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Abstract

This paper presents a method for the identification of the “technology fronts”—core techno-

logical solutions—underlying a certain broad technology, and the characterization of their

change dynamics. We propose an approach based on the Latent Dirichlet Allocation (LDA)

model combined with patent data analysis and text mining techniques for the identification

and dynamic characterization of the main fronts where actual technological solutions are put

into practice. 3D printing technology has been selected to put our method into practice for its

market emergence and multidisciplinarity. The results show two highly relevant and special-

ized fronts strongly related with mechanical design that evolve gradually, in our opinion act-

ing as enabling technologies. On the other side, we detected three fronts undergoing

significant changes, namely layer-by-layer multimaterial manufacturing, data processing

and stereolithograpy techniques. Laser and electron-beam based technologies take shape

in the latter years and show signs of becoming enabling technologies in the future. The tech-

nology fronts and data revealed by our method have been convincing to experts and coinci-

dent with many technology trends already pointed out in technical reports and scientific

literature.

Introduction

Decision making in science and technology (S&T) is an uncertainty-plagued process that com-

bines the expertise and information internally available at the firm with the thorough analysis

of external variables that exert influence on the rate/direction of the evolution of technology.

The set of techniques and information sources that are put into practice with this purpose,

among others, form a well-developed academic and managerial discipline called Future-ori-

ented Technology Analysis (FTA) [1], which spans several activities such as technology fore-

sight, forecasting and technology roadmapping [2], all of which share the purpose of

optimizing decision making in S&T. Most of FTA combines eclectic quantitative and qualita-

tive information sources, patent data usually being a frequent choice among the latter. This
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SPAIN

Received: May 22, 2018

Accepted: December 21, 2018

Published: January 7, 2019

Copyright: © 2019 Garechana et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data used in this

study are third-party data from the Patseer

database. The instructions on how to access the

exact data used in the study are provided in the

Methodology section of the paper. This database

requires a subscription fee, but other patent

databases (Global Patent Index https://data.epo.

org/expert-services/index.html, Derwent World

Patent Index https://clarivate.com/products/

derwent-world-patents-index/) can be used to

http://orcid.org/0000-0002-1913-3239
http://orcid.org/0000-0002-4244-9098
https://doi.org/10.1371/journal.pone.0210441
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210441&domain=pdf&date_stamp=2019-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210441&domain=pdf&date_stamp=2019-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210441&domain=pdf&date_stamp=2019-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210441&domain=pdf&date_stamp=2019-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210441&domain=pdf&date_stamp=2019-01-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0210441&domain=pdf&date_stamp=2019-01-07
https://doi.org/10.1371/journal.pone.0210441
https://doi.org/10.1371/journal.pone.0210441
http://creativecommons.org/licenses/by/4.0/
https://data.epo.org/expert-services/index.html
https://data.epo.org/expert-services/index.html
https://clarivate.com/products/derwent-world-patents-index/
https://clarivate.com/products/derwent-world-patents-index/


paper presents a method for the identification of the “technology fronts” underlying a certain

technology, and the characterization of their change dynamics. We propose an approach

based on the Latent Dirichlet Allocation (LDA) model combined with patent data analysis and

text mining techniques for the identification and dynamic characterization of the main fronts

where actual technological solutions are put into practice.

What we understand by “technology front” could be described as follows: “core technologi-

cal solutions underlying certain device or broad development”. The improvement of complex

devices over time is often shaped by the incorporation/adaptation of new elements on the

device: for example, a new material is used, key features of design are changed, new sensors are

embedded and new control systems are put into practice. A good case can be found in the

automotive industry: the incorporation of more than 4km of electric wire brought entirely

new features to cars and increased their efficiency by gradually substituting previous mechani-

cal/hydraulic solutions, and wireless data transmission might shape the next generation of

devices to solve certain shortcomings of current automotive electric wiring-based systems [3].

In this work we aim to detect and characterize the main fronts of technological change that

characterize the evolution of a machine type that itself contains many devices that are evolving

themselves. What really makes a technological innovation unique, thus patentable, have to be

clearly stated in the patent claims: “patents claims are the heart of a patent (. . .) the claims

demarcate in words the boundary of invention (. . .) only the technology covered in the claims

is protected” [4]. For patents protecting a new 3D printer design, or any subset of components

(such as a particular feeder-heater-nozzle design), the claims should state the points where

technology has really changed with respect to prior art, and this is the textual field we propose

to analyze in this work to detect and characterize the “technology fronts” underlying evolution

in 3D printing technology.

3D printing technology is experiencing an explosion in the number of patents filed since

2013, according to the data retrieved using the query described in the “data download” section.

The number of simple patent families filed that year more than quadrupled the number of pat-

ents filed in 2012, and the average growth rate in the number of patents filed each year from

2013 to 2016 stands at a remarkable 75%, as shown by Fig 1. Several authors [5,6] suggest that

increasing sales, industry’s growing adoption and a boost in popularity have qualified 3D

printing technology as “emergent”, notwithstanding, the first functional solutions in 3D print-

ing date back 30 years.

Many authors trace the end of such “sleeping beauty” behavior back to the expiration of a

set of patents protecting key 3D printing technologies, the development of certain enabling

technologies and the high expectations on the possibilities of mass customization [7–10]. The

corporate strategy of patent holders and the limitations of the early machines in terms of

affordability, materials and printing quality are among other factors that could explain this

phenomenon. The current position of 3D printing technology in the classic technology life

cycle stages of emergence (or “introduction”), growth, maturity and saturation depends on the

approach chosen in order to define the boundaries of each phase in patent filing analyses.

According to Haupt [11], a strongly increasing number of annual patent filings characterizes

the “growth” stage, a situation where technology and market uncertainties have disappeared

and incremental innovations take the lead in the evolution of the technology: The “emergence”

stage is characterized by a slowly growing upward trend, and according to our data 3D print-

ing would have gone beyond this stage in year 2013. At this point it should be noted that an

increase in patents typically precedes the introduction of a new technology in the market [12],

so 3D printing technology can be considered an emerging technology when analyzing other

indicators such as product sales or adoption by industry. Other authors consider that the

emergence stage is characterized by a substantial increase in patent activity after a period
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characterized by a stable number of yearly patents [13,14], using this approach, 3D printing

technology could be considered an emerging technology that has just started its growth phase.

However, the influence of patent expiration on new developments in 3D printing [6–9]

may reoccur in the coming years, due to the recent expiration of certain patents on basic tech-

nologies in this field [15]. This would confirm our hypothesis that this technology is at the

beginning of a growth phase, possibly pointing at a rise in scientific, public and entrepreneurial

attention to 3D printing technology for the years to come. This combination of emergence and

multidisciplinarity makes 3D printing a fairly heterogeneous field where many techniques and

applications evolve at different paces, yet sharing the same broad technological concept, i.e.,

building an object by adding the material(s) that form that object on a layer-by-layer basis,

thus forming a common technological principle. These are a few of the facts that led us to

choose 3D printing to put our method into practice.

