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Abstract 

Paper microfluidics technology requires effective handling and control of fluids, and this remains 

as a significant obstacle for their accessibility by end-users, inhibiting their transition from the 

laboratory into the market. Here, the synthesis, characterisation and performance as negative 

passive pumps of cholinium based poly(ionic liquid) hydrogels are presented, for the manipulation 

of fluid flow in microfluidic paper-based analytical devices. The hydrogel was able to direct the 

fluid flow preferentially, and prevent fluid from flowing in other directions, thus opening 

possibilities for effective fluid flow manipulation in µPADs. Moreover, the hydrogel ‘passive 

pump’ improves the water retention capacity of the µPAD by a factor of nine when compared to 

the bare µPAD. Furthermore, the operational lifetime of this µPAD configuration was greatly 

increased by the integration of the hydrogel passive pumps. 
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1. Introduction 

The field of “Lab-on-a-Chip” (LOC) has an inherently interdisciplinary nature that requires input 

from widely differing knowledge domains to develop novel analytical platforms. The greatest 

potential of these systems is the integration of multiple functional elements into a small platform 

to generate truly sample-in/answer-out systems [1]. The design, fabrication, fluid control, sample 

handling, integration and analysis techniques are under continuous development and significant 

research is still needed to improve the capabilities of these platforms [2].  

The critical need of a large variety of high performance components for fluid control and transport 

such as mixers, actuators, separators, valves and pumps leads to high production costs for these 

microfluidic devices. Therefore, despite the significant advances achieved in the microfluidics 

field, the number of commercially available products based on microfluidics devices and 

components remains quite low regardless of few exceptions like the home pregnancy test kit, 

microarrays and some medical diagnostics devices with very particular applications [3]. In other 

words, the increase in production cost of a device results in the decrease of their market adoption 

possibilities, where penetration of microfluidics into applications with significant socio-economic 

impact has been restricted almost entirely to single use devices (disposables) rather than 

applications that require continuous long-term monitoring approaches.  

Consequently, “Lab on a paper” has been developed to provide an answer to the need of simple, 

cheap and autonomous devices, which could be able to reach the end users easily [4]. They exhibit 

not only most of the same properties as classical microfluidics, but also the strength of a well-

focused commercialisation path [5]. Paper is considered as a highly attractive and promising 

substrate material for microfluidics due to its extremely low cost and ubiquity, as well as its great 

mechanical properties comprising flexibility, lightness, variable thickness, and liquid transport and 

separation capabilities [4]. Microfluidic paper-based analytical devices (µPADs) are a new group 

of analytical instruments that demonstrate an innovative low-cost platform technology for fluid 

handling and analysis, providing simple fabrication and operation, thus enabling a wide range of 

applications. For instance, the possibility of analysing complex biochemical samples within one 

analytical run was recently demonstrated with the incorporation of several fluidic operations like 

transportation, sorting, mixing and separation, performed in the device [6].  

Paper is made of cellulose fibres, which are the driving force for the wicking of fluids by capillary 

action. Therefore, there is no need for external pumps to provide fluid transport through the paper, 



unlike the traditional microfluidic devices. However, this advantage comes with a drawback. 

Isotropic wicking behaviour of paper and fluid transportation by any exposed surface area makes 

accurate control of the fluid transport together with flow control to be highly challenging and 

complicated [7, 8]. As a result, µPADs need ways to implement effective manipulation and control 

of fluid behaviour through paper. Because of this, significant obstacles are generated in the 

reproducibility during device fabrication, and performance, precluding their production in large 

volumes. Hence, fluid control in paper microfluidic devices is currently one of the main 

investigation paths for researchers interested in developing new capabilities in µPADs. 

