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Research highlights 

 This paper presents a novel approach to cognitive training with preschool children, 

where process-based computerized training is combined with metacognitive 

scaffolding. 

 Compared to process-based training alone, adult-provided metacognitive scaffolding 

produces a similar near-transfer effect of executive attention training to inhibitory 

control, but increased far-transfer to fluid intelligence. 

 Metacognitive training also produced a significant change on the fronto-central ERP 

component associated with conflict processing, which, in turn, predicts gains on 

intelligence scores following training. 
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 This study provides evidence that process-based training benefits can be boosted by 

providing children with scaffolding on the use of metacognitive strategies while 

performing training exercises. 

 

Abstract 

Interventions including social scaffolding and metacognitive strategies have been used in 

educational settings to promote cognition. In addition, increasing evidence shows that 

computerized process-based training enhances cognitive skills. However, no prior studies have 

examined the effect of combining these two training strategies. The goal of this study was to test 

the combined effect of metacognitive scaffolding and computer-based training of executive 

attention in a sample of typically developing preschoolers at the cognitive and brain levels. 

Compared to children in the regular training protocol and an untrained active control group, 

children in the metacognitive group showed larger gains on intelligence and significant 

increases on an electrophysiological index associated with conflict processing. Moreover, 

changes in the conflict-related brain activity predicted gains in intelligence in the metacognitive 

scaffolding group. These results suggest that metacognitive scaffolding boosts the influence of 

process-based training on cognitive efficiency and brain plasticity related to executive attention. 

 

Introduction 

The question of whether mental skills can be improved by means of cognitive training has been 

posed for decades and regained interest in the past years. Cognitive training refers to the 

process of improving cognition by means of practice and/or intentional instruction, and can be 

classified as either process-based or strategy-based (Jolles & Crone, 2012). Process-based 

training consists in the repetitive practice of one or various tasks taxing particular cognitive 

processes, whereas strategy-based training provides participants with instructions to develop 

and enhance their knowledge about task-relevant procedures and strategies (i.e. scaffolding).   
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Executive Attention (EA) is the aspect of attention that is involved in the voluntary regulation of 

thoughts and behavior, involving processes of conflict-detection and resolution, cognitive 

flexibility and inhibitory control (Posner & DiGirolamo, 1998; Rueda, Pozuelos, & Cómbita, 

2015). This concept partially overlaps with other constructs related to the control of behavior, 

such as executive control and executive functions, and is a key aspect in the development of self-

regulation (Rueda, Posner, & Rothbart, 2005). An increasing body of evidence shows that 

children’s executive attention and associated brain function can be enhanced with training 

(Diamond & Lee, 2007; Karbach & Unger, 2014). The majority of studies have used 

computerized exercises designed to practice processes, such as executive attention (including 

conflict processing, attentional flexibility and inhibitory control; Rueda, Rothbart, McCandliss, 

Saccomanno, & Posner, 2005), task switching (Karbach & Kray, 2009; Kray, Karbach, Haenig, & 

Freitag, 2011), working memory (Jaeggi, Buschkuehl, Jonides, & Shah, 2011; Klingberg, 2010), 

and inhibitory control (Benikos, Johnstone, & Roodenrys, 2013; Thorell, Lindqvist, Bergman 

Nutley, Bohlin, & Klingberg, 2009). Consistently, this research has shown that process-based 

training of executive processes is an effective way to improve children’s cognitive control. 

However, several other studies have reported contradictory results, claiming that the training 

effects only produces specific short-term benefits that do not generalize to other cognitive 

domains (see Melby-Lervåg & Hulme, 2012 for a review). Recent reviews of the topic point to a 

wide range of aspects that may account for the lack of consistency of training results, including 

individual variables (such as cognitive level at pre-intervention, temperament, or motivational 

factors), as well as variables related to the type of intervention being used (Karbach & Unger, 

2014). Therefore, more information is needed in order to understand whether training is an 

effective means to enhance cognitive performance and which type of interventions produce 

larger benefits.   

Studies using neuroimaging technology have provided additional evidence of the impact of 

training at the level of brain function. Research with adults and children has shown that 

process-based training leads to changes at the level of brain activation (Olesen, Westerberg, & 
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Klingberg, 2004) and functional connectivity (Jolles, van Buchem, Crone, & Rombouts, 2013; 

Astle et. al., 2015). Further, EEG studies have revealed that training influences the timing and 

topography of electrophysiological markers of executive attention such as the N2 or later 

components. The N2 is an event-related potential whose amplitude is modulated by increasing 

conflict between possible response alternatives, such as in the flanker or other conflict-inducing 

tasks (van Veen & Carter, 2002). In adults, conflict-related N2 is characterized by a 

frontocentral negativity that peaks around 200-300 ms after the stimulus onset, and is 

associated with activation arising in the anterior cingulate cortex (ACC), one of the main nodes 

of the executive attention network (Carter & van Veen, 2007; Veen & Carter, 2002). Depending 

on the particular task being used for inducing conflict (e.g. flanker, Go-NoGo, Stroop) the 

conflict-related modulation of the ERPs amplitude may occur in time-windows later than the 

N2. For instance, with shape flanker tasks (Checa et al., 2014) and Stroop-like tasks (Szűcs & 

Soltész, 2012), conflict modulation has been observed in a positive deflection of the ERP that 

follows the N2. Higher-conflict trials produce a more negative amplitude of this positive 

component compared to low-conflict or no-conflict trials in midfrontal leads, which is 

interpreted as greater engagement of the executive attention brain network for resolving 

conflict (Szűcs & Soltész, 2012; Checa et al., 2014). Developmental studies have shown that the 

conflict-related N2 shows an age-related decrease in latency and amplitude (Lo et al., 2018). 

Using a child-friendly version of a shape flanker task in which children are asked to identify the 

shape (round or square) of a robot that is flanked by distracting robots of the same (i.e., 

congruent, no-conflict trials) or the other (i.e., incongruent, conflict trials), Checa and colleagues 

(2014) found that 11 to 13-year-olds, as well as adults, showed a clear conflict-related 

amplitude modulation around 400 ms post-target, whereas younger children showed a much 

smaller effect at around 600 ms post-target at frontal midline channels. Also, with a fish flanker 

task in which participant had to identify the direction in which the central fish is pointing, 

adults show conflict-related modulation of the N2 at frontal (Fcz and Cz) midline leads, while 4 

years-olds only show the conflict modulation in a late positive deflection occurring at about 600 
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ms post-target in more anterior (Fz) frontal channels (Rueda et al., 2004). Following process-

based training, preschool children appear to show a reduction in the latency of conflict-related 

components as well as a change in topography of the effect from anterior (Fz) to more posterior 

(Fcz and Cz) frontal-midline channels (Rueda, Checa, & Cómbita, 2012; Rueda, Rothbart, et al., 

2005).  