Another reason for choosing this field to conduct our study is the following: 3D printers are

devices formed by a wide array of mechanical and electronic components that aim at solving

technological challenges such as the processing of information for 3D layer-by-layer

manufacturing, the multimaterial processing capabilities, rheology problems, high precision

positioning technologies, adherence between layers, etc., thus being fertile in “technology

fronts” to be detected, that is to say, key points where technology improvements are taking

place, as explained in the paragraphs above. Last but not least, our research team is linked with

firms and maker communities in 3D printing that deliver the necessary expert assessment for

technology-specific analyses.

3D printing technology

The disruption that 3D printing technology is expected to bring is bound to transform busi-

ness models from the dependence of economies of scale and the massive outsourcing of pro-

duction facilities to a less wasteful, logistically far more efficient approach, based on mass

customization and the re-location of manufacturing centers near the main markets where

sales actually take place, thus giving a new boost to the principles of Just in Time production of

goods. In addition to this, the manufacturing of complex geometries would be cost-efficient

Fig 1. Evolution in the annual number of 3D printing technology patents (simple families) filed since year 2004. Screenshot of the number of patents filed each

year since year 2004, retrieved by running the query presented in the “data download” section on the Patseer database (query run on 19 November 2018). The years on

the x-axis correspond to the earliest priority year of the simple patent family. It should be noted that data corresponding to year 2017 might present a substantial

amount of upside variation due to database updates.

https://doi.org/10.1371/journal.pone.0210441.g001
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almost regardless of the manufacturing batch size, and materials wasted would be negligible

when compared to traditional subtractive manufacturing methods. A special socio-economical

challenge posed by the arrival of this technology will be the destabilizing effect of the deep

transformation—or sheer reduction—that traditional manufacturing labor force will have to

endure under this new paradigm [16,17]. Some authors even draw parallels between the irrup-

tion of the mp3 file format and the diffusion of Internet and the widespread adoption of 3D

printing technology, suggesting that the days of patent and other copyright protection systems

may be numbered [18].

In this section we will provide an overview of the main technologies that currently form the

state-of-art in 3D printing, using the standard terminology for additive manufacturing tech-

nologies defined by committees ISO/TC 261 and F42 from ISO and ASTM, respectively, and

published under the standard ISO/ASTM 52900:2015 [19]. This overview aims at giving a bird

eye’s view of the techniques forming the 3D printing field, more technical details about the

techniques described here can be found in the excellent review written by Ngo et al. [20].

VAT photopolymerization. Photopolymers are a particular type of liquid polymers that

polymerize (we could say solidify or harden, for 3D printing purposes) when exposed to visible

or ultraviolet (UV) wavelengths. The most frequent commercial materials used in this technol-

ogy are acrylates, epoxies and vinyl ethers, and well-known applications of photopolymeriza-

tion include the plastic coating of paper or cardboard and tooth fillings using dental

composite. The first patent of a 3D printing machine based on VAT photopolymerization,

titled “Apparatus for production of three-dimensional objects by stereolithography” was filed

in 1984 by Charles Hull, hence the popularity of the name “stereolithography” to refer to this

technology [21]. The typical design of a 3D printing machine based on this technology is

formed by a platform that controls the Z axis and a light source that can be directed to solidify

the polymer in the desired points on a layer-by-layer basis. The platform will move downwards

as the printing progresses, and once the product is finished the remaining polymer liquid in

the vat is evacuated. The original sketch (Fig 2) presented in the patent filed by Charles Hull is

a good example of the basic design of such devices.

Additional features of these devices often include a passing blade system to improve the

union between layers. In some cases an extra curing of the finished product is necessary for it

to achieve the desired mechanical properties [22]. This is one of the 3D printing methods

where the highest printing resolution can be achieved and a very promising technology for the

field of bioengineering, where fully customized implants can be built in an efficient manner

[23] as well as medical templates and biomodels for surgery preparation [24,25].

Material jetting. This technology follows a process similar to the conventional ink jet

printers, in fact, it is frequently found in the literature under the heading of “inkjet printing”.

Liquid materials with a varying degree of viscosity are deposited on a platform where they are

hardened, either by drying, cooling or chemical reaction (this is the case of concrete 3D print-

ers, for example [26]) or by curing with UV light. Most current industrial material jetting

printers use piezoelectric drop-on-demand (DOD) systems, instead of continuous flow sys-

tems [27]. Material jetting is the main technique for 3D printing using ceramic materials in

solution or colloidal form [20], the fabrication of geometrically complex bone-implants using

compatible biomaterials is one of the applications gaining traction in this technology [28,29]

Binder jetting. This technology is often named three-dimensional printing or 3DP, and

works by jetting a binding material on a certain area of a layer of powdered material, thus glu-

ing together the base material and forming a compact layer. The machine then deposits a new

layer of powdered material and the printing head deposits the adhesive material on the points

corresponding to the next layer, these steps follow each other until the product is finished.

Binder jetting devices usually have a mobile base platform (see Fig 3) in charge of determining
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the Z- axis position of the layer being printed. This method permits a greater range of materi-

als, including polymers, ceramics and metals, and is also suitable for fabricating multi-material

products that combine different materials on each layer, however, these advantages are offset

by the fact that it often produces poorer precision and surface finishes than material jetting,

and the resulting product is more porous, which decreases its mechanical properties. The

Fig 2. Sketch corresponding to the first VAT photopolymerization machine. Original sketch of the “apparatus for

production of three-dimensional objects by stereolithography”, extracted from the US patent US4575330A.

https://doi.org/10.1371/journal.pone.0210441.g002

Fig 3. Binder jetting system. This figure represents the binder jetting system method, where a binder is deposited on a

powdered material to create compact layers that give shape to the finished product. Source: [30].

https://doi.org/10.1371/journal.pone.0210441.g003
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fragility of the printed parts can be reduced by further finishing operations such as infiltration

[30].

Binder jetting is the most successful 3D printing technique in the pharmaceutical industry,

making it possible to customize key variables in drugs, such as release-characteristics, dosages

and drug combinations, among others [31,32]. Operation at room temperature also makes this

technique very suitable for building complete biostructures that embed both biological agents

and living cells [33].

Material extrusion. This process shares some technical similarities with the material jet-

ting technique but with the key difference of operating through a heated nozzle that merges

and extrudes a material that is typically fed in a filament (solid) format, as shown in Fig 4. This

technique is also known by the names “fused deposition modeling” (FDM) or “fused filament

fabrication” (FFF) and was first patented by Scott Crump in 1989 (US Grant US5340433A)

and commercialized by the firm Stratasys.