In order to achieve better flow control in microfluidic paper devices, several patterning processes 

such as photolithography [9], ink jet printing [10] and wax printing [11], using hydrophobic 

materials, were adopted. They were developed as the first step to generate operative µPADs but 

they are not sufficiently proficient to provide proper fluidic control in the device. Therefore, fluidic 

switches, microvalves, timers and micropumps integrated into µPADs can provide fluid control in 

the channels, as well as minimising dead volumes. The first microfluidic switch in a µPAD was 

introduced by Li et al. [12] by applying pressure, manually, to allow or block the fluid flow. Later, 

Whitesides’ group developed a pressure sensitive valve with a more complex mechanism in a three 

dimensional paper based microfluidic device [13].  Fu and her team [14] demonstrated that the 

time to deliver multiple fluids can be partially controlled and modified by designing different path 

lengths from each inlet and by drop-casting different fluid volumes to each inlet. Later, 

Houghtaling et al. [15] developed an innovative shut-off valve in the form of a dissolvable bridge 

structure enabling self-delivery of different fluid volumes from a common inlet to different 

pathways in a paper-based device. Other dissolvable fluidic restrictors, made of sugar, were 

introduced by Lutz el al. [16] and by Jahanshahi-Anbuhi et al. [17] using a dissolving polymer, the 

main disadvantage of these dissolvable restrictors is that the sample gets polluted and so the 

chemical and physical characteristics of the sample are modified. More recently, Toley et al. [18] 

developed a toolkit of paper microfluidic valves using movable paper strips and fluid-triggered 

expanding elements. 

In this regard, stimuli-responsive gels are receiving considerable attention in microfluidic devices, 

due to their autonomous response towards changes in their local environment [19, 20]. They are 

considered smart materials since they are able to carry out functions by weak changes in their 

surroundings without the need of any human intervention [21]. Owing to their physical or chemical 



characteristics, these gels can endure controlled and reversible shape changes in response to 

external stimuli (magnetic, electric field, temperature, light, pH, solvent composition, etc.) [22-

24].  

Smart hydrogels consist of three-dimensional hydrophilic polymer networks capable of absorbing 

or releasing large amount of water in response to an external stimulus, mainly pH, light or 

temperature, generating an abrupt change in their volume. When the stimulus is removed, the gel 

returns back to its original configuration, which means that the volume change is usually reversible 

[25]. These properties have inspired scientists to integrate hydrogels within microfluidic systems 

in order to achieve fluidic control and manipulation [26-31]. In paper deceives, little work has been 

carried out on the integration of these type of materials for fluid control. For instance, Niedl et al. 

[19] made the use of stored chemicals possible by utilising responsive hydrogels as fluid reservoirs 

in µPADs. The controlled release of the hydrogel fluid was achieved by an external stimulus, 

temperature, enabling multi-step sequences of chemical reaction on a µPAD. Another example of 

the use of hydrogels on a µPAD to manipulate the fluidic flow is the study of Yang et al. [20]. 

They used target-responsive hydrogels to mediate fluidic flow and signal readout in a paper-based 

point of care assay designed for simultaneous detection of multiple targets. 

Recently, ionogels have been used within microfluidic devices as actuators [32-35]. They are a 

new class of stimuli-responsive polymer gels with an ionic liquid (IL) within their polymer 

matrixes where the ionic liquid can enhance the mechanical strength and the physical robustness 

of the gel [34-36]. Moreover, the possibility of tuning the chemical and physical properties of the 

ionogel by changing the ILs enables precise control of the actuation in the microfluidic devices [2, 

37]. In our previous work, we integrated ionogels into µPADs for fluidic flow manipulation as 

passive pumps [38] and later as negative passive pumps to drive the liquid flow towards the 

direction of the pump [39]. These types of configurations open the possibility to detect multiple 

analytes sequentially by circumventing the main µPAD channel’s wicking force, without the need 

to design complicated device configurations. 

Despite the great potential of ionogels as smart materials for fluid control in µPADs, their 

performance is not very good for long term and continuous operation, therefore other materials 

could also improve µPAD performance, such as superabsorbent polymers, namely superabsorbent 

poly(ionic liquid)s (PILs). PILs are ILs that features a polymerisable group in the cation, the anion, 

or both. By synthesising PILs, the typical properties of ILs are transferred to the polymeric 



material, including high chemical and thermal stability, ionic conductivity, and highly tunable 

structures [40-44]. 

Here, we report the synthesis and thermal characterisation of a novel cholinium based crosslinked 

poly(ionic liquid) hydrogel, the integration of the hydrogel in a µPAD and the performance of the 

hydrogel as a negative passive pump to control liquid flow and storage of fluids in the µPAD.  

