this building, it was essential to 

confirm the design features before planning the monitoring.  

Thus, apart from the monitoring explained in the following sections, the case study was tested 

to verify the thermal and energy characteristics defined in the project design.  

Firstly, the ventilation system was checked with an air flow meter. Meaning that each inlet and 

outlet was measured and compared with the theoretical values. In the beginning, the results 

were successful due to an easy procedure and fast re-adjustment.  

However, this method showed some limitations in big-connected spaces like the living room and 

the dining room where some ventilation short circuits could appear. To solve this issue, the 

testing was reoriented to verify the real ventilation rate. This is possible using a tracer gas 

methodology, that is defined in UNE EN ISO 12569:2002.  

     

Figure 3.7: Ventilation verification done with different procedures, with an air flow meter (left)  

and the tracer gas method (centre), gas analysis equipment (right). 

In brief, the method analyses the real ratio of ventilation in each room during at least 30 

minutes. Firstly, the doors of the selected enclosure are closed and an auxiliary fan is activated 

to mix the air inside the space. Secondly, a high concentration of a tracer gas is released and the 

gas analysers measure the decay of concentration according to the following formulas ( 1 ) ( 2 ). 

Finally, the results or each room are put together and compared with the previously measured 

supply air values. The results are listed in Table 3.5. 
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 n Air Change Rate, ACH (h-1) 

  C(t1) concentration of the sample in t1 

 C(t2) concentration of the sample in t2 

  t1 time in instant 1 (s) 

  t2 time in instant 2 (s) 

  Q ventilation flow (l/s) 

  V inner volume (l) 

Table 3.5: Ventilation rates in every room, measurements according to UNE EN ISO 12569:2002  

and air flow values based on direct measures of inlets and outlets.  

Room 
ID 

Description Ventilation 
(l/s) 

ACH 
(h-1) 

Room 
volume* (m³) 

Supply air  
(m³/h) 

Exhaust air 
(m³/h) 

1 + 13 Dining + living room 20.5 0.46 156.9 72.2 17.1 
2 Music room 10.3 0.63 59.2 23.5 37.3 
3 Bedroom 1 3.5 0.42 30.0 12.6 

 

4 Bedroom 2 3.3 0.41 29.6 12.2 
 

5 Bedroom 3 4.3 0.53 29.2 15.5 
 

6 Dressing room 7.6 0.74 37.0   27.4 
7 Bathroom 2 6.3 1.68 13.4   22.6 
8 Service room 3.7 0.74 17.8   13.1 
9 Kitchen 8.6 1.42 21.8   31.0 

10 Toilet 2.9 1.42 7.5   10.6 
11 Bathroom 1 6.5 2.02 11.5   23.2 
12 Main bedroom 11.8 1.04 41.0 42.7 

 

 Total values     455.0 178.6 182.3 

Average air changes per hour, ACH (h-1)   0.40 

* The furniture and other elements are deducted from the inner volumes 

 

Additionally, the two biggest rooms were also tested to control the Indoor Air Quality (IAQ) and 

verify the equal distribution of the ventilation all around the different sides of these rooms. It 

was conducted according to the NT VVS 019 “Buildings – Ventilation Air: Local Mean Age”. The 

measuring points are defined below, in Figure 3.8. 

At first, several gas measuring points are installed in the corners of the room to control the decay 

of the concentration in all those corners. Second, the tracer gas is released in all the room and 

the auxiliary fans are used only shortly to ensure a balanced distribution of the gas before 

starting the measure. Third, the measuring of decay starts with the ventilation operating as usual 

(MVHR) and the auxiliary fans disconnected. The applied formula can be seen in ( 3 ).  
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Figure 3.8: Ventilation verification with Local Mean Age method,  

living-dining room (left) and music room (right). 

In the end, the decay of concentration in every point help to identify any possible unbalanced 

ventilation in places with less fresh. The results for the two tested rooms demonstrated that the 

ventilation provides a god quality of renovation, because it is equally distributed along all the 

parts of the room. The results are listed in Table 3.6. 
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Ci instant concentration measure (ppm) 

  C0 initial concentration (ppm) 

  CM final concentration measure (ppm) 

  M total number of measures 

  τ∆  measuring time-step (h) 

  eλ  slope of the curve in exponential decay 

  Mτ  total time of measurements, ττ ∆×= MM .   

 
Table 3.6: Local Mean Age in living-dining room and music room, NT VVS 019.  

Music room Air Age (h) Living + dining rooms 
 

Air Age (h) 

Channel 1 1,73 Channel 1 2,0 

Channel 2 2,07 Channel 2 2,15 

Channel 3 1,73 Channel 3 1,98 

Channel 4 1,80 Channel 4 1,67 

Time nominal constant 1,60 Time nominal constant 2,13 
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3.3.1.2. Verification of the thermal insulation 

Before evaluating the passive performance of the building, it was necessary to confirm the high 

level of thermal insulation. As seen in the description of, the major part is insulated with an 

Expanded Polystyrene with graphite (EPS), used in facades and roofs. In order to be sure of the 

performance, two verifications were planned: the verification of the thermal conductivity of the 

raw material and the direct measure of the constructed walls performance on-site. 

The first step was carried out according to the method of the heat flow meter UNE-EN 12667, 

as presented in Figure 3.9. The result indicated a very good thermal insulation properties, inside 

the ranges specified in the manufacturer’s technical sheet. The final conductivity value was 

0.032 W/mK.  

The second step was oriented to verify the quality of the construction works and to measure the 

final performance of the applied insulation. Besides, the present case has elements with high 

thermal insulation and high thermal mass and therefore the study required considerable long 

span measurements and several checking points. To be able to quantify on-site the thermal 

resistance of the walls under dynamic conditions two methods were selected: the integrated 

calculation of ISO 9869:1994 and the R-C method developed by the DYNASTEE network. 

    
Figure 3.9. Heat flow meter (left) and detail of the EPS installation on facades (right). 

In total, the heat flux was measured in three points of the façade for more than a month. The 

roof measurements were discarded because the ceiling cavity was open and it could generate 

bidirectional heat fluxes. In any case, the technique to install the EPS on the roof was very similar 

to facades. The heat losses were measured every minute and averaged to 10 m during 31 days. 

The measurement instruments were installed on homogeneous areas of façade, belonging to 

the dressing room and the main bedroom. The selected points were in the North, East and West 
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orientations, to minimise the impact of solar radiation. In each point the temperatures of inner 

and outer surfaces were measured together with the internal heat flux. Further details of the 

instruments can be found in Section 3.4.  

According to the first method, the integration of ISO 9869:1994, the results confirmed the 

estimated theoretical value of 0.143 W/m²K. Some small differences can be observed between 

the measured points, namely 0.128 W/m²K in the North, 0.144 W/m²K in the East and 0.146 

W/m²K in the West facades. The average value of these three points is 0.139 W/m²K. In any 

case, considering the 5 % of uncertainty of the norm, the results indicate that the installed 

thermal insulation achieves the expected level of thermal resistance of facade. 

 
Figure 3.10: Thermal transmittance of facades, integrated method of ISO 9869:1994. 

Once the direct measurements of the heat losses through facades and the heating use are 

completed. The last verification consisted of the definition of a mathematical model to integrate 

all the heat inputs and outputs and verify the thermal response of the building as a whole. This 

supplementary analysis of the measured values was conducted following the parameter 

identification method formulated by the DYNASTEE network.  

The mathematical model involved the identification of the main heat fluxes in the house and the 

definition of an RC network which could integrate all these factors at the same time. This type 

of mathematical method has been widely used due to its adaptability to measured different 

physical parameters.  

This capacity to identify accurately the global performance of constructions and match the final 

performance was highlighted in different studies. The study of Reynders et al. made a deep 

analysis of the robustness of this method and concluded that only few model types are needed 

to represent the majority of buildings (Reynders, Diriken, & Saelens, 2014). The work of J. Teres 
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et al. (Teres-Zubiaga, Escudero, García-Gafaro, & Sala, 2015) tested the potential of the R-C 

network as a tool to assess the priorities to refurbish social collective housing. Another study 

conducted over a passive house in a cold climate used this tool to apply a model predictive 

control and successfully optimised the indoor environment while reducing the energy 

consumption (Fux, Ashouri, Benz, & Guzzella, 2014). 

 In the present study, the model was defined according to the available measurement points. 

Accordingly, the necessary resistances were inserted between the measured values. The 

measured data used for the model is described in Table 3.7 and the model structure is presented 

in Figure 3.11. Note that the building thermal mass was concentrated in two nodes, representing 

the envelope and the inner objects separately.  

 
Figure 3.11. Model structure of the monitored house, 8R2C-model. 

 
Table 3.7: Description of the data linked to nodes. 

Node 
 

Measured temperatures Measured fluxes 

1 House average indoor air DB temperature  Heating use and  
average hourly electricity use 

3 Average wall inner surface temperature  
5 Average wall outer surface temperature Solar global horizontal radiation 
6 Outdoor air DB temperature  
7  Heat losses through ventilation 
8  Solar global horizontal radiation 

 

The software used to calculate the mathematical model was the LOgical R–Determination (LORD 

version 3.21). This software tool permits the modelling and calculation of thermal systems. This 

software was developed by the DYNASTEE Network (DYNamic Analysis, Simulation and Testing 

applied to the Energy and Environmental performance of buildings) and it is a further 
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development of the software package “MRQT/PASTA”. Further details are available in 

(DYNASTEE, 2012). 

The definition of the model structure and the calculation boundaries set in the mathematical 

tool are presented in Figure 3.12 and Figure 3.13 respectively. For the calculations, 

measurements of 587 hours were used (24.5 days), from the 12th of March of 2013 to the 4th of 

April of 2013. 

 
Figure 3.12. Model definition and calculation boundaries set in LORD 3.21. 

In this model, one or more objective functions can be defined simultaneously, in order to 

minimise the error between the measure and the prediction.  

In the present study three objective functions were selected: (i) Ti, as the indoor air DB 

temperature, (ii) Tsi, as the façade inner surface temperature, and (iii) Tse, as the façade outer 

surface temperature.  

This way, the input parameters were four: (i) Te, as the outdoor air temperature, (ii) P, as the 

sum of the heating and electricity use hourly, (iii) Pv as the heat losses through ventilation, and 

(iv) Gh as the global horizontal solar radiation. 
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Figure 3.13. Results of the developed model obtained with software LORD 3.21. 

The results of the model showed a good match with the measurements with reduced errors in 

the different measured parameters. IT is important to keep in mind that the measurements 

correspond to house average values which had certain particular deviations due to the averaging 

of different curves of temperature. 

In the following figures, the differences obtained between the calculated and the measured 

values are presented. The indoor temperature in Figure 3.14, the façade indoor surface 

temperature in Figure 3.15 and the façade outdoor surface temperature in Figure 3.16. 
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Figure 3.14. Measured and calculated indoor air DB temperatures with RC model. 
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Figure 3.15. Measured and calculated façade inner surface temperatures with RC model. 
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Figure 3.16. Measured and calculated façade outer surface temperatures with RC model. 

The results of the model showed small deviations from the theoretical design. According to this 

data, the windows presented 5.7 % higher thermal transmittance and the opaque elements 

obtained 6.2 % lower thermal transmittance. This way, the measurements confirmed that the 

house presented on average a good response, considerably similar to the projected values. The 

results are summarised in Table 3.8. 

Table 3.8. Summary of the thermal transmittances and thermal mass obtained from the RC model. 

Elements Units PHPP data RC Model Difference 
(%) 

Window thermal transmittance W/K 28.0 29.6 5.7 

Opaque average thermal transmittance W/K 116.9 109.6 -6.2 

Solar aperture of windows m2 - 15.5 - 

Thermal mass* MJ/K 129.0 190.5 47.7 

Internal thermal mass MJ/K - 44.7 - 

External convective heat transfer coefficient (hext) W/K 25 7.8 -68.8 

Internal convective heat transfer coefficient (hint) W/K 8 3.7 -51.4 

* PHPP estimation, the maximum heat capacity of concrete structure was 297.2 MJ/K  

-10

-5

0

5

10

15

20

25

30

35

0 400 800 1200 1600 2000 2400 2800 3200 3600

Te
n

p
e

ra
tu

ra
 [

°C
]

time [h]

Tse_calc

Tse_meas

-10

-5

0

5

10

15

20

25

400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800

Te
n

p
e

ra
tu

ra
 [

°C
]

time [h]

Tse_calc

Tse_meas

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 400 800 1200 1600 2000 2400 2800 3200 3600

Te
np

e
ra

tu
ra

 [ °
C

]

time [h]

Res_Tse



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

98 

3.3.2. Description of the monitoring system 

In the first place, the selection of the equipment was done to satisfy the particular goals of the 

present case. On the one hand, the monitoring had to be able to measure and integrate a wide 

range of parameters during a long-term monitoring. Meaning that it had to concentrate enough 

data to assess: heating, thermal comfort, thermal envelope, ventilation and local meteorological 

conditions. On the other hand, it had to meter accurately the thermal performance of a building 

with a high level of thermal insulation and provide a solid remote control system to reduce the 

disturbances in a building already on-use.  

As a result, the installed monitoring system was controlled through a laptop on-site (with remote 

control) equipped with an emergency power supply unit, see Figure 3.17. The data was 

registered by a multifunction data logger, which was connected by cable to all sort of sensors. 

This instrument was configured channel by channel to read properly and provide the required 

voltage to some RH sensors.  

The electric heaters were controlled by an amperemeter and a local air temperature with a set 

point. In Figure 3.18 a diagram of the monitoring system is presented, including the structure of 

the analysis in blue, the objectives in green, the indoor parameters in red and the outdoor 

parameters in purple.  

In the diagram are also included some additional tests which were done only at certain moments 

to verify the features of the thermal envelope, ventilation flows or to get additional details for 

the thermal comfort (TC) assessment. 

    
Figure 3.17. Datalogger and laptop with the monitoring software and remote control. 
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Figure 3.18. Diagram of the case study monitoring system. 
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The location of the sensors was decided according to the main objectives as explained in the 

following page and the positions can be checked in detail in the plan of Figure 3.24. Moreover, 

Table 3.9 summarises the included sensor types for each parameter, defining their uncertainty 

and the number of measurement points. All the sensors were calibrated before the testing and 

verified after the monitoring. For further details and images see Appendix II.  

Air dry bulb temperature sensors:  

• One in every room at 200 cm high, to control the differences inside the home.  

• Three supplementary in the living room and three in the dressing room at 90, 180 and 

270 cm high, to study the air stratification in the dwelling. 

Air Relative Humidity (RH) sensors: 

• In living room, dining room, main bedroom, dressing room at 200 cm high to verify the 

thermal comfort.  

• In the entrance hall, to evaluate the latent heat and greenhouse effect. 

     
Figure 3.19. Pt100 and RH sensors for living room air (left), surface temperature in column (centre)  

and surface temperature in the glazing and frame of a window in dressing room (right). 

Surface temperature sensors: 

• Outside every façade orientation, to know the inside-outside gap. 

• Inside possible thermal bridges, to detect the decay of inner temperatures.  

• In the ceilings and floors of representative rooms, to verify local discomfort conditions 

and the performance of the roof and the ground floor. 

• In partitions, to analyse asymmetric temperatures locally. 

• In frame and the pane of a northern window, to verify its performance. 
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• In the case of the pellet stove, to record its operation hours. 

Heat flux meters:  

• In the inner side of Northern, Western and Eastern facades. 

       

    
Figure 3.20. Indoor heat flux meters and Pt100 installed in north façade, IR placement verification (up), 

outside surface temperature (down left) and calibration of heat flux meters (down right). 

Electricity power meters:  

• Instant value of the electric heaters of the living room and dressing room. 

• Monthly value of the house consumption. 

     
Figure 3.21. Electricity power meter (left) and one of the installed electric heaters (right). 
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Meteorological data: 

• Solar radiation meter in the garden of the house.  

• Meteorological station on-site. It had to be disconnected some periods due to gardening 

works of inhabitants, in those periods it was replaced by the data of a very near 

meteorological station at 3 km. 

    
Figure 3.22. Meteorological station location and integration of solar radiation meter on-site. 

Operative temperature, RH, air velocity and air dry bulb temperature (TC station): 

• Supplementary stations mounted in the living room and one bedroom. 

• Periods of at least one week during winter, spring, summer and fall. 

    
Figure 3.23. Thermal comfort station for PMV method, in bedroom 3 (left side)  

and living room (right side). 
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Figure 3.24. Location of sensors of the case study monitoring system. 
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Table 3.9. Summary of the sensors and the parameters measured by the data acquisition system.  

Parameter 
 

Sensor Units Num. Uncertainty 

T. air RTD, PT100 (sheathed) °C 21 ±0,2 °C 
T. surface RTD, PT100 (encapsulated) °C 57 ±0,2 °C 
Relative Humidity HIH-4000-001 % 6 ±3,5 % 
Heat flux Ahlborn, Wärmefluss W/m2 3 ±5 % 
Electric power JUMO, dTron 304 W 2 ±4 % 
Global H. Irradiance Kipp&Zonnen, CMP11 W/m2 1 ±3 % 

Meteorological St. VAISALA, WXT520 
°C, mbar, mm,  

m/s, % 
1 - 

Data logger AGILENT, 34980A - 1 - 

 

The connectivity of the monitoring system was a considerable challenge. It required a detailed 

planning to minimise the disturbance to the inhabitants and avoid mistakes during the long-

term monitoring. The preparations began with the definition of the position of each sensor and 

the search of the best paths to extend the wires.  

In total, more than 1800 m of cable were necessary to connect the whole system. The cables 

were cut beforehand at different lengths according to the amount of cables needed, from the 

shortest 5 m to the longest 50 m to connect the sensors outside (meteorological station, solar 

radiation meter ad outer surface temperatures). The cables were connected with specific 

sockets for 4 wire Pt100 to maintain the quality of the signal and permit fast replacement of 

sensors when necessary. All these preparations were done in advance in the laboratory facilities. 

   
Figure 3.25: Preparation of connection cables and sensors in the Laboratory of the Basque Government. 
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Figure 3.26. Acoustic box for datalogger and laptop (top left side), crossing cables to outside sensors 

(top right side), installation of cables and finished works on-site (bottom). 

3.3.3. Analyses method 

As seen in Section 3.3.2, the method controls all relevant physical parameters to evaluate the 

real thermal performance of a passive dwelling. Besides, the methodology also facilitates the 

review of the registered values regularly and give feedback to users when possible. This method 

is an adaptation of the procedures to monitor and assess the dynamic performance of 

construction elements, developed by the Thermal Area of the Laboratory of the Quality Control 

of Buildings of the Basque Government (LCCE-GV), see (A. Erkoreka, 2015) (C. Escudero-Revilla, 

2016). Apart from the main goal of the present study, this method can also provide high quality 

data and permits the creation of RC models to study the whole house thermal performance.  

First, the monitoring system was programmed to register the data of all sensors every 1 minute 

and to send every night the file containing all the recordings of the day.  

Second, the reviewer of the monitoring would insert these raw data files in a daily averaging 

template with the calibration of each sensor, to obtain automatically the corrected values of all 
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the measurements and average them to a time step of 10 minutes. This template also contains 

plots to check at first sight the daily performance, see Figure 3.27 and Figure 3.28.  

Table 3.10. Daily analysis strategy based on objectives, plots and items  

Objectives Daily analysis plots 
 

Items included 

1 Weather and building 
response 

Outdoor temperature, RH, solar radiation, façades av. 
surface temp., porch air temp., indoor av. temp., av. RH 

1 Wind conditions Direction and intensity 

1 Heating power Heating power, outdoor temp., solar radiation, indoor 
av. temp.,  

2 and 6 All room air temperatures All room air temperatures, house average air temp. 

2 and 6 All Relative humidity Indoor RHs, average RH, entrance hall RH, outdoor RH, 
house average air temp. 

3 Façade outside 
temperatures 

Façade outside temp., outdoor temperature, solar 
radiation, house average air temp. 

2, 5 and 6 Indoor temp. by zones House average air temp., living, service and sleeping 
zones, North and South zones, East and West zones 

2 and 5 Vertical air temperatures  Living room vertical temp., dressing room vertical temp., 
house average air temp. 

2 and 3 Floor and ceiling temp. Ceiling temp., floor temp., house average air temp. 

3 Structure temperatures Column temperature, house average air temp. 

2 Partition temperatures Partition temp., house average air temp. 

3 Window temperatures Window frame temp., window glazing temp., house 
average air temp., outdoor air temp., solar radiation 

3 Porch performance  Porch air temp., ceiling temp., floor temp., RH, dining r. 
temp., outdoor air temp., outdoor RH, solar radiation 

 

 
Figure 3.27. Example of daily analysis of temperatures by rooms orientations and activity. 
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Third, these values are exported to a weekly analysis template, to conduct a periodic review and 

fix any possible errors such as sensor malfunctions, accidents with the instruments, user related 

issues or other possible unexpected failures. During this period, the user’s exceptional activity 

is recorded.  

Fourth and last, all the measurements every 10 minutes are included within a big file of the 

monitoring. In order to facilitate the assessment of the full year performance in a multi-level 

analysis, this big file average the values to larger time steps: hourly, daily and monthly basis. This 

file contains plots and summary tables to evaluate the general results. Section 3.4 contains the 

main results of the study, the findings are discussed in Section 3.5 and the conclusion of each 

evaluated aspect are presented in Section 3.6. 

Apart from this continuous and integrated monitoring, some additional tests were conducted in 

certain moments to verify the operation of the ventilation, the thermal comfort in detail, the 

effectiveness of the thermal insulation installation and the homogeneity with an infrared 

camera along the inside and the outside. 

The monitoring system was prepared in January of 2013. After the installation of all the devices 

and sensors, the measurements started in the 4th of February and finished in the 11th of April of 

2014. The main four stages of the monitoring are explained in Section 3.4.1.  For further details 

of the timing of each monitored aspect see Figure 3.29 and Figure 3.30. 
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Table 3.11. Weekly analysis strategy based on objectives, plots and items  

Objectives Weekly analysis plots 
 

Items included 

1 Weather and building 
response 

Outdoor temperature, RH, solar radiation, façades av. 
surface temp., porch air temp., indoor av. temp., av. RH 

1 Heating power Heating power, outdoor temp., solar radiation, indoor 
av. temp.,  

2 and 6 All room air temperatures All room air temperatures, house average air temp. 

2 and 6 All Relative humidity Indoor RHs, average RH, entrance hall RH, outdoor RH, 
house average air temp. 

2 All indoor surface 
temperatures 

Pillar temperature, partition temp., ceiling temp., floor 
temp., house average air temp. 

3 Façade outside 
temperatures 

Façade outside temp., outdoor temperature, solar 
radiation, house average air temp. 

2, 5 and 6 Indoor temp. by zones House average air temp., living, service and sleeping 
zones, North and South zones, East and West zones 

2 and 5 Vertical air temperature  Living room vertical temp., dressing room vertical temp., 
house average air temp. 

2 and 3 Floor and ceiling 
temperatures 

Ceiling temp., floor temp., house average air temp. 

3 Structure temperatures Column temperature, house average air temp. 

2 Partition temperatures Partition temp., house average air temp. 

3 Window temperatures Window frame temp., window glazing temp., house 
average air temp., outdoor air temp., solar radiation 

3 Porch performance Porch air temp., ceiling temp., floor temp., RH, dining 
room temp., outdoor air temp., outdoor RH, solar 
radiation 

 

 
Figure 3.28. Example of weekly analysis of temperatures in every room. 
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Figure 3.29. Timeline of the case study monitoring, part 1 of 2. 
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Figure 3.30. Timeline of the case study monitoring, part 2 of 2. 
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3.3.3.1. Criteria to divide the house in thermal zones 

As seen in the literature review of Chapter 2, the assessment of the thermal performance of a 

low energy dwelling requires a detailed control of the indoor temperatures. In the monitored 

dwelling, the evaluation was very complex, due to the ambitious objectives and the detail of the 

monitored data, based on 14 room temperatures. For this reason, the analysis of the house was 

done at multiple levels.  

On the one side, the assessment of the whole house required an average value and it was 

calculated weighting the temperature of all the rooms with the net floor of each room, so that 

the final value includes the sizes of each room and represents better the house air distribution. 

These weighted average values were calculated in a similar way for the house RH, floor surface 

temperature, ceiling surface temperature, window frame surface temperatures and window 

glazing temperatures.  

On the other side, to be able to analyse the behaviour of different sides of the home, the rooms 

were classified by orientation and type of activity, as show in Figure 3.31.  Accordingly, several 

weighted temperatures permitted analysing the deviations of some rooms in respect to the 

weighted house value. This type of classification was especially useful to visualize the thermal 

comfort in different areas of the dwelling, in Section 3.4.8. 

This way, the final assessment includes: 

- Full house average  

- Living zones (mainly day-time use): Living room, kitchen, dining room, music room. 

- Service zones: Dressing room, bathrooms 1 and 2, toilet, service room and corridors. 

- Sleeping zones (mainly night-time use): Main bedroom and bedrooms 1,2 and 3. 

- North rooms: Main bedroom, Bathroom 1, toilet, kitchen, service room, bathroom 2 and 

dressing room. 

- South rooms: Living room, music room and bedroom 1, 2 and 3. 

- East rooms: Dressing room and bedroom 3. 

- West rooms: Main bedroom and living room. 
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Figure 3.31. Definition of thermal zones in the case study: house average, grouped by activities, West-

East sides and North-South sides (from top to bottom).  
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3.4. Monitored data and experimental results 

In the following sections, the measurements are classified by topic and objective of the study. 

The results are summarized and organized to facilitate the assessment in Section 3.5. For further 

details of the monitored values, see Appendix I, II and III. 

3.4.1. Measurement stages and overall gathered data 

The monitoring campaign lasted 420 days in total and it analysed the measurements of more 

than 100 sensors including a meteorological station on-site and some supplementary measures 

of TC stations. The measurements were performed correctly in the 96.5 % of the hours. Even 

though there were some incidents and external issues with losses of data, the global numbers 

demonstrate that the installed monitoring system was highly reliable.  

In general, the monitoring campaign can be divided into four stages with specific objectives and 

outcomes in each one.  

The first stage (4/02/2013 – 10/03/2013) was focused on the evaluation of the thermal 

performance under the conditions defined in the original passive design. This way, the users 

defined the heating of the pellet stove according to their own taste. To do that, there were 

installed two stations to measure TC during this stage. The effects of this type of heating were 

analysed in detail. Additionally, other particular behaviours were measured such as the thermal 

decay of the dwelling during a weekend off were the users disconnected the heating completely. 

The second stage (11/03/2013 – 31/05/2013) was directed to measure the real heating demand 

of the dwelling on-use. To arrange that, the original heating system was replaced by some 

electric heaters which could cover the heating need accurately. These devices could adjust the 

amount of heat supplied in each instant in order to maintain the building just within the thermal 

comfort zone. Three supplementary electric heaters were equipped, two in the living room and 

one in the dressing room, to get a more homogeneous temperature among all the rooms. In this 

period, the thermal envelope was verified and characterised to a great extent. The TC stations 

were mounted again to compare the results with the pellet stove period. 

The third stage (01/06/2013 – 06/10/2013) corresponded to the analysis of summer 

performance. During the non-heating season the building operated in free-running mode and 

the heaters were disconnected. TC measurers were installed by the end of August. Given that 
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there was no cooling system, the assessment was focused in the ventilation performance, the 

benefits of by-pass and the usage of natural ventilation by the inhabitants at night-time. This 

period raised the concern about overheating (OH) and the importance of providing resources to 

the inhabitants in order to control OH. The sensors of the music room were dismounted to 

minimise the disturbances with the inhabitants. 

The fourth stage (07/10/2013 – 10/04/2014) completed the year of measurements and it 

allowed the analysis of the performance during the coldest days of winter. Few changes were 

done, an extra heater was added in the living room to cover the maximum load at night-time 

hours and some low sensors were dismounted to reduce the impact on inhabitants’ life for 

Christmas holidays. 

3.4.2. External weather conditions 

The climate of the region of Vitoria-Gasteiz is classified as Cfb in the Köppen-Geiger scale 

(Kottek, Grieser, Beck, Rudolf, & Rubel, 2006), which corresponds to a warm temperate climate 

with fully humid precipitation levels and warm summers. The full monitored external weather 

conditions are plot in Figure 3.32. It includes the daily average, maximum and minimum values 

of outdoor dry bulb temperature and relative humidity. Additionally, it includes the daily solar 

global horizontal radiation. The plots can be seen in large size in the Appendix I. 

 
Figure 3.32. Measured outdoor air conditions and solar global horizontal radiation,  

air dry bulb temperature (left side) and relative humidity (right side). 
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To analyse the weather conditions during the monitored period, the measurements on-site are 

compared with other existing climatic databases: The Typical Meteorological Year (TMY) of 

Meteonorm of Vitoria-Gasteiz, the PHPP design climate file and the official D1 zone climate file 

of the Spanish Technical Building Code (Código Técnico de la Edificación, CTE) (CTE, 2013). The 

results are presented in Figure 3.33, based on the monthly average outdoor air dry bulb 

temperature and global horizontal solar radiation. 

 
Figure 3.33: Average values or air dry bulb temperature and cumulated solar radiation during 

monitoring, compared with the climatic data of PHPP, Meteonorm and Spanish D1 zone of CTE. 

In general, there are some differences between the monitored period and the reference climatic 

data series. So, in order to evaluate the impact of these differences on the energy demand of 

the dwelling, a very simple and well-known procedure is the Heating Degree Days (HDD) and 

Cooling Degree Days (CDD). It calculates the differences between the indoor comfort 

temperatures and the outdoor air. This procedure can be applied with some differences 

according to the selected base-temperatures, the time frame and using average temperatures 

or mean temperatures.  

In the present study, four alternative calculations are applied in order to identify the trend of 

the monitored year in comparison with the other climatic datasets. The annual values are 

presented in Table 3.12 below. The monitored year refers to the period of 365 days with electric 

heaters, from 12/03/2013 until 11/03/2014. For the purpose of the study, the more relevant 

method is the daily calculation of the average temperature, which shows singular days. Further 

references and details of the HDD and CDD calculation are included in Appendix III.  
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The annual results of climate severity show that the monitored year (from 12/03/2013 until 

11/03/2014) had a slightly colder winter than the climatic series of Meteonorm with 4.6 % more 

HDD and a milder warm season with 14.6 % less CDD. However, in comparison with the PHPP 

design climatic file it was considerably warmer, with 3.3 % less HDD and 8 times more CDD. With 

regard to the Spanish official D1 climatic zone values, the cold season is slightly colder with 4.1 

% more HDD and the warm season is remarkably milder with 23.5 % less CDD. 

Table 3.12. Annual HDD and CDD of the monitored period in comparison with 

other climatic datasets according to different methods.  

 Monthly average Daily average ASHRAE method EUROSTAT met. 
 HDD 18 CDD 18 HDD 18 CDD  18 HDD 65 CDD 65 HDD CDD 

Monitored year 2528 85 2593 138 2549 175 2376 175 
Meteonorm v7 2371 65 2479 162 2417 160 2216 160 
CTE D1 zone 2360 61 2492 181 2548 158 2382 158 
PHPP V.G. * 2611 9  -  -  -  -  -  - 

* PHPP design climate files is calculated monthly. 

         

In a more detailed analysis, the first stage of the monitoring (4/02/2013 – 10/03/2013) was 

slightly colder than usual. February was 13% colder than the PHPP design climatic file of Vitoria-

Gasteiz and 12 % colder than Meteonorm. March was similar to the climatic series, being an 8% 

milder than PHPP and 4 % colder than Meteonorm. The solar radiation in both months was 

smaller than the climatic series, 22 % lower than PHPP and 13 % lower than Meteonorm values. 

The second stage (11/03/2013 – 31/05/2013) was cold, especially in May. April was an average 

year with 7 % less HDD than the PHPP and 3 % more than Meteonorm. May was unusually cold, 

even colder than April, namely 41 % more HDD than PHPP and 85 % more than Meteonorm. The 

solar radiation values follow the same trend: April was slightly colder with 9% less radiation than 

PHPP and 2 % less than Meteonorm, while the cold May had 24 % less radiation than PHPP and 

21 % less than Meteonorm. 

The third stage (01/06/2013 – 06/10/2013) started with a cold June, followed by a very warm 

July and average August and September. June was similar to the previous May and had 45% 

more HDD than PHPP, 147 % more than Meteonorm and it almost didn’t have any CDD. July was 

atypically warm, with 25 times more CDD than PHPP and 51% more than Meteonorm. Later, 

August and September were normal, between the cold PHPP and the warm Meteonorm data 

series. The solar radiation levels confirm a cold June with 10% less than PHPP and 6% less than 

Meteonorm, a hot July with 10% more than PHPP and 17% more than Meteonorm and average 

August and September with intermediate values between PHPP and Meteonorm.  
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The fourth stage (07/10/2013 – 10/04/2014) began with a mild autumn and continued with a 

slightly mild winter. October was uncommonly warm, with 29 % less HDD than PHPP and 21 % 

less than Meteonorm. November was an average month, with 4 % less than PHPP and 3 % more 

than Meteonorm. December was slightly cold, with 4 % more HDD than PHPP and 6 % more than 

Meteonorm. In the next year, January was very mild, with 20 % less HDD than PHPP and 17 % 

less than Meteonorm. February was slightly mild, with 4 % less HDD than PHPP and 5 % less than 

Meteonorm. March was slightly milder as well, with 9 % less HDD than PHPP and 3 % more than 

Meteonorm.  

Regarding the solar radiation, autumn and winter had lower levels than usual, especially 

November and January of 2014. This way, October was an average month with 4 % less than 

PHPP and 2 % less than Meteonorm, November was very cloudy with 35 % less than PHPP and 

29 % less than Meteonorm and December had clear sky with 2 % more than PHPP and 16 % 

more than Meteonorm. In the next year, January was again very cloudy with 24 % less than PHPP 

and 14 % less than Meteonorm, February was slightly cloudy with 11 % less than the PHPP and 

2 % more than Meteonorm.  

Table 3.13 below shows the monthly values of HDD and CDD of the monitored months in 

comparison with the ones from the PHPP climate data file, Meteonorm v7 and CTE climatic zone 

D1, Vitoria-Gasteiz. 

Table 3.13. Monthly HDD and CDD of the monitored period in comparison with other climatic datasets.  
 

Feb 
13 

Mar 
13 

Apr 
13 

May 
13 

Jun 
13 

Jul 
13 

Aug 
13 

Sep 
13 

Oct 
13 

Nov 
13 

Dec 
13 

Jan 
14 

Feb 
14 

Mar 
14 

HDD 18               

Measured 391 315 255 257 123 1 28 61 130 313 429 340 330 312 

Meteonorm 349 303 247 139 48 23 23 74 157 305 404 408 349 303 

PHPP * 344 344 273 183 81 0 0 51 174 324 412 425 344 344 

CTE D1 zone 333 311 233 137 88 34 23 64 142 305 405 0 0 0 

               

CDD 18 
              

Measured 0 0 0 0 5 81 30 15 7 0 0 0 0 0 

Meteonorm 0 0 0 4 35 54 55 14 1 0 0 0 0 0 

PHPP * 0 0 0 0 0 3 6 0 0 0 0 0 0 0 

CTE D1 zone 0 0 0 14 21 62 53 28 2 0 0 0 0 0 

* PHPP design climate files is calculated monthly. 
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3.4.3. Measured indoor temperatures 

The average air temperature of the house, weighted by net floor area are represented daily in 

Figure 3.34 and hourly in Figure 3.35. Besides, all the registered air temperatures are 

summarised in cumulative plots in Figure 3.36, Figure 3.37 and Figure 3.38. These plots permit 

to understand the deviation between rooms grouped according to activity or orientation and 

the average house.  

 
Figure 3.34. Monitored indoor air average temperature, daily average, maximum and minimum values. 

 

 
Figure 3.35. Monitored indoor air average temperature, hourly values. 

 
Figure 3.36. Cumulative air temperatures of house average (left side) and all rooms (right side). 
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Figure 3.37. Cumulative air temperatures of dwelling rooms sorted by activity:  

comparison of the three activities (top left), living zones (top right), sleeping zones (bottom right)  

and service zones (bottom left). 
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Figure 3.38: Cumulative air temperatures of dwelling rooms by orientation:  

comparison of the four orientations, South, East, West and North (clockwise). 

In order to have a clearer perspective of the thermal response of the house, the extreme values 

registered are summarized in Table 3.14. It is noticeable the number of cold hours, i.e. 23.2 % of 

cold season below 20.0 °C and also the quantity of warm hours, highlighting the 40.6 % of 

summer hours over 25.0 °C. There are only 2 hours over 28 °C, but the 13.4 % of summer night-

time hours were over 26 °C, considering the night-time hours from 23:00 to 7:00. 
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Table 3.14: Summary of extreme temperatures and RH of average house. 

SUMMARY 
 

Monitored 
year 

Cold season Intermediate Warm season 

hours t <20 °C 1546 18.3% 1546 23.2% 0 0.0% 0 0.0% 

hours t >25 °C 1058 12.5% 499 7.5% 14 3.2% 545 40.6% 

hours t >28 °C 2 0.0% 0 0.0% 0 0.0% 2 0.1% 

Max. temp. 28.2  50.1  50  28  

Night hours > 26°C 337 4.0% 153 2.3% 4 0.9% 180 13.4% 

hours RH >70 % 5 0.1% 0 0.0% 0.0 0.0% 5 0.4% 

Total hours 8451  6675  432  1344  

 

In order to understand the thermal response of the building in a deeper detail, this section 

contains a selection of representative weeks to visualize the most relevant aspects of the 

monitored parameters. This analysis is based on the charts of the weekly analysis, explained in 

Table 3.11 of Section 3.3.3. The selection includes one of the warmest weeks, one of the coldest 

weeks and another week from the shoulder seasons. 

 

3.4.3.1. Analysis of the thermal behaviour in winter 

To analyse the thermal behaviour in winter, the most important monitored parameters are 

shown in detail during a representative week. To do that, one of the coldest periods was 

selected. The week from 15/03/2013 to 21/03/2013 presented an average outdoor DB 

temperature of 3.9 °C, an average RH of 81.8 % and an average daily solar global horizontal 

radiation of 2026.3 W/m²d. This week is representative because it included diverse solar 

radiation levels which could show the differences between sunny and cloudy cold days. 

 The analysis of the global response is presented in Figure 3.39. The indoor air temperatures 

remain considerably stable and evidence the peaks of solar gains in sunny days. It is noticeable 

the positive response of the floor, which temperatures stay all the time over 18.7 °C.  

The performance of walls and columns is considerably similar, which suggests that the thermal 

bridging on facades is very small, as explained in detail in the thermal bridge analysis of 

Section 3.4.9.  
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Figure 3.39: Outdoor conditions (top) and thermal response of the house with average values of room 

air temperatures and surface temperatures of floors, ceilings, walls and columns (bottom)  

(winter week 15/03/2013 - 21/03/2013). 

 

Regarding the RH inside the house, the winter average values are around 45 %. Figure 3.40 

presents the differences inside the house and show that southern rooms are slightly drier than 

the northern ones.  

 
Figure 3.40: Rooms air RH (winter week 15/03/2013 - 21/03/2013). 

This is consistent with the indoor temperature differences found between North and South 

oriented rooms, compared in Figure 3.41. The indoor distributions of temperatures confirmed 
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the findings of the previous section, which pointed to considerable differences between rooms 

and orientations. This is caused probably by the heater distribution only on two rooms, creating 

differences of 1 - 2 °C. The temperatures of all the rooms are plot in Figure 3.42, this type of 

analysis was mainly used mainly as a control of the extreme temperatures. 

 
Figure 3.41: Room air temperatures by room orientation (top) and by room activity (bottom)  

(winter week 15/03/2013 - 21/03/2013). 

 
Figure 3.42: Room air temperatures in detail (winter week 15/03/2013 - 21/03/2013). 
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Regarding the internal surface temperatures, Figure 3.43 and Figure 3.44 show the 

temperatures of ceilings, floors and partitions and are consistent with the previous findings. 

 
Figure 3.43: Ceiling and floor surface temperatures (winter week 15/03/2013 - 21/03/2013). 

 
Figure 3.44: Partitions surface temperatures in South rooms (top) North rooms (bottom) (winter week 

15/03/2013 - 21/03/2013). 

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

15

17

19

21

23

6 12 18 6 12 18 6 12 18 6 12 18 6 12 18 6 12 18 6 12 18

15/03/2013 16/03/2013 17/03/2013 18/03/2013 19/03/2013 20/03/2013 21/03/2013

A
ir

 T
em

p
er

at
u

re
 [°

C
]

Living r. Ceiling t. Living r. Floor t. Dressing Ceiling t. Dressing Floor t. Laundry Ceiling t.

Laundry Floor t. Main bedr. Ceiling Main bedr. Floor Bed1 Ceiling t. Bed1 Floor t.

