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Resumen Tesis Doctoral 
Synergies and trade-offs of climate change mitigation policies: an integrative assessment 

approach / Impactos y sinergias de las políticas de mitigación del cambio climático: un 
enfoque de análisis integrado 

Dirk-Jan van de Ven 

 

El efecto de la actividad humana en la temperatura global comenzó a analizarse en la literatura científica 

en 1938, mientras que en 1987 se confirmó con un alto nivel de certeza su impacto en el cambio climático 

global. Con el objetivo de mitigar los peligrosos efectos del cambio climático, en 1997 se estableció el 

protocolo de Kyoto, que comprometía a los países desarrollados a reducir sus emisiones de gases de 

efecto invernadero (GEIs) mediante un sistema de “cap-and-trade”. Sin embargo, la falta de acuerdo 

global (no fue aceptado por algunos países) hizo que las políticas aplicadas en ciertos países 

incrementaran las emisiones en regiones fuera del acuerdo. Después de años de intensa negociación, un 

significativo cambio en el paradigma de la política internacional condujo al Acuerdo de París en 2015, 

donde todos los países del mundo acordaron limitar el incremento de temperatura global por debajo de 

los 2°C. Tanto los países desarrollados como en desarrollo definieron, con un carácter voluntario, sus 

objetivos de reducción de emisiones, así como las políticas necesarias para alcanzar dichos objetivos, en 

línea con otras prioridades locales y nacionales. El carácter voluntario ha hecho que el proceso de 

ratificación del Acuerdo de París haya sido más rápido. 

Sin embargo, el análisis de los compromisos voluntarios demuestra que no serán suficientes para cumplir 

con el objetivo de estabilización del incremento de temperatura a nivel global por debajo de los 2°C, lo 

que pone de manifiesto la necesidad de establecer objetivos de reducción de emisiones más ambiciosos. 

El nivel de transformación necesario para alcanzar los objetivos no sólo va a limitar los daños del cambio 

climático, sino que tendrá múltiples efectos en diferentes ámbitos de la sociedad. Dicha transformación 

generará distintos impactos y co-beneficios económicos, sociales o medioambientales, y, a su vez, tendrá 

una influencia directa en el coste de alcanzar dichos objetivos. Por ejemplo, la sustitución de centrales de 

carbón por plantas de energía solar reducirá las muertes prematuras derivadas de la contaminación, pero 

modificará los usos de suelo. Por lo tanto, la identificación de políticas climáticas que maximicen 

beneficios considerando todos los posibles co-efectos podría ser una estrategia efectiva para convencer 

a los tomadores de decisiones de aumentar la ambición de los objetivos, dado que, siendo los co-efectos 

en su mayoría positivos, aumentará el grado de aceptación de la sociedad. 

La comunidad científica, desde 1980, ha utilizado modelos económicos para el diseño de las políticas 

climáticas. Además, muchos de ellos se han conectado con modelos climáticos, energéticos o de uso de 

suelo, en el marco de los modelos de análisis integrado. Los escenarios desarrollados con este tipo de 

modelos integrados suelen ser utilizados para estimar los esfuerzos de mitigación necesarios para evitar 

los daños generados por el cambio climático. La pluralidad de dichos modelos los convierte en una 

herramienta ideal para investigar las conexiones de las políticas climáticas con otros objetivos, un área de 

creciente interés para los distintos agentes sociales, y en línea con el reciente cambio de paradigma en la 

política climática internacional. 
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En este contexto, el principal objetivo de esta tesis doctoral es avanzar en el desarrollo de herramientas 

y metodologías que permitan una evaluación integrada de los efectos de las políticas climáticas que 

emanan del Acuerdo de París, teniendo en cuenta sus potenciales impactos y co-beneficios en distintos 

ámbitos. 

Los modelos de análisis integrado han sido utilizados tradicionalmente para analizar distintos escenarios 

climáticos de mitigación y sus implicaciones en términos de cambios en el sistema energético, el uso de 

suelo, las emisiones o el clima. Sin embargo, dependiendo del interés inicial de los desarrolladores de este 

tipo de modelos, algunos módulos tienen un nivel de detalle sustancialmente mayor que otros, por lo que 

están en continua evolución, debido al creciente interés en proporcionar información cada vez más 

detallada de las implicaciones de las políticas de climáticas. Esta tesis contribuye a incrementar el nivel de 

detalle de los modelos de análisis integrado mediante el desarrollo de módulos y enlaces con otros 

modelos, proporcionando una visión más holística y sistémica de las interacciones existente entre los 

objetivos de las políticas climáticas y el resto políticas. 

Estos desarrollos son utilizados a lo largo de la tesis para analizar los co-beneficios y externalidades de los 

escenarios climáticos de mitigación. Primero, el capítulo 2 examina los beneficios de un cambio de 

comportamiento social en la Unión Europea en términos de emisiones de GEIs y usos de suelo tanto 

dentro como fuera de la Unión Europea. Segundo, el capítulo 3 se centra en la evaluación de los impactos 

potenciales en términos de uso de suelo del despliegue de la energía solar en regiones de alta densidad 

como la Unión Europea, India, Japón y Corea del Sur. Tercero, el capítulo 4 analiza el efecto de distintas 

tecnologías de generación eléctrica tanto en términos de reducción de emisiones como de seguridad 

energética en la Unión Europea. Por último, el capítulo 5, explora los efectos simultáneos de subsidios a 

distintas tecnologías en África del Este, en relación con distintos Objetivos de Desarrollo Sostenible: acción 

climática, mejora en la salud y acceso a la energía. Estos análisis permiten ver el amplio rango de las 

consecuencias derivadas de las políticas climáticas y sus efectos en otros objetivos, así como sus 

diferencias geográficas. 