The transfer of process-based training benefits to non-trained tasks whose performance is 

thought to rely on the same process as the one trained (i.e. near-transfer) and transfer to 

related yet non-trained cognitive domains (i.e. far-transfer) has also been examined. Although 

research yields mix results, particularly in far transfer effects, a considerable number of 

previous attention and working memory training studies have been shown to produce gains in 

fluid intelligence (fIQ) in young children (Neville et al., 2013; Rueda et al., 2012), older children 

(Jaeggi et al., 2011; Klingberg, Forssberg, & Westerberg, 2002), and adults (Jaušovec & Jaušovec, 

2012; Karbach & Kray, 2009). Despite all this evidence, other studies have failed to find 

significant transfer effects of executive processes to fluid intelligence (Colom et al., 2013; 

Sarzyńska, Żelechowska, Falkiewicz, & Nęcka, 2017) and argue that transfer to intelligence may 

need more sustained training, or that training might not impact on intelligence at the construct 

level but benefit more basic processes taxed by training activities. However, a compelling 

argument in favor of far-transfer between executive attention training and fIQ skills is the 

overlap of cognitive processes and anatomical regions underlying both cognitive domains. Prior 

research has shown that the overlapping between processing components and brain regions is a 

necessary condition for the occurrence of transfer between tasks (Dahlin, Neely, Larsson, 

Bäckman, & Nyberg, 2008). Studies addressing the neural basis of intelligence have highlighted 

a striking overlap between regions related to executive control and those activated by g tests 

(Duncan, 2000; Hampshire, Thompson, Duncan, & Owen, 2011). Moreover, there is evidence 

indicating that neural activity in the lateral PFC, a region thought to support reasoning, 

mediates the relationship between fIQ and performance on tasks involving executive control 

(Gray, Chabris, & Braver, 2003).  
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While a relatively large bulk of research has focused on the effects of process-based 

interventions, a relatively small body of research studied the effects of strategy-based training 

programs. Strategy-based training studies are based primarily on providing guidance about 

analyzing tasks requirements and the best strategies to face them, often using explicit task 

instructions (e.g., prompting the use of mental imagery to increase memory). Such is the case of 

educational interventions designed to improve cognitive control mechanisms via scaffolding. 

Research has shown that metacognitive scaffolding improves formal instruction in school 

subjects (Kramarski & Mevarech, 2003). Moreover, a few studies have observed beneficial 

effects of specific school curricula on children’s executive control skills, such as the Montessori 

curriculum (Lillard & Else-Quest, 2006). Also, a program based on Vygotsky’s learning theory, 

that largely relies on peer and adult scaffolding, appears to enhance executive control at 

prekindergarten (Diamond, Barnett, Thomas, & Munro, 2007), although the impact seems to be 

limited on children’s academic abilities (Barnett et al., 2008). A recent randomized controlled 

trial involving kindergarten schools of different socioeconomic backgrounds showed that this 

curriculum may be particularly effective helping children of schools with increased indices of 

poverty in attention control and emotional regulation (Blair & Raver, 2014). However, putative 

changes in brain mechanisms associated with strategy-based training are largely unknown.  

Metacognition is a broad term encompassing both knowledge and regulation of mental activity, 

and can be divided into Metacognitive Control (MC) and Metacognitive Knowledge (MK) 

(Moshman, 2017; Nelson & Narens, 1994; Schraw & Moshman, 1995). MC has been closely 

linked to the executive control of attention, since both share underlying brain structures and 

rely on the voluntary regulation of cognition by means of monitoring (e.g. error detection) and 

control (e.g. conflict resolution, error correction, planning, inhibitory control) mechanisms 

(Fernandez-duque, Baird, & Posner, 2000; Shimamura, 2008). On the other hand, MK consists 

primarily of a metalevel awareness of different types of knowledge about 1) the goals of 

particular tasks and the cognitive requirements necessary to achieve them (i.e. declarative 

knowledge), 2) how to execute the specific actions required in particular conditions (i.e. 
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procedural knowledge), and 3) knowing why and when to implement actions to achieve goals 

(i.e. conditional knowledge) (Goldfus, 2012; Schraw & Moshman, 1995). MK is continuously 

updated and enhanced by information coming from the conscious monitoring of cognition, the 

observation of one’s own and other people’s actions, and by interacting and communicating 

with others (Efklides, 2008). Therefore, language plays a critical role in MK because it is through 

language that people are able to reflect, draw inferences, communicate the content of their 

awareness, and make attributions about the relations between inner states, observable 

behavior, and action outcomes.   

Several authors have underlined the importance of language and abstract representations for 

the emergence of self-regulation of cognition and behavior. Vygotsky (1978) and Luria (1965) 

claimed that social scaffolding provides children with experiences that boost the development 

and maturation of higher cognitive functions. When interacting with more capable individuals, 

children learn how to use language as a tool for creating abstract representations. This 

interaction supports the skills and knowledge that are just about to emerge in the child, which 

in turn helps children to move from being assisted by an adult when performing a new task to 

being able to perform it independently (Bodrova, Leong, & Akhutina, 2011; Wood, Bruner, & 

Ross, 1976).  

Several studies have been conducted to characterize the developmental trajectories of 

metacognitive abilities (see Roebers, 2017 for a review). These studies have shown that the 

emergence of MC skills occurs between 3 to 5 years of age (Coughlin, Hembacher, Lyons, & 

Ghetti, 2015; Kim, Paulus, Sodian, & Proust, 2016; Lyons & Ghetti, 2013). Also, it has been 

suggested that after 5 years children become more efficient in implementing monitoring 

abilities to improve their behavioral control and the selection of task strategies (Destan, 

Hembacher, Ghetti, & Roebers, 2014). In addition, Munakata, Snyder, & Chatham (2012) 

proposed that the transition between exogenous to endogenous driven self-regulation occurs 

with the emergence of the ability to actively maintain abstract representations in working 
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memory. They argue that when children improve their ability to use and internalize abstract 

representations they become more efficient in regulating top-down support for goal-relevant 

thoughts and behavior (Munakata et al., 2012). Several theories suggest that abstract 

representations in anterior lateral PFC regions provide top-down support to resolve 

competition between less abstract representations in more posterior regions of the PFC 

(Christoff & Gabrieli, 2000), indicating that a gradual maturation of rostrolateral PFC may 

underlie children’s ability to use abstract representations to control cognition and behavior 

(Bunge & Zelazo, 2006).  