House average air t. Solar g.h. radiation Total heating

H
ea

ti
n

g 
p

o
w

er
 [W

] 
 

So
la

r 
gl

o
b

al
 h

. r
ad

ia
ti

o
n

 [W
/m

²]

18

19

20

21

22

23

6 12 18 6 12 18 6 12 18 6 12 18 6 12 18 6 12 18 6 12 18

15/03/2013 16/03/2013 17/03/2013 18/03/2013 19/03/2013 20/03/2013 21/03/2013

Su
rf

ac
e 

te
m

pe
ra

tu
re

 [°
C]

Partition average t. Music r.-Dining r. wall t. Music r.-Bed1. wall t. Music r.-Corridor wall t.
Bed1-Bed2 wall t. Bed2-Bed3 wall. Bed3-Corridor wall. Dining-Porch wall t.
Music r.-Porch. wall t. House average air t.

17

18

19

20

21

22

23

6 12 18 6 12 18 6 12 18 6 12 18 6 12 18 6 12 18 6 12 18

15/03/2013 16/03/2013 17/03/2013 18/03/2013 19/03/2013 20/03/2013 21/03/2013

Su
rf

ac
e 

te
m

p
er

at
u

re
 [°

C
]

Partition average t. Dressing-Bath2 wall t. Service r.-corridor wall t.
Service r.-Bath2 wall t. Service r.-Kitchenn wall t. Toilet-Dining r. wall t.
Main bed.-Living r. wall t. Toilet-Bath1 wall t. House average air t.



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

3. Case study: monitoring and evaluation of a single-family PH  |  125 

 

About the performance of windows, Figure 3.45 shows a good performance of the windows, 

maintaining the frame coldest temperatures over 17.5 °C. The temperature of the glasses is 

influenced notably by the indirect solar radiation, despite to being oriented to North and below 

the roof overhang.  

 
Figure 3.45: North window frame and glazing surface temperatures in kitchen and dining room  

(winter week 15/03/2013 - 21/03/2013). 

Figure 3.46 represents the outside temperatures of the facades. The impact of solar radiation is 

clear in the last two days of the week which were very sunny, 20 and 21 of March of 2013.  

The highest temperatures are located in South and West facades and the lowest in the North, 

as expected. It is also perceived the cooling effect of long wave radiation during the nights with 

clear sky, like in the 18th and the 19th of March of 2013. 

 

 
Figure 3.46: Façade external surface temperatures (winter week 15/03/2013 - 21/03/2013). 

To conclude the analysis of the cold week, the thermal behaviour of the porch is plot in Figure 

3.47. It shows the potential of these spaces to provide a comfortable area for drying clothes or 
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even to capture certain solar gains. The peak inner temperatures overpass easily the 25 °C in 

cold but sunny days. Certainly, the inhabitants were aware of this fact and they often used this 

space to hang the washing. 

 
Figure 3.47: Porch thermal behaviour, greenhouse effect (winter week 15/03/2013 - 21/03/2013). 

 

3.4.3.2. Analysis of the thermal behaviour in summer 

To analyse the thermal behaviour in summer, the most important monitored parameters are 

shown in detail during a representative week. To do that, one of the hottest periods of July was 

selected because it presented high running mean temperatures, as proven later in Section 

3.4.8.1. The week from 18/07/2013 to 24/07/2013 presented an average outdoor DB 

temperature of 20.8 °C, an average RH of 76.3 % and an average daily solar global horizontal 

radiation of 6676.8 W/m²d. 

 The analysis of the global response is presented in Figure 3.48. The indoor air temperature 

swings between minimum values of 24 °C and maximum values of 27 °C. There are short periods 

of natural ventilation in late evenings and early mornings, between 20-24 h and 7-8 h in some 

of the warmest days. The coolest temperatures are in floors, with stable temperatures around 

24.5 °C. The hottest indoor temperatures appear in the ceilings at late evenings.  
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Figure 3.48: Outdoor conditions (top) and thermal response of the house with average values of room 

air temperatures and surface temperatures of floors, ceilings, walls and columns (bottom)  

(summer week 18/07/2013 - 24/07/2013). 

Regarding the RH inside the house, the summer average values are around 60 %. Figure 3.49 

presents the differences inside the house and show that southern rooms are slightly drier than 

the northern ones, as happened in the winter week before.  

 
Figure 3.49: Rooms air RH (summer week 18/07/2013 - 24/07/2013). 

In summer, the warmest rooms are located in the West and the coolest in the East side of the 
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rooms, there are also no significant differences between them. The temperatures of all the 

rooms are plot in Figure 3.51, the warmest part is the laundry room (in orange), probably caused 

by the internal heat gains of the washing machines and the HPSU for DHW generation. On the 

other hand, the coolest area is the dressing room (in green), in the East side. 

 
Figure 3.50: Room air temperatures by room orientation (top) and by room activity (bottom)  

(summer week 18/07/2013 - 24/07/2013). 

 
Figure 3.51: Room air temperatures in detail (summer week 18/07/2013 - 24/07/2013). 
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Regarding the internal surface temperatures, Figure 3.52 and Figure 3.53 confirm the high 

temperatures in the laundry room ceiling, which overpass 28 °C every day. Surprisingly, the floor 

temperatures of the living room and the bedroom 3 are the coolest surfaces. 

 
Figure 3.52: Ceiling and floor surface temperatures (summer week 18/07/2013 - 24/07/2013). 

 
Figure 3.53: Partitions surface temperatures in South rooms (top) North rooms (bottom)  

(summer week 18/07/2013 - 24/07/2013). 
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About the performance of windows, Figure 3.54 shows a good performance of the windows, 

maintaining the frame warmest temperatures below 28.5 °C. The temperature of the glasses are 

again influenced by the indirect solar radiation and overpass the 30 °C in the hottest days, 

despite being oriented to North and below the roof overhangs. The frame temperatures are also 

showing the use of natural ventilation in some night, particularly opening the window of the 

dining room. 

 
Figure 3.54: North window frame and glazing surface temperatures in kitchen and dining room  

(summer week 18/07/2013 - 24/07/2013). 

The outside temperatures of the facades are plot in Figure 3.55. The impact of solar radiation is 

reduced by the shading of the roof extensions. The peak temperatures are located in the East 

and West orientations, while the sun elevation is low and for that reason the roof extensions 

don’t cover these facades.  

 
Figure 3.55: Façade external surface temperatures (summer week 18/07/2013 - 24/07/2013). 

To conclude the analysis of the summer week, the thermal behaviour of the porch is plot in 

Figure 3.56. Even though the porch remained with the outer glazing door open, the temperature 
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of the porch was considerably higher than the outdoor temperature. This may indicate that the 

air change rate (ACH) inside the porch space was low, especially because even the temperatures 

during night were 1-2 °C higher than outdoor temperatures. 

 
Figure 3.56: Porch thermal behaviour, greenhouse effect (summer week 18/07/2013 - 24/07/2013). 

 

3.4.3.3. Analysis of the thermal behaviour in shoulder seasons 

To analyse the thermal behaviour in shoulder seasons, the most important monitored 

parameters are shown in detail during a week which can represent the variability of some fresh 

days with heating and some other warm days with almost no heating. This period was selected 

considering also the running mean temperatures, as explained later in Section 3.4.8.1. So, the 

week from 6/05/2013 to 12/05/2013 presented an average outdoor DB temperature of 12.7 °C, 

an average RH of 75.4 % and an average daily solar global horizontal radiation of 4330.9 W/m²d. 

 The analysis of the global response is presented in Figure 3.57. The indoor air temperature 

remains quite stable around 21 °C. There is no evidence of natural ventilation periods in any 

room. The coolest temperatures are in floors and in smaller degree in the columns, which 

indicates that there is certain effect of thermal inertia and heat discharge through these 

concrete elements. Partitions present the warmest temperatures during several days and 

ceilings also manifest some peak temperatures in the evenings. These effects are analysed later 

in more detail. 
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Figure 3.57: Outdoor conditions (top) and thermal response of the house with average values of room 

air temperatures and surface temperatures of floors, ceilings, walls and columns (bottom)  

(shoulder season week 6/05/2013 - 12/05/2013). 

Regarding the RH inside the house, the intermediate or shoulder season values range between 

45 % and 55 %. Figure 3.58 presents the differences inside the house and confirms once more 

that southern rooms are slightly drier than the northern ones, as happened in the winter and 

summer weeks before.  

 
Figure 3.58. Rooms air RH (shoulder season week 6/05/2013 - 12/05/2013). 
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the activities of the rooms, the bedrooms are the coldest areas and the living zones are the 

warmest, but with smaller differences than in winter. The temperatures of all the rooms are plot 

in Figure 3.60Figure 3.51, it is noticeable the warmer temperatures in the laundry room during 

Monday and Tuesday, probably due to a higher demand of DHW. Besides, the high peak 

temperatures of the air temperature at low height in the living room, likely due to direct solar 

radiation. 

  

 
Figure 3.59: Room air temperatures by room orientation (top) and by room activity (bottom)  

(shoulder season week 6/05/2013 - 12/05/2013). 

 
Figure 3.60: Room air temperatures in detail (shoulder season week 6/05/2013 - 12/05/2013). 
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Regarding the internal surface temperatures, Figure 3.61 and Figure 3.62 confirm the high 

temperatures in the laundry/facility room. Like in winter, bedroom floors are the coolest 

surfaces. Underline as well the high temperatures in the music room due to internal gains. 

 
Figure 3.61: Ceiling and floor surface temperatures (shoulder season week 6/05/2013 - 12/05/2013). 

 
Figure 3.62: Partitions surface temperatures in South rooms (top) North rooms (bottom)  

(shoulder season week 6/05/2013 - 12/05/2013). 
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About the performance of windows, Figure 3.63 shows a good performance of the windows and 

frame temperatures stay between 19 °C and 23 °C. Glasses temperature are again influenced by 

indirect solar radiation and reaches almost to 26 °C in the warmest day, despite the North 

orientation and the roof overhangs. 

 
Figure 3.63: North window frame and glazing surface temperatures in kitchen and dining room  

(shoulder season week 6/05/2013 - 12/05/2013). 

The outside temperatures of the facades are plot in Figure 3.64. The impact of solar radiation is 

reduced by the shading of the roof extensions and the lack of clear sky during long hours. 

However, in certain days the peak temperatures on East and West orientations are noticeable 

and reach up to 30 °C temporarily.  

 
Figure 3.64: Façade external surface temperatures (shoulder season week 6/05/2013 - 12/05/2013). 

To conclude the analysis of a mild week between winter and summer, the thermal behaviour of 
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There are not any significant findings. 
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Figure 3.65. Porch thermal behaviour, greenhouse effect  

(shoulder season week 6/05/2013 - 12/05/2013). 
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Figure 3.66: Electricity use monthly from August 2012 to February 2015  

and heating use during monitored period. 

In comparison with other consumptions of average dwellings in Spain, the registered electricity 

use is very low. Actually, the case study presents lower consumption than any of the reference 

values of Spanish typologies and areas. According to the detailed review of SECH-SPAHOUSEC 

project (SPAHOUSEC, 2011), an average single-family detached home in Spain consumes on 

average 4321 kWh only for electricity use and 6141kWh if the DHW generation is included. That 

means that the case study presents a reduction of 22.4 % and 45.4 % respectively. This very low 

electricity consumption is very remarkable if size is considered, because the net floor of the 

present case is 176 m², considerably larger than the Spanish average 140.2 m² for single-family 

dwellings. 

On top of that, the consumption of this passive dwelling is smaller than the consumption of an 

average apartment. The present case reduces 37.1 % of the final use including DHW in 

comparison with an average apartment, that is 5328 kWh or 3285 kWh only for electricity use. 

In the end, it means that the total consumption of this case, including electricity use and DHW, 

is smaller than only the electricity use of a much smaller apartment, of only 86.5 m². This is 

probably related with PH requirements such as the choice of very efficient appliances, low 

consuming ventilation or the control of lighting units.  
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3.4.5. Heating performance and comparison between pellet stove and 

electric heaters operation 

This section includes the analysis of two heating systems applied in the case study: a stand-alone 

pellet stove and a set of small electric heaters distributed in two rooms of the building: in the 

living room and the dressing room. The operation of both systems was configured with the same 

temperature threshold, namely 21.0 °C. 

Firstly, to be able to compare the operation of both systems it is necessary to analyse the 

performance during a representative winter weeks with considerably cold weather. To do that, 

two similar weeks have been selected, with the same average outdoor temperature (5.9 °C) and 

a comparable solar radiation level (2.23 kW/m²d and 3.11 kW/m²d for week 1 and week 2 

respectively). Figure 3.67 and Figure 3.68 below include a detailed comparison of the hourly 

values of outdoor dry bulb temperature and solar global horizontal radiation of weeks 1 and 2. 

The week 1 goes from 14/02/2013 to 21/02/2015 and the week 2 starts in the 15/03/2013 and 

reaches until 21/03/2013. 

 
Figure 3.67: Outdoor dry bulb temperatures of the weeks selected to compare  

the operation of a pellet stove and distributed electric heaters. 
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Figure 3.68: Solar radiation of the weeks selected to compare  

the operation of a pellet stove and distributed electric heaters. 

The main results at building scale are presented in Figure 3.69. The pellet stove induced a typical 

waving profile of temperatures in the building. Besides, the system operation was very precise 

and the temperature was on average always between 19.5 and 21.0 °C. There are few warmer 

hours due to solar gains, hours when the stove was inactive. The distributed electric heaters 

appear to maintain a more precise control of the temperatures along the dwelling. The heater 

placed on the dressing room works almost all the time, which indicates that the position of the 

original pellet stove was not enough to compensate the long shape of the building.  
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Figure 3.69: Comparison of the building response with  

a pellet stove (up) or distributed electric heaters (down). 
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In a closer look, Figure 3.70 presents the hourly profile of the dwelling with the operation 

differences.  Both systems present similar average values, but the pellet stove has a wider range 

of temperatures due to the fluctuating operation. Regarding to the lower temperatures, the 

pellet stove drops more often to colder values than the electric distributed heaters, getting close 

to 19 °C eventually. The higher temperatures oscillate more in the pellet stove than in the 

electric heaters as well. The integration of the heating system and solar gains is more balanced 

in the distributed electric heaters than in the pellet stove, despite to the fact that the week 2 

had more solar radiation. 

 

 
Figure 3.70: Comparison of the hourly profile of the dwelling average temperature, 

between a pellet stove and several distributed electric heaters. 

Nevertheless, despite the balanced house average temperatures, the temperatures in the living 

room points to one of the main issues of the pellet stove operation: the high temperatures in 

the room where the stove is installed. In this case, the hourly profile of the living room indicates 

that this room is on average at 22.0 °C, with some hours over 23.5 °C. These high variations may 

lead to some problems of Thermal Comfort (TC) and for that reason a more detailed analysis is 

necessary.  
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Figure 3.71: Comparison of the hourly profile of the living room temperature,  

between a pellet stove and several distributed electric heaters. 
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northern rooms and in sleeping rooms. Besides, the temperatures with these heaters are in 

general lower than the ones during the operation of the pellet stove. With the pellet stove, the 

average house achieves acceptable levels during the 99.4 % of the time, with only 1 hour (0.6 %) 

in category C (cool). The main results are included in Figure 3.72, Figure 3.73 and Figure 3.74. 

 
Figure 3.72: Comparison of heating systems in house average, PMV method. 

 
Figure 3.73: Thermal Comfort in winter week 1 with pellet stove, PMV method. 

 
Figure 3.74: Thermal Comfort in winter week 2 with distributed electric heaters, PMV method. 
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On the other hand, the TC values based on EN 15251 show a relevant presence of cool 

temperatures during the operation of both heating systems. It indicates that in general the TC 

provided by the pellet stove is acceptable during 63.1 % of time, in contrast with the 21.4 % with 

electric heaters. This underlines the fact that temperatures remain long hours below 20.0 °C, as 

stated before, and shown in Figure 3.72. The results sorted by activity and orientation are 

included in Figure 3.75 and Figure 3.76.  

 
Figure 3.75: Thermal Comfort in winter week 1 with pellet stove, EN 15251. 

 

 
Figure 3.76: Thermal Comfort in winter week 2 with distributed electric heaters, EN 15251. 

Consequently, the heating target temperature defined by the inhabitants is reaching the 

standard threshold temperatures.  

Additionally, the temperatures of the living room are analysed in more detail. The variation of 

temperatures at different heights and also the cool and warm surface temperatures of floor or 

ceiling can provoke problems of temperature asymmetry, inducing to local discomfort.  
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Figure 3.77: Comparison of living room temperatures by type of heating system,  

week 1 with a pellet stove (up) and week 2 with several distributed electric heaters (down). 
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The verification of local discomfort is done according to ISO 7730 formulas. They are calculated 

the limits of the main causes of local discomfort to keep the Percentage of Dissatisfied (PPD) 

below 10 %. This way, on residential buildings running under normal conditions of use (50 % RH) 

the limits are 4.2 °C for air stratification and 3.7 °C the warm ceiling effect.  

According to this procedure, none of the heating systems presented any local discomfort 

conditions. If the air stratification between the knees and the head remained during the 

monitored weeks around 2 or 3 °C and the temperature of the ceiling is approximately 1 or 2 °C 

higher than the air temperature.  

3.4.6. Measured thermal losses 

The measured annual heating consumption of the house was 2993.4 kWh, since the 12th of 

March of 2013 until the 11th of March of 2014. This value corresponds to the measurement of 

365 days of the power provided by the electric heaters, which is distributed along the living room 

and the dressing room. The heaters were operating when the room temperature dropped from 

20.5 °C in both rooms, this maintain an average temperature of the home in 20.0 °C. This 

temperature was slightly below the standard but it was stablished by the inhabitants, who didn’t 

like a higher temperature during winter. Figure 3.78 below shows the daily values during all the 

monitored period. The average winter heating consumption, considered between November 

and March is 15.43 kWh per day. The maximum daily value was 29.33 kWh/d. 

 
Figure 3.78. Monitored heating consumption daily, full period. 
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In order to analyse the real performance of the house, the measurements are contrasted with 

the expected heating demand on PHPP calculations. Firstly, the heaters are electric and with no 

additional thermal mass, their electricity consumption can be compared with the heating 

demand of the house design. Secondly, a correction by HDD severity is applied, namely a 3.3 % 

increase over the measured heating consumption. The corrected annual heating demand of the 

whole house is 3091.7 kWh. Thirdly, it is calculated the ratio over the treated floor area of the 

PHPP, that is 176.1 m². Thus, the measured and HDD corrected heating demand was 

17.6 kWh/m²y.  

3.4.7. Ventilation performance 

Bearing in mind the features of ventilation explained in Section 3.3.1 such as the very high level 

of building air tightness and the average 0.40 h-1 ACH, the following results analyse in detail the 

long-term efficiency of the HR and the operation of the by-pass under real conditions of use. 

The data correspond to 321 days, registered every 15 minutes during three periods between the 

20th of November of 2012 to the 18th of November of 2013. 

According to the operation of the MVHR there are three possible operations and Figure 3.79 

manifests three clearly separated trends: the operation under heating conditions in black, the 

operation under hot conditions in red and the bypass period in orange. There are also some 

instants where the efficiency is over 100% or negative, these values correspond to transition 

periods where the differences between the indoor-outdoor temperatures are small. It happens 

in all the operation types. Besides, the thermal inertia of the HR and the MV unit can also 

provoke some spread values. The main findings are summarised in Table 3.15. Afterwards, each 

period is analysed in order to know the efficiency of each type of operation and its potential. 

Table 3.15: Monitored efficiency of the ventilation Heat Recovery,  

sorted by operation and hourly average. 

Type of 
operation 

Num. hours Num. days Average HR 
efficiency* 

10 % 
percentile* 

90 % 
percentile* 

Heating 
period HR 

6651 277.1 86.3 % 79.9 % 92.7 % 

Cooling 
period HR 

186 7.8 72.1 % 54.5 % 88.2 % 

By-pass 
operation 

870 36.3 20.9 % 13.9 % 33.9 % 

TOTAL 7707 321.1 - - - 

* The HR is calculated only with the values between 0-100 % 
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The MVHR was operating mainly under heating conditions (86.3 % of hours), which means that 

the ventilation tries to keep all the heat inside the building. On average, it presented 86.7 % of 

efficiency, slightly over than the Laboratory test result for the PHI certification (85.5 % when 

indoor is at 21 °C and outdoor at -10 °C). During this period, the bypass worked only if the extract 

air overpassed 25 °C, as a safety measure. This measure was activated occasionally in autumn, 

after the inhabitants deactivated the summer operation in the MVHR panel, see Figure 3.79. 

 
Figure 3.79: Monitored efficiency of the ventilation Heat Recovery in hourly average,  

full monitoring period. 

In summer, the MVHR unit worked mainly as by-pass ventilation, namely 11.3 % of total hours. 

In contrast, it recovered the heat only in 2.4 % of the hours. As a result, the summer HR average 

is 72.1 %, lower than the winter average, as shown in Figure 3.81 and Figure 3.82. This smaller 

value can be related with the short time of operation and also with the smaller differences 

between the extract air and the fresh air, in contrast with the typical winter operation which is 

operating long-time and with higher differences of temperatures.  

Figure 3.83 shows the ventilation operation in summer in detail, including three days of summer 

between 30th of July and the 1st of August of 2013. In the plot the types of operation can be 

identified: summer HR, by-pass and also a short period of too cold temperatures outside, when 

the condensing prevention is activated. 
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Figure 3.80: Monitored efficiency of ventilation heat recovery during the heating period, hourly average. 

 
Figure 3.81: Monitored efficiency of ventilation heat recovery during the cooling period, hourly average. 

 
Figure 3.82: Monitored efficiency of the bypass during summer period, hourly average. 
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Figure 3.83: Detail of the ventilation monitoring, identified three periods. 
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The by-pass operation is also analysed, in order to know the real cooling potential during the 

monitoring period. It is calculated the cooling potential ( 4 ) and later compared with the real 

cooling obtained during each monitored hours of by-pass. The results indicate that 81.5 % of the 

total cooling potential was achieved during the 870 hours of by-pass. On average, this cooling 

power was 0.31 KW, as shown in Figure 3.84. In total, from a maximum cooling potential of 

1191.34 MJ, the real obtained cooling was 971.51 MJ. That is 269.86 kWh or 1.53 kWh/m²y. 

 
Cooling potential =  ∆T ∗  c� ∗  ρ ∗  v�  ( 4 ) 

  

  ∆T temperature difference (K) 

  c� specific heat (KJ/(kg K)) 

  ρ density (kg/m³) 

  v�  acceptable air flow (m³/h) 

   

 
Figure 3.84: Monitored by-pass cooling power hourly. 
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3.4.8. Thermal Comfort assessment 

Apart from the monitored air temperatures during the whole period, some particular 

measurements were also made to check the validity of air temperatures to assess the TC. For 

that purpose, TC was monitored in detail during some weeks in summer, winter, autumn and 

spring. Two TC stations were used to measure all the environmental parameters involved in TC: 

air dry bulb temperature, globe temperature, RH and air velocity.  

It was confirmed that in the case of study the deviation of the operative temperature and the 

air temperature was low during the main part of the year. In winter, spring and autumn the 

differences remained in general below 0.2 °C, probably due to the high level of insulation of the 

building. There were only few occasions with direct solar radiation when that limit was 

overpassed. This fact was also cross-checked with the small differences between air 

temperatures and surface temperatures of ceilings, floors and walls. In summer, on contrary, 

the differences between operative temperature and air temperature are larger. Figure 3.85 

shows the deviations in August and September in two southern rooms. Additional details of the 

TC stations can be found in the Appendix.  

 
Figure 3.85: Comparison between the air temperatures and operative temperatures  

registered during one month of summer, 22/08/2013-24/09/2013. 
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periods the air temperatures have been corrected to get closer to the real operative 

temperature. 

3.4.8.1. Period identification 

A precise thermal comfort assessment relies on a proper identification of the warm and cold 

periods. In the present case, this has been done following the method proposed by Carlucci (ref, 

2013) and improved by (Catalan study, 2015) by the appliance of a daily basis for real 

measurements. According to these works, sol-air temperature represents better the weather 

conditions as a whole. To define the sol-air temperature applicable for the present case study, 

two possibilities have been calculated in correspondence with the considered surface: a vertical 

white surface (facades) with low effect of solar radiation and a horizontal dark surface (tile roof) 

with high effect of solar radiation.  

The study has been done applying the low sol-air temperature to detect the limits of sold season 

and the high sol-air temperature to delimitate the warm season. Figure 3.86 shows the results 

and the comfort temperatures of summer and winter obtained with PMV. 

   

 
Figure 3.86: Comparison between period identifications based on Fanger-PMV comfort temperatures, 

daily mean values (up) and 15-day mean values (down). 
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Regarding to the selected time step, the 15-day mean period could be sufficient for general 

purposes but bearing in mind the level of detail of the monitoring it is more accurate to apply a 

daily basis to identify exactly the beginning and end of the Fanger-PMV periods. This way, the 

periods to assess the TC of the monitored case are delimitated in Table 3.16. 

Table 3.16: Periods definition according to Fanger-PMV comfort temperatures in daily base. 

Periods  Tsol (high) 
 

Tsol (low) 
 

Selected 
period 

Cold period PMV Monitoring start 4/02/2013 4/02/2013 4/02/2013 

< 22.0 °C To 31/05/2013 01/06/2013 01/06/2013 

Intermediate From - - 02/06/2013 

  To - - 18/06/2013 

Warm period PMV From 19/06/2013 22/06/2013 19/06/2013 

> 24.5 °C To 21/08/2013 11/08/2013 21/08/2013 

Intermediate From - - 22/08/2013 

  To - - 22/09/2013 

Cold period PMV From 24/09/2013 23/09/2013 23/09/2013 

< 22.0 °C Monitoring end 10/04/2014 10/04/2014 10/04/2014 

 

3.4.8.2. Dwelling occupancy analysis 

The occupancy levels of a home can show useful information for many purposes, as seen in the 

literature review. Regarding to the TC assessment, the occupancy is essential for many methods 

because in the majority of free-running buildings it is directly related with the possibility of 

natural ventilation. IT is important to keep in mind that this feature is also a requirement of the 

adaptive method (EN 15251, 2010). This TC method implies that inhabitants have direct access 

to windows and can create natural ventilation on demand.  

Thus, the occupancy was studied in order to create an average profile of inhabitants’ presence 

in the dwelling. 5 labour weeks and 3 holiday were analysed in detail to create a profile of 

occupancy in labour weeks and another profile applicable in holiday weeks. In Figure 3.87 are 

represented both typical weeks, where the number indicates the frequency of occupation in 

every hour of each day.  

Apart from the hourly inoccupancy of the created profile, the periods when the family was out 

for more than 1 day have been fully excluded from the TC calculations, in order to focus on the 

real conditions of use. 
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Figure 3.87: Carpet diagram of the occupancy in the case study  

for a typical labour week and a typical summer week. 

3.4.8.3. Evaluation of the thermal comfort by the PMV model, ISO 7730 

The first evaluation of the TC is based on ISO 7730 and the formulas of the PMV model, as 

explained in Chapter 2. The analysis is first done at building level. The weighted average 

temperature is calculated in correspondence with the net floor of each room. So, the TC of the 

average house is studied during one year of monitoring (12/03/2013 – 11/03/2014), see Table 

3.17. It is remarkable the very high level of comfort achieved at the whole building: 97.6 % in 

the cold season, 98.4 % in the intermediate and 86.7 % in summer. This way, the main issues are 

located in summer, when there is a significant 13.3 % exceeding the highest temperature limits. 

During the cold season and the intermediate period, there are also certain periods of hot 

temperatures, 2.0 % and 1.6 % of each period’s duration respectively. Moreover, very few cold 

hours are also registered in the cold season, that is 0.5 %. 

Table 3.17: Summary of monitored year of thermal comfort in average house, PMV method. 

PMV 
 

Monitored year Cold season Intermediate Warm season 

Too cold  
(PMV < -0.7) 

0 0.0% 0 0.0% 0 0.0% 0 0.0% 

Category C-  
(-0.7 < PMV < -0.5) 

31 0.4% 31 0.5% 0 0.0% 0 0.0% 

Category B-  
(-0.5 < PMV < -0.2) 

4347 51.5% 4205 63.0% 64 14.8% 78 5.8% 

Category A  
(-0.2 < PMV < 0.2) 

2496 29.5% 1691 25.3% 227 52.5% 578 43.1% 

Category B+  
(0.2 < PMV < 0.5) 

1258 14.9% 616 9.2% 134 31.0% 508 37.9% 

Category C+  
(0.5 < PMV < 0.7) 

214 2.5% 84 1.3% 7 1.6% 123 9.2% 

Too hot  
(PMV > 0.7) 

101 1.2% 46 0.7% 0 0.0% 55 4.1% 

Total hours PMV 8447   6673   432   1342   



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

156 

In order to get a clearer idea of the thermal comfort indoor, all recorded vales are plotted and 

organised in colours by every two months, see Figure 3.88 and Figure 3.89. It is very noticeable 

the homogeneity of the low inner temperatures (left side), meaning that the temperature and 

RH remain between 19.5 - 21.0 °C and 40.0 – 55.0 % from November to April (in light blue, dark 

blue and green). Summer period leads to higher RH, between 50 % and 65.0 % and higher 

temperatures between 23 °C and 26 °C.  

 
Figure 3.88: Monitored year of thermal comfort in average house, T-RH plot of PMV method 

 
Figure 3.89: Monitored year of thermal comfort in average house, hourly diagram of PMV method. 
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Accordingly, the hourly results indicate that the majority of hot hours happen from 13:00 until 

18:00 hours. Figure 3.89. It can be perceived a certain asymmetry in the transition periods, which 

means that in late spring and early summer the building is progressively warming up, on contrast 

with the end of summer when there is almost no transition and the temperatures drop in 

November. This was also explained before in the period identification section. 

In a second step, the analysis in Figure 3.90 is conducted in more detail to assess the differences 

of TC between the rooms, sorted by orientation and type of activity. Overall, the main 

differences in the full year are located in the sleeping zones (bedrooms) and north areas (main 

bedroom, bathrooms, toilet, kitchen and dressing room) and in the living areas (living room, 

dining room, kitchen and music room). This way, a first view of the annual values indicate that 

the bedrooms are severely cool, because they are out of comfort during 18.8 % of the year hours. 

which are significantly cooler than the average of the house. 

  
Figure 3.90: Comparison of TC of rooms by orientation and activity, monitored year of PMV. 

On the other hand, the differences are considerably higher and clearer if the review is done each 

for each season separately, as in Figure 3.91. During the cold season, the sleeping zones manifest 

a very severe 23.8 % of hours under cold and very cold conditions. In a smaller degree, the 

situation of northern rooms is severe, because the cool conditions are maintained during 13.4 % 

of hours. 

In the course of the intermediate seasons, the house presents a very low 1.0 % of discomfort 

hours on average and all the rooms have analogous performances.  

Throughout summer, on contrary, the differences appear to be sizeable in the Eastern and 

Western sides. While the East side avoids to great extent the warm discomfort with only 5.3 % 

of hours over the PMV limit, the West side overpassed the limits during a very severe 22.3 % of 

hours. In smaller level, also the living zones remain warmer than average, with 18.8 % of hours. 
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Figure 3.91: Comparison of TC of rooms by each season, orientation and activity, monitored PMV. 

 

Therefore, the rooms with higher cold differences from the average home value are the ones in 

sleeping zones, followed by the ones with warmer differences, located in living zones and in 

West orientation. These differences can be observed in the annual T-RH plots of Figure 3.92, 

Figure 3.93 and Figure 3.94.  

In an hourly basis, the sleeping areas indicate that they get cool mostly during the nights. This 

confirms the influence of closing the doors overnight, which cuts the natural air exchange with 

the corridor and isolates the rooms from the rest of the home. The West rooms indicate that 

their peak of warm temperatures is one or two hours later than in the rest of the house, 

happening more often between 17:00 and 19:00 h. See the following figures. 
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Figure 3.92: Thermal comfort of sleeping zones, T-RH plot of PMV method. 

 

 
Figure 3.93: Thermal comfort of West rooms, T-RH plot of PMV method. 

 

 
Figure 3.94: Thermal comfort of living zones, T-RH plot of PMV method. 
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Figure 3.95: Thermal comfort of sleeping zones, hourly diagram of PMV method. 

 

 
Figure 3.96: Thermal comfort of West rooms, hourly diagram of PMV method. 

 

 
Figure 3.97: Thermal comfort of living zones, hourly diagram of PMV method. 
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3.4.8.4. Evaluation of the thermal comfort by the adaptive method, EN 15251 

The second evaluation of TC follows the adaptive method in the terms defined in EN 15251 (EN-

15251, 2007). This method relates the indoor conditions with the adaptation of users to the 

weather conditions of recent days. It is first calculated considering all the hours of the day. Later, 

the unoccupied hours are subtracted in order to detect the influence inhabitants and their 

decisions such as the opening of window or the use of solar shading elements.  

In the building level, the main results included in Table 3.18 indicate that the discomfort is very 

high by cool periods, reaching to 23.9 % of the cold season hours. On contrary, there is almost 

no discomfort because the warm periods are extremely low according to the adaptive limits. 

Table 3.18: Summary of monitored year of thermal comfort in average house, EN 15251 method. 

 
 

Monitored year Cold season Intermediate Warm season 

Assessment of full time 

Too cold 3 0.0% 2 0.0% 0 0.0% 1 0.1% 

Category III (-) 1596 18.9% 1592 23.9% 0 0.0% 4 0.3% 

Category II (-) 3121 36.9% 2875 43.1% 181 41.9% 65 4.8% 

Category I 3582 42.4% 2063 30.9% 251 58.1% 1268 94.3% 

Category II (+) 145 1.7% 139 2.1% 0 0.0% 6 0.4% 

Category III (+) 4 0.0% 4 0.1% 0 0.0% 0 0.0% 

Too hot 0 0.0% 0 0.0% 0 0.0% 0 0.0% 

Total hours EN 15251 8451 
 

6675 
 

432 
 

1344 
 

Assessment of occupied hours 

Too cold 1 0.0% 1 0.0% 0 0.0% 0 0.0% 

Category III (-) 1224 19.5% 1221 24.6% 0 0.0% 3 0.3% 

Category II (-) 2376 37.9% 2159 43.4% 156 47.4% 61 6.3% 

Category I 2592 41.3% 1514 30.5% 173 52.6% 905 93.3% 

Category II (+) 75 1.2% 74 1.5% 0 0.0% 1 0.1% 

Category III (+) 2 0.0% 2 0.0% 0 0.0% 0 0.0% 

Too hot 0 0.0% 0 0.0% 0 0.0% 0 0.0% 

Total occupied hours 
EN 15251 

6270  4971  329  970  

 

The representation of the operative temperatures in combination with the running mean 

outside temperatures (TRM) shows the relationship between both environments, see Figure 

3.98 and Figure 3.99. In winter the lower temperatures exceed the cold limits as mentioned 

before. Indeed, the temperature decay in the coldest days shows a global cooling process of the 

home when the outside cold periods are long (TRM < 8 °C). In the warm season, the thermal 

response of the house meets the comfort temperatures of the EN 15251 almost all the time. 
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Figure 3.98: TC of average house and outside temperatures, adaptive method EN 15251. 

 
Figure 3.99: TC of average house and outside temperatures subtracting the unoccupied hours, 

adaptive method EN 15251. 

 

Taking into consideration the occupancy of the home, some observations do help understanding 

the measured TC. For instance, some of the cool exceedance detected in the warmer days of the 

cool season is not a real discomfort because the house was empty for several days of holidays. 

Besides, the indoor peak temperatures correspond to the hours when the inhabitants are out 
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from home and for this reason in the majority of the cases there is not any solar shading 

measures from the inside. In any case, the occupancy doesn’t change the general assessment, 

which vary very slightly in the average home level from the full-time or occupied hours only, as 

seen in Table 3.18. 

The hourly diagram in Figure 3.100 confirms the previous observations. In winter, the night-time 

hours are significantly cold during long periods of the cold season and the solar radiation 

compensates these low temperatures even in mid-day hours of December. In summer, the 

majority of the hours from June to November are acceptable and slightly warm, category II (+). 

The warmest hours happen in the late summer, around September and even in October. This 

way, the weighted average house has no periods out of the acceptable warm range. 

 

 
Figure 3.100: TC of average house, hourly diagram of EN 15251. 

 
Figure 3.101: TC of average house subtracting the unoccupied hours, hourly diagram of EN 15251. 
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Additionally, the intermediate periods evidence an asymmetric duration. The transition 

between the category III (-) of cold season to the category II (+) of warm season is very different: 

the transition from cold to warm comfort lasts three months (April to June), the transition from 

warm to cold comfort happens much faster, lasting barely ten days (in November). 

Considering the zones and sides of the building separately, some differences are also noticeable, 

as shown in Figure 3.102. First, the sleeping zones present the majority of the cold hours and 

the cold discomfort is extremely high, namely the 44.3 % of year hours. Besides, the northern 

rooms also present extremely high values around 40.7 % of the annual hours, followed by the 

East side with 28.3 % and the service rooms with 27.3 % of hours with cold discomfort annually. 

It is also remarkable that living areas have almost no hours of cold discomfort, only the 0.9 %. 

Regarding the warm discomfort, the impact is very low or inexistent in general. Only the western 

side, the living zones and the Southern side manifest a 0.9 %, 0.8 % and 0.1 % respectively.  

  
Figure 3.102: Comparison of TC of rooms by orientation and activity,  

monitored year of EN 15251 method. 

In a more detailed analysis of the rooms per season the differences are clearer and higher in the 

aforementioned aspects, see Figure 3.103. The cold discomfort is mainly located in the cold 

season. The sleeping zones achieve an extremely high 55.4 % of the season hours, followed by 

the northern rooms with 51.0 %, the eastern rooms with 34.7 % and the service rooms with 34.1 

% of the cold season. On contrary, living areas present only a very low 1.0 %. Overall, the average 

cold discomfort during the cold season reaches a very severe 23.9 % of hours.  

Regarding the warm discomfort, it is nearly inexistent in average house, showing only a subtle 

0.1 % of the cold season. There are only very low values in the western side with 1.1 % of the 

warm season and 1.0 % of the cold season, in the living room with 1.0 % of the cold season and 

in the southern side with 0.1 % of the cold season.  
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Figure 3.103: Comparison of TC of rooms in different seasons, orientation and activity,  

monitored results by EN 15251 method. 

 

Ahead, the most relevant types of rooms identified in previous analysis are plotted individually. 

The sleeping rooms to see the winter coldest situations are presented in Figure 3.104, Figure 

3.107 and Figure 3.110. The west side to see the warmest temperatures indoor are shown in 

Figure 3.105, Figure 3.108 and Figure 3.111. Finally, the living rooms to understand the rooms 

with the better comfort during the whole year are included in Figure 3.106, Figure 3.109 and 

Figure 3.112. 

The most severe exceedance happens in the cold season, when sleeping zones are too cold (out 

of range) during 9.0 % of the hours and they stay below 19.0°C. The west rooms also present 

some occasional exceedances of the EN 152512 range, with 10 hours in 6 days out of range, a 

0.1 % of the time.  
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Figure 3.104: TC of sleeping zones and outside temperatures, adaptive method EN 15251. 

 

 
Figure 3.105: TC of West rooms and outside temperatures, adaptive method EN 15251. 

 

 
Figure 3.106: TC of living zones and outside temperatures, adaptive method EN 15251. 
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Figure 3.107: TC of sleeping zones, hourly diagram of EN 15251. 

 

 
Figure 3.108: TC of West rooms, hourly diagram of EN 15251. 

 

 
Figure 3.109: TC of living zones, hourly diagram of EN 15251. 
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Figure 3.110: TC of sleeping zones subtracting the unoccupied hours, hourly diagram of EN 15251. 

 

 
Figure 3.111: TC of West rooms subtracting the unoccupied hours, hourly diagram of EN 15251. 

 

 
Figure 3.112: TC of living zones subtracting the unoccupied hours, hourly diagram of EN 15251. 
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3.4.8.5. Evaluation of overheating 

The main assessment follows the CIBSE TM52 methodology, as explained in the proposal defined 

in Chapter 2. This method is based on the limits of EN 15251, but with particularity that it 

calculates the exceedance and rounds the difference to the nearest whole degree. What means 

that every exceedance below 0.5 °C is not considered for this overheating assessment method. 

In brief, the criteria are the following: 

• The first criterion stablishes in 3 % the maximum number of hours of the season 

exceeding the warm limits.  

• The second criterion controls the severity, using a formula to weight the daily 

exceedance, which must be equal or below 6 K. 

• The third criterion set the maximum exceedance of any day below 4°C. 

In the studied case, there are 4 hours over the warm limit (category III of EN 15251). Firstly, 

three of these hours happened in November, with the application of the fixed limits based on 

PMV (not related with the RMT formulas). Secondly, the exceedance of the remaining hour is 

only 0.2 K and as explained before it is rounded off to zero degrees. So, in this case the hours of 

exceedance can’t be included for the criteria of the OH. Therefore, the three criteria are 

successfully passed and there is no overheating in the monitored year of the case study. 

Table 3.19: Monitored hours over the acceptable temperatures. 

Date Operative 
temperature 

(°C) 

Running mean 
temperature 

(°C) 

Maximum acceptable 
temperature 

(°C) 

∆T 
(°C) 

Duration of 
overheating 

(h) 

24/09/2013 27.3 16.1 27.1 0.2 1 

 
 

3.4.9. Thermal bridging 

The analysis of the thermal bridges is done in two levels: firstly, through the monitoring of the 

inner temperatures of certain corners and structural elements during the whole period and 

secondly, with a survey with an infrared thermography camera. In this section, the first level is 

analysed. 