 

2. Materials and Methods 

2.1 Materials and reagents  

Choline chloride ≥ 98 % (ChoCl, BioReagent, suitable for cell culture, suitable for insect cell 

culture), Potassium 3-sulfopropyl acrylate (KSPA), polyethylene glycol diacrylate (Mw ~ 320, 100 

ppm MEHQ as inhibitor) (PEG250), 2-Hydroxy-2-methylpropiophenone 97% (HMPP), ethanol 

(Chormasolv®, HPLC grade, ≥ 99.8 %) were bought from Sigma Aldrich® and used as received. 

Dimethyl Sulfoxide (DMSO) was HPLC grade and used as received. Deionised water (18.2 

MΩ·cm-1) (DI water) was purified using a Merck Millipore Milli-Q Water Purification System. 

For the visual monitoring of the liquid flow, red, yellow and blue food dyes (McCormick, Sabadell, 

Spain) were used. 

2.2 µPAD fabrication  

Whatman Filter paper Grade 1, wax printer XEROX ColourQube8580 and a hot plate (Labnet 

International Inc., USA) were used in order to fabricate the PADs. The design of the devices was 

carried out with the software application AutoCADTM. Adhesive Research, Ireland, generously 

provided the pressure sensitive adhesive layers. The µPAD consists of a single channel (32 mm 

length and 1.5 mm width) with the inlet at the middle of the channel (6 mm radius dimension) and 

two outlets (10 mm radius dimension) situated at the same distance from the inlet. 

2.3 Synthesis of ChoSPA ionic liquid monomer 

Cholinium sulfopropyl acrylate (ChoSPA) was synthesised by dissolving 7.5 g of ChoCl together 

with 16.2 g of KSPA (1.3 molar equivalents) in 20 mL of DI water (Scheme SI-1). The reaction 

mixture was magnetically stirred at room temperature for 72 h. Following this, it was poured into 

a beaker and moved to a vacuum oven, which was kept at 45 °C and 200 mbar for 32 h. This 



resulted in a crystalline deposit forming at the bottom of the beaker. To finalise the crystallisation 

process, the beaker was kept for further 48 h in a vacuum oven under normal conditions of 

temperature and pressure. The resulting ChoSPA crystalline product was extracted using absolute 

ethanol, which was poured into the beaker, followed by magnetic stirring and gravity filtration of 

the resulting heterogeneous mixture. The extracted solution was concentrated by rotary 

evaporation at 40 °C, followed by complete overnight drying using a high vacuum line (0.5 mbar). 

The resulting viscous, translucent white coloured product was obtained with a yield of ~ 60 %.  

ChoSPA – 1H-NMR δH (400 MHz): 1.98-2.05 (m, 2H, CH2), 2.88-2.92 (p, 2H, CH2), 3.08 (s, 9H, 

CH3), 3.38-3.41 (p, 2H, CH2), 3.91-3.95 (m, 2H, CH2), 4.15-4.19 (t, 2H, CH2), 5.84-5.87 (dd, 1H, 

CH), 6.05-6.12 (dd, 1H, CH), 6.29-6.34 (dd, 1H, CH). 

2.4 Synthesis of the cholinium PIL hydrogel discs for swelling and thermal characterisation  

For the fabrication of ChoSPA hydrogel disks, 0.238 g of ChoSPA (800 µmol) were mixed with 

0.238 g of DMSO:DI water 1:1 mixture, 3.2 µL of HMPP (20 µmol) and 6 µL of PEG250 (16 

µmol), respectively. The mixture was mechanically stirred until fully dissolved. Following this, ~ 

5 µL aliquots of monomer mixture were pipetted in circular poly(dimethylsiloxane) moulds 

(Sylgrad®-184, Ireland) with a diameter of 3 mm and a depth of 1 mm. The polymerisation was 

done in a UVP CL-1000 Ultraviolet Crosslinker curing chamber using a wavelength of 365 nm at 

a power level of 3.5 mW cm-2 for 30 min. 