An attempt to examine the contribution of reflection strategies to children’s learning to perform 

the Dimensional Change Card Sort (DCCS) task was made by Espinet, Anderson, and Zelazo 

(2013). In their study, young children (2-4 years old) who failed to perform the task at pre-

training were guided by an adult to reflect on relevant instructions and dimensions of the task 

in each particular trial, providing an example of a correct response, and then asking the child to 

perform the trial again with assistance. This guided training was made during a brief 15 (Exp. 2 

and 3) or 30 (Exp. 1) minutes intervention, and the benefits were tested the following day on a 

different version of the same task using different stimuli. They found that children who received 

the reflection guidance showed improved performance of the task following the intervention, as 

well as a transferred benefit to false belief understanding, whereas children who only received 

corrective feedback or just practiced the task during intervention did not. Additionally, they 

observed that both the reflection training and the corrective feedback groups showed a 

reduction of the general amplitude of the N2 registered during children’s performance of the 

task following the intervention.  

In the present study, we sought to examine the effect of combining process-based executive 

attention training with adult-guided scaffolding aimed at promoting metacognition during 

training, and compare this intervention with either using only process-based training 

accompanied by corrective feedback, or an untrained active control group, in a randomized 
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controlled trial with pre-school aged children. We aimed at designing a scaffolding script 

specifically devised to provide metacognitive feedback in order to foster children’s ability to 

create abstract representations and to improve the performance of training exercises. Our 

expectation is that both trained groups would enhance the efficiency of executive control 

processes following intervention compared to the untrained group. As shown in previous 

studies, we expected near-transfer of process-based training to untrained but related tasks, as 

well as far-transfer to untrained executive functions (working memory) and fluid intelligence. 

However, a key prediction of our study is that using metacognitive scaffolding during training in 

the first group would boost both the near- and far-transfer effects. Promoting the use of 

metacognitive strategies related to both control of cognition (i.e. performance monitoring, 

planning, error correction, etc.; that is, metacognitive control) and awareness of self- and task-

conditions (i.e. declarative, procedural and conditional metacognitive knowledge) that are 

necessary to face the challenges related to performing exercises in the training program are 

expected to cause increased training benefits. Further, we expected to observe the effect of 

training at the brain level. To this purpose, brain electrophysiological responses were registered 

while children performed a conflict-related child-friendly shape flanker task before and after 

intervention. Increased efficiency of performance in terms of modulation of the conflict-related 

late positive component was expected following training, with a larger impact on the 

metacognitive scaffolding group.  

 

Method 

Participants  

A total of 107 five-year-old children were recruited from various kindergartens in Granada, 

Spain. Caregivers of all the children gave written consent to be involved in the study after being 

informed of its general purpose. Only children whose parents agreed to voluntary participation 

were included in the study. Prerequisites for participation were having normal or corrected-to-
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normal sensory capacities and no history of chronic illness and/or psychopathologies. Prior to 

undertaking the investigation, ethical approval was obtained from the Research Ethics 

Committee of the University of Granada. Children received a t-shirt with the logo of the lab, as 

well as small presents such as stickers, pencils, bouncing balls, etc., after completion of different 

tasks in each session, in appreciation for their participation in the study. Ten participants 

withdrew during the study and therefore their data were discarded for further processing. See 

Table 1 for a statistical description of the sample.  

 

Procedure  

A picture of the general procedure of the study is presented in Figure 1. Pre- and post-training 

assessment included a standardized test of intelligence for preschool children that comprises 

fluid (Matrices) and crystalized (Verbal) subscales (K-Bit; Kaufman and Kaufman, 1990), as well 

as lab tasks taxing inhibitory control (Simon Says task; Strommen, 1973) and working memory 

(WM, Working Memory Span backwards subtests of the WISC; Wechsler, 1991). The Simon Says 

task is based on the principles of a Go-NoGo task, where children have to comply with an 

instruction when preceded by the verbal cue “Simon Says” (e.g. Simon Says touch your head), 

and to inhibit the response when the cue is missing (e.g. touch your head). Counting the number 

of times children fail to inhibit the instruction when the cue is missing provides a measure of 

inhibitory control (IC). The WM backwards subscale of the WISC is a test of WM span that 

consists in asking children to memorize a set of numbers given by the experimenter and then 

repeat the numbers in reverse order. The dependent variable in this task is the number of items 

correctly recalled in reverse order. This pen and pencil assessment of IQ, IC, and WM was 

carried out in a suitable classroom at school.   

Within four days after the evaluation at the school, a second evaluation session was carried out 

at the developmental cognitive neuroscience lab of the CIMCYC, at the University of Granada. In 

this session, caregivers brought children to the lab and children conducted a child-friendly 
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version of the flanker task (Checa, Castellanos, Abundis-Gutiérrez, & Rueda, 2014) designed to 

measure interference control while recording brain activation by means of a high-density EEG 

system (128-channel Geodesic Sensor Net; www.egi.com). Once fitted with the net of electrodes, 

and it was properly registering brain’s electrical signals, children were presented with the 

flanker task. At the beginning of each trial, a fixation cross was displayed at the center of the 

screen for a variable duration randomly selected between 600 to 1200 ms. The target stimuli 

consisted of a row of five cartoon robots presented at the center of the screen either above or 

below the fixation cross. Participants were asked to indicate the shape of the robot in the middle 

(either round or square) by pressing a corresponding button. Flanking robots could be of the 

same (congruent) or different (incongruent) shape as that of the robot in the middle. The task 

consisted of a total of 144 trials divided into six blocks. Flanking robots were congruent in half 

of the trials and the congruency condition was randomly selected for each trial. In order to 

control the difficulty of the task, the target presentation time was adjusted in each trial 

according to children’s performance in the previous trial. When an error was made or the 

response was given off time, the target duration was increased by 50 ms in the following trial. 

Alternatively, the target duration in trial n+1 was decreased by 50 ms when the response in trial 

n was correct. Following the response, a 600 ms-lasting feedback was provided. The feedback 

consisted of a visual animation of the central figure plus an auditory word (“yes” for correct 

responses, “no” for incorrect responses, and “late” for omission or off-time responses).  