This way, the majority of corners and columns were controlled by measuring their inner surface 

temperatures. During the monitoring the construction solutions for the TB performed very well 
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and the measured values matched with the expected values of the calculations of the 2D linear 

thermal transmittance. Figure 3.113 show the temperatures of the columns in Southern façade 

from 15/03/2013 to 21/03/2013. All the surface temperatures present stable trends and 

maintain the temperatures over 18.5 °C. This value indicates that the difference with indoor air 

temperatures is around 1.0 °C. The coldest point in the plot represents the column in the 

Southeast corner (in green) and its deviations are also lower than 1 °C in comparison with the 

bedroom’s air temperature (dashed in green). The other cold point is the corner column located 

in the Southwest of the living room. It presents slightly higher values and their difference with 

the indoor air can reach up to 2.5 °C during the operation of the electric heaters in that room. 

The warmest lines represent internal corners such as the one in the living room (in brown).  

 
Figure 3.113: Columns in South façade, internal surface temperatures from 15/03/2013 to 21/03/2013. 

The other columns are also monitored in Figure 3.114 and Figure 3.115. The first one shows the 

Northern columns and present an uncertain value in the laundry room (or service room, in grey). 

This curve is compared with the air temperature of the room and again the relationship is below 

1°C. This case is particular because it is also affected by the operation of the systems in the room 

occasionally. 

The central columns of Figure 3.115 present higher temperatures, almost the same than indoor 

air temperatures. The central columns of the living room are especially warm due to the warmer 

temperatures in that room. 
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Figure 3.114: Columns in North façade, internal surface temperatures from 15/03/2013 to 21/03/2013. 

 

 
Figure 3.115: Columns in centre of the building, surface temperatures from 15/03/2013 to 21/03/2013. 
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3.4.10. Thermographic survey 

This survey aims to detect any possible irregularities in the thermal envelope and analyse their 

impact on the passive design of the building. The infrared analysis was done following the EN 

13187:1998 and its simplified methodology for buildings.  

The survey was conducted in different days, starting from an inside review of the thermal 

envelope and continuing another day from the outside. Firstly, the indoor surfaces were tested 

to analyse in detail the internal irregularities and their possible effects, in 13/03/2013. Secondly, 

the preliminary findings were contrasted during an outdoor survey, in 19/03/2013. The details 

of the equipment and the conditions during the capture of images are defined in Table 3.20 and 

Table 3.21. 

Table 3.20: Description of the instruments and accessories used in the infrared thermography survey 

Infrared thermography cameras 
 

Other equipment 

IR camera 
model  

FLIR E60 FLIR 
ThermaCam P60 

Emissivity contrast 
tape 

0.93 (93.0%) 

Serial number 490009506 21801711 Reflected temperature 
measurement 

Low emissivity 
aluminium surface 

Resolution 320x240 320x240 Outdoor conditions 
measurement 

Temperature and 
RH, TESTO 175-H1. 

Thermal 
sensitivity 

< 0.05 °C  
at 30 °C 

< 0.05 °C  
at 30 °C 

Post-processing 
software  

FLIR Tools+ 5.4 

Temperature 
range 

From -20 °C  
to +650 °C 

From -20 °C  
to +650 °C 

  

Tripod (adapter) T198486 -   

 
Table 3.21: Description of the instruments and accessories used in the infrared thermography survey 

Indoor survey 
 

 
Outdoor survey  

Date and hour 13/03/2013 
11:00 – 13:30 

Date and hour 19/03/2013 
7:00 – 8:00 

Outdoor air temp. (°C) 0.5 Air temperature (°C) 0.0 
Dining room air temp. (°C) 20.5 RH (%) 95.0 
Bedroom 3: air temp. (°C) 19.5 Wind speed Soft breeze 
Dressing room air temp. (°C) 20.2 Reflected temp. (°C) From -5.0 to -15.0 
Living room air temp. (°C) 20.8   
Kitchen air temp. (°C) 20.2   
Indoor RH (%) 38.0 – 47.0 %   

 

Figure 3.116 shows one of the most exposed points of the thermal envelope, in the southwest 

corner of the living room. It confirms the monitored values and indicates that the fall is below 2 
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°C, in this case the corner is 19.2 °C while the indoor is 20.8 °C. The rest of the wall and ceiling 

present homogeneous temperatures to a great extent. 

   
Figure 3.116: Living room temperatures, South-East corner, ceiling and window,  

indoor IR image 13/03/2013. 

Figure 3.117 analyses the impact of the heavy construction solution and shows the effect of the 

metal studs in the wall. The general performance is correct and there are no big cool areas. 

However, the minimum temperatures in the metal studs indicate that they are transferring a 

certain amount of heat to the structural slabs up and down. The differences are not very high 

but the head and the base are around 18.5 °C in an environment of 20.5 °C. These values are 

occasionally lower, showing the minimum in the lower corner: 17.5 °C.  

     
Figure 3.117: Dining room North wall, indoor IR image 13/03/2013. 

Figure 3.118 and Figure 3.119 analyse the performance of windows, as one of the most critical 

points of the thermal envelope. In both rooms the measured temperatures in the windows 
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comply with the expectations of a PH certified element, providing values over 17.0 °C in 

environments over 20 °C. 

              
Figure 3.118: Window frame in bedroom 3, indoor IR image 13/03/2013. 

 

 
 

  
Figure 3.119: Window frame in dressing room, indoor IR image 13/03/2013. 

Figure 3.120 permits to visualize the air stratification in the kitchen, confirming the monitored 

values which indicated an increase of around 2 or 3 °C in comparison with the air temperature 

at 90 cm height. 
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Figure 3.120: Air stratification in the kitchen wall and ceiling, indoor IR image 13/03/2013. 

The outside survey shows homogeneous temperatures in the four facades of the building, as 

shown in Figure 3.121. Some deviations are observed in areas below overhangs, these are 

probably related with geometric phenomena such as lower thermal convention factors and less 

heat exchange by radiation with the sky due to the smaller angle of vision.  

    
   

    
Figure 3.121: Comparison of façade temperatures by orientation:  

West, East, North and South (clockwise), outdoor IR image 19/03/2013. 
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Analysing in more detail the thermal bridges, Figure 3.122 shows how the roof extensions 

present reduced variations of around 3 °C. This value corresponds approximately to the 

projected thermal bridge design. Regarding to the ground slab thermal bridge, Figure 3.123 

evidences a considerable increase of around 6.5 °C. This value exceeds the projected solution 

which was approximately 3 °C.  

   
Figure 3.122: Roof overhang thermal bridge temperatures, outdoor IR image 19/03/2013. 

 

    
Figure 3.123: Ground slab thermal bridge and sidewalk temperatures, outdoor IR image 19/03/2013. 

In general, the survey confirms a general homogeneity of the internal and external temperatures 

and detects some local issues related with thermal bridges and the heavyweight construction. 

This is patent from the inside in the observed heat exchange between the metal stud walls and 

the roof and ground slabs. From the outside, there is a main irregularity around all the ground 

contact, what means that probably the thermal bridge in this point is higher than the projected 

value.  

In any case, the performance of the passive design is widely successful. Every comparison with 

nearby dwellings shows a huge difference, as demonstrated in Figure 3.124. 
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Figure 3.124: External temperatures of other nearby dwellings, outdoor IR image 19/03/2013. 

 

3.4.11. Comparison with PHPP design targets 

The measured heating demand is 17.6 kWh/m²y after a correction with HDD. Besides, the day 

with the maximum heading demand reached up to 29.33 kWh, i.e. 6.94 W/m² hourly during the 

coldest day registered during the 14 monitored months. The annual electricity consumption of 

the case study during the considered 12 months was 3383.5 kWh. Table 3.22 compares the 

deviations of the monitored values from the PHPP calculations and the general requirements of 

PHI. The electricity use includes the standard housing applications and also the auxiliary uses of 

the HP, storage and circulation of DHW. 

Table 3.22: Comparison between monitored heating needs and PHPP calculations 
 

PHPP 
calculation 

 

PHI limit Monitored 
value 

Difference 
with PHPP 

calculations 

Difference 
with  

PH limit 

Heating demand, 
annually (kWh/m²) 

13.8 15.0 17.6 3.8 
(+ 27.5 %) 

  2.6 
(+ 17.3 %) 

Heating load,  
maximum daily (W/m²) 

9.0 10.0 6.9 - 2.1 
(- 23.3 %) 

- 3.1 
(- 31.0 %) 

Overheating hours, 
indoor > 25.0 °C (%) 

0 876 
(10 %) 

1058 
(12.5 %) 

1058 
 

182 
(+ 2.5 %) 

Electricity use, 
direct+ aux. (kWh) 

3134.0 
(2697.0 + 437.0) 

- 3383.5 169.5 
(+ 5.4 %) 

- 

Ventilation need, 
fresh air flow (m³/h) 

169.0 - 182.3 13.3 
(+ 7.9 %) 

- 

 

These values are conditioned by the real usage and activity levels inside the building. During the 

monitored period, several remarkable differences were detected in the case study in contrast 

with the theoretical or designed definition in the PHPP. The main ones are: 
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• The inhabitants selected a low temperature for the heating threshold, provoking that 

the thermal comfort levels are often slightly cool. This is a personal decision which 

remained out from the scope of the study.  

• Despite the small size of the building there were some temperature differences in zones 

or sides of the dwelling, this is mainly caused by the operation of the heating system in 

combination with the ventilation. Consequently, to reach the minimum temperature in 

every room, some rooms must be maintained at considerably higher temperatures.  

• The consumption of electricity was slightly lower. Even the dwelling included a music 

room which wasn’t considered in the typical electricity uses of a dwelling in PHPP 

calculations, the measured electricity use was slightly below the PHPP calculation.  

• The level of occupancy during the monitored period was occasionally low. There were 

weeks with only 2 inhabitants and the consequently lower internal gains, as highlighted 

in the Section 3.4.7. 

• The dwelling was slightly overventilated with an extra 7.9 % fresh air. This will have 

probably increased the heating demand of the house. 

• There were long periods over 25 °C. The ventilation in summer was below the planned 

in PHPP. Besides, the use of natural ventilation in summer nights was rather uncommon. 

 

3.5. Discussion 

Regarding the measured thermal losses, the house proven to have a very low heating demand. 

The measured and HDD corrected annual heating consumption is 17.6 kWh/m²y (objective 3.1). 

This value can be considered also as the real heating demand, because the distributed electric 

heaters maintained the minimum temperature threshold during all the year. Therefore, the 

consumption also confirms a very low heating demand for this typology.  

In general, the comparison with the other targets of the PHPP indicate that the deviations are 

low. The real heating demand was 2.6 kWh/m²y over the PH limit and 4.5 kWh/m²y over the 

calculations of PHPP (13.1 kWh/m²y). This suppose significant increases of around 17.3 % and 

34.4 % from the PH limit and the PHPP estimation respectively. On the other hand, the real 

maximum heating load daily was significantly below the expectation. Which shows that the 

thermal losses were correctly controlled as a whole.  
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Thus, bearing in mind the very low energy demand of this case, any deviations in the internal 

gains or occupancy may have affected considerably to the final energy demand. In the present 

study, the main causes identified were four. Firstly, the smaller electricity consumption reduces 

directly the internal gains and increases the heating need. Secondly, the ventilation ratio was 

slightly over the average estimation, increasing the heat losses as well. Thirdly, even though the 

construction quality of the thermal envelope was successfully verified in general, some points 

like the ground thermal bridging indicated some possible deviations which could have 

augmented the heat losses in all the perimeter of the construction. Fourth and last, the winter 

deviation on the measured climate can affect more than the applied 3.3 % of HDD correction, 

since the solar radiation was also smaller than the HDD basis, as shown in Appendix I. 

 

The detailed thermal comfort (TC) study (objective 3.2) has permitted to understand in a high 

level of detail the performance of the dwelling and the differences between rooms by activity 

and orientation.  

The climate period identification according to recent literature doesn’t seem to fit completely 

to the real performance of the building. The plots based on EN 15251 reflect this problem, 

because a considerable part of the warm days is included in the cold season despite of the high 

RMT, like in Figure 3.98. Overall, the case study evidences a long delay in the reaction versus 

outside conditions. The transition periods are asymmetric and this complicates the identification 

of proper periods. This can be seen also in the weather data of Figure 3.86 and the fast decay 

between November and October. 

The occupancy analysis doesn’t change the results significantly in the study. Probably because 

inhabitants didn’t apply often the natural ventilation strategy. 

The PMV model has the potential to include the RH and it has reflected very well the lower limit 

of temperatures preferred by the inhabitants. For instance, the complains of inhabitants about 

TC were basically about the low temperatures in bedrooms and northern side bathrooms, 

precisely the only ones which have a significant cool discomfort. The use of winter or summer 

clothing leads to a considerably wide range in these mechanically ventilated buildings, but again 

the period identification can lead to misinterpretations of the reality. Further studies shall be 

made in future cases. 

In summer, the tolerance of inhabitants was higher than the theoretical limits, probably the 

other method adapts better to free-running conditions. The warmest hours happen mainly 

between 13:00 and 18:00 hours, which evidences the potential of doing something specific at 



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

180 

those hours in order to mitigate this temporal discomfort. The warmest effect is cumulated also 

in the west orientation and living zones during the evening. This fact underlines the need of 

additional measures to prevent OH problems. 

The adaptive method of EN 15251 implies that inhabitants have a high level of adaptation to 

warm indoor conditions. However, the results of the present study indicate that the usage of 

these high limits into the average value of the dwelling can hide many local overheating issues.  

The west side of the house has some signs of local overheating because it reaches rather often 

the category III (+) in the peak hours. Actually, this happen not only in the warm season but also 

in some days from late June and until middle October. 

Despite having only 1 hour out of range during the warm season, the occupants commented 

that the limit shall be lower to prevent the local discomfort by hot temperatures in every part 

of the home. 

After the experience of the monitoring, the limit of 3 degrees over the comfort temperature of 

CIBSE seemed to be maybe too optimistic regarding the human response. Further studies should 

be done in other cases to confirm this trend. 

Regarding to the building overheating, the results are diverse and rather contradictory. Firstly, 

according to the OH detection method of CIBSE TM52 show that there is no risk of OH. Secondly, 

according to the PH limits, the house fails with 12.5 % of the total annual hours over 25 °C. 

Thirdly, the average home temperature present 180 night-time hours over 26 °C in the warm 

period. It becomes largely frequent, with the 40.2 % of all the night hours of that season. That 

amount, including the beginning of the cold season (until November) increases the number of 

warm hours in bedrooms to a very significant 337 h, more than 42 nights in total. 

 

The study of the passive elements of the case study have given positive results (objective 3.3). 

The indoor temperatures controlling the potential thermal bridges demonstrate a good 

performance, similar to the surrounding opaque elements. Except from two exceptions, the 

southwest corner with a column next to the porch of living room and the sidewalk-façade union 

which presented larger effects in the inside temperatures than the designed bridge solutions. 

The thermographic surveys in this type of buildings permit to find severe problems or failures in 

the thermal insulation, but the small variations on the outside don’t permit to distinguish with 

all detail if the observed performance is as good as expected in the design.  

The summer passive design has proven to be also capable to prevent any overheating in the 

home. However, the bad local conditions in the western rooms have also raised the concern 
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about local problems. In those rooms, the lack of solar shading elements such as shutter and 

blinds lead to significantly warm periods in late evenings. Additional shading elements should 

be given to users to avoid the influence of direct solar radiation. 

Overall, the observations during the monitored year indicate that in highly insulated buildings 

every small and local divergence can lead to relevant local problems. These failures are 

especially severe in summer design due to the future global warming scenarios.  

 

 

The monitored performance of the mechanic ventilation with heat recovery (MVHR) followed 

the expectations of the calculations to a great extent (objective 3.4). The average HR during 

6651 hours of winter operation was a remarkable 86.3 %. The operation in summer was 

characterised by the use of the by-pass in 870 hours and the HR under warm conditions during 

186 hours. The summer HR operation avoided the 72.1 % of the outside heat and the by-pass 

contributed largely to cool the indoor environment, supplying the 79.1 % of the outside fresh 

air. 

However, the ventilative cooling potential is not fully used, since the air flow is constant during 

all the monitored months. Some calculations indicate that the average cooling power of the by-

pass was 0.31 kW. This value could be easily doubled if the ventilation air flow during night-time 

hours was increased. Moreover, the air flow in warm hours could be probably reduced to avoid 

the extra gains, guaranteeing the IAQ with controls by CO₂ or other analogous methods. 

The installed ventilation system proven to be able to supply fresh air according to the 

calculations in every room. The tests conducted with tracer gas showed balanced ACH values in 

the rooms and the quality of the air mix in the biggest rooms such as the living room, the dining 

room and the music room. 

 

The heating performance of the analysed two systems permitted to discover the capabilities 

and the limitations of each type (objective 3.5): the stand-alone pellet stove and two sets of 

electric heaters distributed in two rooms of the home. 

Both systems provided proper TC in the average house level on more than the 99 % of the hours, 

but they also showed some limitations to maintain a proper comfort in all the rooms of the 

home. The stand-alone stove kept the Eastern side of the home and the bedrooms very 

significantly cool during 35.1 % and 75.6 % of the hours respectively.  
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The electric heaters installed were meant be able to provide enough heating because they could 

provide up to 9 W/m², but the results suggest that their distribution was not able to avoid the 

drop of temperatures in all the rooms. Indeed, they compensate the Eastern side cool periods, 

but they don´t fix the comfort of bedroom and the northern rooms are cooler, with 41.7 % hours 

out of comfort, as seen in the hourly plots of thermal comfort in Section 3.4.8. Consequently, in 

big houses like this it seems to be recommendable to distribute the heaters along the building, 

so that at least the northern orientation and the sleeping areas can have a direct control of the 

air temperatures.  

Besides, the stand-alone stove operation generated an oscillating profile of temperatures with 

very warm peaks and it was close to provoke local discomfort by warm ceiling and in smaller 

degree also by air stratification. Therefore, it’s probably that the stove operation was near to its 

maximum feasible power in this location, before local discomfort stages may appear. 

Consequently, the main limitations found are related with three aspects. Firstly, the location of 

the heater within the building should be more distributed, because despite the small energy 

needs, the balance has to be assured. Secondly, the distribution of the generated heat through 

the air and ventilation has to be considered to compensate the losses and increase the 

temperature target in the heater. Thirdly, the dimensioning of heaters has to consider also the 

local discomfort limits such as vertical air stratification and warm ceiling risk, to select a proper 

type adapted to the features of each case. 

 

The electricity consumption on the house is very low, with measured annual electricity uses of 

3353.6 kWh in 2013 and 3253.5 kWh in 2014. This supposes a very remarkable 45.4 % of 

reduction on the electricity use of average Spanish single-family dwelling. This values is 7.4 % 

below the estimations of the PHPP calculation, demonstrating that that the appliances and 

equipment selected throughout the PH design have achieved an extremely good performance.  

The heating and energy uses are aspects which differ greatly from user to user, as demonstrated 

in a number of studies of low energy housings in Chapter 2. The use in the monitored house had 

some particularities (objective 3.6) related with the presence of children on alternate weeks or 

the presence of a music room where some electronic instruments with high energy consumption 

were not included in the PHPP estimation of electricity use.  

After the lessons learnt with the monitoring, the inhabitants decided to install one electric 

heater in the bathroom 2, to compensate the heat losses in the eastern side of the house. This 

can explain the higher consumption on the next winter of 2014-2015. 
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In any case, bearing in mind that the measured average energy includes the use of MVHR at 

slightly higher ventilation rate, the DHW generation and storage and all the other electricity 

uses, the final electricity consumption is remarkably low. 

 

The climate conditions are always a relevant aspect of the design but in the case of low energy 

dwellings this becomes crucial. The conducted studies have shown considerable differences in 

the climate severity of the location of the case study, depending on the calculation method and 

the source. If the differences in winter are low, around a 5 %, they can become especially large 

in the summer climate, with ten times more CDD in the measured year than in the PHPP design 

climate file. Most likely, this fact contributed to the dramatic increase of the number of indoor 

hours over 25 °C. 

Furthermore, the levels of solar radiation of some climate files are also considerable different. 

Meteonorm presents slightly higher levels of radiation in winter, which boosts the potential of 

solar gains on the calculations and can hide the real severity of winter weeks. During summer, 

the PHPP design climate file presents significantly lower solar radiation in every warm month, 

which can reduce greatly the risk of overheating in the calculations.  

These relatively small differences can be very important in small buildings, because they can 

induce to make wrong decisions in the design stage. For now, it seems that is better to verify 

the design under several climate scenarios, in order to equip the building with sufficient features 

for the possible diverse situations. 

 

3.6. Conclusions of the monitored case 

This study has successfully characterised in detail the real performance of a passive dwelling on-

use with a long-term monitoring and tests. The main results confirmed that the studied single-

family dwelling has a very low energy demand, namely 17.6 kWh/m²y (objective 3.1) based on 

the measured consumption after a climate correction by HDD.  

The measured annual heating consumption of the electric heaters was 2993.4 kWh. In a typical 

year, this consumption would be 3091.7 kWh after applying a correction of 3.3 % by HDD 

severity. Besides, the maximum daily heating load of the house was 6.9 W/m². The average 

winter heating consumption from November to March was 15.43 kWh/d and the maximum 

heating consumption in the coldest day was 29.33 kWh/d.  
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Some differences were observed in comparison with the PHPP calculations. On the one side, the 

heating demand was 4.5 kWh/m²y higher than the expectations and it overpassed the PH limit 

in 2.1 kWh/m²y. On the other side, the maximum load was 3.1 W/m² lower than the calculations 

and it remained 3.1 W/m² below than the PH limit. This point may had been affected by the 

distributions of the heaters in the house and also by four main differences between the 

assumptions of PHPP and the real inhabitants’ activity. Firstly, a 5.4% higher electricity use 

annually and occasional lower occupancy at home. Secondly, the ventilation ratio of 0.4 ACH 

was 7.9 % over the average calculation. Thirdly, some minor thermal bridges detected in the 

thermographic survey might have increased slightly the heat losses. Finally, the solar radiation 

levels of winter were below the PHPP climate file. 

The thermal comfort was evaluated for one year of the monitored data, using 8447 hours from 

12/03/2013 to 11/03/2014, evaluating first the TC of the full year and later the cold season and 

the warm season separately (objective 3.2).  

The PMV method indicates that the indoor environment is comfortable during 95.9 % of the 

total annual hours. The discomfort hours correspond: 2.5 % of category C (warm), 1.2 % too 

warm (PMV>0.7) and 0.4 % of category C (cool). The warm season was inside the comfort limits 

during the 86.7 % of the hours, with 123 hours of discomfort (13.3 %) by high temperatures. The 

cold season was in comfort during the 97.6% of the season hours, with other 0.5 % of category 

C (cool), 1.3 % of category C (warm) and 0.7 % hours too warm (PMV>0.7). There were no issues 

due to local discomfort conditions, after verifying the surface temperatures and air stratification 

of every room. In the detailed analysis by room activity or orientation. The worst winter 

conditions happen in the bedroom and in northern rooms. They present higher discomfort 

ratios, with 18.8 % and 10.6 % of discomfort hours by cold temperatures respectively. The worst 

summer conditions are located in the western rooms and living zones, with 12.6 % and 6.5 % of 

discomfort by high temperatures respectively. 

The adaptive method of EN 15251 underlines different findings, reducing the acceptable annual 

comfort to 81.0 %. The results point to the existence of a severe discomfort by cold 

temperatures in winter, as much as 23.9 % of the cold season hours. On contrary, it doesn’t 

consider any discomfort due to warm temperatures, because only 1 hour of summer and 3 of 

the cold season overpassed the adaptive limits. The study per rooms in winter show extreme 

cold discomfort in the sleeping zones and northern rooms, during 55.4 % and 51.0 % of hours 
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respectively. In summer, western rooms present a very infrequent 1.1 % of discomfort by high 

temperatures and some rooms present cold discomfort per short periods, being the eastern 

rooms the most affected with a 1.7 %. 

Regarding the overheating, the assessment of CIBSE TM52 method concludes that there is no 

overheating, since all the criteria are passed. On the other hand, the case study was over 25.0 °C 

during 1058 hours, a 12.5 % of the total annual hours. This fact overpassed very significantly the 

zero hours estimated by the PHPP calculations. However, there were a very significant number 

of warm nights, namely 337 night-time hours over 26.0 °C in the monitored year. 

The study of the thermal envelope verified a high quality and good performance overall 

(objective 3.3). The heat losses through the envelope were verified on-site positively, certifying 

the thermal transmittances of the project. Besides, the surveys with infrared thermography 

from the inside and the outside showed the homogeneity of the elements and the correct 

performance of the majority of potential thermal bridges and construction joints such as the 

roof extension or the window installation. Only two types of thermal bridges indicate a slightly 

worse performance that the projected: in the façade-ground contact and in some of the corner 

columns. Their inner temperatures remain over 18.5 °C in the worst day of winter, that is only 

2.5 °C below the room air temperature. Therefore, the impact of the heavy concrete structure 

and the potential thermal bridges are in any case small. 

The ventilation rates were verified on-use with tracer gas tests, so that the measured average 

ACH is 0.4 h-1(objective 3.4). The ventilation rate is 7.9 % more than the average calculations of 

the PHPP. The sensible heat recovery (HR) was calculated from the registered 321 days. The 

average HR calculated from 6651 hours of the cold season is 86.3 % and the average value during 

186 hours of operation in the warm season is 72.1 %.  

The summer bypass of the MVHR unit was open during 870 hours with a 20.9 % of sensible heat 

transfer, which means that it supplied the 79.1 % of the outdoor temperature into the home. 

The measured free cooling power during the 870 hours was 0.31 kW on average. This provided 

269.86 kWh in total, reducing the cooling need in 1.53 kWh/m²y. 

Both heating systems, namely the stand-alone pellet stove and the distributed electric heaters, 

have demonstrated the capability to provide an acceptable indoor TC during more than the 99 % 
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of the hours of a typical cold week (objective 3.5). However, each system has its limitations of 

application to small buildings with low heating demand.  

The stand-alone stove kept the Eastern side of the home and the bedrooms very significantly 

cool during 35.1 % and 75.6 % of the hours respectively. Besides, the cyclic operation of the 

stove creates a wavy pattern of temperatures in all the house and increases the air stratification. 

The measurements show a significant warm ceiling and air stratification of 2 – 3 °C of deviations. 

These values don’t imply local discomfort according to ISO 7730 limits, but they are considerably 

near to the calculated maximum, that is 3.7 °C for the warm ceiling risk. 

The electric heaters can control very precisely the operation and maintain a very stable range of 

temperatures, reducing the air stratification to less than 1 °C. In general, they solve the problems 

of cold discomfort in East rooms. On contrary, they don´t fix the cool discomfort in the bedrooms 

or the northern rooms, which remain cold during extreme 41.7 % and 79.8 % of the hours 

respectively.  

These results confirmed that the heating system should be more distributed to achieve proper 

comfort in every room. Indeed, despite the small size of this typology of building, the 

temperatures in the heaters could be lower and avoid local discomfort risk. 

Finally, the behaviour of inhabitants (objective 3.6) and the measured performance in this case 

study suggests that small changes in the use and internal gains can actually affect considerably 

to the real heating/cooling need. Once the passive features of the building are verified, the 

deviations on the heating demand can highly probably be connected to the observed small 

deviations on the electricity use and the ventilation ratio. For instance, the temperatures 

registered when the house was empty during several days show that it can cool down 

considerably fast. 

Another aspect which has affected greatly the real performance is the local climate. The 

differences between the TMY of METEONORM, PHPP and the Spanish official climate data in this 

location have some considerable differences. On theory, these typical climates have deviations 

are up to 13.6 % on the whole winter solar radiation or to ten times more CDD in summer. On 

the reality, the deviations of the monitored data have proven to be indeed larger. In the end, 

the design of this small buildings requires a more solid strategy, so that it can absorb the 

deviations of climate and provide tools to inhabitants in the future global warming scenario. 
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Abstract 
This chapter developed the characterisation of a dynamic Building Energy Performance Simulation (BEPS) 
to represent the thermal behaviour of the monitored passive house. It was oriented to minimise and solve 
the problems identified during the monitoring, such as the hot hours during summer or the cool 
temperatures in some rooms during winter. The calibration process was complex, including a number of 
adjustments and iteration steps guided by a parametric analysis. The reference model was verified with 
the Mean Bias Error (MBE) and the Coefficient of Variation of Root Mean Square Error, CV(RMSE). A set 
of improvement strategies of ventilation and solar shading were implemented in the model, to evaluate 
the better combination of passive measures. The results are presented in a multilevel analysis, using 
indoor temperatures, thermal comfort (TC) and heating use with graphical and statistical approaches. The 
best combinations demonstrated a high potential to adapt to local climate conditions and eliminate any 
overheating risk. 
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4. Energy Demand optimisation of the case study 

4.1. Introduction 

The calibration of a Building Energy Performance Simulation (BEPS) is a very complex process, 

which includes a number of adjustments and iteration steps.  This study attempts to identify the 

deviations of thermal bridging, building airtightness, internal gains and thermal mass of the case 

study as-built. The final result is verified with the formulas of the Mean Bias Error (MBE) and the 

Coefficient of Variation of Root Mean Square Error, CV(RMSE).  

The potential and limitations of the tool are assessed through a multilevel analysis, using indoor 

temperatures, thermal comfort (TC) and heating use with graphical and statistical approaches. 

4.2. Aim and objectives 

The main goal of this chapter is to analyse the potential of ENERGYPLUS® and Design Builder 

simulations to reproduce the real conditions of a passive house and also the capability to 

implement passive design improvements. This will permit to define the level of detail of the 

model and the measures which can be calculated towards the energy demand optimisation of 

the present case.  

To do that, the following particular objectives are established: 

Objective 4.1  Integrate the real full-scale measurements and the design features in a 

detailed ENERGYPLUS® model. 

Objective 4.2  Compare the thermal performance and the TC of the model with the results of 

the monitored case. 

Objective 4.3  Assess the ventilation improvement possibilities. 

Objective 4.4  Evaluate the solar shading improvement possibilities. 

Objective 4.5  Analyse the impact of a lower airtightness in the thermal behaviour. 

Objective 4.6  Examine the impact of a higher internal gains in the thermal behaviour. 

Objective 4.7  Examine the impact of internal mass in the thermal behaviour. 

Objective 4.8 Verify whether an optimal thermal comfort can be achieved with a 

combination of measures or whether an active cooling is necessary. 
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4.3. Optimisation methodology 

This work analyses the potential of passive measures to correct the problems detected during 

the monitoring of the case study. Basically, these issues consisted of a slightly higher 

consumption of heating, some low temperatures in certain rooms during the coldest months 

and considerably long periods of warm temperatures inside (1058 hours measured over 25 °C), 

see Chapter 3 for further details. This study is based on the use of a detailed model and the 

potential of Building Energy Performance Simulations (BEPS) conducted with the engine of 

EnergyPlus® (U.S. DOE, 2016) and the interface of Design Builder version 4.7 (Design Builder, 

2016). 

In the first stage, the building was characterised, including the construction features, HVAC 

systems and internal activity levels, in Section 4.4. The model was configured according to the 

characteristics verified on-site and the PHPP project details.  

In a second stage, the model was calibrated as much as possible, using different iterations or 

corrections in order to find out which configuration represents better the real behaviour of the 

house with the maximum degree of reliability, in Section 4.5. The process was based on the 

comparison of the real measurements of air temperature, RH, TC and heating use. The final 

verification was done using the Mean Bias Error (MBE) and the Coefficient of Variation of Root 

Mean Square Error, CV(RMSE). Additionally, this stage also evaluated the influence of several 

key factors which can differ between the project and built reality. A set of parametric simulations 

permitted to represent the influence of thermal bridging, airtightness, internal gains and 

thermal mass in the final building thermal behaviour. This study helps to understand the possible 

deviations provoked by construction quality and habits of inhabitants. 

In the third stage, the strategies to improve the reference model were simulated, in Section 4.6. 

Firstly, several ventilation related measures were applied: (i) the reduction of the air flow to 

meet the minimum requirements, (ii) the summer bypass enhancement to verify the maximum 

potential of the installed MVHR unit and also (iii) the use of natural ventilation on evenings of 

night hours in order to estimate the reduction of the number of hours over 25 °C. Secondly, the 

benefits of supplementary solar shading measures were calculated. In this case, they were only 

considered the systems which could be installed with a minimum impact on the existing building: 

(i) venetian blinds and (ii) external roller blinds. 
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In the fourth and last stage, all analysed measures were combined to find out the maximum 

margin of improvement, in Section 4.7. The best combinations were simulated, analysing the 

indoor environment parameters and TC. Besides, the best combinations of measures with 

manual operation are also simulated and assessed.  

To conclude, the results are discussed and the most relevant conclusions are underlined. 
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4.4. Definition of the simulation model 

4.4.1. Potential and limitations of the modelling scope 

The combination of real full-scale measurements and Building Energy Performance Simulations 

(BEPS) is very complex and needs to be supported by a deep analysis. This is probably the main 

problem highlighted by the majority of the BEPS calibration studies. For this reason, there are a 

number of techniques or methods to calibrate or match real observations and BEPS. A common 

classification of these methods (Coakley D, Raftery P, 2012) identifies four categories of 

calibrations: (i) the ones based on manual iterations to apply corrections (basically as trial-and-

error method), (ii) the ones based on suites of informative graphical comparative displays, (iii) 

the ones based on special tests and analytical procedures and (iv) analytical/mathematical 

methods. 

On the other hand, the latest review proposes a global separation of all the methods as either 

manual or automatic processes (Coakley et al., 2014). In their detailed study they review the 

main studies of the last 30 years and they propose an further detailed classification. On the one 

hand, the manual user-driven techniques can be based on: characterisation techniques, 

advanced graphical method, model simplification techniques and procedural extensions. On the 

other hand, the automatic techniques can be conducted with either optimisation techniques or 

with alternative modelling techniques (also known as grey-box or black box techniques). In any 

case, this study concludes recognising that “due to the sheer number of inputs required for 

detailed building energy simulation and the limited number of measured outputs, calibration 

will always remain an indeterminate problem which yields a non-unique solution”. This way they 

identify seven main issues for achieving a proper calibration: lack of standards, high expenses, 

inadequate simplification, uncertainty calculations, identification of personal decisions and 

automation of processes. 

In the present study, the comparison between the BEPS and the real registered values has many 

limitations mainly due to the ambitious aim (full year assessment), the very low energy demand 

of the studied house and especially because of the high variability and uncertainty of inhabitant 

behaviour. This is precisely one of the main ideas of a recent study conducted in a passive house 

in Denmark (Paliouras et al., 2015), in their case “occupant behaviour could be considered as 

the most decisive source of uncertainty during calibration performed in the present study”.  
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This way, despite the adjustments applied on the model regarding the annual and monthly 

electricity consumption and the identification of occupancy profiles in the previous Section 

3.4.8.2, obviously, the real daily activity during a whole year didn’t always follow the average 

schedules… and so the internal gains and the indoor thermal behaviour of each day will have 

certain differences. As mentioned before, this activity variability affects especially passive 

buildings, because they are highly insulated and any small contribution of internal gains can vary 

significantly the heat balance (highly probably since internal gains can cover easily the 30% of 

the heating demand in PH).  

Consequently, this chapter faces a difficult objective with the calibration of the BEPS. To 

evaluate the model, two approaches are used: a graphical comparison based on PMV model and 

another mathematical based on the Mean Bias Error (MBE) and the Coefficient of Variation of 

Root Mean Square Error, CV(RMSE). The results will show how the model presents several 

limitations due to the high variability along a full monitored year. However, the overall results 

permit to use the model as a tool to implement and analyse the potential of different passive 

strategies to solve the issues detected during the monitoring and improve the indoor TC. Thus, 

the BEPS will be able to represent the real behaviour of winter and summer typical weeks and 

months despite some deviations in certain periods.  

4.4.2. Construction features 

Bearing in mind the purpose of this study and the potential and limitations of the simulation 

tool, the model aims to reproduce the real conditions observed during the monitoring. To do 

that, the building definition includes the geometry, the construction materials and the indoor 

distribution with very high level of detail. This way, the model is divided in 14 thermal zones, to 

be able to adjust the type of use in each room, using the dimensions and features of the real 

building as described in the Section 3.3 of the previous Chapter 3. The model dimensions are 

summarised in Table 4.1, the construction material can be seen in Table 3.1 and Table 3.2. The 

model is presented in Figure 4.1 and Figure 4.2. 



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

194 

 
Figure 4.1: Simulation model geometry and thermal zoning plan. 

This precise modelling allowed to establish and adjust in each room all the indoor parameters 

such as the activity, the internal occupation, equipment use, ventilation, solar shading operation 

etc. For instance, the doors of bedrooms were scheduled to remain closed during night to reflect 

the habits observed in the monitoring.  

 
Figure 4.2: Model external visualization and sun path. 
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Table 4.1: Thermal zone summary and characteristics. 

Zone ID Area 
[m²] 

Condit. 
(Y/N) 

Part of Total 
Floor Area 

(Y/N) 

Volume 
[m³] 

Gross Wall 
Area [m²] 

Window 
Glass Area 

[m²] 

01ADININGR 24.13 Yes Yes 65.40 22.43 4.42 
01CDININGRCORRIDOR 6.29 Yes Yes 13.88 0.00 0.00 
02MUSICR 20.25 Yes Yes 58.92 17.10 2.94 
03BEDR 9.89 Yes Yes 28.73 5.92 1.44 
04BEDR 10.00 Yes Yes 29.05 5.98 1.44 
05BEDR 9.95 Yes Yes 28.92 17.55 1.44 
06DRESSINGR 17.76 Yes Yes 42.26 23.23 1.09 
06DRESSINGRCORRIDOR 5.26 No Yes 12.98 0.04 0.00 
07BATHR 6.26 Yes Yes 16.48 5.17 0.19 
08FACILITYR 8.26 No Yes 21.74 6.96 0.25 
09KITCHEN 13.39 Yes Yes 31.12 10.50 1.61 
10TOILET 3.02 Yes Yes 7.59 3.51 0.19 
11BATHR 4.55 Yes Yes 11.80 5.10 0.19 
12BEDRMAIN 18.85 Yes Yes 55.44 23.84 2.94 
13ALIVINGR 26.33 Yes Yes 76.76 32.73 7.37 
14CORRIDOR 3.79 Yes Yes 8.34 0.00 0.00 
SUSPENDEDCEILING 14.45 No No 126.75 69.98 0.00 

Total 187.97   509.41 180.05 25.49 
Conditioned Total 174.44   474.69 173.05 25.24 
Unconditioned Total 27.97   161.47 76.98 0.25 
Not Part of Total 14.45   126.75 69.98 0.00 

 

Infiltrations are a critical part of every design and even more in the case of a passive building. 

Ideally, the cracks in the envelope should be characterised in detail with a set of coefficients, as 

explained in the methods of Chapter 17 of ASHRAE Handbook of Fundamentals (ASHRAE, 

2013a). That way, the ENERGYPLUS® engine could use the natural ventilation models to 

calculate accurately. This ideal definition should be based in a number of testing under different 

indoor-outdoor temperature differences and wind speeds, to characterise each particular curve 

of infiltration. However, this is highly unlike going to happen in the construction sector of this 

typology. In the best cases, the airtightness in single family dwellings is characterized by one or 

two BDT.  

Therefore, in general it is assumed that a simplified approach is sufficient. In this case, the 

infiltration is defined as “scheduled” and it is based on the results of the BDT conducted once 

the works were finished, i.e. 0,21 h-1 at 50 Pa. However, the implementation of n50 or q50 values 

under 50 Pa difference are not directly applicable in the ENERGYPLUS® model. Firstly, the 

nominal air flow rate is estimated with the well-known rule of thumb developed by Sherman in 

1987, that reduces the ACH at 50 Pa to normal pressure conditions by dividing it by a factor 

between 15 and 20 (Sherman, 1987). This way, the nominal ACH due to infiltrations in the 
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studied case shall be at best between 0.0140 h-1 and 0.0105 h-1. Later, the ENERGYPLUS® engine 

calculates the instant infiltration air flow according to the variability of the indoor-outdoor 

conditions, as explained in ( 1 ). In any case, the nominal values of infiltration can also increase 

slightly from the BDT conducted in the end of construction to the subsequent real use, caused 

by the procedure of BDT types A or B which may close some intended openings during the 

testing (EN 13829). 

������������ = ��� !"# · % &'��()�  [+ + - ./01#� − /134. + 5 · 6��789::7 + ; · 6��789::7< ] ( 5 ) 
 

The default coefficients for scheduled natural ventilation in ENERGYPLUS® engine are (1, 0, 0, 0) 

and indicate that they are constant and do not apply the indoor-outdoor temperature difference 

or the effect of wind speed. In the present model, the coefficients were adjusted to be more 

similar to the typical real summer or winter weather conditions. To do that, the default 

configuration of BLAST engine (Department of Mechanical and Industrial Engineering, 1992) 

were used (0.606, 0.03636, 0.1177, 0). These coefficients estimate a factor of 1.0 at 0 °C indoor-

outdoor temperature difference and 3.35 m/s wind speed, which corresponds to a typical 

summer weather. In cold winter conditions these coefficients increase the infiltration up to 2.75 

times, based on 40 °C of temperature difference and 6 m/s wind speed (BigLadderSoftware, 

2016).  