This is the most widespread and inexpensive (at least at basic level) process for 3D printing,

and after the main patents that protected the technology expired, a vibrant open-design com-

munity has been grouped in the RepRap project, an initiative aimed at creating an affordable

desktop manufacturing system that would enable the individual to self-manufacture a wide

range of devices [35]. At a basic level this technique is inexpensive, but the accuracy and den-

sity of the manufactured products are usually below the levels that can be achieved with other

3D printing processes, even though the competitiveness of FDM is improving rapidly [36].

The thermoplastics Acrylonitrile Butadiene Styrene (ABS) and Polylactide Acid (PLA) are the

most common materials used in FDM, however, the simplicity and affordability of this tech-

nique begs the development of new materials that would expand its application domain

beyond the thermoplastics. Several studies have been published on the mechanical properties

of ABS composites using both metallic and non-metallic elements, typically reporting poorer

mechanical properties but improved thermal conductivity, dielectric permittivity and radia-

tion shielding features in some metal-ABS composites [37,38]. The possibility of manufactur-

ing sintered ceramic and metallic parts has also been studied; in this case the feedstock for the

FDM process is usually formed by powdered ceramic/metallic material bound together in an

organic matrix. After the part is printed, the organic binder is removed and sintering and/or

infiltration treatments are used to finish the part [39]. The use of biomaterials in FDM printing

techniques is mainly aimed at building biological scaffolds, commonly using polycaprolactone

(PCL) and bioactive glass composites to build a structure that acts as an interface for facilitat-

ing the regeneration of cellular tissues. The majority of applications rule out directly incorpo-

rating living cells or biological agents to the printing material due to the high temperatures

during the extrusion process [33].

Powder bed fusion. Several techniques that share common elements are grouped under

this category: All powder bed fusion processes work on a powdered layer of the feedstock that

will be selectively melted or sintered, on a layer-by-layer basis, until the finished product is

formed, and blades or rollers (see Fig 5) are generally used for distributing the powder once

the previous layer has been finished. Gibson [40] distinguishes between the laser-based and

the electron beam-based techniques: Electron beam based techniques can only be used with

metals, since the processed material must be conductive, while laser based techniques, in addi-

tion to metals, can also be used with ceramics and polymers. Electron beam techniques offer a

more energy-efficient process but trail laser techniques in resolution and surface finishing

quality.

Laser techniques are often divided into selective laser sintering (SLS) and selective laser

melting (SLM) techniques, depending on the degree of melting achieved on the powder parti-

cles. Most commercial processes can be classified as “liquid phase sintering–partial melting”
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(corresponding to the most typical SLS methods) and “full melting” (corresponding to SLM)

categories, but depending on the binding mechanism “solid state sintering” and “chemically

induced binding” can also be defined [41]. Powder bed fusion techniques have been success-

fully used to produce metallic components with mechanical properties comparable to those

manufactured by traditional means, however, steep temperature gradients and high cooling

rates in the printing process can substantially alter the properties of the printed product [42].

The processing of biomaterials using SLS techniques has also produced highly satisfactory

results, particularly in applications requiring high product resolution [43]. The range of metal-

lic and ceramic materials that can be used as a feedstock for powder bed fusion techniques is

Fig 4. FFF printing system. Diagram showing the basis of the FFF technique. Source: [34].

https://doi.org/10.1371/journal.pone.0210441.g004
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highly dependent on the melting point, particularly in SLM techniques, which are based on

the complete fusion of the materials being processed [20].

Sheet lamination. Sheet lamination differs from the rest of additive manufacturing tech-

niques explained in this section in the fact that the feedstock is provided to the process in the

shape of fully finished sheets that must be joined together. The most basic technology for sheet

lamination is the laminated object manufacturing (LOM) technique, which directly uses adhe-

sive materials or simple mechanical means to join the material sheets together. This technique

includes several sub-classifications, depending on whether the material layers are feed to the

process in their final shape or not (“bond then form” vs “form then bond”) [44]. Ultrasonic

additive manufacturing (UAM) is used for metallic material sheet lamination, and is based on

the sequential bonding of metal foils using ultrasonic metal welding, often requiring further

mechanical processing of the welded foils by CNC milling [20]. Ultrasonic consolidation is

also a promising technique for achieving the embedding of composite materials in a metal

matrix, avoiding some of the disadvantages of melting and casting metals [45,46].

Directed energy deposition. The directed energy deposition technique uses a laser or

electron beam in order to melt a material and shape a part on a layer-by-layer basis. The key

difference between this method and the powder bed fusion method lies in the fact that in this

case the material is not pre-laid, but is simultaneously deposited and melted on a surface, thus

no powder bed is required. This method can be used with polymers, ceramic and metallic

materials as long as it is based on a laser device, given that electron beam based devices can

only work with conductive materials. The feedstock can be fed in powdered or wire form, wire

is more convenient to store and process, but processing conditions are decisive to achieve the

desired quality, with wire tip position, feed-rate and direction, laser spot size and laser power

being some of the variables with higher impact on the resulting quality of the process. The

applications based on powder are more frequent partly due to greater possibilities for using

powdered additive materials [47].

The processing material can be any metal powder that is weldable [49], and the feeding sys-

tem can be coaxial to the laser or side-fed by using one or several nozzles, as shown in Fig 6.

This technique is suitable for producing finished parts, but one of its key advantages lies in the

possibility of printing on elements that are already built, thus many directed energy deposition

applications are focused on restoration or cladding [20,50]

Barriers and improvement points. Despite already being a “hot topic” in the world of

manufacturing technologies, according to a study published by PricewaterhouseCoopers [51]

actual real-world implementations of 3D printing technology in manufacturing industries are

predominantly (48.8%) located in prototyping and experimental facilities, while 13.2% of

Fig 5. Selective laser sintering process. Schematic representation of the selective laser sintering process. Source:

Materialgeeza /Wikimedia commons.

https://doi.org/10.1371/journal.pone.0210441.g005
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surveyed firms use this technology for both prototyping and production purposes and only

9.1% of firms use 3D Printing solely for manufacturing. The areas presented in Table 1 are

considered future improvements that should occur in 3D printing in order to seize the multi-

ple opportunities that this technology has to offer [52].