The protocol of the two PRE-intervention evaluation sessions was repeated within a week of 

completing the intervention phase for POST evaluation. A member of the research team who 

was blinded to the experimental group of the participant conducted evaluation sessions at both 

pre- and post- time points. Caregivers were informed about the design of the experiment prior 

to providing written consent as to being involved in the study, and remained blind to the group 

allocation of their child throughout the experiment.  
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 After pre-training assessment, participants were randomly assigned to one of three 

intervention groups: Training + Metacognitive scaffolding (MT), Training + Corrective feedback 

(T), or Active Control (AC) groups. Groups were matched for age, gender distribution, and 

average composite intelligence (see Table 1). Series of random allocation of participants to each 

intervention group were carried out up until the groups did not differ in these variables. 

Participants in the MT group carried out an adaptive training program (see below) and received 

individualized metacognitive scaffolding during training sessions from an adult experimenter. A 

metacognitive scaffolding script was designed for each of the exercises included in the training 

program (see Supplementary Material), and members of the research team who conducted the 

training sessions were trained on the use of the script prior to the start of the study. In addition, 

children received encouraging feedback (i.e. “good job!”, “you are doing great!”, “Great! you have 

advanced to level x in this game!”, etc.) according to their performance throughout the training 

sessions. Participants in the T group carried out the exact same adaptive training program as 

the MT but only received instructions as to how to play each task and encouraging (same as the 

one used with MT group) and corrective (either “good job!”, “correct! “, or “careful, you made a 

mistake!” “your response was not correct this time”) feedback related to their performance (see 

Table S1 and supplementary material for further information on the scaffolding script). Finally, 

the AC group carried out a non-adaptive version of the training program consisting of only the 

first three levels of each training task with no further increase in difficulty. The AC group also 

received instructions about each task and encouraging feedback during task performance. 

Children who completed the training requirements before exhausting the session time were 

allowed to watch child-friendly cartoon shorts to complete the remaining time of the session. 

Intervention with each group comprised a total of ten 45-minute sessions carried out over a 4-

week period. Intervention sessions took place individually for each participant in a quiet room 

at school.  
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EEG recording and data processing 

EEG was recorded using a 128-channel Geodesic Sensor Net 4.2 (EGI Software: www.egi.com). 

The EEG signal was acquired using a 100 to 0.01Hz band-pass filter and digitized at 250Hz. 

Impedance for all channels was kept below 50KΩ. Pre-processing of continuous data was 

performed in EEGLAB version 13.2.2 (Delorme & Makeig, 2004). EEG data were filtered using a 

finite impulse response (FIR) band pass filter with 0.3 Hz high-pass and 30 Hz low-pass cutoffs 

(Passband gain: 99.0% (-0.1 dB), stopband gain: 1.0% (-40.0 dB), rolloff: 0.29 Hz). Bad channels 

were replaced by spherical interpolation provided that no more than 10 channels were 

identified as bad channels and were distributed over the scalp. Average re-reference was 

computed. Artifacts in the continuous EEG were identified by visual inspection and manually 

removed before running Independent Component Analysis (ICA) to detect and correct eye blink 

artifacts. After artifact removal, the event-related potentials (ERP) were processed using 

ERPLAb toolbox (Lopez-Calderon & Luck, 2014). Continuous data were segmented into target-

locked epochs of 1200 ms long (-200 to 1000 ms) with a pre-stimulus baseline correction of 

200ms. Artifact-free segments were averaged across conditions and participants within each 

training group. A per-subject criterion of a minimum of 15 artifact-free segments per 

experimental condition was established in order to be included in the grand-average for each 

training group. A total of sixty-nine children reached that criterion and where used in the 

analysis, 26 at the AC group (trials congruent M = 44.07, SD =1.34; incongruent M = 42.27, SD = 

0.74), 23 at the MT Group (trials congruent M = 44.22, SD =0.21; incongruent M = 44.64, SD = 

0.91), and 20 at the T group (trials congruent M = 44.72, SD = 1.90; incongruent M = 44.49, SD = 

0.71). We conducted a series of one-way ANOVAs in order to test significant differences in fIQ, 

VIQ, composite IQ and age (in months) between the total sample and the artifact-free EEG 

sample, and between the artifact-free EEG sample and the discarded sample. Results show no 

significant difference between the samples (all F’s < 1) in fIQ (Mean for total = 105.12, EEG = 

104.60, discarded = 106.45), in vIQ (Mean for total = 107.83, EEG = 108.43, discarded = 105.36), 
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Composite IQ (Mean for total = 104.98, EEG = 105.09, discarded = 104.18) and age (Mean for 

total = 63.8, EEG = 64.4, discarded = 62.1).  

 

Training program 

The training program used in the present study was the same as used by Rueda et al. (2012; also 

described at Rueda et al., 2007). The program consisted of 14 computerized exercises divided 

into 6 categories: (1) Tracking/Anticipatory; (2) Attention Focusing/Discrimination; (3) 

Conflict Monitoring/Resolution; (4) Inhibitory control; (5) Task Switching; and (6) Sustained 

Attention. For the current study, we designed three additional exercises that were included as 

follows: two in the category of Conflict Monitoring/ Resolution, and one in the category of 

Inhibitory Control. The exercises were programmed such as task difficulty being adjusted to the 

child’s improving performance over a number of blocks of trials (i.e. adaptive training). In order 

to progress from one level of difficulty to the next, children were required to correctly complete 

a minimum number of consecutive trials (3 in most exercises). A description of each exercise 

included in the training program is presented in Table 2.  

 

Metacognitive scaffolding 

Based on the scaffolding principles, we developed a metacognitive scaffolding script (MSS) 

aiming at establishing a dynamic reflective dialogue between the trainer and the child during 

training. The MSS was composed by questions intending to assist children’s causal reasoning by 

guiding their learning on how to extract the relevant features of a given task and integrate them 

into abstract representations that could help improving the performance of training exercises. 

Children were encouraged to verbally externalize procedures such as 1) detecting the relevant 

features of the exercise (i.e. declarative knowledge), 2) reflecting on possible strategies to 

perform the task initially and improve their performance in advanced stages (i.e. procedural 
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knowledge), and 3) becoming aware of their mistakes and think about how to prevent errors 

from happening in subsequent trials right after an error was committed by the child (i.e. 

conditional knowledge). By encouraging this verbalization, we aimed at fostering children’s 

emergent ability to create and use abstract representations to improve their performance in 

training exercises. An example of the MSS is provided at Supplementary Material.  

 

Results 

Children who showed a percentage of error 2 standard deviations (SD) above the mean in any of 

the assessment measures (see final n for each task on Table 3) or had a score 2 SD below the 

mean on the intelligence (n=1 at MT group) test were excluded from analyses of those 

particular measures.  