Another key aspect is the thermal bridging, in DB they were defined according to their position 

in the building. They were calculated according to the internal values of linear thermal 

transmittance (Ψi) of the project, in Table 3.3. Some positions included different merged values 

weighted by the length of each particular type. The final values are listed in Table 4.2. 

Table 4.2: Thermal bridges of the model according to Design Building categories, project values. 

Thermal bridge position 
 

Ψi 

Roof-Wall 0.156 
Wall-Ground floor 0.147 
Wall-Wall (corner) 0.015 
Wall-Floor (Int - not ground floor) 0 
Wall-Floor (Ext - not ground floor) 0.206 
Lintel above window or door 0.076 
Sill above window 0.076 
Jamb at window or door 0.076 
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4.4.3. HVAC systems 

The proper definition of the HVAC has been one of the most difficult parts of the modelling. AS 

explained in the Section 4.4.1 there are many limitations due to the ENERGYPLUS® engine and 

the DB interface. For this reason, the modelling had to adapt the real features into another HVAC 

operation with an equivalent thermal behaviour.  

After analysing different alternatives, the final model is presented in Figure 4.3. The HVAC 

system includes two electric heaters, the first with a power of 1600 W in the living room (r13) 

and the second with 400 W in the dressing room (r06).  

 
Figure 4.3: Model HVAC configuration diagram. 

The ventilation of the house in handled by a central MVHR unit with constant air volume 

operation (CAV), 86 % sensible HR in winter, 72 % sensible HR in summer and a supply air 

temperature control linked with the average cooling demand.  

The configuration of the AHU is rather complex because in DB there is no direct way to define a 

summer bypass. The combination of controls with cooling demand and airflow controls 

permited that the economiser is activated only as summer bypass, avoiding the standard airflow 

reduction of this operation. In the end, it works all year with a barely constant airflow, 

maintaining the hourly ACH between 0.38 h-1 and 0.40 h-1. In Figure 4.4 is shown the operation 

of the summer bypass and the effect of free-cooling in the building. 
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Figure 4.4: Summer bypass operation and deactivation on the 9th of September. 

The ductwork provides supply and exhaust air in every room and the inlets have limited airflows 

in each room to match the model ACH of each enclosure with the real ACH tested with the tracer 

gas method, as explained in Section 3.3.1.1.  

The generation of domestic hot water (DHW) is handled by an air to water HP with hot water 

storage. It is set with 3500 W of maximum heating power and a COP of 3.8 with 300 l of storage. 

All the features have been defined according to the technical sheet of the unit installed in the 

house, for further details see Chapter 3 definitions. The hot water consumption is defined in 25 

l per person and day and it is distributed in each bathroom and kitchen, releasing latent heat in 

correspondence with the activity schedules of those rooms, as explained in the next Section. 

4.4.4. Operational program, schedules, occupancy and internal gains 

The heating set points in the real case was 21 °C but it was done by a sensor at 200 cm height. 

In the model, the heating set point is 20.8 °C, to balance the real air stratification observed in 

the monitoring with the perfect air mix of the model. In the analysed real case, the heating was 

inactive from 11th June 2013 to 4th November 2014. 
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The cooling set point is set in 23.5 °C, so that it can activate the summer by pass during a certain 

period. It is scheduled like in the monitored case, so the summer bypass was active between 

15th June and 9th September. 

Regarding the occupancy schedules, the model calendar was adjusted to the school holidays of 

the kids and the working calendar of Alava region in 2013-14. The holidays included within the 

analysed period (12/03/2013 – 11/03/2014) are listed in Table 4.3. 

Table 4.3: List of holidays within the analysed period (12/03/2013 – 11/03/2014). 

Labour holidays (17 days) 
 

School holidays 

28th and 29th of March and 1st of April 2013 (Easter) 25th March to 7th April 2013 (Easter) 
1st May (Worker’s day) 29th April to 5th May 2013 (Worker’s day) 
24th June (Regional holiday) 8th June to 8th September 2013 (Summer) 
25th July (Santiago) 25 October 2013 
5th August (Vitoria’s holiday) 1 November 2013 
15th August (Virgin’s holiday) 6 December 2013 (Constitution of Spain) 
12th October (Spanish National day) 23rd December to 6th January (Christmas) 
25th October (Basque regional day) 

 

1st November (All saint’s day) 
 

6th December (Constitution of Spain) 
 

25th December (Christmas) 
 

1st January (New year) 
 

6th January (Wise kings) 
 

 

The adjustment of internal gains to the analysed case was also complex. They are based on the 

annual electricity consumption measured in the house during the analysed period. The share of 

each activity has been done according to the percentages of use defined in the PHPP worksheet. 

The occupancy profiles have been defined according to the occupancy analysis conducted in the 

previous Chapter 3, see Section 3.4.8.2 for further details.  

The routine in each room was adjusted to represent the levels of use detected during the 

monitoring, including the timetables of meals, cooking or the use of computers in children’s 

bedrooms and living room and so on. The used electricity and the consequent heat sources of 

each room are identified in Table 4.4. 
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Table 4.4: Internal gains definition. 

Rooms Net 
floor 

Lighting Computers Processes Cooking 
dishwashing 

Appl. / misc. 

  
W W/m² kWh/y W/m² kWh/y W/m² kWh/y W/m² kWh/y W/m² 

Corridor 5 30 6 
        

Living room 26 110 4,2 55,5 1,9 
    

191,2 3,1 

Kitchen 13,4 80 6,0 
    

723,0 37,0 366,0 3,1 

Bathroom 6 45 7,5 
      

78,8 18,0 

Bedroom 10 40 4,0 31,3 6,0 
      

Dining room 24 100 4,2 
        

Dressing 
room 

18 50 2,8 
        

Music room 20,25 40 2,0 208,6 4,0 
      

Service 
room 

8,3 17 2,0 
  

172,0 2,4 
  

232,0 8,9 
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4.5. Thermal behaviour of the simulation model and comparison with real 

measured data 

As explained in the Section 4.4.1, the combination of real full-scale measurements and model 

simulations is very complex and two methods are used to calibrate or validate the model. First, 

the manual iterative adjustments are described analytically and later the final version of the 

model is verified through mathematical methods, i.e. MBE and CV (RMSE). For further details of 

the manual corrections, see the next subsections.  

The model is based on the construction features according to the verifications and tests 

conducted on-site during the monitoring, such as the ventilation rates or facades thermal 

transmittance. Besides, the corrections of the internal gains have been implemented according 

to the real global electricity use. To do that, the identified general occupancy profiles are used 

together with each room occupancy trends. Finally, the HVAC systems have been adapted to the 

limitations of the ENERGYPLUS® engine, in order to obtain the real summer bypass operation. 

Besides, one of the most crucial points is to correct the particular aspects detected with the 

monitoring in relation with construction quality and real thermal behaviour. For instance, the 

presence of some higher effect of thermal bridging was detected, especially in the contact 

between facade and ground, but also in smaller degree in the roof extensions and window 

perimeters. This will be done as part of the iterative corrections of the model. To orient the 

corrections, the objective parameters are indoor operative temperature and heating use. 

The first model, with the definition according to the project data, presents a considerably lower 

annual heating use compared with the measured real case. As expected, this value is very similar 

to the PHPP annual calculation with only 1.4 % less heating use. So, the first model heating use 

indicates that the annual calculation PHPP meets the dynamic simulation to great extent.  

 
Figure 4.5: Comparison of the annual heating use of PHPP calculation,  

first model, corrected model and real measurements. 
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To analyse the impact of each correction, in a preliminary stage each modification was analysed 

separately and the results are included in the following sections. The controlled aspects are four: 

(i) thermal bridges, (ii) airtightness, (iii) internal gains and (iv) thermal mass.  

This way, the iterative stages required many simulations to correct the deviations in summer, 

winter and shoulder seasons. During that process, apart from the indoor temperatures and 

heating use, the TC PMV index was also analysed. As a result, the model with the best 

combination of measures includes the following corrections: TB increased around a 35 %, 

infiltrations slightly increased to n50 0.4 h-1, normal internal gains and 25 % less thermal mass 

in block wall and concrete slabs. The heating annual use of the corrected model is 4.7 % below 

the real measurement, as presented in Figure 3.124.  

The monthly results indicate that the biggest relative deviations appear to be in June, May and 

November, however these months have rather small heating use. The largest absolute 

difference is in December, with 64.6 kWh less heating use, this may be due to Christmas 

holidays, days where the house was empty and to the temporal ventilation boost during parties 

at home. In any case, the maximum heating use of each month shows a good match in most of 

the months, as can be seen in Figure 4.6 below. 

 
Figure 4.6: Monthly heating use and maximum daily heating load,  

comparison between the simulation model and real on-site values. 

The analysis of daily average heating use and the monthly electricity use shows a good 

correlation, as shown in Figure 4.8. Nevertheless, there are significant deviations of electricity 

use, mainly from July to October. These deviations will have an effect in the TC analysis, which 

will indicate less warming hours in late summer, precisely in September and October. 
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Figure 4.7: Monthly electricity use and average daily heating use,  

comparison between the simulation model and real on-site values. 

In the daily basis, the heating use is analysed in Figure 4.8. The average difference between 

measured and predicted values is 1.6 kWh/d, which means a relative difference of 13 % in 

respect with the average consumption between January and April.  

 
Figure 4.8: Daily heating use, comparison between simulation models and real on-site values. 
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of both heaters follows the same pattern. However, the peak temperatures due to instant sun 

harvesting and occupancy changes are not appreciated with the same instant response. This 

might be like that because the model internal gains are defined in long hours to embrace the 

daily variability and represent general activity levels. 
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Figure 4.9: Winter week response of the building (10/02/2014 – 16/02/2014),  

comparison between the simulation model values and real on-site measurements. 
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Figure 4.10: Summer week response of the building (10/06/2013 – 16/02/2013),  

comparison between the simulation model values and real on-site measurements. 
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The summer typical week also presents a good match, especially in the peak hours and the 

bypass operation. Nevertheless, there can be seen some short periods of natural ventilation in 

the real case, which are not included in the model.  

In a more advanced graphic comparison, the indoor temperatures of the model and the real 

measurements are plot together in Figure 4.11. The model presents more stable temperatures 

but the trends of both cases are present in the majority of the months. As commented before, 

there is a significant deviation in September and October which coincides with an unexpected 

higher electricity use. Therefore, this abnormal activity variation is not a priority of the model. 

 

 
Figure 4.11: Comparison between hourly indoor temperatures, real measurements from 12/03/2013 to 

11/03/2014 (t) and the predicted values of the corrected model simulation (bottom). 
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The final analytical aspect corresponds to the TC values according to PMV (Fanger’s model). The 

annual hourly PMV values indicate that the model and the real measurements follow similar 

curves, as observed in Figure 4.12 and Figure 4.13. Again, the difference phenomenon in 

September and October is visible, but the majority of the transition periods look similar. 

 
Figure 4.12: Real building measured hourly PMV ISO 7730 (12/03/2013 – 11/03/2014). 

 

 
Figure 4.13: Simulation model calculated hourly PMV ISO 7730. 

The final verification is conducted with mathematical methods of Mean Bias Error (MBE) and 

the Coefficient of Variation of Root Mean Square Error, CV(RMSE), as defined in the formulas  

( 6 ) and ( 7 ) respectively.  
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( 6 ) 

Where: 
mi  measured data (temperature, RH, heating use) 
si  simulated data (temperature, RH, heating use) 
Np  number of data points at interval p (i.e., Nmonthly 12, Nhourly 8760) 

 

 

( 7 ) 

Where: 
mi  measured data (temperature, RH, heating use) 
 si  simulated data (temperature, RH, heating use) 
 Np  number of data points at interval p (i.e., Nmonthly 12, Nhourly 8760) 
 >?   average of the measured data points (temperature, RH, heating use)  

 

The results of the indoor operative temperature, humidity and heating are analysed hourly. 

Table 4.5 includes the values monthly and annually. The limits of these values are controlled by 

several standards like ASHRAE Guideline 14, IPMVP and FEMP. ASHRAE limits the acceptability 

in 5% of MBE and 15% of CV(RMSE) in a monthly criterion and increases the limits up to 10 % of 

MBE and 30 % of CV(RMSE) for annual datasets. Accordingly, the operative temperature is well 

calibrated and the RH fails only in 4 months. However, since the heating use presents a 

considerable error, the model doesn’t fulfil all the criteria. These results confirms that the indoor 

environment of the model is almost calibrated but the heating operation shall need extra inputs 

to be adjust better. This way, the model is valid for the purpose of the study.  

Table 4.5: Calibration of BEPS according to MDE and CV(RMSE). 
 

Monitored values Simulated values Error calculation 
  Temp. RH Heating 

use 
Temp. RH Heating 

use 
tm - tp RHm - RHp Hm - Hp (tm - tp)² (RHm - RHp)² (Hm - Hp)² 

Jan 20,2 51,9 606,1 20,0 49,1 544,9 0,2 2,8 61,3 0,0 8,1 3.752,8 

Feb 20,2 48,0 475,6 20,1 46,0 439,1 0,1 2,0 36,5 0,0 4,1 1.333,4 

Mar 20,2 45,2 435,6 20,2 48,8 450,9 0,1 - 3,6 - 15,3 0,0 12,7 234,2 

Apr 20,4 48,7 243,8 20,5 50,9 265,0 - 0,2 - 2,2 - 21,2 0,0 4,9 450,8 

May 20,4 51,8 210,2 20,8 53,2 153,2 - 0,4 - 1,5 57,0 0,2 2,2 3.249,6 

Jun 21,9 57,8 47,1 22,5 58,3 28,8 - 0,6 - 0,5 18,3 0,4 0,2 334,2 

Jul 25,0 60,7 0,0 25,3 64,8 0,0 - 0,3 - 4,1 - 0,1 17,0 - 

Aug 24,6 56,7 0,0 24,7 62,5 0,0 - 0,1 - 5,7 - 0,0 32,7 - 

Sep 24,9 54,4 0,0 23,3 60,7 0,0 1,6 - 6,3 - 2,5 40,2 - 

Oct 24,0 51,9 0,2 22,4 57,8 12,4 1,6 - 5,9 - 12,2 2,6 34,8 148,0 

Nov 20,6 50,7 333,3 20,3 52,3 382,4 0,3 - 1,6 - 49,1 0,1 2,5 2.407,2 

Ded 20,1 44,8 641,4 20,0 45,9 576,8 0,2 - 1,2 64,6 0,0 1,4 4.171,0 

Error assessment MBE CV(RMSE)  

Monthly methods (monthly average values) 0,9% -4,5% 4,7% 3,2% 7,1% 14,7% 

Annual methods (all hourly values) 2,2% -12,1%* 7,6% 4,1% 11,2% 66,0%* 

* Values exceeding the ASHRAE Guideline 14  

(Monthly MBE < 5 % and CV(RMSE) < 15 %. Annually MBE < 10 % and CV(RMSE) < 30 %)  
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4.5.1. Impact of thermal bridges 

Regarding the iteration of TB, four different scenarios of TB have been analysed, as presented 

in Table 4.6. The model has been simulated first without any TB and with the ideal thermal 

bridges, as a baseline range to compare the effect of the TB in the overall heating demand. The 

Ψi values of the project were extremely low as expected in a PH certified building. 

Later, the linear thermal transmittance of some of the TB types has been raised in different 

degrees. The increase is conditioned by the findings of the thermographic survey and the 

measured indoor temperatures, results are plotted in Figure 4.14 and Figure 4.15. As explained 

in Chapter 3, there were no big construction issues, but some potential increases of heat losses 

were found on the building-ground contact and on the inside roof-wall and windows. Besides, 

some pillar-wall TB are added into the TB of wall corners. In any case, the increases have been 

limited to Ψi which can be considered as very low thermal bridges, according to thermal bridge 

database of Spanish regulation (DA CTE-DB-HE/3, 2016). This fact is possible due to the 

extremely low initial TB values. 

Table 4.6: Calibration of BEPS according to MDE and CV(RMSE). 

TB scenarios Min TB TB 1 TB 2 TB 3 TB 4 
 Ψi (WmK) Increase (%) Increase (%) Increase (%) Increase (%) 

Roof-wall 0,156 - + 10 + 25 + 25 
Wall-ground floor 0,147 + 25 + 25 + 40 + 50 
Wall corners 0,015 - + 10 + 10 + 25 
Wall-floor 0,206 - - + 10 + 25 
Windows 0,076 - - + 10 + 25 

 
 
 

 
Figure 4.14: Impact of thermal bridging on the annual heating use of the model. 
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As a result, the selected TB correction is the number 4, meaning an average an increase of 35 % 

over the total TB heat losses. This way, it represents the findings of the thermographic survey 

and adjusts better the heating use. 

 
Figure 4.15: Impact of thermal bridging on the monthly heating use of the model. 

 

4.5.2. Impact of building airtightness 

The airtightness is another of the aspects considered for the iteration. The house was tested 

after construction with a BDT and it showed an excellent ACH of 0.21 h-1 at 50 Pa. However, 

since the BDT can be done sealing some intended openings, the final ACH after the 

commissioning can easily end being higher than the test value. Thus, to analyse the impact on 

heating use, the annual and monthly values were compared in Figure 4.16 and Figure 4.17. 

 
Figure 4.16: Impact of infiltrations on the annual heating use. 
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Figure 4.17: Impact of infiltrations on the monthly heating use. 

Additionally, since this change can affect considerably the indoor temperatures, Figure 4.18 

presents the monthly average indoor temperatures of all possibilities. In winter, the values are 

almost the same, with maximum differences of one or two tenths of a degree. In summer, these 

differences are also similar. However, there are some considerable differences in the shoulder 

season, with a maximum difference of 0.4 °C in October. This confirms the importance of 

infiltrations in the warm season and overheating risk. 

 
Figure 4.18: Impact of infiltrations in the monthly operative temperature indoor. 

 

4.5.3. Impact of internal gains 

This is one of the most uncertain aspects of the model adjustment. Firstly, the annual and 

monthly values were compared in Figure 4.19 and Figure 4.20, to check the general impacts on 

0

100

200

300

400

500

600

700

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

H
ea

ti
n

g 
u

se
 [k

W
h

]

n50 0.2 h-1 n50 0.4 h-1 n50 0.6 h-1 n50 1.0 h-1 n50 1.5 h-1 n50 2.0 h-1 Measured heating use

20

21

22

23

24

25

26

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

O
p

er
at

iv
e

 te
m

p
er

at
ur

e 
[°

C
]

Impact of infiltrations on monthly indoor operative temperature

n50 0.2 h-1 n50 0.6 h-1 n50 1.0 h-1 n50 1.5 h-1 n50 2.0 h-1



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

212 

the heating need. Later, Figure 4.21 shows how a monthly deviation of internal use could affect 

the indoor temperatures.  

 
Figure 4.19: Impact of internal gains on the annual heating use. 

 

 
Figure 4.20: Impact of internal gains on the monthly heating use. 
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Figure 4.21: Impact of internal gains on the monthly operative temperature indoor. 

 
 

4.5.4. Impact of thermal mass 

The model is first defined with the theoretical thermal mass values, so the materials of the 

model were defined according to the density and heat capacity of their technical sheets. These 

values applied in the model ended becoming considerably large. Indeed, these values are larger 

than the PHPP assumptions and also larger than the heat losses predicted by the RC model of 

the house developed in Section 3.4.5, in previous Chapter 3. 

To adjust the model, it was tested whether all the available thermal mass participates in the 

dynamic behaviour or not. To assess that, the heat capacity of the structural slabs and the 

concrete blocks was changed, with increases and reductions of 25 % and 50 %. As shown in the 

results of Figure 4.22, Figure 4.23 and Figure 4.24. 

 
Figure 4.22: Impact of thermal mass on the annual heating use. 
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Figure 4.23: Impact of thermal mass on the monthly heating use. 

 

 
Figure 4.24: Impact of thermal mass on the monthly operative temperature indoor. 

After the iteration process, the selected option includes 25 % less heat capacity in the concrete 

elements and provides a faster response to the indoor environment, which fits much closer to 

the real measurements, as shown in the error analysis of the Section 4.5. 

 

  

0

100

200

300

400

500

600

700

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

H
e

at
in

g 
u

se
 [k

W
h

]

structure thermal mass -50% structure thermal mass -25% project thermal mass

structure thermal mass +25% structure thermal mass +50% Measured heating use

19

20

21

22

23

24

25

26

27

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

H
ea

ti
n

g 
u

se
 [k

W
h

]

Impact of thermal mass on monthly indoor operative temperatures

structure thermal mass -50% structure thermal mass -25% project thermal mass

structure thermal mass +25% structure thermal mass +50%



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

4. Energy Demand optimisation of the case study  |  215 

4.6. Strategies to improve the thermal behaviour of the monitored case 

Once the real case is represented in a model which can reflect the real behaviour with enough 

accuracy, a set of strategies are implemented to solve the problems identified in Chapter 3. The 

structure of the study is presented in Figure 4.25 below. 

 

Figure 4.25: Diagram of the studied parameters and outcomes of Chapter 4. 
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The problems identified in Chapter 3 were mainly related with thermal discomfort, as explained 

in the thermal comfort study conducted in Section 3.4.8. Even though there was no overheating 

at the average house level, several rooms presented a large number of hours over TC limits of 

both Fanger and adaptive methods. For that reason, the users occasionally opened several 

windows to ventilate but the obtained effect was not enough. Thus, in order to help reducing 

the local discomfort, this study aims to identify the best supplementary components and 

strategies which can be installed in a passive house after its construction. The simulation model 

is the proper tool to test all possible strategies and reproduce the indoor conditions accurately. 

In Figure 4.26 and Table 4.7 are presented the hourly TC of the reference model and the indoor 

environment monthly. 

The main optimisation objective consists of the reduction of the number of hot hours over 26 °C 

as much as possible in the carpet plots of the indoor temperature, since it can be considered a 

simplified value of the upper PMV summer comfort limit. The secondary objective is to improve 

the cool hours present in many winter weeks and specially in the night hours. Thirdly and last, 

the heating need should be also reduced or at least not increased by the strategies developed. 

 
Figure 4.26: Thermal comfort of the reference model, PMV model of ISO 7730. 
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Table 4.7: Reference model simulation results of the case study,  

summary of climate conditions, building heating load and indoor conditions. 
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4.6.1. Ventilation improvements and ventilative cooling strategies 

Table 4.8 includes the details of all the tested ventilation strategies. The control limits of bypass 

and natural ventilation are related with the limits of PMV, since the house is mainly working 

with the MVHR unit and also because it is more restrictive. 

Table 4.8: Summary of applied ventilation strategies 

ID Principle of 
ventilative cooling 

Components used 
for ventilation 

Control strategies Schedule  

Ref Real case,  
bypass in summer 

MVHR with bypass 
constant airflow 

Bypass if indoor t. >24 °C  
Bypass closed if out. t. <13 °C 

All year 

V1 Minimum airflow, 
bypass in summer 

MVHR with bypass 
constant min. 
airflow 

Bypass if indoor t. >24 °C  
Bypass closed if out. t. <13 °C 

All year 

V2 Enhancement of 
bypass airflow 

MVHR with bypass 
and programming 
function 

Bypass increase airflow if 
indoor t. >24 °C 
Outdoor t. < indoor t. 
Min. outdoor t. 13 °C 
Max. airflow of MVHR PH 
certificate 

All year  

V3m Natural ventilation 
evenings, 
manually  

Tilt and turn 
windows, 
10% upper opening 

Manual opening of main 
windows if indoor t. >23.5 °C 
Outdoor t. < indoor t. 
Min. outdoor t. 13 °C 
Also, constant bypass of V1 

June -September 
3 days/w (M, W, F) 
21:00 – 24:00 h. 
 

V3 Natural ventilation 
evenings, 
automatic 

Tilt and turn w., 
10% upper opening 
Chain actuator 

(Same as above) June -September 
Everyday 
21:00 – 24:00 h. 

V4m Night natural 
ventilation, 
manually 

Tilt and turn w., 
10% upper opening 
 

(Same as above) June -September  
3 days/w (M, W, F) 
21:00 – 07:00 h. 

V4 Night natural 
ventilation, 
automatic 

Tilt and turn w., 
10% upper opening 
Chain actuator 

(Same as above) June -September 
Everyday 
21:00 – 07:00 h. 

 

4.6.1.1. Correction of the minimum ventilation airflow 

As explained in the monitoring chapter, the airflow of the real case was slightly oversized 

because the operation of the AHU is limited to the programmed airflow levels. Consequently, 

the first improvement strategy (V1) consists of reducing this excess of ventilation and analysing 

the heating reduction potential. To do that, the MVHR airflow is reduced up to the 

recommended airflow of 169.0 m³/h, as defined in the PHPP calculations. This reduces the 7.3 

% of the fresh air supply and lowers the number of ACH from 0.41 to 0.37 h-1.  
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As a result, the winter heating use is reduced in 1.3 %. This small reduction can be explained by 

the very high performance of the heat recovery unit, which actually recovers the 86.3 % of the 

sensible heat losses through ventilation, as explained in Section 3.4.6. On contrary, the summer 

behaviour of the house is also slightly affected by a smaller bypass air flow. Consequently, the 

free-cooling is reduced from 772.0 kWh to 714.8 kWh, precisely a 7.4 % less free-cooling during 

the warm season. However, this reduction is certainly small and the effect in the whole building 

is a subtle warmer environment, barely a tenth of a degree in the peak hour of August. 

Considering these small changes, there is a small reduction of the heating use and the house 

temperatures remain almost the same, with very small variations. 

4.6.1.2. Enhancement of the summer bypass airflow 

The second improvement (V2) consists of the usage of increased airflow when the bypass is 

operating. So, the free-cooling obtained through the MV-bypass is increased as much as possible 

considering the recommended maximum airflow for the ventilation system.  

In the case of passive houses, the ventilation units have a certain range of operation which is 

considered as high efficient. The PHI certifies the performance according to their own method, 

which embraces not only the sensible heat recovery but also the electricity consumption of the 

fans.  This method is explained in Passipedia database, see Figure 4.27 below (Passipedia, 2016). 

In the case of study the maximum airflow supported by the PHI certificate is 245 m³/h, as 

detailed in Table 4.9. Accordingly, the airflow during bypass is increased up to 0.55 h-1 ACH 

providing additional free-cooling.  

 
Figure 4.27: PHI and industry formulas for MVHR unit efficiency calculation (source Passipedia.org)  
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Furthermore, the limits of operation of the bypass remain the same. So, the bypass only 

operates if indoor temperature is over 24 °C and the outside is cooler than the inner space. 

Besides, the operation of bypass is closed during the coldest hours before sunrise because when 

the outdoor temperatures go below 13 °C the bypass is closed to prevent any condensation on 

the inner duct network. 

As a result, the free-cooling augments in 9.0 % between June and September and the overall 

number of hours over 25 °C decrease a very significant 19.5 %, from 750 to 604 hours. Despite 

this general improve, the bypass shows little potential to reduce the peak hours, because the 

maximum temperatures of July and August decrease only 0.3 °C. Thus, the enhanced bypass 

doesn’t fix the extreme temperatures and makes no difference in the hottest hours of summer. 

All these values are compared and analysed in the Section 4.6.1.4 in more detail. 

 
Table 4.9: Case study MVHR specifications and operation levels 

Level or position 1  
(min) 

2 3* 4* 5* 6* 7  
(max) 

Airflow (m³/h) 51 87 123 159 187 222 300 
Operation (%) 17 29 41 53 63 74 100 
Power use (W) 11 18 28 38 45 53 78 
SFP (Wh/m³) 0,22 0,22 0,23 0,24 0,24 0,24 0,26 

* Passive House Institute certified levels of operation 

 

 
Figure 4.28: Summer bypass enhanced to maximum high efficient level,  

from June to September when outdoor is cooler than indoor and outer temperature is over 13 °C. 
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4.6.1.3. Natural ventilation implementation 

After verifying the limit usage of the MVHR, the need of additional ventilation is addressed 

considering the available components in the house. The majority of the windows are tilt and 

turn and so permit an easy opening control around the 10 % of their surface area. Besides, the 

biggest windows of the living room have also a smaller side-pane with tilt and turn option. This 

possibility was actually used by the users from time to time during the warmest days of summer 

nights. To assess the adequate degree of natural ventilation which solves the issue, several 

operation and schedule possibilities are analysed.  

Firstly, a short natural ventilation operation is implemented during a maximum of 3h (V3m and 

V3 measures). As mentioned before, this type of natural ventilation was indeed used from time 

to time in the real case during short periods in the hottest days. The windows are open between 

21 h and 24 h in the main rooms: bedrooms, living room, dining room, dressing room and music 

room. The windows stay open when the outdoor temperature is significantly lower than the 

inside, that is 3 °C lower than the indoor. The maximum ventilation is calculated according to 

the temperature and wind factors explained in ( 1 ) and it is also limited to 6 ACH, to avoid 

problems caused by excess of air speed. 

This short ventilation is applied in two ways, manually (V3m) and automatic (V3). The first one 

implies that users have to control the opening and closure of the windows and naturally it has a 

considerable margin of uncertainty. According to the monitoring, the habits of the inhabitants 

allow natural ventilation after 21:00 in the majority of the days and until midnight. To reflect 

this lack of control, the natural ventilation is limited to operate only in 3 working days per week, 

what means that users will remember to open or close the windows only in Mondays, 

Wednesdays and Fridays. This manual approach is considered to be reasonable according to the 

measurements and the observed habits during the monitored summer. This way, the simulation 

can reflect a more realistic operation in the long run with a manual operation in less the half of 

the days. The second one, is an automatic control programmed during all days from June to 

September when the indoor and outdoor conditions are met.  

The natural ventilation operation permits to lower significantly the indoor temperatures, as 

shown in Figure 4.29 and Figure 4.30. As a result, the number of hours over 25 °C decrease very 

significantly from 750 h to 553 h in the manual operation (3 days per week). The effect of the 

automatic operation (every day) is more successful, because the hot hours are cut down by half, 
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being only 377 h over 25 °C. Regarding the night hours over 26 °C, they are also reduced from 

26 h to 17 with the manual operation and to 11 with the automatic operation. On the other 

hand, the peak hours remain almost equal with subtle differences of few tenths of a degree. 

 
Figure 4.29: Natural ventilation manually, 3 days per week windows opened 10 % from 21:00 to 24:00 h 

(Monday, Wednesday and Friday) and closed if indoor operative temperature is below 23.5 °C or 

outdoor temperature is below 13 °C. 

 
Figure 4.30: Natural ventilation with automatic control, every day windows opened 10 %  

from 21:00 to 24:00 h and closed if indoor operative temperature is below 23.5 °C or outdoor 

temperature is below 13 °C. 
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from 21:00 h until 07:00 h, in correspondence with the habits of the occupants. The doors of 

rooms are closed during night to preserve the privacy and the windows are closed in case the 

temperature of the rooms drops below 23.5 °C or the outside gets below 13 °C. Besides, two 

scenarios of control are analysed like in the previous strategy of natural ventilation: the manual 

operation three days per week and the automatic control.  

 
Figure 4.31: Night natural ventilation manually, 3 days per week windows opened 10 % from 21:00 to 

07:00 h (Monday, Wednesday and Friday) and closed if outdoor temperature is below 13 °C. 

 

 
Figure 4.32: Night natural ventilation with automatic control, every day windows opened 10 %  

from 21:00 to 7:00 h and closed if indoor operative temperature is below 23.5 °C or outdoor 

temperature is below 13 °C. 
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This level of ventilation seems to be high but it is interrupted often due to the cool nights below 

the limit. To avoid this, windows should include a device to control accurately the ventilation 

airflow. As suggested by the SOTAR document of IEA-EBC Annex 62 Ventilative Cooling 

(Kolokotroni & Heiselberg, 2015). 

In any case, the night natural ventilation can easily control the temperatures of the house during 

the majority of the summer, as shown in Figure 4.31 and Figure 4.32. The number of hours over 

25 °C is decreased up to 341 h with manual operation and 253 h with automatic control (2.9 % 

of annual hours). The number of night hours over 26 °C are also reduced from the reference 48 

to 8 h and 5 h respectively. In a similar way, the peak hours and the average hours are decreased. 

All these values are compared and analysed in the Section 4.6.1.4 in more detail. 

 

4.6.1.4. Assessment of the improvements achieved with each ventilation strategy 

To analyse the potential of each strategy, firstly the warm discomfort hours related with each 

strategy is plot in Figure 4.33. It shows the improvement reached by each strategy and it 

demonstrates how the warm thermal discomfort can be reduced below 3 % of the total annual 

hours using only ventilation strategies, without supplementary solar shading elements. 

 
Figure 4.33: Ventilation strategies effect on the warm discomfort according to PMV model, ISO 7730. 

 

Furthermore, the following plots gather the main indicators of the indoor thermal environment, 

including the monthly average temperatures, the maximum daily temperatures of each month, 

the hours over 25 °C in all summer and the number of hours over 26 °C during night-time (23:00 

- 07:00 h).  
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Figure 4.34 represents the average values of each month in contrast with the reference model 

monthly average and the range of daily minimum and maximum indoor temperatures. Besides, 

Figure 4.35 indicates the hottest daily temperatures under each strategy. The ventilative cooling 

strategies are active when the indoor environment is over 24 °C or 23.5 °C in the cases of night 

time ventilation.  So, the effect more patent in the warmest months. 

 
Figure 4.34: Ventilation strategies effect on monthly average operative temperatures. 

 
Figure 4.35: Ventilation strategies effect on maximum daily operative temperatures. 

Figure 4.36 shows the number of hours over the Passive house threshold (25 °C) in each month. 

All the cases are within the limit of 10 % of annual hours, varying from the 8,6 % of the reference 

model to the 2.9 % with the automatic night natural ventilation.  
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Figure 4.36: Ventilation strategies effect on number of total hours over 25°C. 

On the other hand, considering the relevance of the night time comfort exposed in the 

Chapter 2, they are represented in Figure 4.37. It manifests how the lower ventilation rate of V1 

can lead to hottest night hours and how the enhanced bypass can correct significantly this 

problem. 

 
Figure 4.37: Ventilation strategies effect on number of night hours over 26°C. 
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McLeod, 2015) (Cotterel & Dadeby, 2012). Moreover, ventilative cooling strategies can be more 

efficient if they are applied in combination with solar shading systems (Kolokotroni & Heiselberg, 

2015). This is especially important due to the high contribution of solar gains to the annual 

balance of passive houses, in our case it covers 30 % of the annual heating need.  

The studied case presents already long overhangs, calculated according to the local sun 

elevation in summer and winter. These elements contribute certainly to reduce the excess of 

solar gains but according to the monitored comfort and the simulation results, they are unable 

for keeping indoor temperatures inside thermal comfort range, as seen in Chapter 3. 

The use of external blinds or shutters is very common in all the regions of Spain in the vernacular 

architecture, as studied in further detail in a recent thesis of PH application into northern Spain 

(Rodriguez Vidal, 2015). They are commonly used for a double reason: as a way to avoid the 

heat gains due to sun radiation in summer and also to reduce the heat losses through the 

windows in winter nights. In Figure 4.38 there are some examples of conventional solar control 

elements.  

Surprisingly, the majority of the Passive houses constructed in Spain for now didn’t install any 

blinds (see Chapter 5, review of Spanish PH cases). This is probably related with the fact that 

traditional roller blinds can increase the thermal bridges between wall and windows. Besides, 

they are an additional risk for air leakages which are crucial to achieve a passive house 

certification. 

        
Figure 4.38: Examples of blinds and shutters in Spain (sources: www.strugal.com, 

www.metalicasoleta.com, www.hunterdouglas.cl) 

In any case, only the lightweight products are selected for the present case, because it is the 

only way they could be installed without affecting the thermal insulation of the existing 

construction or the airtightness. Since the facades are built with an outer EPS layer, as described 
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in Section 1.2.2, the selected solar shading types are venetian blinds and external roller blinds. 

The venetian blinds are tested in the inside or outside and in horizontal or reflection position as 

explained in Table 4.10.  

       
Figure 4.39: Proposed solar shading systems, external roller blind, external venetian blinds and internal 

venetian blinds (sources: www.dandcdesign.com, www.architectsjournal.co.uk and 

www.factorydirectblinds.com) 

 
Table 4.10: Summary of applied solar shading strategies 

ID Type of  
solar shading 

Components used 
for shading 

Control strategies Schedule  

Ref Real case,  
roof extensions 

Construction design Designed with summer and 
winter South solar elevation 

Always 

S1m Int. retractable 
venetian blinds, 
manually 

Venetian blinds to 
control glare and 
direct sun 

Down if indoor t. >24 °C  
 

June -September 
3 days/w (M, W, F) 
08:00 – 20:00 h. 

S1 Ext. ret. venetian 
blinds, automatic 

Venetian b. with 
automatic control 

Down if solar >200 W/m² 
 

June -September 

S2b Ext. ret. venetian 
blinds, automatic, 
in closed position 

Venetian b. with 
angle regulation 

Down and closed if solar >200 
W/m² 
 

June -September 
 

S3m Ext. opaque roller 
blinds, manual 

Opaque roller blinds Down if indoor t. >24 °C  
 

June -September 
3 days/w (M, W, F) 
08:00 – 20:00 h. 

S3 Ext. opaque roller 
blinds, automatic 

Opaque roller blinds 
with automatic 
control 

Down if solar >200 W/m² 
 

June -September 

 

4.6.2.1. Interior venetian blinds 

Indoor venetian blinds can improve the glare control and visual comfort, however, from the 

thermal point of view they don’t avoid solar gains. Surprisingly, this type of blinds was installed 

by the users after the monitoring period in several rooms to reduce direct sunlight. The 

simulation results are summarised in Figure 4.40 and the values in comparison with the 

reference case are slightly warmer in summer.  
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This first case includes a manual control, similar to the used for the ventilation. This means that 

the shadows are down only during three days per week (Monday, Wednesday and Friday) and 

only if there is considerable sunlight to be noticed by users (over 200 W/m²). 

 
Figure 4.40: Indoor temperatures with interior venetian blinds with manual control, from June to 

September 3 days per week (Monday, Wednesday and Friday), down from 08:00 to 20:00 h if direct 

solar radiation is over 200 W/m². 

The automatic control with daily activation after a overpassing 200 W/m² of solar radiation level 

is plot in Figure 4.41 and it almost doesn’t affect the TC of the house. 

 
Figure 4.41: Indoor temperatures with interior venetian blinds with automatic control,  

every day down from 08:00 to 20:00 h if direct solar radiation is over 200 W/m². 
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4.6.2.2. Exterior venetian blinds 

The use of external horizontal blinds in a horizontal position is plot in Figure 4.42 and it presents 

more hours over 26 °C. This can be observed in the first days of August, after a short heat wave 

when the outdoor minimum temperatures remain over 20 °C during three days. On contrary, 

the use of these venetian blinds with a protection angle can reflect the majority of the solar 

radiation and for this reason the Figure 4.43 evidences a very considerable reduction of hot 

hours. Therefore, this system has a high potential in combination with other measures. 

 
Figure 4.42: Indoor temperatures with horizontal venetian blinds outside with automatic control, from 

June to September every day, down from 08:00 to 20:00 h if direct solar radiation is over 200 W/m². 

 
Figure 4.43: Indoor temperatures with external venetian blinds, in vertical position and automatic 

control, from June to September, down from 08:00 to 20:00 h if direct solar radiation is over 200 W/m². 
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4.6.2.3. External roller blinds 

The use of external roller blinds with manual operation is plot in Figure 4.44. Despite the limited 

usage for the manual operation in 3 days per week, it shows a considerable reduction of the 

hours over 26 °C. It also eliminates fully the hours over 28 °C and many night hours over 26 °C. 

The automatic control of this system can provide a larger benefit, as presented in Figure 4.45. 

Overall, the tested sun protections are not able to suppress all the warm hours and it would 

require other passive cooling measures. 

 
Figure 4.44: External roller blinds, from June to September 3 days per week (Monday, Wednesday and 

Friday), down from 08:00 to 20:00 h if direct solar radiation is over 200 W/m². 

 
Figure 4.45: External roller blinds with automatic control from June to September, 

every day down from 08:00 to 20:00 h if direct solar radiation is over 200 W/m². 
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4.6.2.4. Assessment of the improvements achieved with each solar shading strategy 

The strategies are analysed firstly according to the reduction of warm discomfort hours achieved 

with each strategy. The solar shading strategies demonstrate diverse responses regarding the 

type of shading element and the position. The first type S1 and S1m confirm that the venetian 

blinds placed in the interior don’t help reducing the warm discomfort, actually they increase it. 

The second group S2, represents the exterior venetian blinds with automatic control. They show 

a good potential but require a highly reflection operation like in S2b. Otherwise, they may 

increase the solar gains if the outer venetian blinds are operating in a standard horizontal 

position, as happens in the S2 case.  

The best performance appears to correspond to exterior roller blinds with 95 % of solar 

reduction, as plotted in Figure 4.46. The automatic operation presents considerable reductions 

of the too hot hours and also some improvement of the warm hours. In any case, these 

strategies seem to be insufficient to provide a good thermal comfort, so they need to be 

combined with other measures like the ventilative cooling. 