When non-adopters were asked about 3D printing technology, the most cited reasons for

not entering additive manufacturing were the cost of printers (42.1%) and the lack of internal

expertise to fully exploit this technology (32.2%), followed by the uncertainty about the quality

of printed parts (33,1%) and the slowness of printing process (25.6%). It is worth noting that

the limited amount of materials suitable for 3D printing scores in fifth place (22.3%) [51]. The

nature of these problems affects many parts and processes in the 3D printer and shows the

transversality of the solutions that will be required. While both printers and printing materials

are subject to limits based on physics, software improvements are set to introduce transversal

Fig 6. Sketch of a multiple nozzle direct energy deposition process. Schematic representation of a 2-nozzle, powder-

based direct energy deposition process. Source: [48].

https://doi.org/10.1371/journal.pone.0210441.g006

Table 1. Key points to improve in current state-of-art 3D printing [52].

AREA KEY POINTS

Performance Increased printing speed.

Increased resolution.

Possibility for autonomous operation.

Multi-material

printing

Incorporation of multiple materials in the same object, including composites combining

plastic and metallic materials [8].

Finished products Ability to print fully functional and active systems that incorporate many modules, such as

embedded sensors, electronics, etc.

Ease of use Suppress sources of error and reliability failures, such as support structure generation, part

orientation, auto-calibration.

Software Ease of use for design & operation

Optimization for accuracy

Generation of printing files directly from existing objects or 2D images

This table explains some of the trends with higher influence on the developments in 3D printing.

https://doi.org/10.1371/journal.pone.0210441.t001
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developments that could accelerate the path to extensive implementation of 3D printing tech-

nology in many applications. Geometrically complex, multi-material product printing is a spe-

cific case where software solutions can add the ultimate edge to already available high-

precision printing techniques [53], in addition to many successful applications of 3D printing

to medical fields, thanks to the development of software solutions able to generate 3D objects

directly from data obtained by tomography or magnetic resonance [54].

On the new material development side, there are also significant research fronts dealing

with the development of new materials for 3D printing, particularly in metals. Metal printing

is in many cases restricted to aluminum and brass in desktop printers, due to the high melting

points of industrial-grade metals such as high tensile steel. Some authors state that this limita-

tion could be overcome in the future by using nanoscale-sized metal particles, which fuse at

dramatically lower temperatures as the particle size becomes smaller than 50 nm [52].

Improvements in the optical properties of the powder used (e.g., absorption, reflection and

transmittance) are also decisive for achieving this purpose [55].

Technology analysis

Technological knowledge is a vital support for strategy, innovation and operational processes

at firms. The analysis of technology is underpinning management of technology both at micro

(firms) and macro (R&D policies) levels, the information contained in patents being one of the

crucial information inputs of such systems, both due to the wealth of information they contain

and the availability of data and methods to extract activable information for pertinent decision

making. The analysis of patent portfolios can also give relevant insight into the R&D goals pur-

sued by competitors [56,57].

Understanding of the dynamics of technological change and the forecasting of future

changes is another interesting output of patent analysis. Benson and Magee [58] proposed a

method for estimating the rate of technological progress in a particular domain, using patent

data. Those domains with higher a progress rate are deemed—at least temporarily—to domi-

nate the competitive markets except for a few resistant niches, this evidences the potential of

quantitative technology analysis for understanding the future of technology [59]. The different

stages (emergence, growth, maturity and saturation) of the technology life cycle can also be

identified using patent data, as shown by Gao et al. [60].

While many relevant S&T questions can be addressed by exploiting the structured data

present on patents, there is a vast wealth of information available therein in the form of textual,

unstructured information. Text-mining techniques allow the structuration, cleaning and fur-

ther processing of semi-structured and unstructured textual data in order to make them suit-

able for feeding “conventional” data-mining procedures that would enable the extraction of

relevant knowledge from data [61]. Natural Language Processing (NLP), term consolidation,

thesaurization and noise-removal techniques are among the most frequent steps in text mining

processes applied to textual information contained in abstracts, titles or claims of patents

[62,63]. The review conducted by Abbas et al. [64] is recommended reading for an extensive

description of the main types and purposes of text-mining analysis applied to patent data.

Methodology

Data download

The first step of this study required the building of a dataset containing the patents related to

3D printing technology. Initially, the approach of downloading the full B33 subclass “additive

manufacturing technology” present in the IPC classification scheme was considered, however,

a large number of patents simply describing objects that could be 3D printed fall into this
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category, thus not being descriptive of the 3D printing technological developments we were

looking for. A deeper look into the subclass description shows that “this subclass is for obliga-

tory supplementary classification of subject matter already classified as such in other classifica-

tion places, when the subject matter contains an aspect of additive manufacturing”, thus

confirming the presence of undesired records in this approach. The conventional method of

building a query was put into practice instead, leading to the following query, adapted to the

syntax of Patseer patent database [65]. The time limits were set in accordance with the filing of

the first—one may even say foundational—patents in 3D printing technology [10]:

TA : ððthree w0 dimens� w0 print�Þ OR ð3D print�Þ OR ðadditive w0 manuf�ÞÞ AND PRD
: ð½1985 � 01 � 01 TO 2017 � 12 � 31�Þ

These terms were looked for in patent’s title and abstract fields, retrieving 22034 simple

families of patents (from this point forward we will interchangeably use the term “patents”,

referring to simple families of patents as returned by Patseer database) that were first filed (pri-

ority date) between years 1985 and 2017. This query was run on days 22, 23 and 24 of February

2018. The distribution of patents across the years was highly uneven; very few patents in 3D

printing were filed in the 80’s and 90’s in contrast with the boom that took place from 2013

onwards. A review of the earliest patents led us to conclude that technology development was

relatively stagnant during that period and that probably no significant information is lost by

aggregating the patents corresponding to early years. Table 2 shows the time intervals that

were set for studying the evolution of technology fronts across time:

As previously explained, patents contain vital information items for addressing several

issues concerning technology evolution. The very core of the patent in the event of litigation or

prosecution lies in its claims: these are textual sentences defining critical elements of the patent

and usually the primary subject of examination. It seems reasonable to posit that patent claims

could be the sentences that convey more information about the key aspects where the pro-

posed technological solution adds value, and an appropriate information field for identifying

the technology fronts underlying 3D printing, by means of text-mining.

Text mining procedure

The dataset built in the previous step contains key information about the technology fronts

underlying 3D printing techniques, but it is necessary to separate the wheat from the chaff in

order to detect the main components or areas in which technological advance has occurred.

Topic modeling is a machine learning technique that deals with the problem of automatically

classifying sets of documents into themes, where each of the documents under study consists

of a mixture of topics. In addition to this, each document has a “gamma” value for each topic,

Table 2. Time intervals set for the analysis.