2.5 Swelling studies 

Equilibrium swelling studies were carried out at room temperature. The freshly polymerised 

hydrogels were firstly weight and then immersed in DI water for swelling. The hydrogel was then 

removed from the swelling medium at 30 s time intervals and weighed after all excessive solution 

on the surface was blotted. The equilibrium swelling ratio (SR) was calculated according to the 

following equation (eq. 1):   

𝑆𝑅 =
𝑊𝑠−𝑊𝑖

𝑊𝑖
                                                                              (eq. 1) 

where ws is the weight of the swollen hydrogel at time t and wi is the initial weight of the 

polymerized gel. Data presented was the mean values of triplicate measurements.  



A single exponential model (eq. 2) was used to determine the swelling rate constant for the 

ChoSPA hydrogels: 

𝑦 = 𝑎(1 − 𝑒−𝑘𝑡) + 𝑏                                                              (eq. 2) 

where y is the swelling ratio, a is a scaling factor, k is the first order swelling rate constant (s-1), b 

is the baseline offset, and t is time (s).  

2.6 Thermal characterisation of the hydrogel 

The thermogravimetric analysis was made using a TA Instruments Q50 Thermogravimetric 

Analysis instrument. The temperature program used consisted of a temperature ramp between 

room temperature and 500 °C in 10 °C min-1. The measurement was done in a N2 atmosphere at a 

flow rate of 50 mL min-1. This ensured that oxidation events did not occur during the 

decomposition phase.  

3. Results and Discussion  

 

3.1 ChoSPA hydrogel characterisation 

 

The cholinium PIL hydrogel was synthesised following the protocol described in the experimental 

section. Using the cholinium sulfopropyl acrylate ionic liquid monomer (ChoSPA) and 

polyethylene glycol diacrylate (PEG250), a crosslinked polymer network was generated; see 

Figure 1(a). The hydrogel was photopolymerised in 3 mm disc shapes (Figure 1(b)) or as 500 µm 

thin films (Video S1) that can absorb large quantities of water. The resulting hydrogel discs are 

shown in Figure 1(b) before swelling (1), after reaching equilibrium swelling in DI water (2) and 

after complete dehydration at room temperature (3). 



  

Figure 1. (A) Structure of the different hydrogel chemicals: ChoSPA (top), poly(ethylene glycol) 

diacrylate (middle) and ChoSPA hydrogel (bottom); (B) Comparison between the sizes of the 

ChoSPA hydrogel before swelling (1), swelling in DI water for 2 h (2) and after dehydration by 

drying at room temperature (3). 

The equilibrium swelling ratio (SR), SR = 11.5 ± 0.4 (n = 3), was reached in ~ 500 s, Figure 2, and 

was calculated using Eq. 1. The first order swelling rate constants were estimated by fitting the SR 

values using Microsoft Excel Solver and eq. 2. The swelling rate constant (k) was found to be 

6.17×10-3 s-1. The equilibrium swelling ratio and swelling kinetics are important parameters to be 

considered for the envisaged application of this hydrogel as passive pump in µPADs.  



 

Figure 2. Experimental and fitted swelling kinetic curves for the ChoSPA hydrogels in DI water. 

Error bars represent the standard deviation (n = 3).  

 

Thermal characterisation of the hydrogel was performed using thermogravimetric analysis to 

compare the thermogravimetric characteristics of the ChoSPA hydrogel before swelling (1), 

swelling in DI water for 2 h (2) and after dehydration by drying at room temperature (3). For 

hydrogel (1) (Figure 1), results showed the amount of water still present inside the hydrogel 

immediately after polymerisation and the decomposition temperature, respectively. Hydrogel 1 

started eliminating water/solvent as soon as the temperature increased. This trend continued up to 

~ 200 °C, when all the water was evaporated, corresponding to a weight loss of 13.0 % compared 

to the original weight. At this point, the weight of the hydrogel started plateauing until ~ 280 °C 

when it started dropping again, due to the start of the decomposition phase of the hydrogel. The 

onset temperature of this process is 351 °C and it continued at the same rate up to ~ 375 °C, where 

it started slowing down until 500 °C. At this point, a further 66.8 % of the initial weight was lost. 