 
Figure 4.46: Solar shading strategies effect on the warm discomfort according to PMV model, ISO 7730. 
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vertical angle (S2b). On the hottest month, i.e. July, these systems reduce the average 

temperature up to 1.0 °C.   

 
Figure 4.47: Solar shading strategies effect on monthly average operative temperatures. 

Regarding the maximum temperatures, Figure 4.48 reflects a similar thermal behaviour. The 

same two best measures (S3 and S2b) keep reducing the maximum daily average temperature 

in one Celsius degree approximately. 

 
Figure 4.48: Solar shading strategies effect on maximum daily operative temperatures. 

In relation with the number of hours over the Passive house threshold (25 °C), all the cases 

accomplish the objective (less than 10 % of annual hours), see Figure 4.49. The differences range 

20

21

22

23

24

25

26

27

28

May Jun Jul Aug Sep Oct

O
p

er
at

iv
e 

te
m

p
er

at
ur

e
 [°

C
]

S1m venetian int. man. -  Av. temp. S1 venetian int. aut. -  Av. temp.
S2 venetian ext. -  Av. temp. S2b ven.blinds ex. High-refl. -  Av. temp.
S3m bllinds ext. man. -  Av. temp. S3 bllinds ext. aut. -  Av. temp.

20

21

22

23

24

25

26

27

28

May Jun Jul Aug Sep Oct

O
p

er
at

iv
e 

te
m

p
er

at
ur

e 
[°

C
]

S1m venetian int. man. -  Max day t. S1 venetian int. aut. -  Max day t.
S2 venetian ext. -  Max day t. S2b ven.blinds ex. High-refl. -  Max day t.
S3m bllinds ext. man. -  Max day t. S3 bllinds ext. aut. -  Max day t.



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

234 

from the 8.7 % of the worse case, S1 with internal venetian blinds, to the 3.3 % of the best case, 

S3 with automatic external roller blinds.  

 
Figure 4.49: Solar shading strategies effect on number of total hours over 25°C. 

Finally, the number of night hours over 26 °C indicate that indoor measures don’t reduce almost 

any night warm hours, as can be observed in Figure 4.50. There are many more warm night 
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Figure 4.50: Solar shading strategies effect on number of night hours over 26°C. 
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4.6.3. Correction of the heater distribution 

As pointed out in the Chapter 3, the distribution and sizing of heaters leads to cool periods in 

the coldest days of winter. This aspect can be corrected easily by the installation of several 

electric heaters in the most affected rooms. According to the monitoring results, the coldest 

rooms were the main bedroom (r12), the bathroom 1 (r07), the toilet (r10) and the bathroom 2 

(r11). So, in these four rooms small electric heaters of 400 W are added, controlled by an air 

temperature configured to keep the room temperature over 20.0 °C.  

After implementing these supplementary heaters in the reference model, the heating use is 

increased up to 2970 kWh. The difference of 116.9 kWh means a small extra 4.1 % annually but 

it corrects to great extent the cool discomfort appreciated in the real case.  

The improvement of cool discomfort is huge. Figure 4.51 evidences how the blue areas are now 

remarkably smaller than in the reference model of Figure 4.11. The annual number of hours 

below 20 °C is reduced from 1720 h to 345 h, i.e. a very significant reduction of 80.0 %. 

 
Figure 4.51: Indoor temperatures with additional heaters in main bedroom, bathrooms and toilet. 
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This Section evaluates the best three combinations, taking into consideration the best strategies 

of ventilation and solar shading regarding reduction of thermal discomfort. Besides, these three 

combinations include the corrections of the minimum nominal ventilation airflow in winter (with 

nominal bypass operation in summer) and the supplementary heaters in the coldest four rooms. 

Additionally, the best combinations of manually controlled strategies are also evaluated, in 

order to verify if the automatic control is essential to have an optimal TC inside the dwelling or 

not.  

The main findings are summarized in Figure 4.52, which represents the thermal discomfort 

reduction achieved through each combinations of measures. In general, all the combinations of 

measures can provide an almost optimal TC based on PMV model. All of them present less than 

2% of annual hours of warm discomfort, even the manually operated ones. 

 
Figure 4.52: Combined strategies effect on the warm discomfort according to PMV model, ISO 7730. 
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Figure 4.53: Combined strategies effect on monthly average operative temperatures. 

 
Figure 4.54: Combined strategies effect on maximum daily operative temperatures. 
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Figure 4.55: Combined strategies effect on number of total hours over 25°C. 

Additionally, considering the relevance of night time thermal comfort, Figure 4.56 manifests a 

radical reduction of the number of night time hours (from 23 h to 7 h) over 26 °C. Actually, the 

less efficient combination (C5) can reduce the 42 hours of warm night time up to 7 h and the 

most efficient combination (C1) corrects completely all the warm night time hours.  

 
Figure 4.56: Combined strategies effect on number of night hours over 26°C. 
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the PMV model, the annual temperature and RH relationship with the PMV limits and finally the 

adaptive TC defined in EN 15251. The shoulder seasons have been extended in Autumn to permit 

clothing changes during the transition between summer and the beginning of heating season. 

All the combinations include the supplementary heaters and the corrected ventilation airflow 

adjusted to the minimum PHPP requirements, as explained in the previous sections. Each 

combination applied a different strategy of ventilative cooling together with a solar shading 

operation. 

The first combination (C1) implements the most efficient measures, that is the automatic night 

time natural ventilation and the automatic solar shading with external opaque roller blinds. As 

a result, Figure 4.57 proves that the temperatures during all the year are far more stable than 

the reference model presented in Section 4.5. The total hours over 25 °C are reduced from 702 

h to only 80 h. In winter, the wide blue areas below 20 °C have dropped from 1720 h to 332 h. 

 
 

Figure 4.57: Indoor temperatures of 1st combination of strategies: minimum winter ventilation, 

additional electric heaters in coldest rooms, from June to September automatic night time natural 

ventilation 21:00 - 7:00 h and automatic external roller opaque blinds. 
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zero. There is a subtle overcooling in winter, but it is caused mainly by the low heating set point 

configured by the users of the real case. 

 
 Figure 4.58: PMV of 1st combination of strategies. 

 

 
Figure 4.59: TC of 1st combination of strategies, average house T-RH plot with PMV limits. 
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Figure 4.60: TC of 1st combination of strategies and outside running mean temperatures,  

adaptive method of EN 15251. 

 

Table 4.11: Model C1 results, summary of climate conditions, building heating load and indoor 

conditions. 
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CLIMATE CONDITIONS

Monthly average temperature* 6,9 6,4 7,5 9,7 10,0 14,8 21,1 18,4 16,8 14,4 7,8 4,7 11,5

Min. daily average temperature* 2,1 2,2 0,3 1,9 6,8 9,9 17,8 15,3 12,5 7,4 -0,8 -0,6 -0,8

Max. daily average temperature* 12,6 14,8 12,7 18,0 16,7 22,1 23,9 28,8 21,0 21,8 15,9 12,4 28,8

Monthly average Relative Humidity 6,9 6,4 7,5 9,7 10,0 14,8 21,1 18,4 16,8 14,4 7,8 4,7 11,5

Global horizontal solar radiation 55,5 95,3 133,5 161,2 206,2 250,5 279,0 234,6 169,8 119,5 56,1 82,4 1843,5

HDD (18.3) 354 334 335 260 257 113 1 27 62 129 315 424 2612

CDD (25.0) 0 0 0 0 0 0 0 4 0 0 0 0 4

* All outdoor temperatures are dry bulb air temperatures

BUILDING HEATING/COOLING LOADS

Heating: monthly use 553,3 444,7 455,8 266,3 152,1 46,7 7,8 8,4 10,8 27,3 399,9 585,7 2958,7

   Daily average heating use 17,8 15,9 14,7 8,9 4,9 1,6 0,3 0,3 0,4 0,9 13,3 18,9 0,0

   Max. daily heating load 5,9 5,6 5,4 5,3 3,1 2,3 0,1 0,1 0,1 1,3 6,1 6,3 6,3

Cooling: monthly use 0 0 0 0 0 0 0 0 0 0 0 0 0

   Daily average cooling use 0 0 0 0 0 0 0 0 0 0 0 0 0

   Max. Daily cooling use 0 0 0 0 0 0 0 0 0 0 0 0 0

INDOOR ENVIRONMENT

Average temperature* 20,3 20,4 20,4 20,7 21,0 21,8 23,9 23,7 22,6 22,1 20,5 20,3 21,5
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Max. daily av. temperature* 20,6 20,8 20,8 21,4 21,3 22,5 24,4 25,5 23,6 23,7 21,4 20,6 25,5

Max. temperature * 21,2 21,3 21,3 22,2 22,3 23,3 25,5 26,5 24,4 24,6 22,1 21,3 26,5

hours t* <20 °C 59,0 41,0 39,0 6,0 0,0 0,0 0,0 0,0 0,0 0,0 61,0 126,0 332,0

hours t* >25 °C 0,0 0,0 0,0 0,0 0,0 0,0 33,0 47,0 0,0 0,0 0,0 0,0 80,0

hours t* >28 °C 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0

Night hours t > 26°C 0 0 0 0 0 0 0 0 0 0 0 0 0

hours RH >70 % 0 0 0 0 0 0 191 41 23 42 0 0 297

* All indoor temperatures are operative temperatures
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conditions. The potential of night cooling is bigger than the daily need and for that reason the 

temperature field is almost the same than in the C1 combination, see Figure 4.61. 

 
Figure 4.61: Indoor temperatures of 2nd combination of strategies: minimum winter ventilation, 

additional electric heaters in coldest rooms, from June to September manual night time natural 

ventilation 21:00 - 7:00 h and automatic external high reflectivity venetian blinds. 

The analysis of the TC plots in Figure 4.62, Figure 4.63 and Figure 4.64 indicate that these 

measures can correct the issues identified during the monitoring. In general, it presents the 

same characteristics than the C1 combination seen before. The adaptive comfort present some 

small differences in the peak hours in summer, namely around 0.5 °C warmer. 

 
Figure 4.62: PMV of 2nd combination of strategies. 
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Figure 4.63: TC of 2nd combination of strategies, average house T-RH plot with PMV limits. 

 
Figure 4.64: TC of 2nd combination of strategies and outside running mean temperatures,  

adaptive method of EN 15251. 
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to great extent with the 3 hours of automatic natural ventilation in the evenings. However, this 

doesn’t avoid that in certain days the temperatures increase considerable without the use of 

solar shading. 

 
Figure 4.65: Indoor temperatures of 3rd combination of strategies: minimum winter ventilation, 

additional electric heaters in coldest rooms, from June to September automatic natural ventilation 

21:00 - 24:00 h and manual external roller opaque blinds. 

Regarding the TC, Figure 4.66 and Figure 4.67 show how the overall results are very satisfactory. 

Indeed, this combination also keeps the warm discomfort of PMV below 2 % of annual hours. As 

commented before, the number of hours with high RH has decreased since the natural 

ventilation is limited to few hours in the evenings.  
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Figure 4.66: PMV of 3rd combination of strategies. 

 
Figure 4.67: TC of 3rd combination of strategies, average house T-RH plot with PMV limits. 

The peak hours every day are higher than in the previous combinations but they are still far 

below the adaptive warm limits, as evidences the Figure 4.68. 

 
Figure 4.68: TC of 3rd combination of strategies and outside running mean temperatures,  

adaptive method of EN 15251. 
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In a second group of combinations, the best manual strategies are tested. The most feasible 

external opaque roller blinds are combined with two types of natural ventilation. On the one 

side, the use of night natural ventilation provides better comfort, on the other hand the natural 

ventilation is limited to evenings and presence, in order to prevent any security issues and any 

noise disturbance while inhabitants are sleeping. In both cases, the natural ventilation and the 

exterior opaque roller blinds are activated only 3 days per week, to reflect a reasonable level of 

usage of these passive measures, a decision based on the real habits observed in the monitored 

summer of the real case.  

So, the 4th combination (C4) includes night time natural ventilation and keeps the temperature 

balance in summer almost the same than the C3 combination with automatic ventilation. 

Overall, the number of hours over 25 °C are reduced from 720 h. to 350 h.  

 
Figure 4.69: Indoor temperatures of 4th combination of strategies: minimum winter ventilation, 

additional electric heaters in coldest rooms, from June to September manual night time natural 

ventilation 21:00 - 7:00 h and manual external roller opaque blinds. 

 

Regarding the TC, the PMV values remain within the limits reasonably well, with only the 1.9 % 

of warm discomfort. The representations in Figure 4.70, Figure 4.71 and Figure 4.72 
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Figure 4.70: PMV of 4th combination of strategies. 

 

 
Figure 4.71: TC of 4th combination of strategies, average house T-RH plot with PMV limits. 

20,0

30,0

40,0

50,0

60,0

70,0

80,0

18,0 19,0 20,0 21,0 22,0 23,0 24,0 25,0 26,0 27,0 28,0 29,0

O
p

e
ra

ti
ve

 te
m

p
e

ra
tu

re
 [

°C
]

Operative temperature [°C]
Jan-Feb Mar-Apr May-Jun Jul-Aug Sep-Oct Nov-Dec

>25 °C>20 °C >28 °C

18,9°C

19,1°C

19,6°C 24,0°C

23.5 °C

23.0 °C22,6°C

23,0°C

23,4°C 26,6°C

26.1 °C

25.7 °C

PMV category B, cold season PMV category B, warm season



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

248 

 
Figure 4.72: TC of 4th combination of strategies and outside running mean temperatures,  

adaptive method of EN 15251. 

The 5th combination (C5) consists of the manual use of natural ventilation only in the evenings. 

This reflects the frequent case of houses in urban areas or close to roads where some noises can 

disturb the rest during nights. The manual activation of natural ventilation between 21 h and 24 

h permit a clear reduction of the internal and solar shading during day time can be efficient even 

if applied only 3 days per week, as shown in Figure 4.73.  

 
Figure 4.73: Indoor temperatures of 5th combination of strategies: minimum winter ventilation, 

additional electric heaters in coldest rooms, from June to September manual natural ventilation 

21:00 - 24:00 h and manual external roller opaque blinds. 
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About TC, the manual operation doesn’t guarantee a very controlled environment but the main 

numbers indicate that the indoor conditions can be met easily if the passive measures are 

activated more regularly, as observed in the higher potential of the automatic control in C3. 

About the peak hours, the adaptive comfort reflects that the values are conservative enough 

and there is no risk of overheating, see Figure 4.74, Figure 4.75 and Figure 4.76. 

 
Figure 4.74: PMV of 5th combination of strategies. 

 
Figure 4.75: TC of 5th combination of strategies, average house T-RH plot with PMV limits. 
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Figure 4.76: TC of 5th combination of strategies and outside running mean temperatures,  

adaptive method of EN 15251. 
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4.8. Discussion of the main findings 

The presented study showed a wide variety of results for a number of strategies. In the following 

paragraphs, the potential of each tested strategy is explained, discussing the observed trends 

and the main problems in relation with the objectives established in Section 4.2.  

The first challenge was to integrate the verified features of the real case study in a detailed 

ENERGYPLUS® model (objective 4.1). This could permit be used later to apply different 

strategies and analyse the best way of improving the original passive house design.  

To do that, the first step was to transform the measured weather data of the meteorological 

station into a EPW file, considering the period from 12/03/2013 to 11/03/2014. It was necessary 

to cut the climate data in a yearly frame from January to December and create a transition day 

between the 11th of March of 2014 and the 12th of March of 2013. Otherwise the ENERGYPLUS® 

engine and natural ventilation calculations weren’t able to calculate well. Besides, it was also 

necessary to correct the first 12 hours of the climate data. This was needed because the outside 

temperatures around New Year’s Eve were abnormally warm and this fact altered significantly 

the warmup period of ENERGYPLUS® and led to a wrong setup of the initial temperatures in the 

model. 

The second step, the geometric definition of the model was rather realistic. The dimensions of 

the building, included not only the sizes of rooms and openings, but also the very complex ceiling 

with an irregular shape and the outside sidewalk, as shown in Figure 4.77Figure 4.79. This way, 

all the relevant components for the thermal behaviour of the house were represented, 

according to the points identified during the thermographic inspection of the Section 3.4.10. 

     
Figure 4.77: Model geometry in wire frame, showing the room space and the ceiling space above. 

The third step, the definition of HVAC systems was simplified to fit the DB and ENERGYPLUS® 

capabilities. If the real ventilation of the building was based on rooms with either supply air (e.g., 
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bedrooms) or exhaust air (e.g., bathrooms, kitchen), in the model the ventilation of all rooms 

was connected with the MVHR unit with both supply and exhaust air loops, as explained in 

Section 4.4.3. This is due to the limitation of air mass zero balance in ENERGYPLUS®. This 

limitation could be minimised manually in ENERGYPLUS® adding a certain air volume exchange 

hourly (using the ZoneMixing object), but bearing in mind the purpose of the model for future 

corrections and multivariable assessment it was too slow for the study. Instead, the global 

indoor environment was validated through the MBE and CV(RMSE) values for RH and 

temperature in the annual value and also in the majority of the months in detail.  

The fourth stage, the operational definition was probably the most difficult part. Most of the 

works available about low energy building measurements confirm this idea, as underlined in the 

latest review of BEPS calibrations (Coakley et al., 2014). As explained in Section 4.4.1, a recent 

case of the calibration of a passive house BEPS with monitored data found the same limitation 

and had to base their iterative corrections in interviews and logbooks. In the present study, 

these corrections were based firstly on the measured monthly electricity use and estimated 

average daily values, as described in Section 3.4.3. Secondly, the share of electricity uses was 

defined according to the PHPP estimations corrected with the real annual values. These 

calculations separate the use for lighting, cooking, dishwashing, fridge and freezer use, small 

appliances, computers and so on, as listed in Table 4.4. Thirdly, these values were applied to 

each room according to the typical occupancy of the house (Section 3.4.8.2) and the variations 

of temperature and RH observed in high detailed curves (minute by minute) as explained in more 

detail in Section 3.4.7. 

As a result, the thermal comfort of the model matches successfully the monitored values to 

great extent (objective 4.2), as shown in the plots of Section 4.5 and the error analysis 

conducted with MBE and CV(RMSE). The main differences were found not in the winter or 

summer typical weeks, but in the transition months. Therefore, they are more related the indoor 

activity levels than with the house performance itself. This is clear especially in October when 

the abnormally high indoor temperatures were warmer than August, a fact which can be 

explained by the abnormally high internal activity registered by the electricity measurements. 

Apart from the positive results of the BEPS, the studied case had to face several issues which 

restricted considerably the scope of the assessment. On the one side, the building geometry, 

distribution and structural concept were rather particular. The review of the passive houses built 
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in Spain up to date shows a very broad variability of shapes, as described in the next Chapter 5. 

On the other side, the occupancy variations detected during the monitoring demonstrate a 

broader study should include this aspect for OH risk prevention. This study was able to represent 

with a high level of detail the whole behaviour of the housing, focusing on the extreme winter 

and summer conditions and leaving in a second level the gaps observed during the shoulder 

seasons. Based on the experience of this case, a more precise control of the electricity use should 

solve the problem of matching occupancy and internal gains to great extent.  

After the verification of the model, a number of possible strategies was evaluated. Firstly, the 

strategies related with ventilation optimisation have demonstrated to be highly efficient 

(objective 4.3). As explained in Section 4.6.1 and in the previous Chapter 3, the inhabitants of 

the house used natural ventilation occasionally, but only with some openings and during short 

ventilation periods. This way, they can reduce the warm discomfort hours to great extent thanks 

to the night cool hours in the location of the house (the minimum temperatures below 15 °C are 

frequent in all summer). However, the potential of this strategy is much greater if all the main 

windows are open or if the schedule of operation is extended to longer periods. Besides, the 

ratio of ventilation of the MVHR unit was also higher than necessary according to the PHPP 

calculations. All these questions were analysed in the study, to analyse the whole potential of 

ventilation as a way to provide an optimal thermal comfort and low energy need. 

The first stage checks the improvement achieved with a lower and more accurate ventilation 

airflow during all year. As a result, the electricity use of fans is reduced in 7 %, the heating use is 

slightly reduced in 1.3 % and the summer indoor environment is very slightly warmer than in the 

reference model. This operation type was implemented in the combination of strategies. 

The second stage calculates the maximum free-cooling potential of the MVHR unit. It is based 

on a possible improvement of the controller of the fans to increase the airflow when the summer 

bypass is open. This maximum airflow is defined according to the PHI certification of the unit, 

which guarantees a highly efficient ventilation based on very low Specific Fan Power (SFP) 

values. The results show an additional 9.0 % of the free-cooling from June to September which 

can reduce the number of hours over 25 °C in a very significant 19.5 %. 

The third stage applies natural ventilation strategies to compensate the day time heat gains. The 

initial approach uses only the late evenings (21:00 - 24:00 h), because this is the period when 

occupants could open or close the windows. The second approach extends the ventilation 
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period to overnight (21:00 – 7:00 h). Besides, the operation of the natural ventilation is also 

studied under to assumptions: an automatic opening every day or a manual operation only 3 

days per week. The latter is a simplification of the complex occupancy schedule and the habits 

observed during the monitoring of the real case. In any case these two options aim to embrace 

the maximum potential and also the reasonable level of use in the warmer days of summer.  

The results indicate that the best option would be to include an automatic control for the night 

natural ventilation. This way it could eliminate almost completely the warm discomfort hours. 

In fact, even though the manual operation doesn’t get all that potential, it can reduce to one 

third the hottest hours (PMV > 0.7) and to half the warm hours (category C of PMV).  

Actually, one of most difficult points of this analysis was the definition of the indoor and outdoor 

limits for the natural ventilation. These limits obviously reduce the free-cooling potential of the 

natural ventilation, but maintain the indoor comfort within an acceptable range. In this study, 

the maximum ACH was set in 6.0 h-1 and the DB temperature limits were fix according to the 

90% acceptability of summer PMV conditions, that is 23.5 °C, and an outdoor limit in 13 °C to 

prevent draught. These conditions avoid any possible overcooling during night time. In any case, 

there are different possible approaches to set limits or controls to natural ventilation and it could 

be object of a further research, as suggested in the recent State of The Art made by Annex 62 

(Kolokotroni & Heiselberg, 2015). 

Another groups of analysed measures were the use of solar shading to improve the thermal 

comfort (objective 4.4), in Section 4.6.2. The potential of these measures was conditioned by 

their adaptability to the features of the studied house, whether they could be installed in the 

enclosure or not. Bearing in mind that the house is covered by an ETICS, the installation of these 

systems outside shall be done directly to the windows. So, in the first place they should be 

lightweight. Besides, the shading systems should not reduce the general performance of the 

housing, meaning that the solar gains in winter or the preservation of airtightness is essential. 

This way, two types are studied: roller fabric blinds and venetian blinds. These conventional 

solutions are commonly tested and affordable in the European market. They can include a small 

automatic control in the top, to pick it up the shading when not necessary. These types are 

tested inside and outside the openings, with manual operation (8:00 – 20:00 h and three days 

per week) or with an automatic control every day, which extends the blinds when the outside 

solar radiation overpasses 200 W/m². 
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The results indicate that placing the venetian blinds inside is not only ineffective but also harmful 

for indoor thermal comfort. If placed on the outside though, the venetian blinds present a very 

different performance according to the global reflectivity of the system, which is based on the 

angle of slats. Accordingly, if the automatic control lets the slats in horizontal position it ends 

warming up the indoor environment significantly, increasing the PMV warm discomfort from 

10.8 % to 12.2 % of the total annual hours. On contrary, if the automatic control can change the 

angle to block the sun rays the system reflectivity increases and gets a very remarkable reduction 

of the warm hours up to only 6.6 % of the annual hours.  

In any case, the use of opaque blinds from the outside is clearly the easiest ways to reduce the 

sun gains, see the comparison in Figure 4.46 for further details. The automatic control can get 

the best reduction of warm discomfort hours according to PMV summer limits. Nevertheless, as 

seen in the introduction and the literature review (Cotterel & Dadeby, 2012) (Race et al., 2010) 

(Hopfe & McLeod, 2015) (REHVA & ES-SO, 2010), the selection of one or another type is always 

conditioned by the user’s preferences and the possibilities of each project. 

The impact of airtightness in passive houses can be considerable (objective 4.5), because 

according to their standard they need to achieve very airtight constructions. According to the 

review of Spanish passive designs, their n50 range between 0.2 h-1 and 2.0 h-1 at 50 Pa, as 

described later in Chapter 5. For this reason, any small deviation in the construction quality can 

lead to big differences from the projected to the final real heating need. In Section 4.5.1 the 

impact of airtightness in the heating consumption of the studied house is very remarkable. For 

instance, a subtle increase from 0.2 h-1 to 0.6 h-1 can lead to an additional 7.6 % of heating need 

and a higher airtightness drop to 2.0 h-1 may boost the heating need in a very significant 23.0 %, 

as shown in Figure 4.16 and Figure 4.17. On contrary, a reduction from 0.6 h-1 to 0.2 h-1 can also 

reduce the 15.0 % of the heating use. 

Regarding the effect on the indoor environment, a lower airtightness can cool down the indoor 

during summer and winter. As seen in the Figure 4.18, the differences are rather small in the 

monthly level, meaning that the temperatures can be on average 0.2 °C lower during the most 

part of the year. On the other hand, there are particular windy hours when the combination of 

stack effect and wind pressure con provoke higher temperature differences. To represent this 

issue, a detailed approach would have monitored the pressure differences under different 

outdoor-indoor conditions, but it would require another parallel study which goes out from the 
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scope of this work. Instead, the present study applied the factors of natural ventilation of BLAST 

engine, see formula ( 1 ). This set of factors is a simplification based on the average behaviour 

of construction cracks. So, instead of the static constant ENERGYPLUS® calculations it uses the 

wind pressure and temperature difference. Figure 4.78 below represents the hourly variations 

calculated with this method. 

 
Figure 4.78: Indoor temperature differences due to airtightness degree,  

differences between n50 0.3 and 2.0. 

Therefore, the maximum hourly differences inside the evaluated airtightness range are around 

0.4 °C in winter and 0.5 °C in summer. Therefore, even though the influence of infiltrations in 

airtight buildings seems to be not too high, they can be crucial in summer when the indoor gets 

close to the higher comfort limits. In hot waves, for example, half a degree up or down can make 

the difference. Considering these results, the infiltration potential in the cases under warm 

environments should be studied in further detail. 

Regarding the relevance of internal gains (objective 4.6), the analysis conducted in this chapter 

confirms the significant differences which will appear between the projected standard usage 

and the real use. Considering that the impact of internal gains represents approximately the 

30 % of the annual heat balance in passive houses, the deviations of the internal activity in one 

or another day could have a very considerable impact on the indoor temperatures.  

To assess the effect of internal gain variations in the studied case, the lightning and big 

appliances remain the same but modifying the use of computers, cooking and small appliances. 

These changes increase or reduce up to the 18 % of the global house internal gains, see 

Section 4.5.3.  
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Due to these internal gain changes, the heating consumption increases up to 11.9 % in winter, 

to compensate these temporal lower internal gains. On the other hand, the increase of the 

internal use in summer can raise the indoor temperatures and increase significantly the risk of 

OH. Figure 4.79 presents the maximum hourly deviations caused by those internal use 

differences, compared with the projected internal gains. It is very significant the average 

increase is 0.4 °C in summer and especially the temporal arises which reach up to 0.8 °C in certain 

moments. 

 
Figure 4.79: Indoor temperature differences due to internal gains level,  

differences of 18 % more or less electricity use during day time. 

The fourth aspect of the model definition is the impact of thermal mass (objective 4.7). In recent 

workshops about the potential of thermal mass, the relevance of thermal mass activation is 

explained and related with the convection coefficients factors of the inner walls (Álvarez & 

Molina, 2016). As mentioned before, the use of Computational fluid dynamics (CFD) is out of the 

scope of the present work. However, to be able to reflect the thermal mass activation, the heat 

capacity of the main structural elements has been modified, as described in Section 4.5.4. This 

way, the model results represent scenarios where the activation of thermal mass is larger or 

smaller. The indoor operative temperatures of these scenarios are plot in Figure 4.80. 

The hourly deviations related with more or less thermal mass can be especially relevant in 

summer, where there is no cooling system to respond. Overall, the increase due to smaller 

activation of the thermal mass in summer is around 0.6 °C. On contrary, the potential of a mayor 

activation of thermal mass can lead to significant cooling effects between 0.3 °C and 0.5 °C in all 
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summer. Besides, it is observed how a higher thermal mass can help reducing the heating need 

in fall, thanks to the heat cumulated in the internal mass in summer. 

 
Figure 4.80: Indoor temperature differences due to thermal mass in construction,  

differences of 50 % more or less heat capacity in structure and walls. 

 

Finally, in order to face the last objective which asked whether an optimal TC can be achieved 

with a combination of passive measures or whether an active cooling is necessary 

(objective 4.8), the previously analysed measures have been combined and analysed in Section 

4.7. The analysed strategies have been merged into the three most efficient solutions together 

with another two additional manually controlled combinations. 

 
Figure 4.81: PPD of the best combination of strategies (C1). 
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According to the results plot in Figure 4.52, the best combination implements some additional 

small heaters in the coldest rooms, MVHR with summer nominal bypass and automatic external 

roller blinds and night time natural ventilation. This configuration keeps the indoor environment 

during the 99.0 % of the hours within the good category B of PMV (PPD < 10 %), as shown in 

Figure 4.81. On the other hand, the best measures operated manually (C4) can also achieve a 

great 98.6 % of good comfort within the PMV category B.  

In any case, there are a number of possible combinations of the analysed passive measures 

which could lead to successful TC environments, especially if they combine solar shading and 

any type of natural ventilation. These findings indicate that in this climate the outdoor cool air 

is probably the best way to prevent any summer OH, more than only shading or MV free-cooling. 
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4.9. Conclusions 

The characterisation of the case study in a dynamic BEPS model was successful. The high detail 

of the monitoring, including many on-site testing and verification procedures were the key to 

correct the model and reach to error acceptability ranges. The iteration process was driven by 

the parameters of heating use and indoor temperatures, supported by the potential of graphical 

analysis. The indoor environment was also analysed comparing the thermal behaviour during 

two typical summer and winter weeks. Indoor temperature and heating response indicate an 

overall positive response of the model.  

The final verification executed with the MBE and CV(RMSE) shows a positive calibration with the 

monthly method according to the ASHRAE guideline 14 limits. The model presents MBE of 0.9 

%, -4.5 % and 4.7 % and CV(RMSE) of 3.2 %, 7.5 % and 14.7 % for operative temperature, RH and 

heating use respectively. In the annual hourly method, the values exceed moderately the limits 

of RH and heating use, with MBE of 2.2 %, 12.1 % and 7.6 % and CV(RMSE) of 4.1 %, 11.2 % and 

66.0 % for operative temperature, RH and heating use respectively. 

The margin of improvement due to improvements of the ventilation was enormous, especially 

regarding summer operation. The heating use reduction achieved with the correction of the of 

nominal ventilation airflow got a very small impact, this was expected due to the very efficient 

HR ratios. On contrary, the summer bypass airflow enhancement can augment the free-cooling 

in 9.0 % and reduce the number of hours over 25.0 °C in 19.5 %. However, the potential of 

summer bypass is very low in the hottest months because the small airflow requires either many 

hours or a big temperature difference to be able to provide any significant cooling load. 

The measure with the highest potential on the analysed climate is the use of natural ventilation. 

The opening of windows during 3 hours in the evenings in bedrooms, dressing room, dining room 

and living room can make a difference and reduce by half the PMV warm discomfort hours. The 

use of night time ventilation can reduce the warm discomfort hours to only one third, maintain 

the PMV warm discomfort below 3 % of annual hours. Moreover, the limit of window open/close 

control is observed and it could be considerably larger with a more precise control of the 

opening degree or through smaller vents. The results have been analysed with the PMV method, 

since it is more restrictive than the adaptive method and the building is most of the time without 

any natural ventilation, with a very regular free-running indoor environment with MVHR. 
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The potential of the studied solar shading systems was paradoxically short. This might be related 

with the types selected for an existing building, the small cooling capacity of the MVHR and its 

summer bypass and also with the high thermal inertia of the house. The best measures 

correspond to opaque blinds or venetian blinds with angle control. The maximum TC 

improvement of external opaque blinds can reduce the warm discomfort from 10.8 % to 6.2 %, 

being this effect rather insufficient. This way, considering their limited impact on TC and the 

likely reduction of visual comfort or daylight, their use can be limited to the hottest days of 

summer. In any case, this aspect would require a further verification with the particular 

components. 

Regarding the scope of the studied systems and their type of control. The automatic or manual 

controls applied to ventilation and solar shading elements have indicated the range of available 

improvements, showing the benefit obtained with an average manual control by the inhabitants 

in contrast with the optimal automatic operation. As a positive result, even the manually 

controlled systems have demonstrated a remarkable difference in TC. On the other hand, the 

analysed passive measures were limited to those components which could be installed in a 

building without requiring any mayor renovation. With this decision and results, it is proven that 

the TC of an incomplete initial design can be improved to great degree with simple 

supplementary elements and an average control by inhabitants. Thus, the OH risk can be 

minimised easily maintaining the nZEB energy consumption level.  
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CHAPTER 5 

EVALUATION OF THE SUMMER ADAPTATION 

OF SINGLE-FAMILY PASSIVE HOUSES TO 

COOL-TEMPERATE CLIMATES IN SPAIN 
 

 

 

 

 

Abstract 
This chapter reviewed the features of Spanish single-family passive houses and evaluated their adaptation 
to the local climate conditions. The main objective was to assess their capacity to avoid the need of active 
cooling systems in the present and also in the future climate change scenarios for 2040 and 2080. The 
study calculated the minimum thermal insulation levels for the different cool-temperate climates in order 
to fulfil the PH requirements of heating demand and heating load. The summer performance was 
evaluated by the capacity to provide an optimal thermal comfort by the means of combination of passive 
measures based on solar shading, ventilation and thermal mass strategies.  
The results confirmed that all the cases in the studied climates could completely avoid the use of active 
cooling, if the proper combination of measures is selected. The use of night-time natural ventilation was 
the best passive cooling measure for the tested three climates and three building models. In combination 
with roof overhangs and certain amount of thermal mass, natural ventilation could be sufficient in the 
three locations, without the need for additional shading on the windows. The use of the MVHR unit with 
enhanced airflow during summer bypass appeared to provide a limited cooling capacity which would 
require the combination with direct solar shading devices on the windows.  
The importance of these measures was more visible considering the future climate scenarios, which 
showed increases of the indoor temperatures in summer by about 1-2 °C by 2040 and by around 2-5 °C 
by 2080. In all the cases of the studied climates the use of active cooling could be completely avoided, 
through an adequate combination of supplementary feasible measures of ventilation and solar shading.  

  



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

264 

 

 

 

 

 

 

 

 

 

  



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

5. Evaluation of the summer adaptation of single-family PH  |  265 

5. Evaluation of the summer adaptation of single-family passive 

houses to cool-temperate climates in Spain 

5.1. Introduction 

The search of super insulated homes may lead to certain overheating issues if the building design 

is not well equipped with sufficient passive cooling measures or if the users don’t use them 

properly (Ridley et al., 2014) (A. Figueiredo et al., 2016).  

To study which measures of passive cooling would be necessary in the different cool-temperate 

areas of Spain, the first step was to define some average features which could summarise the 

global problems of these constructions. This was a considerable challenge because the reduced 

number of cases in Spain (52 single-family passive houses until January of 2017) and the 

variability of their design complicated the definition of a reference case. 

     
 

    
Figure 5.1. Examples of the variability of single-family passive houses in Spain (taken from PEP, 2017). 

The limited experience from these passive constructions and the upcoming nZEB challenges 

definitely require more investigations about the capacity of these houses to adapt to the cool-

temperate conditions. This study aimed to help identifying the most feasible passive cooling 

strategies for each climate zone and provide some insights to assess the resilience of these 

houses in a context of climate warming. If not addressed, the present designs optimised for 

winter performance will highly likely have to face considerable increases of indoor 

temperatures.  
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5.2. Aim and objectives 

The main goal of this chapter is to evaluate the capacity of adaptation of single family passive 

houses to cool-temperate climates in Spain, analysing the heating energy need, thermal 

comfort and the risk of overheating. The buildings were equipped with different ventilation and 

solar shading devices in order to evaluate their capacity to avoid the need of active cooling 

systems in the present and also in the future climate change scenarios for 2040 and 2080. This 

showed which features fit the best this typology under local climate conditions as well as pointed 

to a clearer definition of the solutions for future nZEB constructions.  

To do that, the following particular objectives were established: 

Objective 5.1  Define the reference models based on average single-family passive houses in 

Spain. 

 

Objective 5.2  Identify the representative cities to analyse the conditions of Atlantic and 

continental climates. 

 

Objective 5.3  Calculate the minimum thermal insulation levels for each case and location, so 

that they meet the main criteria of PH standard for winter energy demand. 

 

Objective 5.4  Verify the capacity of the studied passive measures to reduce the cooling need 

and provide good thermal comfort without additional energy use. 

 

Objective 5.5  Assess the present risk of overheating of the most relevant cases. 

 

Objective 5.6  Evaluate the future behaviour in 2040 and 2080 scenarios of climate change of 

the selected relevant models. 
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5.3. Methodology 

In this chapter, the average single family passive houses in Spain were reviewed and the capacity 

to implement passive cooling measures into the design was analysed so that there is no need 

for active cooling systems.  

As a preliminary work, the representative models were defined through the review of the 

average values of Spanish single-family passive houses. This included the features of geometry, 

construction materials, heating and ventilation systems, occupancy levels and internal heat 

gains. These values were based on the state of the art of Section 2.2.2 and the outcomes are 

summarised in Section 5.4. 

The first stage of the study evaluated the winter adaptation of the PH principles to the local 

heating need conditions. The study was conducted with ideal heating and cooling systems to 

quantify the heating and cooling needs with the typical PH operational set points (Passive House 

Institute, 2016). The steps and results are explained in Section 5.5. After the results of this stage, 

the most relevant three models were selected to continue in the next stage.  

The second stage comprised the largest part of the study and the results were analysed in the 

Section 5.6 in detail. The measures and the cases are evaluated separately in a multiple analysis 

of indoor temperatures and thermal comfort with PMV method (ISO 7730, 2005) and adaptive 

method (EN-15251, 2007). Among the results obtained in this stage, three representative 

models were selected for a further verification by the future climate scenarios. 

The third stage calculated the risk of overheating of the most relevant models, according to the 

CIBSE TM52 method (CIBSE, 2013b). This way, the main problems of the tested cases would be 

highlighted. 

The fourth stage analysed the future behaviour of present designs. Three scenarios were taken 

from the most common families to represent the different CO₂ emissions hypothesis (IPCC et 

al., 2013): B1 (low), A1B (medium)and A2 (high). 

Finally, the main conclusions are highlighted in Section 5.8 

  



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

268 

5.4. Definition of the cases of study 

5.4.1. Building models 

5.4.1.1. Construction features 

The models of this study were based on the average features of single-family passive houses in 

Spain. This way, two buildings were defined as 1) the average single-family detached house and 

2) the average single-family attached house; including the most common size, construction 

materials and ventilation systems. These values were identified through the detailed review 

presented in Section 2.2.2 of Chapter 2. 

Regarding the size, both models were set with the average Spanish treated floor area to facilitate 

the comparison among the results. So, based on the review of Spanish house stock (SECH Project 

-SpaHousec, 2011) and the review of Spanish PH of Chapter 2, the floor area was set at 146 m².  

Additionally, the geometry was set as simple as possible, since the review of PH in Spain 

demonstrated a high variability in shapes and design. On the other hand, as the PH dwellings 

are commonly presented with an average of two floors, the models of the study were also 

defined with two floors, as shown in Figure 5.2 below. Accordingly, the first model was defined 

with a simple square plan and two floors which contained the Spanish average net floor area of 

single-family detached houses, that is 146 m².  

    
Figure 5.2. Geometry of single-family house models, detached (left side) and attached (right side). 

The dimensions of the second model were more complex because this type of dwellings is 

strongly conditioned by the urban plot sizes. To find out the common plot dimensions, the city 

of Vitoria-Gasteiz was considered as a proper location, because it is an intermediate city 

between Atlantic and continental areas and also because this city had some new construction 

developments in the last decade. Local regulations established these plot sizes in the last version 

of 2003 (PGOU Vitoria-Gasteiz, 2003). The values were taken from four of these recently built 
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promotions of different neighbourhoods, which are highlighted in red circles in Figure 5.3. The 

dimensions of these cases were averaged in Table 5.1 and the final size of the model was slightly 

increased in order to match the same net floor area of the detached case (146 m² 

approximately). These reference plots are shown as urban plan boundaries and also in an aerial 

view, in Figure 5.4 and Figure 5.5 respectively. 