 

Training performance  

Differences in training performance between MT and T groups were tested. We found a 

significant difference between groups in the percentage of errors committed during training 

(t(1,62) = -2.03, p = .045) and a marginal difference in the total number of trials needed to 

complete the training program (t(1,62) = -1.93, p = .058). Children in the MT-Group committed 

less errors and needed less trials in order to complete the training program as compared with 

children in the T-Group (error percentage: mean = 168.54, SD = 81.84 and mean = 217.71, SD = 

109.74, No. of trials mean = 1079.21, SD = 291.25 and mean = 1192.38, SD = 151.66 respectively 

for MT and T groups). 
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Training effects 

Behavioral measures 

Table 3 presents means and SDs of pre- and post-intervention sessions scores obtained in each 

assessment task. We calculated standardized gain scores ((MeanPRE – MeanPOST) / SDpooled PRE) for 

each intervention group in order to compare the size of training-related gains across all the 

measurements taken in the study. To examine pre- vs. post-training changes in each task of the 

battery (i.e. fluid (fIQ) and verbal (vIQ) subscales and composite IQ of the K-BIT, WM span, IC, 

and flanker interference effects) we conducted a series of 3 (Intervention Group: MT, T, and AC) 

x 2 (Session: pre- vs, post-intervention) mixed-model ANOVAs with Intervention Group as the 

between-subject factor. In addition, given a priori hypotheses on gains following training, 

planned comparisons were carried out to test for changes in performance between the pre- and 

post-intervention sessions for each measure in each intervention group. 

Regarding intelligence, a significant main effect of Session was found for the fIQ (F(1,92) = 9.54, 

p = .002, η2p = 0.09) and composite IQ (F(1,92) = 7.74, p = .006, η2p = 0.07) scores. Also, a 

significant Intervention Group x Session interaction was observed for both fIQ (F(2,92) = 4.50, p 

= .013, η2p = 0.09) and composite IQ (F(2,92) = 3.46, p = .035, η2p = 0.07) scores. No statistically 

significant main effect of Session or Intervention Group x Session interaction was found for vIQ 

scores (both Fs < 1). We conducted a series of planned contrasts to further examine the effect of 

Intervention Group on fIQ and composite IQ scores. The observed increase in fIQ was significant 

for both the MT (F(1,92) = 12.98, p < .001) and T (F(1,92) = 4.78, p = .031) groups. However, 

only the MT group showed a significant pre to post increase on the composite IQ score (F(1,92) 

= 12.35, p < .001). In order to compare gains values between intervention groups we calculated 

Cohen’s d (d = [(Mean score Trained GroupPOST – Mean score Trained GroupPRE) – (Mean 

score Control GroupPOST – Mean score Control GroupPRE)]/ Pooled SDPRE) as in Carlson & 

Schmidt (1999). Cohen’s d values denoted a large intervention effect when comparing the MT 

and AC groups (fIQ d = 0.84, composite IQ d = 0.80), a moderate effect when comparing the MT 
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and T groups (fIQ d = 0.41, composite IQ d = 0.42) and the T and AC groups on the fIQ score (d = 

0.44), and a small effect when contrasting T and AC groups on the composite IQ score (d = 0.27).  

Analyses of the WM scores revealed a marginal main effect of Session (F(1,94) = 3.25, p = .07, 

η2p = 0.03). No significant main effect of Group (F(2,94) = 1.55, p = .21) or Intervention Group x 

Session interaction (F<1) were found. T-tests contrasts testing training gains indicated that the 

pre- to post-training increased score was marginal only for the MT group (F(1,94) = 2.92, p = 

.09) but not for the other two groups (Fs<1). 

The Simon says task proved to be rather difficult for children in our study. A total of 36 children 

(12 in the MT group, 8 in the T group, and 16 in the AC group) did not pass the criteria for 

understanding instructions and showed above 70 % errors in experimental trials, therefore 

they were excluded from further analysis of this particular task. Inhibitory control scores 

results revealed a significant main effect of Session (F(1,58) = 11.79, p = .001, η2p = 0.16), 

indicating a decrease of inhibition errors in the post- relative to the pre-intervention session. No 

significant Intervention Group x Session interaction was found (F<1). However, planned 

contrasts testing training gains revealed significant post- vs pre-intervention decreases in 

inhibition errors only for the MT (F(1,58) = 4.29, p = .04) and T groups (F(1,58) = 8.23, p = 

.005), but not for the AC group (F(1,58) = 1.32, p = .25). 

Finally, we also analyzed flanker conflict scores obtained during performance of the flanker task 

in the pre- and post-EEG-assessment sessions. Flanker conflict scores were calculated by 

subtracting the median reaction times (RT) and percentage of errors of trials with congruent 

flankers from those of trials with incongruent flankers. The ANOVA of conflict effects with RT 

revealed a significant main effect of Session (F(1,70) = 7.75, p < .01), indicating higher conflict 

scores in the pre- (M = 58.60, SD = 76.30) compared to the post-intervention (M = 31, SD = 

52.73) sessions. However, neither the effect of the Intervention Group nor the Intervention 

Group x Session interaction was significant (both F < 1). Likewise, the ANOVA conducted with 
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the conflict scores for the percentage of errors did not reveal any statistically significant main 

effect or interactions (all F<1). 

 

Intervention effect on fluid reasoning in function of baseline scores  

In order to examine the possible influence of pre-level reasoning skills on training-related gains, 

we calculated the mean fIQ score at pre-training for each intervention group and divided 

participants between above mean (high fIQ-baseline group) and below mean (Low fIQ-baseline 

group). The resulting groups were MT-high (n=18), MT-low (n=14), T-high (n=16), T-low 

(n=15), AC-high (n=18), AC-low (n=15). Then we conducted a 3 Intervention Group (MT, T and 

AC Group) x 2 Baseline-fIQ Group (High vs. Low) x 2 Session (Pre vs Post) mixed ANOVAs with 

fIQ gain (post-intervention minus pre-intervention score) as dependent measure. Results 

revealed a significant main effect of Baseline-fIQ Group (F(1,89) = 6.48, p = .01, η2p = 0.06) and 

Intervention Group (F(1,89) = 9.55, p = .002, η2p = 0.09). More importantly, we found a 

significant Intervention Group X Session interaction (F(2,89) = 4.65, p = .01, η2p = 0.09), 

indicating that pre to post gains in fIQ were significant for both the low (F(1,89) = 6.33, p = .01) 

and high baseline subgroups in the MT (F(1,89)= 6.73, p = .01). In contrast, only the low-

baseline subgroup showed a significant gain effect in the T-group (F(1,89) = 4.80, p = .03 ). 