YEARS NUMBER OF PATENT FAMILIES

2017 2987

2016 6558

2015 5827

2014 3659

2013 1623

2006–12 1000

1985–2005 380

This table shows the time intervals set for this study and the number of patent families corresponding to each interval

https://doi.org/10.1371/journal.pone.0210441.t002
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that could be interpreted as the proportion of words from each document that are generated

from that topic [66], which notably improves the subsequent process of interpretation and

labeling of topics [62,67]. Topic modeling has led to satisfactory results in automatic classifica-

tion of scientific publications [68] and the robustness and limitations of the method for several

types of data have also been tested [69]. The R package “topicmodels” was used in this study

for fitting a Latent Dirichlet Allocation (LDA) model using the Variational Expectation-Maxi-

mization (VEM) algorithm [70].

The input for the LDA analysis is a document-term matrix containing the number of times

each term occurs in the claims of each patent. Claims are a free text field, so a thorough text-

mining cleaning process must be conducted in order to remove pronouns, adjectives and com-

mon-use terms such as “invention” that, being predominant in term frequency, are useless for

interpreting the topic structure of data. Our text-mining process is described in Fig 7.

A first step consists in transforming patent claims using a proprietary NLP/Words algo-

rithm in version 10.0 of Vantage Point (VP) text mining software [71] for sentence splitting

and part-of-speech (POS) tagging. This step produces a list formed by the relative frequency of

words and the POS identification of each word (noun, adjective, adverb, verb), while removing

pronouns and other textual noise. However, from a semantic point of view the same word

could be present more than once in this list due to word inflections, so the next step consisted

in a cleanup in order to merge the inflected forms; this was done using the “list cleanup” com-

mand in VP, this process generates a thesaurus that contains the information of the inflected

terms that have been merged into a single standard form. This same thesaurus has been used

to standardize the terms present in the full text of patent claims. At this point we decided to

exclude the verbs from the analysis, since verbs strongly need the presence of the adjacent

words for their interpretation—this is the case of “comprise” or “move”, for example—while

nouns, adjectives and adverbs, indicating material types, properties or machine parts have a

more straightforward interpretation. This bag-of-words (BOW) approach inevitably involves

the loss of the information contained in the syntactical structure of text, a loss that can be par-

tially reduced by using higher order n-grams or complementing the BOW by using proximity

indicators that capture the information contained in the syntactic order of the words present

in text. However, the option of using N-grams in the subsequent steps was discarded because

of the sparsity of resulting document-term matrices, which produced meaningless results.

The last step of the process consisted of a Term Frequency—Inverse Document Frequency

(TFIDF) analysis, this process weighs a set of terms present in a collection of documents (pat-

ent claims, in this case), penalizing the terms that occur in many documents (these have a like-

lihood of being general terms, with no particular relevance to characterize the contents of a

document) and giving advantage to those terms that occur frequently, but are not widespread

in the document collection [72,73]. We pragmatically set a minimum TFIDF threshold of 0.03

to discard the “general” terms and took the top 300 terms—according to the number of patents

where that word exceeded such a threshold—to build the document-term matrix with which

Fig 7. Text mining process. Diagram showing the text-mining steps leading to obtaining the document-term

matrices. This process is replicated for each time interval.

https://doi.org/10.1371/journal.pone.0210441.g007
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to feed the LDA analysis. This process was replicated for each time interval described in sec-

tion “data download”.

The authors recommend using the R packages “openNLP” [74] and “koRpus” [75] for

reproducing the text mining steps that in this study have been conducted using VP proprietary

software.

Topic analysis and characterization

The application of the LDA model requires setting the desired number of topics in advance.

The output of the LDA showed differences between time intervals, partly due to the different

sample size of each interval (see the reference Tang et al. [69]) nonetheless we detected that the

more straightforward interpretation of topics was achieved using 7 topics for most of the inter-

vals (see Fig 8). The interpretation of the topics was conducted combining the analysis of the

terms and patents that had the higher beta/gamma values (top beta word list for words,

gamma higher than 0.5 for patents), on each topic. As explained in “text mining procedure”

section, the R package “topicmodels” produces an estimation of the likelihood of words (beta)

and documents (gamma) being generated in each topic. Fig 8 describes this process and shows

the number of topics that were set for LDA analysis in each time interval.

At this point of the analysis we are interested in characterizing the behavior of the technol-

ogy fronts detected by using topic modeling. While some technology fronts can be reasonably

adjusted to the quandaries of a certain technique in 3D printing (see results section) we expect

to find transversal fronts that refer to technical elements that are present in a variable propor-

tion across several patents which may not have these transversal elements as a core contribu-

tion. In this paper we propose a data subsetting method based on the gamma coefficients

returned by the model, so we can build samples of patents in which claims have the higher

probability of focusing on the technical element we wish to characterize. After interpreting the

topics in each interval, we built several sub-datasets (one per topic and time interval) consist-

ing of the patents that had a gamma coefficient equal or higher than 0.5 on each topic. Accord-

ing to our method, these datasets condense the patents that more clearly represent the essence

of each technology front. Hereafter we will use the expressions “technology front” and “topic”

indistinctly.

Fig 8. Topic modeling and sub-dataset building process. Diagram showing the process followed from the document-

term matrices obtained by text mining to the building of sub-datasets containing the core information to characterize

the technology fronts. The number of topics obtained for each time interval is shown.

https://doi.org/10.1371/journal.pone.0210441.g008
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Technology change characterization

A few topics had ambiguous interpretation and were discarded from this analysis, and seven

clearly defined topics were identified that had a remarkable continuity across the analyzed

time intervals, thus allowing the analysis of technological change over time. As previously

explained in the “topic analysis and characterization” section, we built several databases for

each time interval, each of the databases containing the patents that had a gamma factor higher

than 0.5 on a given topic. We propose the following set of indicators based on patent data in

order to study the evolution of technology fronts over time, the word in brackets is the abbrevi-

ation we chose for each indicator:

• Number of forward citations per patent (FORPAT): It can be stated that a certain correlation

exists between the citations a patent receives and its technological impact on a particular

field [59,76,77], or even on the economic value of the patent [78].

• Average age of backward citations (YEARBACK): Domains that cite more immediate pat-

ents should have higher rates of technological progress [79], as demonstrated by Magee &

Benson [59].

• Patent international classification codes (IPCPAT, IPCNEW): Patent classification analysis

can be used to detect important aspects of technological evolution such as the interdisciplin-

arity, which could lead to improved technological outcomes [59,77,79,80]. We propose an

approach based on the analysis of the amount of unique IPC codes (at group level) per patent

present on each technology front (IPCPAT) and the % of new IPC codes emerging for each

time interval (IPCNEW). To qualify as “new IPC”, each of the IPC’s is tested against the

cumulative IPC’s corresponding to previous years, so technologies with longer trajectories

will have a significantly lower IPCNEW value than recently emerged technology fronts. A

more accurate perception about the object of study change dynamics is achieved by compar-

ing the technologies at the same point of their trajectories.