 
Figure 5.3. Location of selected attached housing typologies built in the last 15 years in Vitoria-Gasteiz  

(source: local construction regulations and updated plan of the PGOU of Vitoria-Gasteiz, 2008) 

 
Table 5.1. Dimensions of the attached model based on recently built similar typologies 

Attached housing 
examples 

Depth  
(m) 

Width 
(m) 

Brute floor area 
(m²) 

Depth/width 
ratio 

Zabalgana RE-MOA2_28 11.5 7.0 80.5 1.6 
Sansomendi RE-OA 10.5 6.5 68.3 1.6 
Lakua RE-OA 10.5 6.8 70.9 1.6 
Arriaga RE-OA 11.8 7.5 88.1 1.6 

Average dimensions 11.1 6.9 76.7 1.6 

Attached model 11.5 7.3 84.0 1.6 



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

270 

   
 

   
Figure 5.4. Examples of attached housing plot dimensions and typologies built in the last 15 years in the 

neighbourhoods of Zabalgana (top left), Sansomendi (top right), Lakua (bottom left) and Arriaga (bottom 

right) in Vitoria-Gasteiz (source: local construction regulations in Tomes II, III and IV of the PGOU of 

Vitoria-Gasteiz, 2003) 

   
 

      

Figure 5.5. Examples of attached housing plot dimensions and typologies built in the last 15 years in the 

neighbourhoods of Zabalgana (top left), Sansomendi (top right), Lakua (bottom left) and Arriaga (bottom 

right) in Vitoria-Gasteiz (source: Google Maps, 2017) 
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As a result, the common features of the analysed two models are described in Table 5.2 below.  

Table 5.2. Common features of studied models. 

Model features Detached Attached  

Size    

Number of floors 2 2 

Net floor area [m²] 146 146 

Type of construction New New 

Construction thermal insulation   

Structure materials Wood, 
concrete ground slab 

Wood/masonry, 
concrete ground slab 

Window frame material Wood Wood 

Thermal mass Low Medium 

Ventilation and airtightness   

ACH 50 Pa [h-1] 0.6 0.6 

MVHR Maximum air flow (m3/h) 350 350 

HR sensible recovery efficiency [%] 90% 90% 

Summer bypass Yes Yes 

Systems definition   

Heating systems Electric heaters distributed Electric heaters distributed 

DHW generation HP HP 

Heating thermal power [kW] 5.0 5.0 

Hot water storage [l] 300 300 

 

The thermal insulation levels were set as parameters to be adjusted during the first stage of this 

study, to adjust the design to the maximum winter heating demand of PH standard. The 

evaluated values are described in Table 5.3. 

The thermal bridges in this type of constructions are rather small due to the thick external 

thermal insulation (Lewis, 2014) (Hopfe & McLeod, 2015). However, in order to reflect the 

possible heat losses through TB in passive house designs, they were calculated as 50% of the 

recommended heat losses according to the PH standard (Ψe 0,10 W/mK) (Mead & Brylewsky, 

2011). Accordingly, the linear thermal transmittance of the main TB of each level of insulation 

were calculated and summarised in Table 5.4. 
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Table 5.3. Thermal insulation levels of studied models. 

Model thermal insulation levels MIN 
10 

 
15 

 
20 

 
25 

MAX 
30 

FACADE WALL 
 

 
     

Thermal transmittance 
(W/m²K) 

 
0.271 0.190 0.147 0.119 0.101 

Components: λ 
[W/(mK)] 

thickness  
[mm] 

External coating 0.870 10 
    

EPS 0.032 100 150 200 250 300 
CLT panel 0.120 95 

    

Mineral wool 0.036 45 
    

Gypsum board 0.250 15 
    

Total - 265 315 365 415 465 

ROOF 
 

 
     

Thermal transmittance 
(W/m²K) 

 
0.226 0.175 0.141 0.118 0.101 

Components: λ 
[W/(mK)] 

thickness  
[mm] 

Roof membrane 1.000 10 10 10 10 10 
XPS 0.036 100 150 200 250 300 
CLT panel 0.120 180 180 180 180 180 
Air cavity (R 0.09) 10 10 10 10 10 
Gypsum board 0.250 15 15 15 15 15 
Total - 315 365 415 465 515 

GROUND SLAB 
 

 
    

 

Thermal transmittance 
(W/m²K) 

 
0.303 0.213 0.164 0.134 - 

Components: λ 
[W/(mK)] 

thickness  
[mm] 

XPS Styrodur 0.036 50 100 200 250 - 
Reinforced concrete slab 2.400 300 300 300 300 - 
XPS Styrodur 0.036 50 50 50 50 - 
Mortar levelling 1.300 50 50 50 50 - 
Floating wood floor 0.130 15 15 15 15 - 
Total - 465 515 615 665 - 

WINDOWS 
 

 
    

 

Thermal transmittance  
average window (W/m²K) 

1.29 1.19 0.99 0.79 - 

Components: 
      

Number of panes and  
gap filling 

 Dbl L.E. 
Air 

Dbl L.E. 
Argon 

Tpl L.E. 
Argon 

Tpl L.E. 
Argon 

 

Frame U (W/m²K) 
 

1.500 1.410 1.200 1.000 - 
Glass U  (W/m²K) 

 
1.200 1.100 0.900 0.700 - 

g-value (%) 
 

0.600 0.6 0.5 0.4 - 
Installation thermal bridge 
(W/mK) 

 
0.100 0.09 0.07 0.06 - 
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Table 5.4. Thermal bridge definition in the models. 

Thermal bridge type Ψi 10 Ψi 15 Ψi 20 Ψi 25 Ψi 30 

  (W/mK) (W/mK) (W/mK) (W/mK) (W/mK) 

Roof-Wall 0.204 0.174 0.142 0.124 0.119 

Wall-Ground floor 0.270 0.217 0.182 0.157 0.153 

Wall-Wall (corner) 0.044 0.050 0.057 0.039 0.034 

Wall-Floor (Int - not ground floor) 0.072 0.060 0.044 0.039 0.037 

Wall-Floor (Ext - not ground floor) 0.204 0.174 0.142 0.124 0.119 

Lintel above window or door 0.100 0.090 0.070 0.060 0.060 

Sill above window 0.100 0.090 0.070 0.060 0.060 

Jamb at window or door 0.100 0.090 0.070 0.060 0.060 

 

The openings were defined according to the recommendations of PH design for 

temperate-warm areas and guaranteeing at least the minimum glazing ratio of Spanish 

regulation.  

Firstly, the minimum window sizes for housing constructions are regulated by minimum 

window-to-floor ratios and must be around 10-13% of the adjacent rooms, according to the 

current regional regulations such as (Parlamento de Cataluña, 2012) and (Parlamento del País 

Vasco, 2015). 

Secondly, for the in temperate-warm climates, the PH design publications  as a rule of thumb 

have recommended to set the window to floor ratios between 15-25% in the initial design (BRE, 

2006) (Ford, Schiano-Phan, & Zhongcheng, 2007b) (Wassouf, 2014). Since this study aimed to 

analyse the inherent risk and limits of PH design, the minimum value of 15% was taken as a 

global ratio for the studied models.  

 
Figure 5.6. Plan and cross sections of the studied models with window to floor ratio. 
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Once the global opening area was set at 15%, the next step was to distribute the openings in 

different facades according to the common PH strategy. Considering South as the best 

orientations, the south facades augmented their glazing ratios as much as possible, with two 

limitations: firstly, the minimum opening ratio of local regulations (10%) and secondly, the 

maximum recommendation of around 25% of the external wall area in South orientations (BRE, 

2006). Taking into account these considerations, the window areas are described in Table 5.5 

and plotted in Figure 5.6. 

After this analysis, the need to differentiate the attaches houses with East-West orientation 

from the ones with North-South orientation was observed.. Since their dimensions of windows 

should be different, as shown in Table 5.5 below. 

Table 5.5. Window areas and opening ratios of the models. 

 External 
wall surface 

(m²) 

Net floor 
area per 

orientation 
(m²) 

Window/ 
floor ratio 

(%) 

Window/ 
wall ratio 

(%) 

Window 
surface 

(m²) 

Detached house      
North 57.6 36.6 10.0 6.4 3.7 
East 57.6 36.6 10.0 6.4 3.7 
West 57.6 36.6 10.0 6.4 3.7 
South 57.6 36.6 30.0 19.1 11.0 
Total 230.4 146.5 15.0 9.5 22.0 

N-S attached house      
North 45.3 73.0 10.0 16.1 7.4 
East 0.0 0.0 - - 0.0 
West 0.0 0.0 - - 0.0 
South 45.3 73.0 20.0 32.3 14.6 
Total 90.5 146.0 15.0 24.3 22.0 

E-W attached house      
North 0.0 0.0 - - 0 
East 45.3 73.0 15.0 24.3 11 
West 45.3 73.0 15.0 24.3 11 
South 0.0 0.0 - - 0.0 
Total 90.5 146.0 15.0 24.3 22.0 

 

5.4.1.2. Systems operation, occupancy and internal heat gains 

As this study is focused in the energy demand, the type of systems was simplified as much as 

possible. To provide heating, each thermal zone was equipped with electric heaters and the 

heating setpoint was set at 20 °C. On the other hand, the active cooling systems were used only 

during the first stage of the study, mainly as a way to quantify the impact of the decisions based 

on winter design in the summer behaviour. When used, it was active between 1st of June – 30th 
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of September with a cooling setpoint at 26 °C. Both systems were configured with an ideal 

performance of 100%, with ideal curves by capacity fraction and temperature.  

The internal use of passive houses is a crucial aspect of the model definition, as underlined in 

the conclusions of the PhD thesis of Dr. Rodriguez (Rodriguez Vidal, 2015). Accordingly, the 

different IHG levels are analysed to determine which of them would fit better the purpose of 

the present study. 

If PHI traditionally considered average internal heat gains (IHG) of 2.1 W/m² (D. W. Feist, Pfluger, 

Kaufmann, Kah, & Schneiders, 2007), this value has to be understood as a reference of passive 

houses with energy efficient appliances and also with good habits of electricity use of their 

occupants. The reality may lead to considerable deviations from this estimation and provoke a 

higher energy demand or even some severe discomfort problems in certain warm environments.  

In general, PH standard applied some safety margins in the winter or summer verifications. In 

winter, IHG were lowered by up to 1.6 W/m² to dimension properly the heating system and 

compensate any possible low internal activity. In summer, the situation was opposite and the 

PHPP version 7 of 2009 suggested increasing the IHG by up to 2.6 W/m² as a recommendation 

to assess the overheating risk. On top of that, IHG could also be calculated in detail with the 

PHPP spreadsheets and the consumptions of each case. 

At present, the last review of PHI analysed the risks of underestimating IHG in small 

constructions, and conducted a study to adjust IHG in relation with occupancy and treated floor 

area (PHI, 2015). As a result, in 2015 they published an updated formula to evaluate the IHG of 

each case, as presented in the correlation in Figure 5.7 and the formula ( 7 ) below. Applying the 

values of the models of this chapter, namely 5 people and 146 m² of treated floor area, the 

recommended average IHG for summer would be 2.51 W/m². This value suggests that the size 

and occupation of these models are not far from the conventional PH limits and therefore the 

value of 2.6 W/m² for summer calculations may be sufficient.  

 
( 8 ) 

Where: 
IWQ internal heat gains (W/m²) 
Awe  treated floor area (based on German standard density of 35 m²/person) 
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Figure 5.7. IHG depending on the living area, as used in the PHPP 9 (taken from PHI, 2015). 

 

In contrast with the values recommended by the PHI, the Spanish regulation set a remarkably 

higher IHG for standard housing constructions. In fact, with an average 4.4 W/m² this regulation 

nearly doubles the PH value of 2.1 W/m². This standard IHG is an average obtained by the 

current standard operational conditions of housing constructions defined in (AICIA, 2009a) and 

(AICIA, 2009b). The conditions are presented in Table 5.6. These schedules to some degree 

represent a more realistic use than the constant IHG of PH assumptions, as for example, 

observed in the monitored hourly electricity consumption dwellings of a block of housing in 

Sevilla (Sendra Salas, 2011). 

Table 5.6. Hourly operational conditions according to  

standard certification of residential buildings in Spain (source AICIA, 2009a). 

 
 

As a result, the present study applied the hourly operation of the Spanish standard, with the 

reference values of PH for winter and summer verifications. So, in winter the IHG were lowered 
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by up to 1.6 W/m² and in summer they were increased by up to 2.6 W/m². These reference 

values were implemented in the model as occupancy, latent heat, computers and lighting, as 

described in Table 5.7. 

Table 5.7. Reference IHG for single-family housing and values used in the models of this study. 

 Reference values Model definition of IHG 

IHG types Average 
hourly 

IHG 
(W/m²) 

Annual 
heat gain 
(kWh/m²

) 

Density* 
(person/m²) 

Latent 
heat* 

(W/m²) 

Computers
* 

(W/m²) 

Lighting 
(W/m²) 

PH winter 1.6 14.0 0.0120 - 1.6 1.6 

PH standard 2.1 18.4 0.0165 - 2.2 2.2 

PH summer 2.6 22.8 0.0195 - 2.6 2.6 

RITE, standard IHG of 
housing EPC in Spain 

4.4 38.5 0.0330 1.36 4.4 4.4 

Average single family 
house electricity use 
(SECH project, 2010) 

- 30.9 - - - - 

* Values based on the hourly operation of AICIA 2009 
 

5.4.2. Analysed climatic zones and selected locations 

The Iberian Peninsula is a large area which presents different climatic zones. According to the  

(Kottek et al., 2006), the regions of Spain can be classified into three types: the south and eastern 

areas closer to Mediterranean sea, which can be characterized by low precipitation and hot 

summers (Csa), the western and northwestern areas with low precipitation and warm summers 

(Csb) and the remaining areas in the north and northeast areas which are highly humid with 

typically warm summers (Cfb). Figure 5.8 shows the world map of this classification. 

The first Spanish Technical Building Code (CTE) (Royal Decree 314/2006, 2006) and the later 

update (Orden FOM 1635/2013, 2013) identified 5 levels of winter and 3 levels of summer. This 

way, the locations were described by winter severity (mildest winter is represented by a letter 

A and coldest by a letter E) and summer severity (the mildest scenario is given a score 1 while 

the warmest- a score 3). Figure 5.9 represents both severities. 

The present study is focused on the areas where the heating need is still the driving need for 

building design. This is due to the detected predominance of passive houses in cooler areas of 

Spain, as underlined in the review of Spanish single family passive houses in Section 2.2.2. As a 

result, the areas selected for the present study were of the central continental climate and the 
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northern Atlantic climate. This includes regions with cold winters (E1, D1, D2 and D3) and cool-

temperate regions (C1), embracing approximately the northern half of the country, with 30 

regions and approximately 27 million of inhabitants. 

 
Figure 5.8. World map of Köppen-Geiger Climate classification (taken from Kottek et al., 2006). 

 

 
Figure 5.9. Maps of climate severity of winter (left) and summer (right) in Spain  

(taken from Álvarez & Molina, 2016) 
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In order to evaluate the differences to apply passive house principles in these climates, the most 

relevant cases were identified. Firstly, Burgos represents a location among the coldest winters 

(zone E1). Secondly, Madrid represents a location with cold winters and also with warm 

summers (zone D3).  Thirdly and lastly, Bilbao represents a location in the coast, with mild 

winters and mild summers in the Atlantic coast. Accordingly, the climate zones included within 

this study are highlighted in Figure 5.11, with the selected cities in red: Bilbao, Burgos and 

Madrid.  All Spanish climatic zones are shown in Figure 5.10 and the monthly values of Bilbao, 

Burgos and Madrid are shown in Figure 5.12, Figure 5.13, Figure 5.14 and Table 5.8. 

 
Figure 5.10. Climatic zones according to Spanish Technical Building Code (CTE)  

(data source Orden FOM 1635/2013, 2013). 

 
Figure 5.11. Climatic zones analysed within this study and selected capitals, Bilbao, Burgos, Madrid. 
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Figure 5.12. Climatic summary of Bilbao with daily temperature range. 

 
Figure 5.13. Climatic summary of Burgos with daily temperature range. 

 
Figure 5.14. Climatic summary of Madrid with daily temperature range. 
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Table 5.8. Monthly values of the climates in Bilbao, Burgos and Madrid. 
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5.4.3. Climate change scenarios  

In the last stage of this study the best adapted models were simulated under the future scenarios 

of climate change. This was possible through the regional scenarios of the IPCC predictions 

published by (Morata Gasca, 2014) in recent years which applied the global scenarios of 

(Nakicenovic & Swart, 2000) into Spanish climates. These scenarios are also related with the 

representative concentration pathways (RCP), explained in the introduction of Chapter 1 (IPCC, 

2017). In Table 5.9 the general features of these scenarios which connect them with the global 

low, medium and high RCP are described and the trend of the global temperatures is plotted in 

Figure 5.15. 

Table 5.9. Description of the studied future scenarios B1, A1B and A2. 

Scenarios Description  
(taken from Morata Gasca, 2014) 
 

B1 Low CO₂ emissions. World based on the implementation of 
clean technologies and the efficient recycling of materials. It 
is based on a sustainable balance between economy, society 
and environment.  

A1B Intermediate CO₂ emissions. The worldwide economic growth 
is fast and it is based on a balanced use of diverse energy 
sources together with high efficient new technologies. 

A2 High CO₂ emissions. Heterogeneous world, based on local 
traditions and family model. The economic growth and 
development are slower than in other hypothesis groups. 

 
 

 
Figure 5.15. RCP ranges according to last review of IPCC (taken from IPCC et al., 2013). 
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5.5. Stage I, winter heating need reduction 

This stage defined the minimum levels of thermal insulation of the three analysed models of 

single family housing in the selected climates. To assess that, each model was simulated with 

different thickness of thermal insulation, from 10 to 30 cm. The results show the variation of 

heating and cooling needs as well as the maximum daily loads for heating and cooling of each 

case. Even though the requirements of PH certificate verify either the annual demand or the 

heating load alternatively, in this study it was decided to apply both requirements at the same 

time in order to approximate to the nZEB limits. Apart from that, the simulation results are 

shown as heating use, obtained with performance levels close to the set points of PH standard, 

which can make them comparable with the limits of heating and cooling demand. 

In this stage, the results were plotted as a summary to compare the models of the three 

locations. The full results of the heating and cooling energy need, as well as the heating and 

cooling loads and the number of indoor hours over 25 °C are described in Table 5.1. 

The results obtained for the Atlantic climate confirmed that the heating need of this area is 

rather low. Almost all the models comply with the PH limits of annual heating demand and 

maximum heating load, see Figure 5.16. Only the detached house presented a slightly higher 

value of heating load which could require the increase of the thermal insulation levels. This way, 

approximately 15 cm for detached houses and 10 cm for attached houses would be sufficient to 

provide an ultra-low heating energy need.  

 
Figure 5.16. Energy need for heating and cooling of the models according to  

the thermal insulation of the envelope in Bilbao, Atlantic climate. 

The results of the cold continental area indicated considerably higher heating needs. The 

detached house models required around 20 cm of thermal insulation and the attached houses 

required more intermediate values with 15 cm of thermal insulation, see Figure 5.17. 
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Figure 5.17. Energy need for heating and cooling of the models according to  

the thermal insulation of the envelope in Burgos, cold continental climate. 

The results of the warm continental climate shown in Figure 5.18 confirmed an intermediate 

heating need and a considerable cooling need, which in majority of the models would overpass 

the heating needs. As a result, the minimum thermal insulation would be around 15 cm in 

detached houses and 10 cm in attached houses, noting that the cooling needs remarkably 

exceed the limits of PH standard. 

 
Figure 5.18. Energy need for heating and cooling of the models according to  

the thermal insulation of the envelope in Burgos, cold continental climate. 

All the previous results indicated certain trends and differences between the tested models. 

They underlined that detached houses have the highest heating need and the East-West 

attached houses present the highest cooling need. This way, for the next stage of summer 

adaptation, three models were selected, one from each climate. Firstly, the detached house of 

Burgos was selected, because it presented the highest heating need. Secondly, the East-West 

attached house of Madrid was selected, for having the highest cooling need. Thirdly and lastly, 

the North-South attached house of Bilbao was selected as an intermediate case of a mild 

climate. The selected cases are highlighted by dashed lines in Figures 5.15, 5.16 and 5.17. 
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Table 5.10. Main results of the models tested in Stage I, winter analysis. 

Models Annual 
heating 

use  
(kWh/y) 

Heating 
use per 

floor area  
(kWh/m²y) 

Max. daily 
heating 

load  
(W/m²) 

Annual 
cooling 

use  
(kWh/y) 

Cooling 
use per 

floor area 
(kWh/m²y) 

Max. 
daily 

cooling 
load  

(W/m²) 

Num. 
hours  

t >25 °C 

Annual 
hours  

t >25 °C  
(%) 

PH limits 2190.0 15.0 10.0 -2190.0 -15.0 -10.0 876 10.0 % 

D_Bi10 1890.0 12.9 12.1 -941.7 -6.4 -8.0 3219 36.7 % 
D_Bi15 1090.2 7.5 8.9 -1024.8 -7.0 -7.5 3771 43.0 % 
D_Bi20 721.0 4.9 6.8 -869.5 -6.0 -6.5 3903 44.6 % 
D_Bi25 499.2 3.4 5.3 -748.4 -5.1 -5.5 3965 45.3 % 
D_Bi30 389.3 2.7 4.6 -760.8 -5.2 -5.5 4122 47.1 % 

D_Bu10 4015.3 27.5 14.6 -1094.8 -7.5 -7.3 2703 30.9 % 
D_Bu15 2582.0 17.7 11.0 -1230.5 -8.4 -7.0 3063 35.0 % 
D_Bu20 1906.7 13.1 8.9 -1055.8 -7.2 -6.3 3155 36.0 % 
D_Bu25 1480.3 10.1 7.4 -903.4 -6.2 -5.6 3223 36.8 % 
D_Bu30 1252.3 8.6 6.8 -918.5 -6.3 -5.5 3373 38.5 % 

D_Ma10 2470.5 16.9 11.5 -2116.2 -14.5 -9.1 3400 38.8 % 
D_Ma15 1439.7 9.9 8.2 -2161.1 -14.8 -8.8 3737 42.7 % 
D_Ma20 1007.8 6.9 6.3 -1877.2 -12.9 -7.8 3796 43.3 % 
D_Ma25 751.3 5.1 5.1 -1624.2 -11.1 -7.0 3850 43.9 % 
D_Ma30 597.3 4.1 4.5 -1597.7 -10.9 -6.9 4075 46.5 % 

Asn_Bi10 885.6 6.1 8.3 -961.6 -6.6 -6.6 3686 42.1 % 
Asn_Bi15 409.8 2.8 5.8 -1100.5 -7.5 -6.3 4354 49.7 % 
Asn_Bi20 235.2 1.6 4.2 -916.2 -6.3 -5.2 4441 50.7 % 
Asn_Bi25 147.3 1.0 3.0 -807.8 -5.5 -4.5 4478 51.1 % 
Asn_Bi30 157.8 1.1 2.9 -545.9 -3.7 -4.3 3119 35.6 % 

Asn_Bu10 2201.0 15.1 10.2 -942.0 -6.5 -5.7 2862 32.7 % 
Asn_Bu15 1254.2 8.6 7.6 -1096.5 -7.5 -5.7 3357 38.3 % 
Asn_Bu20 879.3 6.0 5.8 -910.0 -6.2 -5.1 3419 39.0 % 
Asn_Bu25 644.1 4.4 4.6 -788.8 -5.4 -4.6 3488 39.8 % 
Asn_Bu30 533.4 3.7 4.3 -808.5 -5.5 -4.6 3584 40.9 % 

Asn_Ma10 1116.1 7.6 7.4 -1771.1 -12.1 -7.4 3690 42.1 % 
Asn_Ma15 489.7 3.4 4.7 -1865.9 -12.8 -7.2 4287 48.9 % 
Asn_Ma20 301.4 2.1 3.5 -1575.7 -10.8 -6.2 4326 49.4 % 
Asn_Ma25 197.6 1.4 2.7 -1373.4 -9.4 -5.5 4370 49.9 % 
Asn_Ma30 137.6 0.9 2.3 -1385.1 -9.5 -5.5 4600 52.5 % 

Aew_Bi10 1436.7 9.8 9.0 -1383.6 -9.5 -8.5 3894 44.5 % 
Aew_Bi15 899.2 6.2 6.9 -1513.3 -10.4 -8.3 4531 51.7 % 
Aew_Bi20 604.6 4.1 5.4 -1310.8 -9.0 -7.3 4697 53.6 % 
Aew_Bi25 405.8 2.8 4.2 -1118.3 -7.7 -6.8 4802 54.8 % 
Aew_Bi30 340.4 2.3 3.9 -1133.7 -7.8 -6.8 4946 56.5 % 

Aew_Bu10 2975.4 20.4 10.9 -1747.7 -12.0 -8.4 3249 37.1 % 
Aew_Bu15 2072.8 14.2 8.4 -1886.8 -12.9 -8.4 3729 42.6 % 
Aew_Bu20 1567.4 10.7 6.8 -1702.1 -11.7 -7.9 3836 43.8 % 
Aew_Bu25 1210.3 8.3 5.6 -1473.1 -10.1 -7.1 3887 44.4 % 
Aew_Bu30 1085.9 7.4 5.2 -1495.2 -10.2 -7.0 4112 46.9 % 

Aew_Ma10 2046.9 14.0 9.4 -2686.7 -18.4 -9.7 3999 45.7 % 
Aew_Ma15 1352.4 9.3 7.3 -2783.8 -19.1 -9.7 4520 51.6 % 
Aew_Ma20 994.0 6.8 5.7 -2526.2 -17.3 -9.2 4664 53.2 % 
Aew_Ma25 741.7 5.1 4.6 -2211.0 -15.1 -8.4 4771 54.5 % 
Aew_Ma30 648.7 4.4 4.3 -2218.7 -15.2 -8.3 4913 56.1 % 
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The thermal balance of the selected cases is presented in Figure 5.19 below. Additionally, these 

cases are also described in more detail in the following stage II, particularly in Section 5.6.4, 

Section 5.6.5 and Section 5.6.6. 

 
Figure 5.19. Thermal balance of the selected cases in Burgos, Bilbao and Madrid. 
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5.6. Stage II, summer cooling need reduction 

Once the degree of thermal insulation was set according to the main criteria of Passive House 

for winter energy demands, the next stage consisted of the adaptation of the design through 

common passive measures in order to minimise the cooling needs as much as possible.  

Firstly, the passive design elements studied in this stage are presented. Section 5.6.1 describes 

the solar shading measures, Section 5.6.2 defines the ventilative cooling measures and Section 

5.6.3 explains the aspects of thermal mass considered during this study.  

Later, the potential of each passive measure was analysed in detail, identifying the capacity of 

the measures in each model and climate. They were evaluated considering the capacity to 

maintain indoor temperatures cool and also the thermal comfort provided in summer. 

5.6.1. Solar shading measures 

Three solar shading options were tested: (i) roof overhangs of 1 m, (ii) traditional PVC roller 

shutters controlled manually and (iii) the same shutters with automatic control. The general 

features of the analysed solar shading devices are described in Table 4.10 below. 

Table 5.11. Summary of the applied solar shading strategies. 

ID Type of  
solar shading 

Components used 
for shading 

Control strategies Schedule  

Base No solar shading 
 

- - - 

Oh Overhangs of roof Construction design Maximum length limited by 
local regulations up to 1 m 

Always 

Rm Ext. opaque roller 
blinds/shutters, 
manual 

Aluminium shutters 
rolled on top of the 
window, with 
automatic control 

Down every day,  
80% solar reflectance and 
narrow openings allow  
15% of visible transmittance 
 

Every day 
09:00 – 21:00 h. 
Burgos and Bilbao:  
Jun.-Sep. 
Madrid: May-Sep. 
 

Ra Ext. opaque roller 
blinds/shutters, 
automatic 

Aluminium shutters 
rolled on top of the 
window, with 
automatic control 

Only in days with cooling and 
when solar >100 W/m², 
80% solar reflectance and 
narrow openings allow  
15% of visible transmittance 

Every day  
Burgos and Bilbao:  
Jun.-Sep. 
Madrid: May-Sep. 
 

 

Firstly, the overhang length was defined as 1 m in correspondence with the maximum allowed 

distances of local regulations like in Vitoria-Gasteiz (PGOU Vitoria-Gasteiz, 2003). It can be useful 

because it provides a protection for facades and openings which are actually independent of 
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user’s habits. As a matter of fact, many passive houses don’t have any overhangs of roof 

extensions because they can complicate the thermal bridging and airtightness. However, this 

section analyses the passive cooling potential of the overhangs due to the very positive results 

demonstrated in the monitored case study (Chapter 3) and the simulations carried out in 

Chapter 4. Besides, roof overhangs are very common in vernacular architecture in central and 

northern Spain (Rodriguez Vidal, 2015). Also, many of the traditional passive houses built in 

Spain maintain this element. Furthermore, fixed solar protections are highly recommended by 

majority of PH designers’ publications (BRE, 2006) (Cotterel & Dadeby, 2012) (Wassouf, 2014) 

(Hopfe & McLeod, 2015). The implemented roof overhangs are shown in Figure 5.20. 

      
Figure 5.20. Roof overhangs of 1m in S-N attached house (left side) and detached house (right side). 

Secondly, the use of shutters permit a great reduction of solar transmittance and offer some 

degree of control over the visible fraction. The aluminium or PVC shutters are widely used in 

Spain and their use would be probably more efficient than other non-conventional devices like 

venetian blinds or louvres.  

When shutters are down, they block the majority of the solar gains through windows, meaning 

that they are set with a solar reflectance of 80% and a visible transmittance of 15%. The type of 

operation is tested as either manual or automatic. In manual control, they are closed every day 

before going to work and remain closed all day (9:00 h - 21:00 h) from the 1st of June until the 

30th of September. The automatic control activates the blinds only for the days with cooling need 

(inside air temperature over 23.5 °C) and after the solar radiation on the window overpasses 

100 W/m².  

5.6.2. Ventilative cooling measures 

As seen in Chapter 3 and 4, ventilation can contribute greatly to cool dwelling environments. In 

these cases, four types of ventilation are tested: (i) MVHR with constant summer bypass, (ii) 
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MVHR with enhanced summer bypass, (iii) natural ventilation during evenings and (iv) natural 

ventilation during night-time. In Table 4.8 details of the operation of these systems are 

presented. 

Mechanical ventilation is limited by the maximum airflow of the MVHR unit, which was set 

according to the average maximum airflow of the MVHR units equipped in Spanish passive 

houses, that was precisely 350 m³/h. In this case the range of PH certification was not 

considered, in order to evaluate its maximum cooling potential for the studied local climates. 

Natural ventilation is limited to evaluate a more realistic usage: maximum of 10 h-1 ACH, 

windows open on the top with only 10% of the gap and the windows are closed in outdoor 

temperatures are cooler than 15 °C, to avoid draught. 

These strategies of ventilative cooling (VC) are applied first individually and later in combination 

with solar shading and thermal mass enhancements. 

Table 5.12. Summary of the applied ventilation strategies. 

ID Principle of 
ventilative cooling 

Components used 
for ventilation 

Control strategies Schedule  

MV Minimum airflow, 
bypass in summer 

MVHR with bypass 
constant airflow 

Bypass if indoor t. >23.5 °C  
Bypass closed if out. t. <13 °C 

All year 

MVe MVHR with 
enhanced summer 
bypass airflow 

MVHR with bypass 
and programming 
function 

Bypass airflow 350 m³/h if: 
Indoor t. >24 °C  
Outdoor t. < indoor t. 
Min. outdoor t. 13 °C 

All year  

NVe Natural ventilation 
in evenings 

Tilt and turn 
windows, 
10% upper opening 

All windows open if  
indoor t. >23.5 °C 
Diff. indoor-outdoor > 2 °C 
Min. outdoor t. 15 °C 
Max. ACH of 10 h-1 
MVHR with constant bypass 

Everyday 
21:00 – 24:00 h.  
Burgos: Jun.-Sep. 
Madrid: Apr.-Sep. 
(1/4-15/5 only 
evenings) 
 

NVn Natural ventilation 
in night-time 

Tilt and turn w., 
10% upper opening 
 

(Same as above) Everyday 
21:00 – 07:00 h. 
Burgos: Jun.-Sep. 
Madrid: Apr.-Sep. 
(1/4-15/5 only 
evenings) 

 

5.6.3. Thermal mass measures 

The studied cases in the Spanish review showed the majority of cases with low or medium 

thermal mass. As this study represents the most common construction materials of that review, 
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the envelope consisted of lightweight elements, as seen in Section 5.4.1. Basically, the detached 

house included all sort of CLT panels in the structure and only a ground concrete slab, but this 

thermal mass was separated with an XPS layer which avoids the direct transmission of heat. The 

other model, the semi-detached house (or attached dwelling) more often included some 

heavyweight elements which could contribute to mayor degree in this term. 

After the first simulations of these models, it was clearly observed that there was a significant 

swing of internal temperatures, as highlighted in the results of Section 5.6.4, Section 5.6.5 and 

Section 5.6.6. This phenomenon was probably related with a lack of thermal mass stabilization. 

For that reason, some alternatives were implemented as a way to assess the need of higher 

thermal mass components. In Table 5.13 these supplementary elements are summarised. 

Table 5.13. Summary of the applied supplementary thermal mass measures. 

ID Description Num. 
per 

floor 

Dimensions  
(m) 

Vol. 
(m³) 

Density 
(kg/m³) 

Mass 
(Kg) 

Specific 
heat 

(J/KgK) 

Thermal 
Mass 

(MJ/K) 

TM Concrete 
levelling 

 

1 8.4 8.4 0.05 3.5 2100 7350 840 6.2 

TM2 Concrete 
levelling and 
Inner brick 

walls 
 

1 8.4 8.4 0.05 3.5 2100 7350 840 6.2 
2 11 2.8 0.07 4.3 1700 7330 800 5.9 
2 6 3.8 0.07 3.2 1701 5430 800 3.2 

TM3 Concrete slabs 
and inner brick 

walls 

1 8.4 8.4 0.3 21.0 2100 44.10
0 

840 37.0 

2 11 2.8 0.07 4.3 1700 7.330 800 5.9 
2 6 3.8 0.07 2.4 1701 4.001 800 3.2 

 

Accordingly, after simulating the models with their original configuration of construction 

elements, the models were improved with additional elements which could be reasonably 

implemented in each case.  

The detached model based on light construction and CLT panels, received an additional concrete 

levelling of 5 cm, which contributed with 6.2 MJ/K per floor (thermal mass measure TM). This 

improvement of the detached model is not too heavy, only 14500 kg, and this small amount of 

thermal mass could be implemented in these constructions in this or many other ways to reduce 

the cooling need, as suggested by (Álvarez & Molina, 2016). 



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

5. Evaluation of the summer adaptation of single-family PH  |  291 

The attached model was also based on wooden structure, but in many cases it also presented 

some masonry additional elements. So, in a first improvement the same concrete levelling was 

included in the model. In a second step, the four facades of the model were improved with an 

inner brick wall of 7 cm, which added another 9.1 MJ/K per floor (thermal mass measure TM2). 

In a third stage, the concrete levelling was substituted by a concrete slab of 30 cm, which, 

overall, added a considerable amount of thermal storage capacity (37.0 MJ/K per floor).  

5.6.4. Attached single-family house in Atlantic climate, Bilbao 

Firstly, the global analysis was done according to the number of indoor warm hours. It indicated 

that all the measures failed to control the number of hours over 25 °C (the PH limit is 10%). The 

best strategies always included night-time natural ventilation and also certain degree of solar 

shading. The other alternatives presented long periods over 28 °C, more than 8% of annual 

hours, see Figure 5.21 below. 

 
Figure 5.21. Evaluation of all the strategies according to the number of annual warm hours;  

attached North/South house in Bilbao, Atlantic climate. 

The second analysis was focused in thermal comfort with the PMV model and it showed similar 

results as the assessment for warm hours. This assessment indicates that only night time natural 

ventilation can reduce the warm discomfort hours below 15% of annual hours, as shown in 

Figure 5.22. It is important to note that the calculations have been done with a simplified model 

of indoor air movement and this may not represent the specific conditions of certain rooms. The 

purpose of these calculations is therefore to be conservative and provide the best indoor 
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environment possible. To solve this question, the adaptive method was used to the indoor 

conditions with the cooling effect of natural ventilation, see Figure 5.23. This method permitted 

to identify the improvements obtained with supplementary thermal mass. It also indicates that 

the use of roof overhangs can contribute considerably to indoor TC. For further details, see the 

complete results listed in Table 5.14 and Table 5.15 at the end of this Section. 

 
Figure 5.22. Evaluation of all the strategies according to warm discomfort hours 

calculated with PMV method; attached North/South house in Bilbao, Atlantic climate. 

 
Figure 5.23. Evaluation of all the strategies according to warm discomfort hours 

calculated with EN 15251 method; attached North/South house in Bilbao, Atlantic climate. 
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temperate summer of Atlantic climate in Bilbao, the indoor temperatures could overpass 30 °C 

if no solar shading or natural ventilation is applied. In any case, the indoor temperatures can 

easily be reduced by 4-5°C with different combinations of ventilation and solar shading.  

The use of MVHR with summer bypass enhanced at maximum airflow could have positive effects 

only in combination with solar shading measures. The use of short natural ventilation in evenings 

presented a similar capacity as the enhanced MVHR bypass. The use of night natural ventilation 

presented the best option to keep indoor temperatures cool. Besides, the use of solar shading 

also demonstrated a clear benefit to reduce the peak temperatures indoors.  

 
Figure 5.24. Comparison of the main ventilation measures based on the obtained indoor temperatures 

in summer; attached North/South house in Bilbao, Atlantic climate. 

Additionally, this model was characterised by a low thermal mass due to the use of lightweight 

wooden construction elements. To see the impact of the low thermal mass on this type of 

constructions, Figure 5.25 presents the results obtained with some supplementary thermal mass 

based on the same natural ventilation during night-time. It indicates that reductions by 1 °C of 

the hottest hours are easy with the implementation of TM1 (5 cm of concrete levelling), TM2 

(inner 7 cm brick walls) and even more with TM3 (concrete floor slabs). 

This way, the use of thermal mass as a supplementary aspect for different types of ventilation 

could probably eliminate the need of direct solar shading on the windows. This was evaluated 

in Figure 5.26, which analysed the maximum potential of the MVHR with enhanced summer 

bypass with the highest feasible thermal mass in this case. The result indicated that the indoor 
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temperatures were considerably flat, but their value seemed to be too high to provide good 

thermal comfort.  

 
Figure 5.25. Comparison of the thermal mass effect based on the obtained indoor temperatures in 

summer; attached North/South house in Bilbao, Atlantic climate. 

Additionally, the impact of thermal mass with the use of natural ventilation during night hours 

was considerable. With the same ventilation ratios, the increase of thermal mass had a similar 

effect as the daily use of roller shutters. This way, with the same operation of ventilation, the 

roller shutters with enough thermal mass again could be not necessary. 

 
Figure 5.26. Comparison of the main solar shading measures based on the obtained indoor 

temperatures in summer; attached North/South house in Bilbao, Atlantic climate. 
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Table 5.14. Annual heating need and summer warm hours of  

attached house in Atlantic climate, Bilbao. 

Summer adaptation 
models 

Annual 
heating 
demand  
(kWh) 

Annual 
solar 

gains by 
wind. 
(kWh) 

Heating 
demand  
(kWh/
m²y) 

Max. daily 
heating 

load  
(W/m²) 

Num. 
hours t 
>25 °C 

Annual 
hours t 
>25 °C  

(%) 

Num. 
hours t 
>28 °C 

Annual 
hours t 
>28 °C  

(%) 

Limits PH 
 

2190.0 - 15.0 10.0 876 10.0% - - 

base 1125.4 5787.1 7.7 7.5 3593 41.0% 2354 26.9% 

Oh 1204.6 5217.1 8.3 7.5 3393 38.7% 2168 24.7% 

Rm South 1128.5 4216.8 7.7 7.5 2949 33.7% 1453 16.6% 

Ra 1127.6 5071.8 7.7 7.5 3307 37.8% 1955 22.3% 

MVe 928.2 5787.1 6.4 6.9 3157 36.0% 1826 20.8% 

NVe 1203.5 5787.1 8.2 7.5 3054 34.9% 1823 20.8% 

NVn 1284.7 5787.1 8.8 7.5 2152 24.6% 756 8.6% 

Oh+NVn 1319.5 5217.1 9.0 7.5 1964 22.4% 642 7.3% 

Oh+Rm+MVe 991.1 3903.3 6.8 7.0 2416 27.6% 894 10.2% 

Oh+Rm+NVe 1262.2 3903.3 8.6 7.5 2385 27.2% 1041 11.9% 

Oh+Rm+NVn 1323.5 3903.3 9.1 7.5 1488 17.0% 209 2.4% 

Oh+Rm+MVe+TM 908.7 3903.3 6.2 7.1 2287 26.1% 852 9.7% 

Oh+Rm+NVe+TM 1170.9 3903.3 8.0 7.6 2345 26.8% 1008 11.5% 

Oh+Rm+NVn+TM 1231.9 3903.3 8.4 7.6 1238 14.1% 71 0.8% 

Oh+Rm+MVe+TM2 840.0 3903.3 5.8 7.0 2273 25.9% 817 9.3% 

Oh+Rm+NVe+TM2 1095.3 3903.3 7.5 7.5 2361 27.0% 985 11.2% 

Oh+Rm+NVn+TM2 1164.6 3903.3 8.0 7.5 1182 13.5% 43 0.5% 

Oh+Rm+MVe+TM3 742.7 3903.3 5.1 6.1 2273 25.9% 725 8.3% 

Oh+Rm+NVe+TM3 993.4 3903.3 6.8 6.6 2293 26.2% 923 10.5% 

Oh+Rm+NVn+TM3 1067.5 3903.3 7.3 6.6 1106 12.6% 6 0.1% 

Oh+NVn+TM3 1064.6 5217.1 7.3 6.6 1565 17.9% 224 2.6% 

Oh+MVe+TM3 742.6 5217.1 5.1 6.1 2856 32.6% 1757 20.1% 

 

The best combinations of measures in relation with the EN 15251 limits are described in more 

detail in the following plots. The MVHR with enhanced summer bypass with solar shading and 

supplementary thermal mass (Oh+Rm+MVe+TM3) is presented in Figure 5.27. The potential of 

natural ventilation during evenings with solar shading and thermal mass (Oh+Rm+NVe+TM3) is 

presented in Figure 5.28. The capacity of night time natural ventilation together with solar 

shading and thermal mass (Oh+Rm+NVn+TM3) is patent in Figure 5.29.  
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Figure 5.27. MVHR with enhanced summer bypass, roller shutters and supplementary thermal mass in 

facades and floor slabs, indoor temperatures and limits of EN 15251;  

attached North/South house in Bilbao, Atlantic climate. 