Finally, no significant differences were found for either the low-baseline (F < 1) or for the high-

baseline (F(1,89)= 2.04 , p = 0.15) subgroups in the AC group (see Figure 3).  

 

Electrophysiological data 

Target-locked ERPs per Flanker Congruency condition and Intervention Group are presented in 

Figure 4. The topographic distribution of conflict-related amplitude matched what was expected 

from prior studies using child-friendly flanker tasks with children, showing the larger effects at 

frontal midline channels. Thus, ERPs at frontal midline (average of leads 11 and 15 in the EGI’s 
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sensor net) and central midline (average of leads 6 and Cz in the EGI’s sensor net) were 

analyzed and plotted in Figure 4. Following the distribution of conflict-related effects observed 

in prior Non-parametric dependent-samples, permutation t-tests (Brainstorm, Monte Carlo 

method, 1,000 permutations; Tadel, Baillet, Mosher, Pantazis, & Leahy, 2011) were conducted 

for each sample along the entire ERP segment in order to test differences in amplitude between 

congruent and incongruent conditions. Areas that showed a significant difference in amplitude 

in at least 10 consecutive samples (40ms) are shadowed (p<.05 light gray; p<.01 dark gray; 

arrowheads point to the time in which significant differences between conditions first appear 

(i.e. the latency of the effect); see Fig. 4a).  

In line with prior studies, pre-training ERPs show that the latency of the congruency effect 

extends between about 450 ms and 850 ms after stimuli onset and is present particularly at 

frontal electrode sites, which is consistent with a previous study carried out with the exact same 

task (Checa et al., 2014). To test the effect of intervention on conflict-related ERPs, we 

conducted non-parametric dependent-samples permutation t-tests for each sample along the 

entire ERP segment for frontal (Fz) and central (Fcz/Cz) leads at each session for each 

experimental group. Results show larger differences in amplitude between congruency 

conditions for the MT and T groups at central electrode sites compared with children in the AC 

group. Also, we found a decrease in latency of the conflict-related amplitude modulation 

particularly in central electrode sites only for trained children (Figure 4a and 4b). To further 

characterize training-related changes on ERPs we calculated the area of the congruency effect 

(i.e. area of amplitude difference between congruent and incongruent conditions) within a time-

window ranging from 450-850 ms and introduced it as dependent variable into a 3 

(Intervention Group: MT, T and AC) x 2 (Session: Pre vs Post) x 2 (Lead Position: frontal vs 

central) mixed-model ANOVA. Results revealed a significant main effect of Lead Position 

(F(1,66) = 6.56, p = .012, η2p = 0.09) indicating larger area of congruent vs incongruent 

difference in frontal (mean = 1.15, SD = 1.23) than central (mean = 0.87, SD = 0.79) leads. Also, 

we found a marginal Session x Intervention Group interaction (F(2,66) = 2.31, p = 0.10, η2p = 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

0.09). Subsequent planned contrasts revealed a significant increase in area of congruent vs 

incongruent difference in the post-intervention compared to the pre-intervention session at 

central leads (F(1,66) = 6.26, p = .014) for the MT-group. In contrast, there were no significant 

changes in the area between pre- and post-training sessions in any of the electrode sites for 

either the T-group or the AC-group (see Fig 4c). 

 

Relationship between behavioral and brain effects of intervention 

In order to examine the contribution of training-related changes in ERP indexes to observed 

gains in intelligence we computed a training gain index using the ERP congruency area (i.e., 

cong. vs. incong. area difference at post-training minus cong. vs. incong. area difference at pre-

training) and conducted linear regression analyses including gains in intelligence as the 

dependent variable and the ERP congruency area index as the predictor. Results revealed that, 

only for the MT-group, post-training area gain was a significant predictor of training gains in 

composite IQ (R2 = .318,  = .564; p = .008; see Fig. 5), and a marginal predictor of training gains 

in the fIQ score (R2 = .125,  = .353; p = .10).  

 

Discussion 

Results of the study revealed increased gains in fluid reasoning following process-based 

training of executive attention + metacognitive scaffolding than when using process-based 

training alone, although both training strategies produced benefits in IC and fluid IQ as 

compared to an untrained active control group. Additionally, we found a significant change in a 

brain index of executive attention (i.e. conflict-related modulation of a frontally distributed late 

positive component) following metacognitive-coached training, but not process-based training 

alone. Further, the increase in the conflict-related effect (i.e. amplitude difference between 
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congruent and incongruent trials) observed in midline central leads significantly contributes to 

predicting increases in IQ scores following training.   

As compared to an active control intervention, training of executive attention showed a modest 

impact on the ability to inhibit response tendencies in the Simon Says task, a well-used measure 

of inhibitory control in young children (Carlson, 2005), but did not show an effect on WM (see 

Table 3 and Figure 2). Near-transfer of executive attention training to IC was expected in our 

study. Two training exercises (Farmer and Robots) in the training program were specifically 

designed to train response inhibition, and yet most of the exercises included in the program 

(see Table 2) involve IC to some degree. However, WM was not directly targeted by any of the 

exercises in the training program, although it was a component on advanced levels of two 

training tasks (Portraits and Shapes; see Table 2). The different load of the two processes in the 

training program may explain differences in the impact of training on IC and WM scores in our 

study. Also, it is important to bear in mind that the auditory backward WM span procedure used 

in our study is a challenging task for 5 years-olds and increases of one span unit represent a 

considerable rise in WM load for children this age. The difficulty of the task may have 

undermined the potential effect of training.    