This left hydrogel (1) at ~ 20.0 % of its original weight. This represents the non-decomposed 

residue of hydrogel (1) at 500 °C; see Figure S1. Hydrogel (2) (Figure 1), after complete swelling 

in DI water for 2 h, presented similar behaviour to hydrogel 1, with differences appearing in the 

magnitude of the heating-induced weight loss events (Figure S2). The weight loss due to water 

evaporation started immediately after temperature increased, up to ~ 160 °C. At this point 96.9 % 



of the initial mass of the hydrogel was lost. From this temperature up to ~ 320 °C the hydrogel 

mass did not undergo any notable change. At ~ 340 °C the decomposition phase began. During 

this process, the hydrogel mass dropped by 2.6 % of its initial weight until a temperature of ~ 390 

°C was reached, after which the mass reached a plateau. This signalled the end of the 

decomposition phase.  From Figure S3 it can be observed that hydrogel (3) (Figure 1) presented a 

similar thermogravimetric analysis curve to hydrogel (1). The weight loss started just after the 

temperature started increasing and it stopped when the temperature was at ~ 200 °C. The weight 

loss during this phase was 14.5 %. Following this, there was negligible weight loss until ~ 280 °C, 

at which point the decomposition phase started. The onset temperature for this process was 349 

°C, which was very close to the onset temperature observed in 1 and 2. During this phase, the 

hydrogel lost 69.0 % of its weight. This process started slowing down after ~ 375 °C, but continued 

until ~ 500 °C at which point it reached a plateau.  As in the case of hydrogel (1), ~ 20.0 % of the 

initial weight of the hydrogel was left, representing the non-decomposed part of the hydrogel. In 

all cases, the hydrogels started losing water as soon as the temperature rose above room 

temperature. Moreover, their decomposition onset temperatures were very similar at ~ 350 °C. 

Based on this, it can be concluded that in all three cases, the freshly polymerised, hydrated and 

dehydrated hydrogels essentially retain their thermogravimetric characteristics. Additionally, the 

hydrogels retain their hydration capabilities after dehydration. 

 

 

3.2 ChoSPA hydrogel as passive pump in µPADs 

After thermal characterisation of the hydrogel, the µPADs were fabricated using the wax printing 

method on standard laboratory filter paper. The wax printing method for µPAD fabrication is based 

on (1) designing the shape of the device, (2) patterning hydrophobic wax barriers on the paper 

surface using a commercially available printer and (3) penetration of wax through all the paper 

thickness by heating the device on a hot plate to form a complete hydrophobic barrier. The final 

dimensions of the microfluidic structure, borders and flow channels, are addressed only after a 

post-heating process [39], in this case 125 °C for 7 min. The post-heating treatment ensures that 

there is very little variation in dimensions among µPADs. The hydrogel was photopolymerised in 

a defined disc format over an 80m diameter pressure sensitive adhesive (PSA) layer. This 

configuration ensures the hydrogel can be neatly fixed on top of one of the two µPAD outlets as 



shown in Figure 3A. Then, the fluid flow behaviour towards the outlets (with hydrogel: outlet-1 

and without hydrogel: outlet-2) was compared. Finally, the back of the µPAD was covered with 

another layer of PSA to protect the µPAD and to diminish the effect of solvent evaporation over 

time during testing. Moreover, this sandwich configuration improved the robustness of the entire 

device, see Figure 3B. 

  

 

Figure 3. (A) Scheme of the different layers forming the µPAD. (B) Picture of the µPAD after 

integration of the cholinium PIL hydrogel pump. 

 

Different amounts of cholinium PIL hydrogel (5, 10, 15, 20, 25, 30 L) were photopolymerised in 

a disc shape form and placed in the µPADs at outlet-1. It was found that 20 µL of monomer mixture 

was the maximum that could be applied, as higher amounts damaged the microfluidic device due 



to bending of the paper at the outlet during the hydration process. However, this is true only for 

this configuration, as other µPAD configurations may be able to hold higher amounts of hydrogel 

and so promote longer use models. Therefore, 20 µL of cholinium PIL monomer mixture was 

chosen to investigate the performance of the hydrogel as a passive pump in µPADs.  