 
Figure 5.28. Natural ventilation in the evenings, roller shutters and supplementary thermal mass in 

facades and floor slabs, indoor temperatures and limits of EN 15251;  

attached North/South house in Bilbao, Atlantic climate. 

 

 
Figure 5.29. Night time natural ventilation, roller shutters and supplementary thermal mass in facades 

and floor slabs, indoor temperatures and limits of EN 15251;  

attached North/South house in Bilbao, Atlantic climate.  

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In
d

oo
r 

O
pe

ra
tiv

e 
T

em
pe

ra
tu

re
[°

C
]

Outdoor Running Mean Temperature [°C]

Category I (optimal)

Category II (acceptable)

Category III (discomfort)

Nov-Apr

May

Jun

Jul

Aug

Sep

Oct

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In
d

oo
r 

O
pe

ra
tiv

e 
T

em
pe

ra
tu

re
[°

C
]

Outdoor Running Mean Temperature [°C]

Category I (optimal)

Category II (acceptable)

Category III (discomfort)

Nov-Apr

May

Jun

Jul

Aug

Sep

Oct

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In
d

oo
r 

O
pe

ra
tiv

e 
T

em
pe

ra
tu

re
[°

C
]

Outdoor Running Mean Temperature [°C]

Category I (optimal)

Category II (acceptable)

Category III (discomfort)

Nov-Apr

May

Jun

Jul

Aug

Sep

Oct



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

5. Evaluation of the summer adaptation of single-family PH  |  297 

Table 5.15. Summer thermal comfort summary. Warm discomfort assessed by ISO 7730 and EN 15251; 

attached house in Atlantic climate, Bilbao. 

Summer adaptation 
models 

PMV ISO 7730 
Cat. C+ 

PMV ISO 7730 
Too hot 

EN 15251  
Cat. III + 

EN 15251  
Too hot 

 Num. 
hours 

Year 
% 

Num. 
hours 

Year 
% 

Num. 
hours 

Year 
% 

Num. 
hours 

Year 
% 

base 444 5.1% 2790 31.8% 770 8.8% 1399 16.0% 

Oh 429 4.9% 2510 28.7% 780 8.9% 1035 11.8% 

Rm South 487 5.6% 1971 22.5% 365 4.2% 77 0.9% 

Ra 470 5.4% 2351 26.8% 688 7.9% 688 7.9% 

MVe 442 5.0% 2232 25.5% 559 6.4% 670 7.6% 

NVe 390 4.5% 2132 24.3% 568 6.5% 632 7.2% 

NVn 443 5.1% 1063 12.1% 269 3.1% 96 1.1% 

Oh+NVn 392 4.5% 900 10.3% 173 2.0% 50 0.6% 

Oh+Rm+MVe 499 5.7% 1332 15.2% 173 2.0% 54 0.6% 

Oh+Rm+NVe 451 5.1% 1459 16.7% 186 2.1% 42 0.5% 

Oh+Rm+NVn 380 4.3% 454 5.2% 105 1.2% 41 0.5% 

Oh+Rm+MVe+TM 419 4.8% 1250 14.3% 52 0.6% 1 0.0% 

Oh+Rm+NVe+TM 353 4.0% 1392 15.9% 45 0.5% 0 0.0% 

Oh+Rm+NVn+TM 232 2.6% 242 2.8% 19 0.2% 0 0.0% 

Oh+Rm+MVe+TM2 385 4.4% 1227 14.0% 11 0.1% 0 0.0% 

Oh+Rm+NVe+TM2 282 3.2% 1389 15.9% 1 0.0% 0 0.0% 

Oh+Rm+NVn+TM2 207 2.4% 163 1.9% 1 0.0% 0 0.0% 

Oh+Rm+MVe+TM3 401 4.6% 1203 13.7% 9 0.1% 0 0.0% 

Oh+Rm+NVe+TM3 290 3.3% 1382 15.8% 0 0.0% 0 0.0% 

Oh+Rm+NVn+TM3 188 2.1% 105 1.2% 0 0.0% 0 0.0% 

Oh+NVn+TM3 270 3.1% 472 5.4% 0 0.0% 0 0.0% 

Oh+MVe+TM3 233 2.7% 1939 22.1% 456 5.2% 37 0.4% 

 
 

5.6.5. Detached single-family house in cold continental climate, Burgos 

In an analogous way, this model was also tested with different measures and combinations. The 

multiple analysis is presented in Figure 5.30, Figure 5.31 and Figure 5.32. The complete details 

are listed in Table 5.16 and Table 5.17.  

The results suggested that the solar shading measures could contribute with passive cooling, but 

they are insufficient to provide enough thermal comfort during summer. The potential of roof 

overhang was considerably smaller than the use of direct shading for windows. Note that in this 

case this was represented by roller shutters on the windows in South, East and West 

orientations.  
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Regarding the ventilative cooling measures, the most efficient strategy was the night-time 

ventilation. It is important to notice that all the ventilative cooling measures (bypass 

enhancement and natural ventilation in the evenings or night hours) had higher cooling capacity 

than any of the analysed solar shading measures. However, only night time ventilation can 

provide proper indoor temperatures without any use of roller shutters on the windows. The best 

two types of ventilation were tested with supplementary thermal mass and without shutters. 

The use of thermal mass is not very effective, because it helps reducing the number of hours 

over 28°C but it increases the number of hours over 25 °C. In this case, the supplementary 

thermal mass would be effective only in combination with long hours of natural ventilation, to 

purge the heat out from these elements, as recommended in (Lewis, 2014). 

 
Figure 5.30. Evaluation of all the strategies according to the number of annual warm hours,  

detached house in Burgos, cold continental climate. 

The TC assessment with PMV model presented better results with total warm discomfort below 

10% in the majority of the cases with combination of solar shading and ventilation measures. 

The method of adaptive comfort indicated that majority of the options could achieve an 

acceptable indoor comfort. All the combinations of solar shading and ventilation measures 

would reduce the warm discomfort below 1% of annual hours or less. Paradoxically, even some 

singular measures, such as roller shutters or night time natural ventilation could provide an 

acceptable range of adaptive comfort by themselves.  
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Figure 5.31. Evaluation of all the strategies according to warm discomfort hours 

calculated with PMV model; detached house in Burgos, cold continental climate. 

 
Figure 5.32. Evaluation of all the strategies according to warm discomfort hours 

calculated with EN 15251 model; detached house in Burgos, cold continental climate. 
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insufficient without supplementary solar shading. The use of evening natural ventilation of the 

enhanced MVHR together with roller shutters permitted to maintain the peak temperatures 

indoors around 30 °C. The best performance corresponds again to the night time natural 

ventilation, in blue. 

 
Figure 5.33. Comparison of the main ventilation measures based on the obtained indoor temperatures 

in summer; detached house in Burgos, cold continental climate. 

Afterwards, the potential of thermal mass to reduce the indoor temperatures was assessed 

(Figure 5.34). It confirmed the benefits of supplementary thermal mass together with natural 

ventilation. The use of 5 cm of concrete levelling (TM1) could reduce the peak hours by one 

degree and the use of internal brick walls in the inner facades (TM2) could contribute with a 

reduction of peak hours by an extra degree. The case of concrete floor slabs (TM3) may be 

considered too heavy for a full wooden structure, but it could improve very considerably the 

indoor temperatures in this location. As a result, the warmest hours could be reduced from 28 

°C to 26 °C with the use of small heavyweight elements for short time or daily thermal storage. 

In order to verify if the potential of thermal mass could substitute the use of direct solar shading 

of windows, two alternatives for the cases with enhanced MVHR or with night time natural 

ventilation were compared in Figure 5.35. It showed an important finding for this climate and 

detached typology: the integration of higher thermal mass than the use of roller shutters, 

independently from the type of ventilation used appears to be more convenient. 
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Figure 5.34. Comparison of thermal mass effect based on the obtained indoor temperatures in summer; 

detached house in Burgos, cold continental climate. 

 
Figure 5.35. Comparison of the main solar shading measures based on the obtained indoor 

temperatures in summer; detached house in Burgos, cold continental climate. 
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method. The use of MVHR as free-cooling (Rm+MVe+TM) presented many benefits precisely 

due to its automatic operation and the avoidance of any noise from the outside. However, the 

capability of this system to cool the indoor space is limited by the airflow of the unit (the 

maximum airflow of the commonly installed AHU is 350 m³/h) and the lower temperature limit. 

In this study, the limit was fixed at 23.5 °C to avoid overcooling in summer. 

On the other hand, the use of natural ventilation during night-time demonstrated a very large 

cooling potential in comparison with the aforementioned enhanced MVHR, as shown in  Figure 

5.37 and Figure 5.39. 

 
Figure 5.36. MVHR with enhanced summer bypass, roller shutters and supplementary thermal mass as 

concrete levelling in floors, indoor temperatures and limits of PMV method;  

attached North/South house in Burgos, cold continental climate. 

 
Figure 5.37. Night time natural ventilation, roller shutters and supplementary thermal mass as concrete 

levelling in floors, indoor temperatures and limits of PMV method,  

attached North/South house in Burgos, cold continental climate. 
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Figure 5.38. MVHR with enhanced summer bypass, roller shutters and supplementary thermal mass as 

concrete levelling in floors, indoor temperatures and limits of adaptive method;  

attached North/South house in Burgos, cold continental climate. 

 

 
Figure 5.39. Night time natural ventilation, roller shutters and supplementary thermal mass as concrete 

levelling in floors, indoor temperatures and limits of adaptive method;  

attached North/South house in Burgos, cold continental climate. 
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Figure 5.40. High thermal mass impact on enhanced summer bypass MVHR and roller shutters, indoor 

temperatures and limits of EN 15251; detached house in Burgos, cold continental climate. 

 

 
Figure 5.41. High thermal mass impact on natural ventilation in the evenings and roller shutters, indoor 

temperatures and limits of EN 15251; detached house in Burgos, cold continental climate. 

 

 
Figure 5.42. High thermal mass impact on night time natural ventilation and roller shutters, indoor 

temperatures and limits of EN 15251; detached house in Burgos, cold continental climate. 
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Table 5.16. Annual heating need and summer warm hours of  

detached housing case in cold continental climate, Burgos. 

Summer adaptation 
models 

Annual 
heating 
demand  
(kWh) 

Annual 
solar g. 
wind.  
(kWh) 

Heating 
demand  
(kWh/
m²y) 

Max. daily 
heating 

load  
(W/m²) 

Num. 
hours t 
>25 °C 

Annual 
hours t 
>25 °C  

(%) 

Num. 
hours t 
>28 °C 

Annual 
hours t 
>28 °C  

(%) 

Limits PH 
 

2190.0 - 15.0 10.0 876 10.0% - - 

Base model 1922.4 4428.4 13.2 8.7 3313 37.8% 1859 21.2% 

Oh 2008.1 4014.3 13.8 8.8 3165 36.1% 1594 18.2% 

Oh2 2064.3 3750.2 14.1 8.9 2652 30.3% 1423 16.2% 

Rm 1931.1 2947.2 13.2 8.7 2503 28.6% 286 3.3% 

Ra 1987.0 3183.9 13.6 8.7 2635 30.1% 734 8.4% 

MVe 1663.4 4428.4 11.4 8.2 2399 27.4% 877 10.0% 

NVe 1971.2 4428.4 13.5 8.7 2204 25.2% 781 8.9% 

NVn 1923.8 4428.4 13.2 8.7 1480 16.9% 169 1.9% 

Oh+Rm+MVe 1743.5 3149.6 11.9 8.4 1574 18.0% 316 3.6% 

Oh+Rm+NVe 2075.2 3037.3 14.2 8.8 1454 16.6% 289 3.3% 

Oh+Rm+NVn 2076.9 3295.9 14.2 8.8 699 8.0% 41 0.5% 

Oh2+Rm+NVn 2129.4 3122.8 14.6 8.9 649 7.4% 31 0.4% 

Oh+Rm+MVe+TM 1717.9 3184.1 11.8 8.4 1609 18.4% 194 2.2% 

Oh+Rm+NVe+TM 2052.6 3103.8 14.1 8.9 1375 15.7% 157 1.8% 

Oh+Rm+NVn+TM 2055.8 3447.1 14.1 8.9 434 5.0% 12 0.1% 

Oh+Rm+MVe+TM2 1673.6 3183.5 11.5 8.5 1629 18.6% 103 1.2% 

Oh+Rm+NVe+TM2 2012.2 3105.0 13.8 9.0 1405 16.0% 94 1.1% 

Oh+Rm+NVn+TM2 2019.3 3468.4 13.8 9.0 305 3.5% 0 0.0% 

Oh+Rm+MVe+TM3 1616.8 3180.2 11.1 8.6 1679 19.2% 44 0.5% 

Oh+Rm+NVe+TM3 1958.9 3092.3 13.4 9.2 1451 16.6% 22 0.3% 

Oh+Rm+NVn+TM3 2069.4 3136.9 14.2 9.2 156 1.8% 0 0.0% 

Oh+MVe+TM3 1606.1 4014.3 11.0 8.6 2225 25.4% 399 4.6% 

Oh+NVn+TM3 1896.6 4014.3 13.0 9.2 349 4.0% 0 0.0% 
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Table 5.17. Summer thermal comfort summary. Warm discomfort assessed by ISO 7730 and EN 15251; 

detached housing case in cold continental climate, Burgos. 

Summer adaptation 
models 

PMV ISO 7730 
Cat. C+ 

PMV ISO 7730 
Too hot 

EN 15251  
Cat. III + 

EN 15251  
Too hot 

 Num. 
hours 

Year % Num. 
hours 

Year % Num. 
hours 

Year % Num. 
hours 

Year % 

Base model 414 4.7% 2231 25.5% 826 9.4% 843 9.6% 

Oh 360 4.1% 2032 23.2% 679 7.8% 474 5.4% 

Oh2 222 2.5% 1844 21.1% 527 6.0% 314 3.6% 

Rm 696 7.9% 912 10.4% 50 0.6% 0 0.0% 

Ra 487 5.6% 1279 14.6% 212 2.4% 100 1.1% 

MVe 452 5.2% 1291 14.7% 308 3.5% 164 1.9% 

NVe 392 4.5% 1184 13.5% 261 3.0% 142 1.6% 

NVn 330 3.8% 452 5.2% 38 0.4% 2 0.0% 

Oh+Rm+MVe 276 3.2% 614 7.0% 65 0.7% 12 0.1% 

Oh+Rm+NVe 250 2.9% 614 7.0% 49 0.6% 8 0.1% 

Oh+Rm+NVn 155 1.8% 192 2.2% 1 0.0% 0 0.0% 

Oh2+Rm+NVn 135 1.5% 167 1.9% 0 0.0% 0 0.0% 

Oh+Rm+MVe+TM 281 3.2% 556 6.3% 23 0.3% 0 0.0% 

Oh+Rm+NVe+TM 252 2.9% 526 6.0% 8 0.1% 0 0.0% 

Oh+Rm+NVn+TM 98 1.1% 63 0.7% 0 0.0% 0 0.0% 

Oh+Rm+MVe+TM2 313 3.6% 491 5.6% 0 0.0% 0 0.0% 

Oh+Rm+NVe+TM2 281 3.2% 460 5.3% 0 0.0% 0 0.0% 

Oh+Rm+NVn+TM2 52 0.6% 23 0.3% 0 0.0% 0 0.0% 

Oh+Rm+MVe+TM3 388 4.4% 364 4.2% 0 0.0% 0 0.0% 

Oh+Rm+NVe+TM3 386 4.4% 324 3.7% 0 0.0% 0 0.0% 

Oh+Rm+NVn+TM3 17 0.2% 0 0.0% 0 0.0% 0 0.0% 

Oh+MVe+TM3 524 6.0% 1054 12.0% 13 0.1% 0 0.0% 

Oh+NVn+TM3 39 0.4% 4 0.0% 0 0.0% 0 0.0% 

 

 

5.6.6. Attached single-family house in warm continental climate, Madrid 

The global analysis of the number of warm temperatures indoors confirmed that this climate 

presents the warmest conditions and also that the attached houses with East-West orientation 

have a significantly larger risk of warm discomfort, see Figure 5.43. The indoor temperatures of 

the base model remained over 25 °C for the 45.8% of annual hours and overpassed 28 °C 36.8% 

of the time. This means that almost all the hours from May to October are over these limits, 

because they account for the 50.4% of annual hours.  
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Regarding the types of ventilation, the use of long hours of natural ventilation during night time 

is the only way to considerably reduce the indoor temperatures.  

The use of thermal mass is only useful in combination with night time natural ventilation. With 

other types of ventilation it may be even disadvantageous for the indoor environment because 

it increases the temperatures during the hottest hours. 

The use of solar shading on windows was found to be essential to be able to reduce the annual 

warm hours during summer. The best combination of night natural ventilation with thermal 

mass and without roller shutter couldn’t reduce the warm hours below 23.8%. 

 
Figure 5.43. Evaluation of all the strategies according to the number of annual warm hours;  

detached house in Madrid, warm continental climate. 

The studies based on TC with PMV method reinforced the bad response of the previous analysis, 

see Figure 5.44. Only the night time natural ventilation can reduce the discomfort hours 

significantly, improving the conditions to a range between 10.5% and 6.3% depending on the 

use of thermal mass. The other alternative of mechanical ventilation of short natural ventilation 

were inefficient, despite the use of roller shutters.  

In the analysis based on the adaptive TC (Figure 5.45), it can be seen that the comfort would be 

adequate if users could directly use the natural ventilation. In these cases, the use of thermal 

mass showed a certain improvement and the need of direct solar shading was again confirmed 

as essential. 
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Figure 5.44. Evaluation of all the strategies according to warm discomfort hours 

calculated with PMV model; detached house in Madrid, warm continental climate. 

 

  
Figure 5.45. Evaluation of all the strategies according to warm discomfort hours 

calculated with EN 15251 model; detached house in Madrid, warm continental climate. 

Taking a  closer look at the analysis of the thermal response during a warm summer week, this 

case presented the highest indoor temperatures of all this study. As shown in Figure 5.46, the 

lack of solar shading and natural ventilation measures could end in indoor temperatures over 34 

°C quite easily. Considering the use of roller shutters, the best strategy would be the long periods 

of natural ventilation.  
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Figure 5.46. Comparison of the main ventilation measures based on the obtained indoor temperatures 

in summer; detached house in Madrid, warm continental climate. 

With respect to the use of thermal mass, it confirmed once again the capacity to reduce the 

highest temperatures by 2-3 °C. However, it also showed certain limitations to purge the 

cumulated heat during the night time ventilation, as shown in Figure 5.47. Longer periods of 

ventilation would be advisory, preferably controlled by automatic systems. 

 

Figure 5.47. Comparison of the thermal mass effect based on the obtained indoor temperatures in 

summer; detached house in Madrid, warm continental climate. 
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Regarding the need of solar shading, the temperatures obtained with thermal mass or 

alternatively with solar shading were compared in Figure 5.48 , and considerable differences 

were evidenced. So, in this climate and orientation the use of solar shading seemed to be more 

necessary than in the previous ones. It is worth remembering that the use of solar shading in 

combination with natural ventilation permitted to avoid  all warm discomfort according to 

adaptive method. The absence of solar shading was directly related with the number of hours 

over 28 °C. In the cases with night natural ventilation, the difference was very big: from 4.3% to 

14.2% without additional thermal mass or from 1.0% to 10.2% in the case of the TM3. 

 

 

Figure 5.48. Comparison of the main solar shading measures based on the obtained indoor 

temperatures in summer; detached house in Madrid, warm continental climate. 

The best cases of Madrid in relation with the EN 15251 limits are described in more detail in the 

following plots. For further details of the tested cases, see Table 5.18 and Table 5.19.  

The MVHR with enhanced summer bypass with solar shading and supplementary high thermal 

mass (Rm+MVe+TM3) is presented in Figure 5.52. The potential of natural ventilation during 

evenings with solar shading and supplementary high thermal mass (Rm+NVe+TM3) is presented 

in Figure 5.53. The larger capacity to reduce the indoor temperatures with night time natural 

ventilation, solar shading and supplementary high thermal mass (Rm+NVn+TM3) is shown in 

Figure 5.54. 
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Figure 5.49. MVHR with enhanced summer bypass, roller shutters and supplementary thermal mass in 

facades and floor slabs, indoor temperatures and limits of EN 15251;  

attached East/West house in Madrid, warm continental climate. 

 
Figure 5.50. Natural ventilation in the evenings, roller shutters and supplementary thermal mass in 

facades and floor slabs, indoor temperatures and limits of EN 15251;  

attached East/West house in Madrid, warm continental climate. 

 
Figure 5.51. Night time natural ventilation, roller shutters and supplementary thermal mass in facades 

and floor slabs, indoor temperatures and limits of EN 15251;  

attached East/West house in Madrid, warm continental climate. 
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Table 5.18. Annual heating need and summer warm hours of the  

attached case in warm continental climate, Madrid. 

Summer adaptation 
models 

Annual 
heating 
demand  
(kWh) 

Annual 
solar g. 
wind.  
(kWh) 

Heating 
demand  
(kWh/
m²y) 

Max. daily 
heating 

load  
(W/m²) 

Num. 
hours t 
>25 °C 

Annual 
hours t 
>25 °C  

(%) 

Num. 
hours t 
>28 °C 

Annual 
hours t 
>28 °C  

(%) 

Limits PH 
 

2190.0 - 15.0 10.0 876 10.0% - - 

Base model 1867.4 6186.5 12.8 9.0 4009 45.8% 3226 36.8% 

Oh 1933.4 5634.5 13.2 9.0 3813 43.5% 3075 35.1% 

Rm 1922.3 3612.8 13.2 9.0 3134 35.8% 2113 24.1% 

Ra 1922.3 3612.8 13.2 9.0 3134 35.8% 2113 24.1% 

MVe 1843.7 6186.5 12.6 9.1 3505 40.0% 2569 29.3% 

NVe 2135.9 6186.5 14.6 9.6 3279 37.4% 2366 27.0% 

NVn 2181.1 6186.5 14.9 9.6 2481 28.3% 1253 14.3% 

Rm+MVe 1938.7 2675.3 13.3 9.1 2416 27.6% 1294 14.8% 

Rm+NVe 2242.6 2675.3 15.4 9.6 2381 27.2% 1395 15.9% 

Rm+NVn 2283.6 2675.3 15.6 9.6 1529 17.5% 371 4.2% 

Rm+MVe+TM 1904.3 2675.3 13.0 9.0 2364 27.0% 1317 15.0% 

Rm+NVe+TM 2209.6 2675.3 15.1 9.4 2335 26.7% 1461 16.7% 

Rm+NVn+TM 2248.1 2675.3 15.4 9.4 1442 16.5% 255 2.9% 

Rm+MVe+TM2 1889.0 2675.3 12.9 9.0 2304 26.3% 1325 15.1% 

Rm+NVe+TM2 2196.5 2675.3 15.0 9.5 2276 26.0% 1435 16.4% 

Rm+NVn+TM2 2232.9 2675.3 15.3 9.5 1272 14.5% 134 1.5% 

Rm+MVe+TM3 1836.3 2675.3 12.6 8.7 2308 26.3% 1373 15.7% 

Rm+NVe+TM3 2142.0 2675.3 14.7 9.2 2220 25.3% 1487 17.0% 

Rm+NVn+TM3 2181.1 2675.3 14.9 9.2 1264 14.4% 80 0.9% 

NVn+TM3 2122.8 6186.5 14.5 9.2 2081 23.8% 898 10.3% 

MVe+TM3 1782.2 6186.5 12.2 8.7 3329 38.0% 2580 29.5% 
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Table 5.19. Summer thermal comfort summary. Warm discomfort assessed by ISO 7730 and EN 15251; 

attached case in warm continental climate, Madrid. 

Summer adaptation 
models 

PMV ISO 7730 
Cat. C+ 

PMV ISO 7730 
Too hot 

EN 15251  
Cat. III + 

EN 15251  
Too hot 

 Num. 
hours 

Year 
% 

Num. 
hours 

Year 
% 

Num. 
hours 

Year 
% 

Num. 
hours 

Year 
% 

Base model 218 2.5% 3589 41.0% 362 4.1% 3130 35.7% 

Oh 205 2.3% 3431 39.2% 403 4.6% 2859 32.6% 

Rm 308 3.5% 2358 26.9% 499 5.7% 1208 13.8% 

Ra 308 3.5% 2358 26.9% 499 5.7% 1208 13.8% 

MVe 384 4.4% 2903 33.1% 523 6.0% 1885 21.5% 

NVe 301 3.4% 2650 30.3% 431 4.9% 1695 19.3% 

NVn 353 4.0% 1576 18.0% 308 3.5% 491 5.6% 

Rm+MVe 304 3.5% 1586 18.1% 246 2.8% 88 1.0% 

Rm+NVe 226 2.6% 1677 19.1% 297 3.4% 116 1.3% 

Rm+NVn 305 3.5% 615 7.0% 5 0.1% 0 0.0% 

Rm+MVe+TM 240 2.7% 1619 18.5% 206 2.4% 12 0.1% 

Rm+NVe+TM 160 1.8% 1707 19.5% 279 3.2% 42 0.5% 

Rm+NVn+TM 282 3.2% 484 5.5% 0 0.0% 0 0.0% 

Rm+MVe+TM2 240 2.7% 1615 18.4% 117 1.3% 0 0.0% 

Rm+NVe+TM2 151 1.7% 1690 19.3% 214 2.4% 3 0.0% 

Rm+NVn+TM2 247 2.8% 333 3.8% 0 0.0% 0 0.0% 

Rm+MVe+TM3 226 2.6% 1666 19.0% 26 0.3% 0 0.0% 

Rm+NVe+TM3 198 2.3% 1725 19.7% 57 0.7% 0 0.0% 

Rm+NVn+TM3 290 3.3% 266 3.0% 0 0.0% 0 0.0% 

NVn+TM3 322 3.7% 1187 13.6% 145 1.7% 16 0.2% 

MVe+TM3 388 4.4% 2903 33.1% 429 4.9% 2079 23.7% 
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5.7. Stage III, Overheating evaluation 

After the analysis of the indoor environment and the thermal comfort, the cases were also 

analysed considering the risk of overheating (OH) according to the specific method developed 

by CIBSE TM52 (CIBSE, 2013a). In the following sections the results of all the cases and 

combination of passive measures are summarised. These evaluations are complementary to the 

adaptive comfort study and reflect the major risk to provide sufficient thermal comfort to 

inhabitants. 

 

5.7.1. Attached single-family house in Atlantic climate, Bilbao 

The OH evaluation confirmed that there is a considerable risk of OH in all the cases without roller 

shutters. The use of thermal mass doesn’t substitute the improvements of direct solar shading. 

The results of (MVe +Oh+TM3) confirmed that it was unable to avoid the exceedance in the 

warmest days.  

An exception would be the use of night time natural ventilation, which great extent could help 

avoiding the hours of overheating, as shown in Figure 5.52 below. Actually, the solely use of 

roller shutters may be sufficient regarding the OH risk.  

The full details of the assessment can be viewed in Table 5.20. 

 
Figure 5.52. Overheating evaluation, including total exceedance hours and maximum daily weighted 

exceedance; attached North/South house in Bilbao, Atlantic climate. 
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Table 5.20. Overheating assessment of the attached case in Bilbao, Atlantic climate. 

Models to analyse 
summer behaviour 

Passive House  
Annual data 

CIBSE TM52 
May - September 

 
Hours 
>25 °C  

(%) 

OH? Exceedan
ce hours 
May-Sep 

(h) 

Exceedan
ce  
(%) 

Max. 
daily 

weighted 
exceedan

ce 

Upper 
limit t. 

OH? 

Limits 
 

10.0 - - 3.0% 6 4 - 

base 41.0% Yes 1658 45.2% 80 5 Yes 

Oh 38.7% Yes 1334 36.3% 61 4 Yes 

Rm South 33.7% Yes 86 2.3% 10 1 No 

Ra 37.8% Yes 876 23.9% 57 4 Yes 

MVe 36.0% Yes 797 21.7% 48 4 Yes 

NVe 34.9% Yes 761 20.7% 53 4 Yes 

NVn 24.6% Yes 75 2.0% 15 2 No 

Oh+NVn 22.4% Yes 38 1.0% 8 1 No 

Oh+Rm+MVe 27.6% Yes 16 0.4% 5 1 No 

Oh+Rm+NVe 27.2% Yes 24 0.7% 5 1 No 

Oh+Rm+NVn 17.0% Yes 0 0.0% 0 0 No 

Oh+Rm+MVe+TM 26.1% Yes 0 0.0% 0 0 No 

Oh+Rm+NVe+TM 26.8% Yes 0 0.0% 0 0 No 

Oh+Rm+NVn+TM 14.1% Yes 0 0.0% 0 0 No 

Oh+Rm+MVe+TM2 25.9% Yes 0 0.0% 0 0 No 

Oh+Rm+NVe+TM2 27.0% Yes 0 0.0% 0 0 No 

Oh+Rm+NVn+TM2 13.5% Yes 0 0.0% 0 0 No 

Oh+Rm+MVe+TM3 25.9% Yes 0 0.0% 0 0 No 

Oh+Rm+NVe+TM3 26.2% Yes 0 0.0% 0 0 No 

Oh+Rm+NVn+TM3 12.6% Yes 0 0.0% 0 0 No 

Oh+NVn+TM3 17.9% Yes 0 0.0% 0 0 No 

Oh+MVe+TM3 32.6% Yes 224 6.1% 14 1 Yes 

 

 

5.7.2. Detached single-family house in cold continental climate, Burgos 

The studied overheating case of Burgos is summarised in Figure 5.53. Evidence was found that 

in this case the potential of thermal mass can substitute the need of direct solar shading on 

windows. If the majority of the measures couldn’t avoid OH, all the combination of measures 

seemed to be able to prevent the OH risk. 

The full details of the assessment are listed in Table 5.21. 
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Figure 5.53. Overheating evaluation, including total exceedance hours and maximum daily weighted 

exceedance; attached North/South house in Burgos, cold continental climate. 

 
Table 5.21. Overheating assessment of the attached case in Burgos, cold continental climate. 

Models to analyse 
summer behaviour 

Passive House  
Annual data 

CIBSE TM52 
May - September 

 
Hours 
>25 °C  

(%) 

OH? Exceedan
ce hours 

(h) 

Exceed.  
(%) 

Max. day 
weighted 
exceed. 

Upper 
limit t. 

OH? 

Limits 
 

10.0 - - 3.0% 6 4 - 

Base model 1189 32.4% 63 4 Yes 1189 32.4% 
Oh 768 20.9% 50 4 Yes 768 20.9% 
Oh2 535 14.6% 43 3 Yes 535 14.6% 
Rm 10 0.3% 4 1 No 10 0.3% 
Ra 184 5.0% 24 3 Yes 184 5.0% 
MVe 291 7.9% 31 3 Yes 291 7.9% 
NVe 255 6.9% 27 3 Yes 255 6.9% 
NVn 8 0.2% 4 1 No 8 0.2% 
Oh+Rm+MVe 30 0.8% 10 2 No 30 0.8% 
Oh+Rm+NVe 25 0.7% 7 1 No 25 0.7% 
Oh+Rm+NVn 0 0.0% 0 0 No 0 0.0% 
Oh2+Rm+NVn 0 0.0% 0 0 No 0 0.0% 
Oh+Rm+MVe+TM 3 0.1% 3 1 No 3 0.1% 
Oh+Rm+NVe+TM 0 0.0% 0 0 No 0 0.0% 
Oh+Rm+NVn+TM 0 0.0% 0 0 No 0 0.0% 
Oh+Rm+MVe+TM2 0 0.0% 0 0 No 0 0.0% 
Oh+Rm+NVe+TM2 0 0.0% 0 0 No 0 0.0% 
Oh+Rm+NVn+TM2 0 0.0% 0 0 No 0 0.0% 
Oh+Rm+MVe+TM3 0 0.0% 0 0 No 0 0.0% 
Oh+Rm+NVe+TM3 0 0.0% 0 0 No 0 0.0% 
Oh+Rm+NVn+TM3 0 0.0% 0 0 No 0 0.0% 
Oh+MVe+TM3 0 0.0% 0 0 No 0 0.0% 

Oh+NVn+TM3 0 0.0% 0 0 No 0 0.0% 
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5.7.3. Attached single-family house in warm continental climate, Madrid 

The simulated cases in Madrid presented the highest warm discomfort ratios. Regarding the OH 

detection, the exceedance hours and the maximum daily weighted exceedance are plotted in 

Figure 5.54. Many cases were found to be with a considerable risk of OH.  

The use of roller shutters was essential - almost none of the cases without solar shading could 

avoid OH. Only the use of natural ventilation with the highest thermal mass (TM3) could 

compensate the lack of direct solar shading.  

The types of ventilation followed the trends identified in previous sections, showing that the 

best option to prevent the overheating would be the night time natural ventilation. The use of 

MVHR with enhanced summer bypass (MVe) or the short use of natural ventilation during 

evenings (NVe) presented similar results, with a slightly better performance for the bypass, 

when used with certain supplementary thermal mass. 

The use of thermal mass seemed to be especially helpful in the cases with MVHR with enhanced 

summer bypass and, to a smaller degree, in the cases with short natural ventilation in the 

evenings.  

The full details of the case study are listed in Table 5.22. 

 
Figure 5.54. Overheating evaluation, including total exceedance hours and maximum daily weighted 

exceedance; attached North/South house in Madrid, warm continental climate. 
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Table 5.22. Overheating assessment of the attached case in Madrid, warm continental climate. 

Models to analyse 
summer behaviour 

Passive House  
Annual data 

CIBSE TM52 
May - September 

 
Hours 
>25 °C  

(%) 

OH? Exceedan
ce hours 
May-Sep 

(h) 

Exceedan
ce  
(%) 

Max. 
daily 

weighted 
exceedan

ce 

Upper 
limit t. 

OH? 

Limits 
 

10.0 - - 3.0% 6 4 - 

Base model 45.8% Yes 3081 83.9% 192 11 Yes 

Oh 43.5% Yes 2909 79.2% 172 10 Yes 

Rm 35.8% Yes 1460 39.8% 103 7 Yes 

Ra 35.8% Yes 1460 39.8% 103 7 Yes 

MVe 40.0% Yes 2132 58.1% 135 9 Yes 

NVe 37.4% Yes 1910 52.0% 129 9 Yes 

NVn 28.3% Yes 629 17.1% 53 6 Yes 

Rm+MVe 27.6% Yes 188 5.1% 19 2 Yes 

Rm+NVe 27.2% Yes 246 6.7% 26 2 Yes 

Rm+NVn 17.5% Yes 0 0.0% 0 0 No 

Rm+MVe+TM 27.0% Yes 88 2.4% 11 1 No 

Rm+NVe+TM 26.7% Yes 152 4.1% 15 2 Yes 

Rm+NVn+TM 16.5% Yes 0 0.0% 0 0 No 

Rm+MVe+TM2 26.3% Yes 21 0.6% 6 1 No 

Rm+NVe+TM2 26.0% Yes 66 1.8% 10 1 No 

Rm+NVn+TM2 14.5% Yes 0 0.0% 0 0 No 

Rm+MVe+TM3 26.3% Yes 0 0.0% 0 0 No 

Rm+NVe+TM3 25.3% Yes 1 0.0% 1 1 No 

Rm+NVn+TM3 14.4% Yes 0 0.0% 0 0 No 

NVn+TM3 23.8% Yes 63 1.7% 10 2 No 

MVe+TM3 38.0% Yes 2310 62.9% 102 6 Yes 
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5.8. Stage III, building resilience in future climate change scenarios 

Already in 2006 the PH guide in UK warned about the risks of overheating considering the global 

warming scenario:  “In the light of climate change predictions designers are recommended to 

achieve a figure of 5% overheating frequency or less (using current day data) and to make 

provision for additional seasonal shading devices to combat future overheating risks.” (BRE, 

2006). 

This section analyses the upcoming problems in a local context with an expected increase of 

temperatures. The studied scenarios cover the low (B1), medium (A1B) and high emissions (A2) 

as different hypothesis for an uncertain world, which are supported by a number of studies, as 

shown in the Chapter 2. These scenarios permit having a clearer idea of the future requirements, 

which designers should start considering today when making the present deign decisions. 

For this analysis, the three most relevant cases were selected, considering the importance of 

understanding that mild summers like in Burgos might likely require more careful summer 

design and also how the present best options for Madrid could be at risk in a close future. 

The three selected cases were: 

• Detached house in Burgos with MVHR and enhanced summer bypass (MVe), manual 

roller shutters (Rm) and supplementary thermal mass in structure and walls (TM3). 

• Detached house in Burgos with night time natural ventilation (NVn), manual roller 

shutters (Rm) and supplementary thermal mass in structure and walls (TM3). 

• Attached East-West house in Madrid with night time natural operation (NVn), manual 

roller shutters (Rm) and supplementary thermal mass in structure and walls (TM3). 

5.8.1. Detached single-family house in cold continental climate, Burgos 

The assessment was done following the same methodology as in the present climate. This way, 

the indoor warm temperatures were analysed first, as presented in Figure 5.55. The plot includes 

the results of the two models in Burgos: one with night natural ventilation (NVn) and the other 

with the MVHR with enhanced summer bypass (MVe).  
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The results for 2040 don’t change significantly. The use of natural ventilation showed a good 

capacity to reduce indoor temperatures below 25 °C and the use of enhanced MVHR indicated 

certain improvement with a decrease of 3-5% of the number of hours over 25 °C. 

In 2080 the situation changes considerably and both systems perform much worse than in the 

present. Considering the medium CO₂ emissions scenario (A1B), the increase would be from 

1.8% to 7.0% with natural ventilation and from 19.2% to 23.9% with enhanced MVHR. In both 

cases there would be an expected increase of around 5%. 

 
Figure 5.55. Evaluation of the future indoor temperatures in detached house model,  

based on IPCC climates of 2040 and 2080 in Burgos, cold continental climate. 

With respect to the TC, the situation was analogous. Figure 5.56 summarises the results with 

PMV method of both models for 2040 and 2080. The outcomes suggested that the use of 

enhanced MVHR may be enough for 2040 but rather insufficient to maintain the acceptable 

indoor comfort in 2080 scenarios. 

The study with adaptive method, summarised in Figure 5.57, indicated that the house may be 

always inside acceptable comfort if the  principles of natural ventilation, lower activity levels, 

clothing adaptation and etcetera were followed (EN-15251, 2007).  

However, this method presented some problems of application in the future climates of 2080. 

Keeping in mind that the range of application of the adaptive standard is limited to outdoor 

running mean temperatures up to 30 °C, the climate scenarios of 2080 present several days over 

this value and so they would require a further study of the user’s maximum limits for those days. 
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Figure 5.56. Evaluation of the future thermal comfort based on PMV method in a detached house 

model;  

IPCC climates of 2040 and 2080 in Burgos, cold continental climate. 

 

 
Figure 5.57. Evaluation of the future thermal comfort based on EN 15251 method in a detached house;  

IPCC climates of 2040 and 2080 in Burgos, cold continental climate. 

For further details of indoor temperatures and thermal comfort of each case for the future 

climate scenarios, see Table 5.23 and Table 5.24, respectively. 
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Table 5.23. Future changes in indoor temperatures due to global warming in Burgos. Annual heating 

need and summer warm hours of detached house in Atlantic climate. 