Training also produced increased fluid reasoning scores leaving crystallized intelligence 

unchanged, with the impact of training on fluid IQ being larger for the MT group as compared to 

the T group. Benefits of executive control training on fIQ have been repeatedly found in 

previous research with both children (Jaeggi et al., 2011; Neville et al., 2013; Rueda, et al., 2005) 

and adults (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Karbach & Kray, 2009) and were hence 

expected. In addition, previous studies have shown that metacognitive abilities help to improve 

performance in problem-solving (Whitebread, 1999) and WM (Autin & Croizet, 2012). Further, 

it has been suggested that training of specific metacognitive strategies (i.e. rehearsal, semantic 

coding, and imagining) has a positive influence on WM performance (Carretti, Borella, & De 

Beni, 2007). Our data provide evidence for the beneficial influence of metacognitive scaffolding 
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during the training itself. We found that children in the MT intervention group committed fewer 

errors and needed fewer trials while completing the training program as compared to the non-

coached training group. This indicates that performance during training was improved by the 

interactive adult-child feedback dialogue designed to enhance metacognition. Most importantly, 

despite completing fewer training trials, children in the MT intervention showed a larger 

increase in fluid reasoning scores following training than children in the T or AC groups. The 

fact that metacognitive + process-based training has similar impact as process-based training 

alone on IC but larger impact on reasoning intelligence suggests that the metacognitive 

scaffolding helps particularly the process of generalization of training to other domains. The 

process-based training strategy taxes basic cognitive skills such as attention and executive 

functions, which constitute building blocks of superior cognitive functions including reasoning, 

planning and decision making (Diamond, 2013). Compared to the T group, the increased gain of 

the MT group was driven by a greater improvement in fIQ of children with high-baseline 

reasoning skills, who benefited more from the inclusion of metacognitive scaffolding as 

compared to children with low-reasoning skills at baseline. Demetriou et al. (2008) and others 

have presented a hierarchical structural model of intelligence where higher-order reasoning 

abilities build upon lower-level processes related to cognitive control and speed of processing. 

The current findings suggest that children with high-baseline reasoning skills take out more of 

scaffolding during intervention predictably because they were better able to use guided 

metacognitive strategies required to create, update, maintain, and implement abstract 

representations in order to improve task performance during training.  

With respect to the impact of training on brain function, we found an increase in the area of the 

conflict effect (i.e. increased differential brain activation for congruent vs incongruent trials) 

from pre- to post-intervention session that was observed only for the MT group. Previous 

studies had shown that executive attention-training influences the timing, amplitude, and 

topographic distribution of the ERP effects related to conflict monitoring during the 

performance of a flanker task (Rueda et al., 2012; 2005). Likewise, other studies have 
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previously shown changes in attention-related electrophysiological indices following cognitive 

interventions aimed at improving selective (Stevens, Fanning, Coch, Sanders, & Neville, 2008) 

and executive attention (Millner, Jaroszewski, Chamarthi, & Pizzagalli, 2012). Also, in the 

Espinet et al. (2013) study mentioned before, a general (not conflict-related) reduction in the 

amplitude of the N2 during the performance of the DCCS, a task requiring attention flexibility in 

order to adapt to changing rules, was observed following training with reflective and corrective 

feedback. In the current study, the extent of the influence of cognitive intervention at the brain 

level depended on the training strategy. Our results revealed a decrease in latency and an 

increase in the congruency effect at the frontally-distributed positive deflection of the ERP 

following the N2 at the post-session, observed only for children in the MT intervention group. 

Children in the T group showed a similar tendency which did not reach statistical significance. 

Developmental studies examining brain dynamics of executive attention with ERPs have shown 

that the amplitude of the N2 component associated with high-conflict trials decreases with age 

(Lo, 2018). However, in the Lo et al. meta-analysis, the differential amplitude of the ERP for high 

vs low-conflict trials could not be tested because most studies do not report information of 

brain activation for low- or no-conflict trials. Using the exact same task that was used in the 

current study, it was previously reported that young children show delayed and smaller 

conflict-related modulation of the ERP amplitude in frontal channels as compared to older 

children and adults (Checa et al., 2014). Young children often fail to show conflict-related 

modulation in early ERP components such as the N2 (Abundis-Gutiérrez et al., 2014); instead 

they show a delayed effect in more anterior (Fz and AF) channels (Rueda et al., 2004). These 

delayed effects were also observed in the pre-intervention session in all three intervention 

groups (see ERPs in Figure 4a). However, with age, the conflict-related modulation of early ERP 

components (around the N2 time-window) increases in magnitude and progressively moves 

from a broader anterior to a more focused posterior frontal distribution (Abundis-Gutiérrez et 

al., 2014). Also, consistent with electrophysiological data, behavioral studies have shown a 

notable development of executive attention during preschool years evidenced by large 
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decreases in conflict scores between 3 and 6 years of age (Rueda, Posner, et al., 2005) followed 

by a protracted reduction of conflict during late childhood (Pozuelos, et al., 2014). Following 

intervention, children in the MT group, showed an earlier and increased conflict-related effect 

in the positive deflection following the N2. According to previous developmental data with the 

same conflict task, the pattern of brain activation produced by the MT training resembles a 

more adult-like activation, suggesting that the impact of intervention on brain function 

resembles the changes produced by natural development. Noteworthy, observed changes in 

brain markers of executive attention were not paralleled by significant improvements in the 

performance of the flanker task. Flanker conflict scores in RT at pre-intervention were around 

60 ms, which is consistent with what has been previously found in children of the same age. 

These scores where reduced to about 30 ms in the post-intervention session in all three 

intervention groups, an effect size that is similar to that of adults when performing the same 

task (Checa et al., 2014). Therefore, we believe that the performance of the task might have 

reached ceiling the second time children faced the task, thus hindering the sensibility of the 

measurement to show an effect of the intervention. In this context, using brain measures may 

provide a more sensitive test of training effects because changes in underlying brain processes 

can be seized in the absence of observable effects at the behavior level. 

Importantly, the reported increase in the conflict-related area following intervention predicts 

intelligence gains shown by the MT group. One possible explanation for this is that 

metacognitive scaffolding strengthened the ability to use abstract representations, which in 

turn enhance the efficiency of cognitive control mechanisms at the brain level. In line with this 

interpretation, recent evidence shows the relevance of processing efficiency in nodes of the 

executive attention network (i.e. the dorsal ACC and anterior insula) when it comes to 

explaining individual differences in intelligence (Hilger, Ekman, Fiebach, & Basten, 2017). 

Additionally, previous studies indicate that the activation of abstract representations promotes 

proactive control in children (Chevalier, Martis, Curran, & Munakata, 2015) and improves task-

switching efficiency (Snyder & Munakata, 2010). Proactive control can be conceptualized as a 
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form of early selection in which abstract representations of goal-relevant information are 

actively maintained, allowing individuals to optimally prepare the system before the occurrence 

of cognitively demanding events (Braver, 2012). The relation between reasoning skills and 

proactive control is supported by a study conducted by Burgess and Braver (2010), which 

showed that individuals with high fIQ activate proactive control mechanisms to a greater extent 

than those with low fIQ. Further, higher intelligence scores are related to more efficient brain 

activation of cognitive control mechanisms engaged by the flanker task (Liu, Xiao, Shi, Zhao, & 

Liu, 2011). Therefore, these findings suggest that metacognitive scaffolding enhances the ability 

to create, maintain, and implement abstract representations supporting the efficiency of 

cognitive control mechanisms. We believe that the increased ability to use metacognitive 

strategies boosted the effects of process-based training and produced greater impact on the 

tactical and deliberate use of executive control processes at both behavioral and brain function 

levels.  