We complement these indicators with an additional text-mining study of technology

changes. With this purpose in mind, we replicated the text-mining steps explained in the “text

mining procedure” section on each of the sub-datasets, in order to identify the key terms that

returned a TFIDF value higher or equal to 0.03 in at least one patent. In addition to this, the

terms that were not present in at least 5% of the patents of the sub-dataset were removed. The

terms in this list were arranged according to the number of patents where they got a TFIDF

higher or equal to 0.03, in decreasing order, so the most relevant and significant terms were at

the top of that list. Comparing these lists across time for each technology front could give us a

measure of the rate of technology change therein. This was done by building a vector term

were the terms were weighed according to the inverse value of their position in the list

described above. This process is outlined in Fig 9.

These term vectors were built for each technology front and time interval, thereby

allowing us to detect changes in the relevance of technological concepts over time. Terms

that change their rank in the term vector from interval T1 to T2 will see their weight (1/n)

changed. Terms that disappear from interval T1 to T2 (they do not exceed the TFIDF > =

0.03 and relative 5% presence threshold) get zero weight in the term vector corresponding

to T2. This method gives a quantitative proxy of the technology change taking place in

each topic by calculating the Euclidean distance between vectors corresponding to conse-

cutive time intervals (TERMVEC). TERMVEC is a proxy to detect changes in the compo-

sition and relevance of the top concepts dominating a technological area. Moreover, we

add another indicator to measure the % of unprecedented terms (terms occurring for the
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first time on a technology front) corresponding to each time interval. Only the terms that

exceed the TFIDF and relative presence threshold are considered, so these concepts satisfy

the dual condition of relevance and novelty (NEWTERM). A persistent and higher than

average presence of these new terms is a signal of technology change over time [81]. Given

that terms from each time interval are compared with the cumulative amount of terms

present in previous intervals, comparisons between technology fronts should be made at

the same point of maturity. Technologies generally have a higher chance of having many

new terms in their early years of development.

It should be noted that the analysis of each technology front using these indicators is per-

formed on a relative basis with respect to the values produced by the rest of the fronts. To be

persistently above or below the average value will be the determining factor to analyze the

influence of each variable on the rate of change of a given technology front.

Results & discussion

The first feature concerning technology evolution in the 3D printing field to draw our atten-

tion was the evolution in total patent number shown in Table 2. The annual patent filings have

been growing at an average rate of 65% from year 2013 to 2016, with this rate dramatically

dropping in year 2017: that year added just under half of the patents added the year before. A

re-run of our query as of 14 May 2018 (Patseer database is updated weekly with new additions/

modifications of contents) confirms this slowdown but moderates the drop, 2017 patent filings

fall 37% when compared to 2016 data. According to plain patent production, there is enough

evidence to consider that 3D printing may be achieving maturity in some of its main

technologies.

The LDA model has produced coherent results by setting 7 topics for most of the time

intervals analyzed. As explained in the “methodology” section, topic interpretation is consider-

ably eased by the beta/gamma values associated with every word and patent in the dataset,

which reflect the probabilities of such words or patents being generated from that topic. Fig 10

shows the 7-topic structure corresponding to data from year 2014. The terms with higher

probability (beta) of being generated in each of the topics are listed.

We found an interesting pattern in data that at the same time enabled us to conduct a tech-

nology change analysis: there is a stable set of technology fronts (topics) that can be detected in

several consecutive time intervals. Fig 11 shows the full list of identified technology fronts and

the time span each of them is present.

The following is a brief description of each front, according to our analysis of the terms and

patents with highest beta/gamma on each. The names in brackets are the abbreviations for

each front:

Fig 9. Process for building the term vectors. The information contained in the sub-datasets built in the previous step

is text-mined in order to extract the key concepts therein and term vectors are built for each time interval, which will

allow us to conduct a comparative analysis across time.

https://doi.org/10.1371/journal.pone.0210441.g009
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• Printing materials (PRINTMAT): Patents on new materials for 3D printing, including com-

posites and mixtures of elements, with a description of physicochemical properties.

• Stereolithography (SLA): Devices involving a full array of photo-curing technologies, its raw

materials (mainly polymeric resins), apparatus design, light sources and methods for obtain-

ing products using this technology.

• 3D printing data (3D DATA): Data obtaining, processing and data input for 3D printing

purposes. Automatic obtaining of printing data from 3D models or 2D images. Scanning.

Data transfer systems.

• Printing head (PRINTHEAD): Patents heavily related with printing head configurations,

temperature, feed and other control-related issues and designs, including multi-nozzle and

anti-obstruction designs.

• Multilayer printing (MULTILAYER): Printing methods involving multi-layer technology,

mainly either involving printing with different materials or making layers—surface treat-

ments included—on a preexisting, not necessarily 3D printed material.

• Mechanic transmission & positioning (T&P): Patents dealing with precision positioning of

parts/printing head, step-by-step motor elements and the mechanic transmissions used in

3D printing technology.

Fig 10. Topic structure corresponding to year 2014 data. 7-topic solution produced by LDA model with data

corresponding to year 2014.

https://doi.org/10.1371/journal.pone.0210441.g010

Fig 11. List of technology fronts. Labels of the technology fronts detected in the sub-datasets and the time span each

technology front is present.

https://doi.org/10.1371/journal.pone.0210441.g011
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• Laser/electron beam melting & sintering (LASERBEAM): Both melting and sintering-based

3D printers (and the parts thereof) aimed at metal/composite material printing. Both laser

and electron beam based devices are present.

• Powdered materials: A topic present only in 1985–2005 year interval, mainly dealing with

powder-based 3D printing techniques with a noticeable presence of medicine-release

systems.

• Electronic control systems: User-machine interaction devices and systems for automatic

control of various aspects of 3D printing machines or networks formed by them. Topic pres-

ent only in year 2017.

Experts confirm the coherency of the technology front structure present in our data, corrobo-

rating that topic modeling has unveiled both main technologies behind 3D printing and critical

elements of these devices that strongly influence the success of developments in this industry. As

explained in the “methodology” section, our next step consisted in building sub-databases for

each topic, containing the set of patents that had a gamma higher or equal to 0.5. This data subset-

ting allowed us to conduct a highly-focused technology change analysis on each topic. Technology

fronts “Powdered materials” and “Electronic control systems” were excluded from this part of the

analysis due to lack of observations, so subsequent steps of the study refer to the remaining 7

fronts that show certain continuity. Another fact that should be noted is the absence of the SLA

front in some of the time intervals. After considering its removal, we opted for including it in the

technology analysis for the following reasons: First, the topic is very straightforwardly interpreted;

our data clearly shows that this is a neatly defined technology front in 3D printing. Second, we

think that it is advisable to leave room for a certain amount of variability when using dimensional-

ity-reduction or other heuristic techniques on time series: temporal gaps should be allowed and

the focus should instead be placed on the broader picture.