Summer adaptation 
models 

Annual 
heating 
demand  
(kWh) 

Annual 
solar g. 
wind.  
(kWh) 

Heating 
demand  
(kWh/
m²y) 

Max. daily 
heating 

load  
(W/m²) 

Num. 
hours t 
>25 °C 

Annual 
hours t 
>25 °C  

(%) 

Num. 
hours t 
>28 °C 

Annual 
hours t 
>28 °C  

(%) 

Limits PH 
 

2190.0 - 15.0 10.0 876 10.0% - - 

NVn present 2069.4 3136.9 14.2 9.2 156 1.8% 0 0.0% 

NVn 2040 B1 2018.1 3396.4 13.8 9.1 97 1.1% 0 0.0% 

NVn 2040 A1B 1801.6 3399.1 12.3 9.0 155 1.8% 0 0.0% 

NVn 2040 A2 1858.1 3434.8 12.7 7.7 172 2.0% 0 0.0% 

NVn 2080 B1 1776.9 3375.1 12.2 8.7 237 2.7% 3 0.0% 

NVn 2080 A1B 1429.5 3418.5 9.8 7.6 613 7.0% 31 0.4% 

NVn 2080 A2 1275.4 3428.3 8.7 7.2 847 9.7% 54 0.6% 

MVe Present 1616.8 3180.2 11.1 8.6 1679 19.2% 44 0.5% 

MVe 2040 B1 1648.0 3222.7 11.3 8.6 1152 13.2% 22 0.3% 

MVe 2040 A1B 1443.9 3196.1 9.9 8.5 1443 16.5% 45 0.5% 

MVe 2040 A2 1496.2 3242.6 10.2 7.2 1356 15.5% 38 0.4% 

MVe 2080 B1 1430.7 3195.4 9.8 8.2 1639 18.7% 112 1.3% 

MVe 2080 A1B 1157.3 3186.3 7.9 7.1 2098 23.9% 533 6.1% 

MVe 2080 A2 1014.6 3201.9 6.9 6.7 2317 26.4% 804 9.2% 

 
 
Table 5.24. Future changes due to global warming in Burgos. Summer thermal comfort summary, warm 

discomfort assessed by ISO 7730 and EN 15251; detached housing case in cold continental climate. 

Summer adaptation 
models 

PMV ISO 7730 
Cat. C+ 

PMV ISO 7730 
Too hot 

EN 15251  
Cat. III + 

EN 15251  
Too hot 

 Num. 
hours 

Year % Num. 
hours 

Year % Num. 
hours 

Year % Num. 
hours 

Year % 

NVn present 17 0.2% 0 0.0% 0 0.0% 0 0.0% 

NVn 2040 B1 32 0.4% 14 0.2% 0 0.0% 0 0.0% 

NVn 2040 A1B 48 0.5% 24 0.3% 0 0.0% 0 0.0% 

NVn 2040 A2 38 0.4% 24 0.3% 0 0.0% 0 0.0% 

NVn 2080 B1 80 0.9% 33 0.4% 0 0.0% 0 0.0% 

NVn 2080 A1B 159 1.8% 129 1.5% 0 0.0% 0 0.0% 

NVn 2080 A2 195 2.2% 286 3.3% 0 0.0% 0 0.0% 

MVe Present 388 4.4% 364 4.2% 0 0.0% 0 0.0% 

MVe 2040 B1 231 2.6% 158 1.8% 0 0.0% 0 0.0% 

MVe 2040 A1B 278 3.2% 284 3.2% 0 0.0% 0 0.0% 

MVe 2040 A2 339 3.9% 284 3.2% 0 0.0% 0 0.0% 

MVe 2080 B1 437 5.0% 475 5.4% 0 0.0% 0 0.0% 

MVe 2080 A1B 387 4.4% 1124 12.8% 15 0.2% 0 0.0% 

MVe 2080 A2 357 4.1% 1368 15.6% 41 0.5% 0 0.0% 
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To understand better the future changes, the main cases were analysed for a typical summer 

week, comparing the present thermal response with the forecasted future scenarios.  

Firstly, the model with night time natural ventilation in the scenarios of 2040 evidenced small 

differences among them, see Figure 5.58. In 2080, all the scenarios showed an increase and the 

forecasted differences could be around 2 °C for warm days, as presented in Figure 5.59. 

 
Figure 5.58. Comparison between future scenarios of 2040 and present indoor temperatures  

with night time natural ventilation; detached house in Burgos, cold continental climate. 

 
Figure 5.59. Comparison between future scenarios of 2080 and present indoor temperatures  

with night time natural ventilation; detached house in Burgos, cold continental climate. 
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Regarding the second model, with MVHR and enhanced summer bypass operation, the 

behaviour of the solution is less effective. Figure 5.60 presents the comparison between the 

scenarios of 2040 and also includes the scenario of the present as a reference. The plot 

reinforced the findings of the global assessment and indicated that the capacity of cooling of 

this ventilation type appears to be less efficient than these scenarios of the close future, in 2040. 

The situation in 2080 seems to be considerably worse and increases of indoor temperatures by 

about 2-4 °C could be expected, as shown in Figure 5.61. 

 
Figure 5.60. Comparison between scenarios of 2040 and present indoor temperatures  

with MVHR and enhanced summer bypass; detached house in Burgos, cold continental climate. 

 
Figure 5.61. Comparison between scenarios of 2080 and present indoor temperatures  

with MVHR and enhanced summer bypass; detached house in Burgos, cold continental climate. 
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The details of the studied scenarios are presented in Figure 5.62 and Table 5.25 . 

 
Figure 5.62. Example of outdoor temperatures in summer days based on different  

future climate scenarios in Burgos, cold continental climate (data source IPCC and Meteonorm). 
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Table 5.25. Monthly summary of future climate scenarios in Burgos, cold continental climate (data 

source IPCC and Meteonorm). 

 
 

  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Present BURGOS

Monthly average DB temperature 3.6 4.9 8.2 10.1 14.6 19.6 21.7 21.2 17.3 12.9 6.8 4.0 12.1

Min. daily average DB temperature -3.2 -0.9 0.8 4.2 7.0 12.1 14.8 14.8 11.3 6.7 0.9 -2.5 -3.2

Max. daily average DB temperature 9.5 11.0 14.4 16.8 23.1 27.0 27.8 28.8 24.1 19.2 12.7 10.0 28.8

Monthly average Relative Humidity 76.6 67.7 63.7 60.8 60.3 51.7 44.4 45.8 53.5 65.2 72.2 75.2 61.4

Global horizontal solar radiation 98.6 109.3 174.4 209.2 256.0 297.1 328.0 286.7 229.4 152.5 102.9 92.3 2336.5

HDD (18.3) 456 375 313 248 128 27 10 12 56 170 347 443 2585

CDD (25.0) 0 0 0 0 0 3 8 9 0 0 0 0 20

2040 B1

Monthly average DB temperature 3.6 4.4 6.8 8.7 12.6 16.4 20.3 20.5 17.4 12.6 6.9 4.4 11.2

Min. daily average DB temperature -3.3 -1.1 -0.8 2.8 5.1 8.8 13.4 14.1 11.6 6.5 0.9 -2.1 -3.3

Max. daily average DB temperature 9.4 10.6 13.0 15.6 20.9 23.8 26.4 28.0 24.3 18.9 12.8 10.3 28.0

Monthly average Relative Humidity 90.9 86.7 77.4 76.3 73.3 70.8 60.0 62.6 69.1 79.4 87.6 90.1 77.0

Global horizontal solar radiation 101.1 109.3 178.9 216.3 262.6 306.7 334.8 295.8 229.5 163.0 99.6 92.6 2390.3

HDD (18.3) 457 390 357 289 181 79 20 18 54 177 344 432 2798

CDD (25.0) 0 0 0 0 0 0 2 6 0 0 0 0 8

2040 A1B

Monthly average DB temperature 3.9 4.7 7.1 9.0 13.0 16.8 20.8 20.9 18.1 13.1 7.2 4.6 11.6

Min. daily average DB temperature -2.8 -0.7 -0.5 3.0 5.5 9.2 14.0 14.5 12.2 6.8 1.3 -2.0 -2.8

Max. daily average DB temperature 9.8 10.8 13.2 15.8 21.6 24.1 26.9 28.5 24.9 19.3 13.1 10.5 28.5

Monthly average Relative Humidity 90.6 86.1 77.0 76.5 73.2 70.2 60.5 62.3 69.9 80.1 87.3 90.7 77.0

Global horizontal solar radiation 101.1 100.6 187.7 214.8 263.1 300.7 339.5 297.3 233.0 167.8 110.1 93.9 2409.6

HDD (18.3) 447 382 348 281 169 72 15 15 41 164 334 427 2695

CDD (25.0) 0 0 0 0 0 0 4 8 0 0 0 0 12

2040 A2

Monthly average DB temperature 3.8 4.6 7.0 9.0 12.9 16.6 20.7 20.9 18.0 12.9 7.1 4.5 11.5

Min. daily average DB temperature -3.0 -0.8 -0.7 3.1 5.3 9.1 13.9 14.5 12.2 6.7 1.2 -2.1 -3.0

Max. daily average DB temperature 9.6 10.2 13.2 15.9 20.9 23.9 26.9 28.5 24.9 19.2 13.0 10.4 28.5

Monthly average Relative Humidity 90.8 87.4 77.4 76.2 73.4 70.9 60.2 62.8 69.4 79.9 87.7 90.8 77.2

Global horizontal solar radiation 95.2 115.6 186.1 215.8 268.3 302.2 340.2 301.0 233.2 166.1 108.5 98.0 2430.3

HDD (18.3) 449 384 351 281 174 75 16 15 42 170 337 430 2724

CDD (25.0) 0 0 0 0 0 0 4 8 0 0 0 0 11

2080 B1

Monthly average DB temperature 4.1 4.8 7.3 9.2 13.6 17.3 21.3 21.5 18.5 13.3 7.4 4.9 11.9

Min. daily average DB temperature -2.7 -0.6 -0.3 3.3 6.0 9.8 14.5 15.1 12.6 7.1 1.5 -1.7 -2.7

Max. daily average DB temperature 9.9 10.4 13.5 16.1 21.9 24.6 27.4 29.1 25.3 19.5 13.3 10.7 29.1

Monthly average Relative Humidity 91.3 87.7 78.2 77.2 73.2 70.5 60.5 62.3 69.7 80.4 88.4 91.1 77.5

Global horizontal solar radiation 102.1 112.5 183.0 220.8 271.0 305.8 342.0 303.0 237.4 171.4 104.8 88.1 2442.0

HDD (18.3) 441 379 341 273 153 61 12 10 35 158 327 418 2607

CDD (25.0) 0 0 0 0 0 0 6 11 0 0 0 0 17

2080 A1B

Monthly average DB temperature 4.9 5.6 8.1 10.2 14.7 18.6 22.9 23.0 19.8 14.6 8.3 5.6 13.0

Min. daily average DB temperature -1.9 0.3 0.5 4.4 7.1 11.2 16.0 16.6 14.0 8.4 2.3 -1.0 -1.9

Max. daily average DB temperature 10.7 11.8 14.3 17.2 23.1 26.0 28.9 30.6 26.7 20.9 14.2 11.5 30.6

Monthly average Relative Humidity 91.3 87.6 78.7 76.8 73.2 70.8 60.2 62.3 69.2 80.4 88.1 91.1 77.5

Global horizontal solar radiation 95.8 106.8 186.3 220.3 275.9 312.4 348.0 309.6 243.2 174.1 111.1 98.1 2481.4

HDD (18.3) 416 355 317 243 124 39 5 3 17 120 301 394 2334

CDD (25.0) 0 0 0 0 0 1 16 22 2 0 0 0 41

2080 A2

Monthly average DB temperature 5.0 5.7 8.3 10.6 15.1 19.3 23.5 23.6 20.4 14.9 8.5 5.6 13.4

Min. daily average DB temperature -1.7 0.2 0.7 4.6 7.3 11.8 16.7 17.2 14.6 8.7 2.6 -0.9 -1.7

Max. daily average DB temperature 10.9 11.4 14.4 17.5 23.4 26.6 29.6 31.2 27.3 21.2 14.5 11.5 31.2

Monthly average Relative Humidity 91.4 87.9 78.8 77.0 73.2 71.0 60.2 61.4 69.9 79.5 88.6 91.0 77.5

Global horizontal solar radiation 107.5 113.3 190.8 219.7 283.2 314.9 349.5 309.8 248.6 174.7 109.4 90.3 2511.5

HDD (18.3) 413 354 310 232 114 30 2 1 12 111 294 394 2268

CDD (25.0) 0 0 0 0 0 2 23 28 4 0 0 0 57
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5.8.2. Attached single-family house in warm continental climate, Madrid 

The third and the last model analysed in the future climate change scenarios corresponds to the 

typology of attached single family houses with East West orientation. This case required the 

combination of all the solutions to provide good comfort without active cooling systems, as seen 

in Section 5.6.6. In this section, the expected future behaviour of this case is analysed in order 

to understand if in the future these typologies will be able to adapt to the predicted warmer 

climate. 

Firstly, the assessment of the number of warm indoor hours indicated that in the future the 

house will present considerably warmer conditions. This happened in all the climate change 

scenarios, including the optimistic calculations (B1 scenario) which stated increases of the 

number of hours over 25 °C and over 28 °C for 2040 and 2080. The warmest scenario (A2) 

indicated a very remarkable double number of warm hours and ten times more hours over 28 

°C, as shown in Figure 5.63. 

 
Figure 5.63. Evaluation of the future indoor temperatures in detached house model,  

based on IPCC climates of 2040 and 2080 in Burgos, cold continental climate. 

 

The study of thermal comfort by the PMV method suggested similar results with three times 

more discomfort in 2040 and five times more discomfort in 2080 in the average scenarios (A1B), 

see Figure 5.64. 
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outdoor running mean temperatures over 30 °C. Further studies shall be done to understand 
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the applicability of this method beyond this limit. For now, by extending the formulas of adaptive 

comfort beyond that limit, the observed indoor temperatures could be considered within the 

adaptive limits, as shown in Figure 5.65.  

 
Figure 5.64. Evaluation of the future thermal comfort based on PMV method in detached house model,  

IPCC climates of 2040 and 2080 in Burgos, cold continental climate. 

 

 

Figure 5.65. Evaluation of the future thermal comfort based on EN 15251 method applied for a detached 

house;  

IPCC climates of 2040 and 2080 in Burgos, cold continental climate. 

 

For more details, the results of indoor temperatures and thermal comfort are summarised in 

Table 5.26 and Table 5.27, respectively. 
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Table 5.26. Future changes due to global warming in Madrid; annual heating need and summer warm 

hours of detached case in warm continental climate. 

Summer adaptation 
models 

Annual 
heating 
demand  
(kWh) 

Annual 
solar g. 
wind.  
(kWh) 

Heating 
demand  
(kWh/
m²y) 

Max. daily 
heating 

load  
(W/m²) 

Num. 
hours t 
>25 °C 

Annual 
hours t 
>25 °C  

(%) 

Num. 
hours t 
>28 °C 

Annual 
hours t 
>28 °C  

(%) 

Limits PH 
 

2190.0 - 15.0 10.0 876 10.0% - - 

NVn present 2251.7 2675.3 15.4 9.2 1272 14.5% 80 0.9% 

2040 B1 1989.0 2712.9 13.6 8.5 1519 17.3% 275 3.1% 

2040 A1B 1813.9 2702.0 12.4 8.1 1664 19.0% 443 5.1% 

2040 A2 1886.0 2731.4 12.9 8.5 1623 18.5% 400 4.6% 

2080 B1 1755.2 2711.9 12.0 7.9 1799 20.5% 687 7.8% 

2080 A1B 1356.7 2778.3 9.3 7.3 2182 24.9% 1277 14.6% 

2080 A2 1232.2 2793.4 8.4 6.6 2349 26.8% 1115 12.7% 

 
 
Table 5.27. Future changes due to global warming in Madrid. Summer thermal comfort summary. Warm 

discomfort assessed by ISO 7730 and EN 15251; detached case in warm continental climate. 

Summer adaptation 
models 

PMV ISO 7730 
Cat. C+ 

PMV ISO 7730 
Too hot 

EN 15251  
Cat. III + 

EN 15251  
Too hot 

 Num. 
hours 

Year % Num. 
hours 

Year % Num. 
hours 

Year % Num. 
hours 

Year % 

NVn present 287 3.3% 269 3.1% 0 0.0% 0 0.0% 

2040 B1 356 4.1% 768 8.8% 0 0.0% 0 0.0% 

2040 A1B 264 3.0% 1046 11.9% 0 0.0% 0 0.0% 

2040 A2 294 3.4% 972 11.1% 0 0.0% 0 0.0% 

2080 B1 341 3.9% 1220 13.9% 0 0.0% 0 0.0% 

2080 A1B 365 4.2% 1753 20.0% 76 0.9% 0 0.0% 

2080 A2 614 7.0% 1679 19.2% 95 1.1% 0 0.0% 

 

After the global assessments, the case of Madrid was analysed for a typical summer week, 

comparing the present thermal response with the forecasted future scenarios.  

The near future scenarios of 2040 were compared in Figure 5.66, including the reference of one 

of the warmest weeks of the present summer. The values show small deviation from one 

scenario to another, and the differences are below 1 °C. 

The situation in 2080 is expected to become more varied, depending on the ratio of global CO₂ 

emissions. According to these scenarios, the indoor temperatures might increase between 1 °C 

in the most optimistic scenario and 5 °C in the worst one. In the worst case, the cooling capacity 

during night hours is significantly reduced, as shows the Figure 5.67. 
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Figure 5.66. Comparison between scenarios of 2040 and present indoor temperatures  

with MVHR and enhanced summer bypass; detached house in Burgos, cold continental climate. 

 
Figure 5.67. Comparison between scenarios of 2080 and present indoor temperatures  

with MVHR and enhanced summer bypass; detached house in Burgos, cold continental climate. 

Additionally, a typical summer week of the different scenarios was plotted in Figure 5.68 and 

the monthly climate details can be   viewed in Table 5.28. 
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Figure 5.68. Example of outdoors temperatures in summer days based on different future climate 

scenarios in Madrid, warm continental climate (data source IPCC and Meteonorm). 
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Table 5.28. Monthly summary of future climate scenarios in Madrid, warm continental climate (data 

source IPCC and Meteonorm). 

 
 

  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Present MADRID

Monthly average DB temperature 5.2 6.7 10.3 12.2 17.0 22.9 25.7 24.9 20.0 14.8 8.5 5.5 14.5

Min. daily average DB temperature -0.7 2.4 3.8 7.1 9.6 16.3 19.8 19.4 14.1 9.0 3.0 -0.8 -0.8

Max. daily average DB temperature 10.6 11.2 14.9 18.4 24.6 28.5 30.0 29.3 26.2 19.9 13.9 11.2 30.0

Monthly average Relative Humidity 5.2 6.7 10.3 12.2 17.0 22.9 25.7 24.9 20.0 14.8 8.5 5.5 14.5

Global horizontal solar radiation 132.6 138.3 205.8 234.5 261.8 291.2 321.9 286.4 227.3 163.6 125.7 101.1 2490.1

HDD (18.3) 407 325 249 185 71 4 0 0 15 113 294 398 2060

CDD (25.0) 0 0 0 0 0 17 46 32 1 0 0 0 96

2040 B1

Monthly average DB temperature 6.4 7.5 10.4 12.6 17.3 22.0 26.6 26.1 21.7 16.1 9.8 7.1 15.3

Min. daily average DB temperature 0.6 0.2 3.9 7.5 9.9 15.4 20.7 20.6 16.1 10.5 4.3 0.8 0.2

Max. daily average DB temperature 11.8 11.5 15.0 18.7 25.0 27.7 30.9 30.5 28.0 21.3 15.1 12.9 30.9

Monthly average Relative Humidity 77.4 74.8 67.5 69.9 66.2 63.0 53.0 55.0 62.4 69.9 76.3 79.0 67.9

Global horizontal solar radiation 136.4 125.1 224.7 210.9 286.0 310.5 318.0 286.3 228.0 171.0 116.9 93.4 2507.5

HDD (18.3) 369 304 244 172 65 7 0 0 5 75 256 347 1846

CDD (25.0) 0 0 0 0 0 11 64 54 7 0 0 0 135

2040 A1B

Monthly average DB temperature 6.7 7.8 10.7 12.9 17.7 22.4 27.3 26.7 22.4 16.6 10.2 7.4 15.7

Min. daily average DB temperature 0.8 0.3 4.2 7.9 10.2 15.9 21.4 21.2 16.7 11.1 4.7 1.1 0.3

Max. daily average DB temperature 12.1 12.1 15.3 19.1 25.4 28.1 31.7 31.1 28.7 21.7 15.7 13.2 31.7

Monthly average Relative Humidity 77.9 75.7 67.6 69.6 65.9 62.7 52.9 54.5 62.4 70.3 77.0 78.9 68.0

Global horizontal solar radiation 129.2 121.2 227.0 207.8 289.3 308.7 319.2 284.2 234.5 180.1 117.7 83.4 2502.2

HDD (18.3) 360 295 235 163 58 6 0 0 3 63 244 340 1768

CDD (25.0) 0 0 0 0 0 14 81 66 11 0 0 0 171

2040 A2

Monthly average DB temperature 6.8 7.7 10.7 12.9 17.5 22.3 27.2 26.6 22.3 16.4 10.0 7.2 15.6

Min. daily average DB temperature 0.9 0.2 4.2 7.8 10.2 15.7 21.2 21.1 16.6 10.8 4.5 0.9 0.2

Max. daily average DB temperature 12.1 11.6 15.2 19.1 25.2 27.9 31.5 31.0 28.6 21.6 15.5 12.9 31.5

Monthly average Relative Humidity 78.1 76.0 67.4 70.4 66.1 62.3 52.7 54.4 63.1 70.0 77.0 79.4 68.1

Global horizontal solar radiation 138.4 122.6 228.1 215.5 288.9 311.4 317.9 286.4 228.6 176.9 119.3 90.9 2524.9

HDD (18.3) 359 298 236 164 62 6 0 0 3 68 249 345 1788

CDD (25.0) 0 0 0 0 0 12 78 64 10 0 0 0 165

2080 B1

Monthly average DB temperature 7.0 7.9 11.0 13.1 18.3 23.0 27.8 27.3 22.9 16.9 10.4 7.7 16.1

Min. daily average DB temperature 1.1 0.6 4.5 8.1 11.0 16.5 21.9 21.8 17.2 11.4 4.9 1.4 0.6

Max. daily average DB temperature 12.4 11.8 15.6 19.4 25.9 28.7 32.2 31.8 29.2 22.1 15.8 13.3 32.2

Monthly average Relative Humidity 77.9 75.5 67.6 70.2 65.9 62.3 52.5 54.5 63.0 70.5 76.8 78.7 68.0

Global horizontal solar radiation 129.7 119.5 224.7 210.4 293.8 315.4 319.7 292.8 234.0 184.9 113.5 92.3 2530.6

HDD (18.3) 352 292 228 157 48 3 0 0 2 57 239 331 1709

CDD (25.0) 0 0 0 0 1 18 94 82 14 0 0 0 210

2080 A1B

Monthly average DB temperature 7.7 8.8 11.8 14.2 19.6 24.5 29.5 29.1 24.4 18.3 11.3 8.5 17.3

Min. daily average DB temperature 1.9 1.4 5.3 9.2 12.2 18.0 23.6 23.5 18.7 12.8 5.9 2.2 1.4

Max. daily average DB temperature 13.2 13.7 16.3 20.5 27.2 30.2 33.9 33.5 30.7 23.4 16.7 14.3 33.9

Monthly average Relative Humidity 77.9 74.9 67.8 69.8 65.6 62.4 52.6 54.4 62.9 70.2 77.1 79.2 67.9

Global horizontal solar radiation 129.3 126.8 228.8 218.5 297.7 323.5 326.6 292.4 237.7 183.4 120.2 97.5 2582.3

HDD (18.3) 328 266 203 127 31 0 0 0 0 33 210 306 1503

CDD (25.0) 0 0 0 0 3 34 143 128 27 0 0 0 335

2080 A2

Monthly average DB temperature 7.6 9.1 11.9 14.7 20.6 25.3 30.6 29.9 25.1 18.8 11.6 8.4 17.8

Min. daily average DB temperature 1.8 1.4 5.3 9.5 12.8 18.5 24.5 24.2 19.2 13.2 6.0 2.2 1.4

Max. daily average DB temperature 12.9 14.1 16.5 21.1 28.6 31.1 35.1 34.5 31.6 24.1 17.1 14.2 35.1

Monthly average Relative Humidity 80.2 76.7 69.1 71.4 66.4 63.0 53.1 55.0 63.6 70.7 77.3 79.3 68.8

Global horizontal solar radiation 133.4 125.6 231.3 218.7 298.7 322.6 326.4 295.5 238.2 185.1 117.4 95.4 2588

HDD (18.3) 334 258 201 123 29 0 0 0 0 32 205 308 1491

CDD (25.0) 0 0 0 0 3 35 148 132 27 0 0 0 346
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5.9. Conclusions 

The average models of Spanish single-family passive houses were defined (objective 5.1) 

through the details obtained in the review of the single-family passive houses in the country up 

to date. Three main cases were identified and during the tests a number of passive measures 

were implemented, including solar shading, orientation of the building and thermal mass. 

The analysis of the climatic areas showed large differences in the severities of winter and 

summer in Spain (Álvarez & Molina, 2016) (Royal Decree 314/2006, 2006). As the present study 

was centred on the regions where the heating need is a driving force for building design, the 

Mediterranean climate was not considered in the study. In order to be able to represent such a 

wide range of local conditions between the Atlantic coast and the continental areas, the coldest, 

the warmest and an intermediate locations were selected (objective 5.2). This way, the study 

was focused on: (i) Bilbao, as a coastal area with Atlantic climate, (ii) Burgos, as a cold area with 

cold continental climate and (iii) Madrid, as a city with a considerable heating need and also a 

significant presence of cooling need. 

The winter performance of the three models was evaluated with 5 different levels of thermal 

insulation of the envelope, using balanced thermal transmittance for the opaque elements, 

windows and thermal bridging. The results indicated that the requirements of passive house 

standard can be fulfilled in medium severity climates with approximately 15 cm in detached 

housing and 10 cm in attached housings. In the coldest area, these values would need a slight 

increase and would need 20 cm for detached housing and 15 cm for attached housing. This way, 

both the requirements for the heating demand and the heating load could be met with an 

average design (objective 5.3). 

The summer performance of the selected models was improved with the implementation of 

several passive measures (objective 5.4). The results confirmed that all the cases in the studied 

climates could completely avoid the use of active cooling, if the proper combination of 

measures is selected. 

The measures based on ventilation proved to have the highest capacity for passive cooling in all 

the locations. The best type of ventilation was found to be the use of long periods of natural 

ventilation during night hours. In combination with roof overhangs and certain amount of 

thermal mass, the natural ventilation could be sufficient in the three locations without the need 



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

334 

for additional shading on windows. The use of the MVHR unit with enhanced airflow during 

summer bypass could be beneficious in certain locations as well, but due to its limited cooling 

capacity it always needed to be combined with solar shading measures on the windows. In a 

similar way, the use of short periods of natural ventilation was very limited. These two types of 

ventilation were insufficient to regulate the comfort for the hottest weeks and so they should 

be considered as a complementary measure in combination with other passive cooling 

elements, like solar shading or thermal mass. 

The use of solar shading demonstrated to be critical in Madrid and Bilbao, which are in the 

intermediate and warm locations. Only in Burgos, according to the PMV method, solar shading 

was found possible to be removed while maintaining the warm discomfort hours below 3% of 

annual hours.. The passive cooling potential of roof overhangs was limited, but they proved to 

be useful in combination with thermal mass and natural ventilation strategies in all the locations. 

The use of automatic control for roller shutters didn’t show a clear benefit in the studied models 

and for the purpose of the study they were finally considered all the day-time closed at 80% of 

global solar reflectance.  

The use of thermal mass proved to be very useful to reduce the temperatures for the peak 

hours, reducing the too hot hours in combination with ventilation measures. However, the 

capacity to reduce the general trend of the indoor temperatures was very limited unless it was 

combined with long hours of night natural ventilation as a heat purge. In any case, the analysed 

increases of thermal mass were beneficious for all the tested present scenarios. 

The assessment done with the adaptive model of EN 15251 confirmed the large advantages of 

natural ventilation and showed how the majority of the combinations of measures could provide 

an optimal thermal comfort 100% of the time following the adaptation principles suggested by 

the standard (direct access to windows, activity adjustment, clothing and so on). These aspects 

shall be more clearly stated for the future users of passive houses, which often apply only 

reduced natural ventilation ratios and rely mainly on the MVHR operation. This was also seen in 

the monitored performance of the passive house of the present study, presented and analysed 

in Chapter 3. 

Regarding the overheating detection method of CIBSE TM52, Bilbao and Burgos presented 

similar results and low overheating risk, while Madrid presented considerably higher risk 

(objective 5.5). In these locations, the OH absence was considerably easy to achieve and it would 
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be sufficient with the use of either natural night ventilation, roller shutters or any combination 

of the measures. In Madrid, the situation was found to be more complex, and to avoid the OH 

risk, the combination of several measures would be necessary. Thus, apart from the combination 

of solar shading and ventilation, it would also be necessary to implement a considerable thermal 

mass in the outer walls and in the floor levelling to control the peak hot hours. 

Finally, with respect to the future climate, the selected cases confirmed a trend to increase the 

indoor temperatures in summer by about 1-2 °C by 2040 and around 2-5 °C by 2080. These 

increases can provoke considerable deterioration of the indoor environment and all the new 

designs should be aware of this reality, especially in warm continental areas like Madrid.  

Based on the findings of the present study, there is evidence that single-family houses in Burgos 

and Madrid will likely have to implement additional measures or active cooling systems in the 

upcoming years. Unless these climate scenarios are applied in the early building design, frequent 

indoor temperatures over 30 °C may be faced in the continental climate. 
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6. Conclusions and future work 

This work presents a complete review of the adaptation possibilities of single-family passive 

houses to the cool-temperate climates of Spain. The study monitored an on-use passive house 

for more than a year, in order to quantify the potential and limitations of passive design in this 

climate. As several summer performance issues were detected, a number of feasible 

improvements of ventilation and solar shading were tested in a calibrated building energy 

performance simulation model (BEPS).  

Later, these possible issues of local climate adaptation were analysed in some general cases 

extracted from the average features of Spanish passive houses built in recent years. The cases 

were analysed so that they would meet the principal passive house requirements and provide 

an excellent thermal comfort during all year, avoiding any risk of overheating. To reinforce the 

importance of this adaptation, the cases were tested again under the future climates of 2040 

and 2080, and the capacity of the proposed measures was compared with the present results.  

6.1. Research findings 

To achieve the goal of the study and to fulfil the objectives, the following questions were raised 

and answered. 

How can passive house design adapt to the cool-temperate climates in Spain, minimising the 

energy need and providing optimal comfort also in summer? 

 

The results of the study indicate that in order to adapt to the studied climates, present passive 

house designs should rely on more detailed solar gain calculations and implement solar shading 

devices as a primary safety measure.  

The use of natural ventilation should be encouraged, especially in the constructions with high 

thermal mass, because they need larger periods of heat purge. According to the results of the 

conducted simulations, the cooling capacity of the MVHR units with summer bypass in housing 

buildings is too low for the studied climates. 
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Is the performance of the passive house as good as it was expected, considering the heating 

operation, the performance of the thermal envelope, the operation of ventilation and the 

thermal comfort? 

 

The overall performance of the monitored passive house was positive. The measurements 

proved a very low energy demand of 17.6 kWh/m² with a slightly higher consumption than the 

PH limit. The initial heating system based on the pellet stove caused a gradient of temperatures 

among the rooms, especially in those ones which were farther away from the heat source. This 

problem was solved after the monitored period with the installation of supplementary electric 

heaters in the opposite side of the house.  

The study of the thermal envelope verified a high level of thermal insulation and a good quality 

of construction. The heat losses were quantified with direct measurements and the infrared 

thermography survey permitted the identification of moderate thermal bridges located mainly 

in the ground contact of the building walls. 

The MVHR unit demonstrated a good performance with good air distribution and a high recovery 

ratio of 86% of the sensible heat. The operation of the bypass was able to provide enough 

free-cooling during the majority of summer days. 

The full-year thermal comfort assessment based on PMV model indicated that 95.9% of annual 

hours the house was in acceptable values of temperature and RH. On the contrary, 3.7% of the 

hours the house was too warm, in other words, for 13 summer days. The assessment based on 

the adaptive method of EN 15251 showed some hours close to the upper limit, but the recorded 

temperatures didn’t mean any relevant discomfort. Thus, the occasional natural ventilation 

periods applied by the inhabitants to cool down the indoor was advantageous but insufficient 

to decrease significantly the indoor temperatures inside the PMV range. 

Would it be possible to implement non-invasive measures in the monitored passive house in 

order to reach an optimal thermal comfort during winter and summer without increasing the 

energy demand? 
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The implementation of additional solar shading and ventilation measures demonstrated to be 

sufficient to provide an optimal thermal comfort during all the year.  

The tested ventilation improvements indicated that the best option would be to apply natural 

ventilation during the night-time. The use of the MVHR with enhanced summer bypass at higher 

airflow would be insufficient to decrease the indoor temperatures due to its limited airflow, and 

the use of short periods of natural ventilation only during evenings would be also insufficient to 

cool down the house during the hottest days.  

The use of supplementary lightweight solar shading devices outside the windows could 

contribute to a significant reduction of the too-hot hours, but it would still need additional 

ventilation measures during the majority of the summer. This is probably related with the high 

thermal mass of this case study, which required considerable periods of ventilation to reduce 

the indoor temperatures. 

Which passive cooling measures would be more appropriate to be installed in this housing 

typology to reach an optimal thermal comfort during winter and summer in the 

cool-temperate regions of Spain? 

 

The measures based on ventilation proved to have the highest capacity for passive cooling in all 

the locations. The implementation of the most common passive measures into average 

typologies indicated that the PH limit of 10% of the hours above 25 °C is only reachable in the 

cold continental climate (e.g. Burgos). The other climates, namely warm continental climate (e.g. 

Madrid) and Atlantic climate (e.g. Bilbao), have considerably more difficulties to reduce the 

indoor temperatures and would require additional design changes. 

Regarding the typologies, the houses with their main openings to South wouldn’t need any solar 

shading measures on the windows and they could achieve the optimal thermal comfort only 

with night-time natural ventilation, roof overhangs and a small amount of thermal mass in the 

floors. On the contrary, the cases with significant openings in the West side of the house or the 

ones with low thermal mass would always require the solar shading of windows to be able to 

maintain the indoor comfort conditions. In many cases and locations, the use of high thermal 

mass could substitute the need of supplementary shading, but it could also maintain the indoor 

high temperatures if the users don’t use the natural ventilation frequently enough. 
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The study also determined the minimum levels of insulation. In the Atlantic areas and the warm 

continental areas they were determined as 10 cm and 15 cm for the attached and detached 

houses respectively, while in the cold continental areas they were calculated as 15 cm and 20 

cm respectively. On the other hand, the higher insulation levels showed subtle increases of the 

cooling need when increasing the thermal insulation together with double glazing. However, the 

cooling need was again reduced with the use of triple glazing which proved to cut down 

significantly the solar gains through the windows. 

The simulations with future climates evidenced a very significant increase of indoor 

temperatures by about 1-2 °C in 2040 and by 2-5 °C in 2080. Therefore, the present designs 

should be calculated with a larger margin of security to be able to adapt to the upcoming climate. 

 

6.2. Future work 

The future work arising out of this research is discussed by topics: 

Regarding the thermal comfort: 

- Compare the differences between the methods to identify the cold and warm seasons 

depending on the type of building, considering the type of use and the level of thermal 

insulation.  

- Conduct an enquiry among the inhabitants of passive houses, to investigate the habits 

of internal activity and the possible local adaptation to warm conditions with running 

mean temperatures over 30 °C. 

- Analyse the impact of lower internal gains in the future designs. 

 

Regarding the ventilative cooling: 

- Quantify the ventilative cooling potential for all regions in Spain, applying the methods 

outlined in (Kolokotroni & Heiselberg, 2015).  

- Evaluate the cooling effect by different possibilities of window openings as a guide for 

inhabitants about how to apply effective ventilation routines. 

- Study the cost-benefit of implementing automatic controls for the natural ventilation. 

- Study the existing models for real thermal mass activation in low energy houses. 
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Regarding the solar shading: 

- Analyse the potential of advanced solar shading measures to improve TC, such as 

venetian blinds with programmable angles. 

- Calculate the impact of solar shading operation schedules on indoor environment in a 

low energy demand housing with average features and indoor activity levels. 

 

Regarding the passive design: 

- Calculate the potential of the porch to harvest additional solar gains with an automatic 

control. 

 

Regarding the active systems: 

- Investigate the cost-efficient heating systems which can adapt better to the needs and 

features of this typology. 

 

Regarding the building monitoring: 

- Analyse the measured data to provide guidelines about the minimum number of sensors 

necessary in the future low energy housing monitoring. 

 

  



University of the Basque Country UPV/EHU  

Department of Thermal Engineering  

ENEDI Research Group 

 

344 

 



ADAPTATION OF SINGLE-FAMILY HOUSES TO THE nZEB OBJECTIVE IN COOL-TEMPERATE CLIMATES OF SPAIN

Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

References  |  345 

Nomenclature, list of abbreviations and acronyms 

ACH Air Changes per Hour 

BDT Blower Door Test 

BEPS Building Energy Performance Simulation 

CCP Climatic Cooling Potential 

CDD Heating Degree Days (base temperature of 25.0 °C) 

CHTC Convective heat transfer coefficient 

CNV Controlled Natural Ventilation 

CV(RMSE) Coefficient of Variation of the Root Mean Square Error 

DHW Domestic Hot Water 

DRT Dry-Resultant Temperature 

EPC Energy Performance Certificate 

GSHP Ground Source Heat Pump 

g-value % of solar radiation transmittance through glazings 

HDD Heating Degree Days (base temperature of 18.3 °C) 

HPSU Heat Pump Solar Unit 

HR Heat recovery 

IEQ Indoor Environment Quality 

MBE Mean Bias Error 

MVHR Mechanic Ventilation with Heat Recovery 

NV Natural Ventilation 

OH Overheating 

PE Primary Energy 

PHI Passive House Institutw 

PHPP Passive House Planning Package 

PMV Predicted Mean Vote (Fanger method of ISO 7730) 

POE Post-Occupancy Evaluation 

PPD Percentage of Dissatisfied (Fanger method of ISO 7730) 

PVC Passive Ventilative Cooling 

RH Relative Humidity 

RMT Running mean temperature (EN 15251) 
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SAP Standard Assessment Procedure 

SBEM Standard Building Energy Model 

TC Thermal Comfort 

TRM Running mean outside temperatures (adaptive method of EN 15251) 

U Thermal transmittance 

VC Ventilative Cooling 

Ψ Linear thermal transmittance of thermal bridges 
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Appendix I. Extended file of the monitored data 

Additional climate data of the location of the case study between 2012 and 2015: 

Years Average daily method ASHRAE method EUROSTAT method  
HDD 18.33 CDD 18.33 HDD65 CDD65 HDD CDD 

2012 2666.88 171.66 2590.83 227.97 2404.55 227.97 

2013 2695.73 138.49 2633.49 174.67 2462.88 174.67 

2014 2263.76 82.99 2261.64 133.47 2073.04 133.47 

2015 2516.53 176.47 2399.88 220.88 2195.30 220.88 

 

 
 

 
Figure I. 1. Daily HDD and CDD of the location of the case study. 
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Figure I. 2. Measured outdoor air conditions and solar global horizontal radiation,  

air dry bulb temperature (left side) and relative humidity (right side). 
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Figure I. 3. Measured indoor air conditions of the case study,  

average air dry bulb temperatures (left side) and average relative humidity (right side). 
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Figure I. 4. Measured façade outside surface temperatures,  

average of North, South, East and West facades. 
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Figure I. 5. Measured ceiling surface average temperatures (left side)  

and floor surface average temperatures (right side). 
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Figure I. 6. Measured partitions surface average temperatures (left side)  

and columns or pillars surface average temperatures (right side). 
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Figure I. 7. Measured north window frames surface average temperatures (left side)  

and window north glass surface average temperatures (right side). 
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Heater systems comparison: 

 

 

 
Figure I. 8. Measured thermal response of the house with distributed electric heaters. 
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Figure I. 9. Measured air stratification with distributed electric heaters. 
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Figure I. 10. Measured thermal response of the house with pellet stove heating. 
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Figure I. 11. Measured air stratification with pellet stove heating. 
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Figure I. 12. Monitored year of thermal comfort in average house, hourly diagram of PMV method. 
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Additional images of the case study and the installation of the sensors: 

 
Figure I. 13. Monitored house view of the Northwest corner. 

 
Figure I. 14. Monitored house view of the Southeast corner. 
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Figure I. 15. Detail the pellet stove heating on-use (right side). 

 
Figure I. 16. Detail of the meteorological station used during the monitoring. 
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Figure I. 17. Details of the monitoring installation process, living room air sensors. 

 

    
Figure I. 18. Details of the monitoring installation process. 
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Appendix II. List of single-family passive houses built in Spain 

Table II. 1. List of single-family PH dwellings in Spain, part 1 of 4 (data source PEP & PHI, 2017) 
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Optimisation of the energy demand and the thermal comfort by full-scale measurements 

and simulation assessments, with an insight into the global warming scenarios

Juan María Hidalgo Betanzos

 

Appendices  |  393 

Table II. 3. List of single-family PH dwellings in Spain, part 3 of 4 (data source PEP & PHI, 2017) 
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Table II. 4. List of single-family PH dwellings in Spain, part 4 of 4 (data source PEP & PHI, 2017) 
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