Based on the research literature in psychological and educational science, Hirsh-Pasek and 

colleagues (2015) argue that children learn best when they are cognitively active and engaged, 

when learning experiences are meaningful and socially interactive, and when learning is guided 

by a specific goal. They also claim that the educational value of the increasingly popular 

computer-based programs and apps will depend on whether intervention programs are 

designed on the basis of these learning principles. Results from the current study provide 

evidence of the benefits of integrating process-based training with scaffolding as a method to 

improve metacognitive knowledge and reasoning skills. Our results provide evidence that it is 

possible to enhance the beneficial effects of cognitive training by means of metacognitive 

scaffolding. Further, this strategy enhances brain mechanisms underlying executive attention, 

which in turn contributes to gains in reasoning skills following intervention. Although more 

research is needed to replicate and extend our results, we think that the evidence provided 

represents promising ideas and methods that might assist the design of more effective cognitive 

interventions.   
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Table 1. Descriptive statistics of participants 

 

 

 

 

 

 

 

 

 

  

 
N 

Gender 
Mean Age 

(SD) mean IQ (SD) Group Girls Boys 

MT 33 14 19 63.4 (7.84) 104.7 (13.89) 

T 31 13 18 63.5 (7.15) 104.9 (14.72) 

AC 33 13 20 63.7 (6.56) 104.7 (12.27) 

all 97 40 57 63.6 (7.1) 104.7 (13.62) 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

Table 2. Description of training exercises 

Category Exercise Trained process Brief Description 

Tracking / 
Anticipation 

Side Target tracking 
Navigating a cartoon cat to reach areas of grass and avoid muddy areas, which get 
progressively bigger 

Chase 
Target tracking and 
anticipation 

Anticipating where a cartoon duck that swims across a pond in a straight line will 
come across in order to chasing it. In the highest levels of difficulty, the duck dives so 
that its trajectory remains invisible. 

Maze Anticipation Navigating a cartoon cat through a maze to get food. 

Attention focusing 
/ Discrimination 

Portraits 

Focusing attention, 
perceptual 
discrimination and 
working memory 

Matching-to-sample exercise with cartoon pictures. Requires clicking on the one of 
two pictures that looks exactly the same as the sample picture. In higher levels, the 
sample picture disappears before the two choices appear on the screen and the child 
is to keep in mind the attributes of the sample picture. 

Shapes 

Focusing attention, 
perceptual 
discrimination and 
working memory 

A number of overlapping figures are presented and the child has to determine which 
are the ones presented by clicking on the appropriate buttons displayed on the sides 
of the screen. 

Conflict 
monitoring and 
resolution 

Numbers 
Conflict monitoring 
and resolution 

Two sets of numbers are presented and children have to click in the group composed 
by the larger number of items. Trials can be congruent (larger group made up of 
numbers of higher value) or incongruent (larger group made up of numbers of lower 
value). 

Value-not-size 
Conflict monitoring 
and resolution 

Various numbers differing in size are presented on the screen. Children are asked to 
click on the number of higher value disregarding the size. Size and value can be 
congruent (the higher number is the larger in size) or incongruent (the higher 
number is the smaller in size). 

Teacher Attentional flexibility 
The child is to classify items according to the rule presented by a teacher. Objects are 
to be classified according to dimensions of shape, color and size. The rule changes at 
different rates throughout the exercise. 

Inhibitory control 

Farmer Inhibitory control 
Cartoons animals (either sheep or wolfs) appear behind a bale of hay and children are 
asked to quickly click only to sheep in order to bring them inside a fence. 

Robots Inhibitory control 
Children are to feed robots with metal pieces according to their shape and color in a 
fast pace. They must avoid feeding each particular robot with pieces of non-
corresponding shape/color. 

Sustained 
attention 

Frog 
Sustained attention 
and preparation 

The child must press a key as fast as possible in order to help a frog catching flies that 
come out of a bottle. The requirement to sustain attention is increased by enlarging 
the interval of time between targets, and presence/absence of warning signals.  
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Table 3. Means and Standard Deviations (SD) of Pre- and Post-intervention scores for all dependent measures. Planned contrasts indicate the F value for 

the significant comparisons between pre- and post-intervention scores. ***p<.001; **p<.01; *p<.05; ≈p<.10 

 

Task DV Group 
Valid 
n 

Pre-intervention Post-intervention 
Planned 
contrasts  
pre vs 
post 

Standardize
d gain Mean (SD) Mean (SD) 

K-BIT 

fIQ 

MT 32 104.8 (14.80) 112.3 (11.12) 12.98 *** 0.76 

T 31 104.1 (13.42) 109.3 (9.69) 4.78 * 0.29 

AC 33 106.6 (12.28) 105.7 (12.19) ns −0.09 

vIQ 

MT 32 107.4 (11.20) 110.8 (12.61) ns 0.18 

T 31 108.3 (16.35) 109.4 (12.91) ns 0 

AC 33 106.5 (16.09) 106.3 (15.76) ns −0.01 

Composite IQ 

MT 32 104.7 (12.27) 110.9 (11.93) 12.35*** 0.52 

T 31 104.7 (13.89) 108.2 (11.08) ns 0.15 

AC 33 104.9 (14.7) 104.6 (14.02) ns −0.02 

WISC 
WM  
backwards 

MT 33 2.2 (1.27) 2.5 (1.14) 2.92≈ 0.23 

T 31 2.0 (1.39) 2.1 (1.30) ns 0.16 

AC 33 1.8 (1.14) 1.9 (1.26) ns 0.03 

Simon  
Says 

% Inhibition  
errors 

MT 21 28.0 (18.60) 18.6 (19.30) 4.29* 0.51 

T 23 32.6 (20.27) 20.0 (15.07) 8.23** 0.62 

AC 17 30.6 (21.35) 24.7 (20.34) ns 0.28 

Flanker  
Task 

Conflict score  
(RT) 

MT 25 50 (69) 28 (55) ns - 

T 20 61 (96) 35 (39) ns - 

AC 28 64 (68) 31 (60) ns - 

Conflict score MT 25 7.2 (9.6) 6.2 (6.0) ns - 
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(% Errors) T 20 7.4 (9.6) 9.1 (8.4) ns - 

AC 28 8.1 (6.9) 6.6 (9.6) ns - 
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