The analysis of the forward citations per patent on each dataset (FORPAT) shows a down-

ward trend across the entire interval analyzed, for all the technologies: this was something to

be expected since recent patents tend to have fewer citations than older ones. In order to ease

the comparisons between technology fronts we normalized each front’s FORPAT dividing it

by the average FORPAT for each time interval. Data points above one (red dashed line) show

receiving higher than average citation during that period (Fig 12), there were no citations

received for any of the fronts in year 2017.

Fig 12. FORPAT for each technology front. Evolution of the FORPAT indicator for each technology front,

normalized. Points above the red dashed line indicate higher than average forward citations.

https://doi.org/10.1371/journal.pone.0210441.g012
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The T&P front clearly stands out as the technology front with a higher number of citations

per patent for the entire time interval where this front is present. As discussed before, this indi-

cator is considered as a proxy for technological impact. In our context, this could mean that

transversal developments in precision mechanical elements are of key importance for the

development of 3D printing technology. This is a technological feature directly related to the

resolution of the printed object, and a key enabling technology (among others) when printing

complex geometries. Furthermore, PRINTHEAD is also cited above average, and it is related

with technical features similar to those of the T&P front, particularly considering the maxi-

mum printing resolution achievable with the device. According to our data, these two trends

would indicate an evolution of technology closely pursuing higher resolution printing tech-

niques, perhaps to the detriment of other improvement areas. The spike in relative citations

for LASERBEAM front is also remarkable, a sign that should be further studied as more data

become available. On the other side, MULTILAYER front consistently performs below aver-

age, pointing at a decrease in the technological impact of layer-by-layer based multimaterial

printing technologies, including surface treatments based on 3D technology.

An analysis of the average age of the citations made by the patents on each technology front

(YEARBACK) is shown in Fig 13, the bars show the average age of citations made in each time

period. Values below these bars indicate that the technology front is citing more recent patents

than the average corresponding to that time interval.

When patents corresponding to a field tend to cite more recently developed technologies, it

is usually interpreted as a sign of increased rate of technology change. T&P technology front

cites more recent developments across all the time intervals analyzed, thus complementing the

“high relevance” signal returned by this front with FORPAT with an “increased rate of change”

indicator, as shown by YEARBACK. 3D DATA, as to be expected from a strongly software-

based technology front, remains below average with the exception of a spike in year 2017. On

the contrary, MULTILAYER and SLA show relatively old citations when compared to the rest

of fronts, pointing at the possibility of stagnation of these fields. Both LASERBEAM and

PRINTMAT show a persistent “modernization” of their citation patterns, further research

could reveal if this correlation is due to the development of new metal/ceramic materials for

laser/electron beam 3D printing.

The interdisciplinarity of a technology front is also an interesting factor to analyze, since

the biggest opportunities for innovation often emerge from the interaction of different

Fig 13. YEARBACK for each technology front. This figure shows the evolution of YEARBACK indicator for each

technology front. Data points above the bars indicate older than average backward citations.

https://doi.org/10.1371/journal.pone.0210441.g013
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technical fields. Here we base our analysis on two indicators, the number of unique IPC codes

per patent (IPCPAT) on one side, and the % of new IPC codes (IPC codes not present before,

IPCNEW) that are unique to each time interval on the other. Figs 14 and 15 respectively show

the values of these indicators over time, the bars indicate the average value of each indicator

for each interval.

The technological diversity indicator IPCPAT behaves as expected: the predominantly

mechanical technology fronts (PRINTHEAD, T&P) are well below the average while MULTI-

LAYER and PRINTMAT are above, probably due to the variety of materials and techniques

that these technology fronts involve, which increase the total number of unique IPCs present

in the technology front. LASERBEAM is also above average across all the intervals, indicating

a variety of technologies and materials forming part of this front. Despite being on the average

of the rest of technologies, the interdisciplinarity in SLA shows a spike in year 2017 that will be

corroborated by other variables detailed further on in this study.

As explained before, it is logical to find a decreasing trend on the IPCNEW indicator in all

technologies, given the increased difficulty over time for an IPC to qualify as “new”. However,

some interesting conclusions can be drawn from Fig 15.

Fig 14. IPCPAT for each technology front. This figure shows the evolution of IPCPAT indicator for each technology

front. Data points above the bars indicate higher than average IPC’s per patent rates.

https://doi.org/10.1371/journal.pone.0210441.g014

Fig 15. IPCNEW for each technology front. This figure shows the evolution of IPCNEW indicator for each

technology front. Data points above the bars indicate higher than average incorporation of new IPC’s to the technology

front.

https://doi.org/10.1371/journal.pone.0210441.g015
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While IPCPAT gives information about the interdisciplinarity of a given technology, IPC-

NEW informs about the level of novelty of the diversification taking place in that technology.

This helps us to put the increase in multidisciplinarity of LASERBEAM and PRINTMAT into

context: Multidisciplinarity is increasing, but it does so mainly by spreading the technology

fields (IPC) that were already present in these fronts. According to our data, MULTILAYER is

above the average in both multidisciplinarity and the incorporation of technologies from new

fields, thus confirming the technological dynamism of this field. The evolution of 3D DATA

may evidence an increasing trend of incorporating new fields into its technical base, but more

data is needed to support this point. Finally, T&P stands out as the technology front that is

clearly below average on both interdisciplinarity and incorporation of new fields, thus proving

the highly specialized nature of this front. Note that SLA exhibits the same spike we detected

on IPCPAT.

This study also proposes a text mining approach for characterizing the technological change

(TERMVEC, NEWTERM). The results of calculating TERMVEC are presented in Fig 16.

The analysis of distances between term vectors sends mixed signals, but we can observe that

MULTILAYER is showing certain changes in the concepts it deals with, this observation is

coherent with the trend shown by this front in the IPCNEW indicator. If we omit the overall

front spike in year 2016 then 3D DATA and T&P are also above the average in term distance.

Data points corresponding to year 2017 seem to confirm this behavior, but this result needs to

gain consistence in the light of more data. SLA is above average in this indicator, which is coin-

cident—once more—with the signals of technology change sent by previous indicators.

The analysis of NEWTERM (Fig 17) shows that the disparity of concepts unveiled in T&P

front is not due to the massive incorporation of new terms. This behavior is also coherent with

the “specialization” features of this front revealed in the previous analyses.