Figure 4A shows the µPAD when a 20 µL cholinium PIL hydrogel disc (1.8 ± 0.3 mm diameter 

by 1.0 ± 0.4 mm height) was integrated in the device. In Figure 4B, 50 µL of a yellow dye solution 

was dropped at the inlet of the µPAD. The yellow solution flowed through both channels equally, 

until both outlets got fully wetted. This process occurred at the same time, as can be seen in Figure 

4C. In a conventional µPAD, when all the channels are hydrated, the wicking property of paper no 

longer has any effect and the device stops working. In this case, the hydrogel passive pump 

dominates the capillary forces of the paper and all liquid added to the µPAD moves towards the 

hydrogel, in preference to outlet-2.  

In order to investigate hydrogel passive pumping capacity of the gel, 60 µL of a red dye solution, 

Figure 4D, was added to the inlet. The liquid flows almost exclusively towards the hydrogel at 

outlet-1. A small amount of red dye is visible in the channel going to the outlet-2, but no liquid 

flow was observed. The reason for this behaviour is slow diffusion of dye molecules through the 

already hydrated paper fibres. In fact no flow was observed towards outlet-2, even after 10 min, 

as can be seen in Figure 4E and 3F. Conversely, the vast majority of the red dye solution is been 

absorbed by the hydrogel at outlet-1 (Figure 4G). Subsequently, 70 µL of a blue dye solution were 

added the inlet of the µPAD, in several aliquots of 10 µL. The hydrogel continues pulling the liquid 

flow towards outlet-1 and accumulating the solution (Figure 4H). The final 2 µL of the blue 

solution were not absorbed by the hydrogel, as at this point, the hydrogel had reached its full 

wicking capacity in this configuration, as it can be seen in Figure 4I. 

In both of the above cases, the dye was continuously drawn towards the outlet containing the 

hydrogel, due to the cholinium PIL hydrogel hydration capacity. The hydrogel was therefore able 

to direct the fluid flow preferentially towards one of the µPAD outlets, and prevent fluid flow to 

the other outlet. This clearly opens the way for fluid flow manipulation and retention in µPADs. 

This hydrogel ‘passive pump’ improve the water retention capacity of the µPAD by a factor of 

nine, compared to the bare µPAD (178 µL of liquid), for just 20 µL of hydrogel monomer mixture. 

Obviously, the water retention capacity, and the flow rate, can be increased or reduced by changing 

the amount of the hydrogel used and the configuration of the µPAD. Moreover, the operational 



lifetime of this µPAD configuration, in the present experimental conditions, was over 90 min of 

continuous use before reaching saturation of the gel. 

 

 

Figure 4. Set of pictures of the µPAD over time, while adding different volumes of coloured 

solutions at 0s (A), at 2.5 min (B), at 25.0 min (C), at 55.0 min (D), at 60.0 min (E), at 65.0 min 

(F), at 70.0 min (G), at 75.0 min (H), at 90.0 min (I), after injection of 50 µL (yellow dye), followed 

by 60 µL (red dye) and 70 µL (blue dye) solutions, at the inlet, in aliquots of 10 µL. (Video S2 of 

a similar device at high speed ~ 120x). 

 



4. Conclusion  

In conclusion we achieved a highly effective fluid flow manipulation method in µPADs by 

intregrating cholinium-based crosslinked poly(ionic liquid) hydrogel pumps which have a high 

water retention capacity and thus excellent control on directing the fluid flow on the paper device. 

To our knowledge, these hydrogel negative pumps have the highest water retention capacity 

demonstrated in a µPADs up to now, compared to similar negative passive pumps such as ionogels 

(50 ± 11 L of water for 30 L of ionogel [39]) or paper pumps, as the ones presented by Kokalj 

et al.[45] (~ 17 L depending on the paper dimension). 

These high capacity negative flow pumps open the possibility for sequential multi-step analysis 

enabling several different tests running in the same small-scale device owing to their high degree 

of water absorption and fluid control ability. Moreover, due to their influence on flow direction, 

they also open possibilities for developing µPADs with no valves or external pumps. The 

biocompatibility of the choline-derived material should also open possibilities for point-of-care 

measurements, and potentially many other applications. This study demonstrates the feasibility of 

using cholinium – based poly(ionic liquid) hydrogels as a passive pump material for many future 

microfluidic applications.  
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