The 3D DATA front may tell a different story, given that both text-mining indicators show

above the average technology change. PRINTMAT behavior is similar to that of 3D DATA in

NEWTERM evolution, but the erratic behavior of the former in TERMVEC indicator makes it

difficult to diagnose the changes this field is undergoing. Looking at SLA data, we again get a

red flashing light marking a substantial transformation taking place in this field.

Conclusions

This paper describes our approach for the detection of core technological solutions—which we

call “technology fronts”—underlying certain device or broad development (3D printing has

Fig 16. TERMVEC for each technology front. This figure shows the evolution of the TERMVEC indicator for each

technology front. Data points above the bars indicate higher than average Euclidean distance between term vectors.

https://doi.org/10.1371/journal.pone.0210441.g016
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been the choice, as explained in the introduction) and the characterization of their dynamics

of change across time. After retrieving a dataset containing 3D printing patents from database

Patseer, we designed a text-mining procedure that allowed us to identify the most relevant

concepts these patents dealt with, according to the statements contained in their claims. These

terms were crossed with patents to build term-document matrices corresponding to a set of

time intervals that span from year 1985 to 2017. These matrices were analyzed using a topic

modeling technique, which has shed light on the technology fronts being developed under the

broad field of 3D printing. We found that some of these fronts are in part coincident with the

main taxonomies of typical devices in the 3d printing industry, while others describe “hot

points” where engineering efforts are put into practice to improve critical aspect of the devices.

In order to study the behavior of these technology fronts, and considering the data-features of

transversal developments, we opted for a subsetting strategy based on the gamma values

returned by the topic modeling solution for each patent, so we could build sub-datasets con-

taining the patents in which claims were clearly focused on the topics identified by our

approach. Metrics built on patent data were used to characterize the rate of change of technol-

ogy fronts, analyzing each of these on a relative basis with respect to the values produced by

the rest of the fronts.

The conclusions derived from our work could start by describing the features of the more

design related-electromechanical technology fronts underlying 3D printing, identified as T&P

(transmission and precision positioning technologies) and PRINTHEAD (design, control and

mechanics of printing head) fronts. These fronts show above average technological relevance

(FORPAT) and a low multidisciplinary profile, according to almost all indicators. This could

also be interpreted in terms of “high specialization” of these technology fronts. Our conclusion

is that fast, radical technological transformations are not taking place on these fronts and data

does not show evidence of any change in this trend. In spite of this, many other developments

may be dependent on the improvement of these technologies, given the vital importance of

these elements on the printing resolution capacity, and the increasing demand for geometri-

cally complex, micron-accurate printing of parts. The “enabling” nature of these fronts would

therefore explain their relevance.

A very different pattern is found in MULTILAYER. This is a technology front weak in rele-

vance that cites seemingly outdated sources (YEARBACK) but shows very clear signals of

Fig 17. NEWTERM for each technology front. This figure shows the evolution of NEWTERM indicator for each

technology front. Data points above the bars indicate higher than average presence of new and relevant terms.

https://doi.org/10.1371/journal.pone.0210441.g017
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undergoing multidisciplinary change, confirmed by both patent and text-mining analyses. We

believe that the signals of high dynamism detected on this front are probably related with two

of the future priorities for 3D printing described in Table 1, namely the use of multiple print-

ing materials on the object being printed, and the capacity of 3D printers to produce finished

products such as more-or-less complete printed circuit boards. According to our data, technol-

ogy change rate is high on this front and significant future innovations can be expected to

come from it. A milder but similar behavior is detected in 3D DATA, text-mining indicators

corroborate the trend shown by IPCNEW in the latter stages of this front. In addition to this,

the citation patterns also point at a field prone to change. 3D DATA also has a direct impact

on the software priorities cited at Table 1 [52].

The analysis of LASERBEAM technology front is conditioned by the scarcity of data avail-

able due to its “novelty”: following our method this front is first detected in year 2014, precisely

the year in which many laser-sintering patents expired [10,52]. The considerable technical

challenges for processing metal and ceramic materials in 3D printing could in part explain this

novelty, but the development of this technology front is directly linked with future goals of 3D

printing technology such as multimaterial and finished product printing. Our analysis, limited

as it is due to the reduced amount of data available, simultaneously points at an increase in rel-

evance and a progressive modernization of the citations (as shown by FORPAT and YEAR-

BACK). This simultaneity indicates that in the future this front may present some of the

enabling characteristics that we attributed to PRINTHEAD and T&P in our conclusions. As

with these fronts, LASERBEAM shows signs of specialization, despite being more multidisci-

plinary by nature.

Few conclusions can be extracted from the analysis of PRINTMAT, given the mixed signals

produced by our indicators. The highly multidisciplinary nature of this front led us to think

that a certain amount of technology changes may come from technical areas that fall beyond

3D printing, therefore not captured by our query.

The SLA front shows very interesting behavior. This is a clearly defined technology front,

the interpretation of which did not raise doubts when it was present in an interval, however,

its presence is temporarily interrupted in interval 2006–12 and it finally disappears from our

model from year 2015 onwards. An analysis of the data shows relatively high values across

time in some variables related with technology change (TERMVEC, NEWTERM, IPCNEW),

combined with a noticeable spike in year 2015 in IPCPAT, NEWTERM AND IPCNEW.

Experts in the field (stereolithography) and our own research suggest that this technology may

be undergoing a pivotal change in the dominant technology from ultraviolet light to liquid

crystal display based devices, increased speed and reduced cost being some of the advantages

of this innovation [82–84]. Such radical changes can significantly alter the vocabulary describ-

ing the technology, thus distorting the results of our text-mining based approach, particularly

when patents corresponding to the “old-school” technology get mixed in with the patents of

the new—noticeably different—technology. We may be at this point regarding SLA

technology.

We have presented a reproducible method for studying the underlying technologies that,

step by step, advance a device or broad technology (in this case, 3D printing) from early imple-

mentations to “hot technologies”, and finally to widespread adoption. The technology fronts

and data revealed by our method have been convincing to experts and coincident with many

technology trends already pointed out in technical reports and scientific literature. The limita-

tions of our approach include those inherent to every text mining study: the extraordinary

amount of noise present in data and the influence that a moderate number of observations can

have on the results produced by the method, as shown in the SLA case.
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The authors would like to finish this section with the following sincere and perhaps slightly

disappointing sentence stated by Jaffe and Fogarty [76]: “Many of the important concepts in

the economics of technological change are fundamentally unobservable”. This sentence is rig-

orously true, and we think that it could not be otherwise, given the extremely multivariate

nature of technological change, and the inherent immensurability—incidentally admitting

that there are certainly several “unknown unknowns” involved—of many of these variables.

We would like to instill the above stated conclusions with a humble admission of this fact.
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