El potencial del cambio de comportamiento en la mitigación del cambio climático 

La mayoría de la literatura científica se centra en soluciones tecnológicas para la mitigación del cambio 

climático. Por contra, los cambios de comportamiento, que pueden jugar un rol significativo en la 

reducción de emisiones a un coste cero, han recibido una menor atención. El capítulo 2 de esta tesis 

doctoral explora el potencial de mitigación de los cambios de comportamiento en la Unión Europea, 

considerando distintos aspectos como la alimentación, la movilidad o la demanda de los hogares. 

Sin necesidad de nuevos desarrollos tecnológicos e inversiones adicionales, los cambios en el estilo de 

vida como el cambio de dieta, hábitos de movilidad o el reciclado de residuos, contribuyen de una manera 

significativa a la reducción de emisiones de GEIs. Para capturar dichas implicaciones (directas e indirectas) 

se utiliza un modelo de análisis integrado que combina integra una representación de la economia, el 

sistema energético, el uso de suelo y el sistema climático. Los resultados muestran que un cambio de 

comportamiento riguroso podría reducir las emisiones de GEI’s per cápita hasta un 16%. Un cuarto de 

esta reducción se daría fuera de la Unión Europea, debido a cambios en el uso de suelo. Los cambios en 

la dieta, incluyendo aquellos menos radicales como simplemente la adopción de una “dieta sana” (que 
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podría reducir la huella de carbono alrededor de un 5%) serían los cambios más efectivos en términos de 

emisiones, con un gran porcentaje de estas reducciones fuera de la Unión Europea, debido a las 

implicaciones que tendrían en términos de reducción de la deforestación a nivel mundial. 

Los ahorros en las emisiones por cambios de comportamiento que ocurren dentro de la Unión Europea 

contribuirían a la reducción de los costes de los objetivos de europeos de mitigación entre un 15% y un 

30%. Además, muchos de estos cambios generarían beneficios adicionales como ahorros monetarios, 

mejoras en la salud humana y bienestar animal. Por todo esto, es importante considerar el potencial de 

los cambios en el comportamiento en el diseño de las políticas climáticas, y también en el desarrollo de 

modelos de análisis integrado, ya que la interacción de estos cambios de comportamiento con las 

soluciones tecnológicas podría cambiar los resultados en los distintos escenarios de mitigación.  

Emisiones y necesidades de uso de suelo asociadas al desarrollo de la energía solar 

Las tecnologías asociadas al uso de recursos renovables están caracterizadas por una intensidad de uso 

del uso de suelo significativamente mayor que la de los combustibles fósiles. Por eso, la transición hacia 

energías renovables va a intensificar la competición por el uso de la tierra a nivel global. Debido a la 

esperada relevancia de la energía solar en un futuro descarbonizado, el capítulo 3 trata de cuantificar la 

ocupación de suelo y las emisiones relacionadas con el uso de suelo derivadas de la instalación de energía 

solar hasta 2050 en distintas regiones, dentro de un contexto de acción climática consistente con el 

Acuerdo de París. El capítulo se centra en aquellas regiones en las que se espera que los impactos sean 

más relevantes debido, sobre todo, a la alta explotación actual de la tierra: la Unión Europea, India, Japón 

y Corea del Sur. 

Excepto para el caso de la biomasa, la literatura científica no suele considerar los efectos en términos de 

uso de suelo de la instalación de nuevas energías renovables. En este capítulo se desarrolla un modelo 

que permite analizar estas relaciones. Con un nivel de penetración de las energías renovables de un 50-

80% en el mix eléctrico, el suelo ocupado por energía solar representaría alrededor de un 2%, 1% y 3.5% 

del total de la tierra en la Unión Europea, India y, en su conjunto, Japón y Corea del Sur, respectivamente. 

Son porcentajes significativos puesto que son valores similares al área actual urbanizada en dichas 

regiones. Por cada 100 hectáreas de infraestructura solar instalada en la Unión Europea, India y Japón y 

Corea del Sur, indirectamente se eliminarían 35, 29 y 52 hectáreas de bosque natural, respectivamente. 

Las emisiones derivadas del cambio del uso de suelo hasta 2050 serían iguales a un tercio de las emisiones 

del ciclo de vida total de la energía solar y alrededor del 10%, 2% y 6% de las emisiones de la electricidad 

generada utilizando gas natural en la Unión Europea, India y Japón y Corea del Sur, respectivamente. A 

pesar de que los impactos en la tierra son significativos, el periodo de retorno en términos de emisiones 

derivadas del cambio en el uso de suelo de la energía solar (en sustitución del gas) en estas regiones sería 

de 6, 1 y 4 meses, respectivamente, lo que representaría alrededor de 8, 40 y 12 veces menos que el 

periodo de retorno del uso de biomasa para los mismos niveles de penetración en el mix eléctrico.  

Estos resultados indican que es recomendable considerar los impactos en términos de ocupación de suelo 

derivados de la expansión de todas las energías renovables (no solamente de la biomasa) y las emisiones 
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derivadas de cambios en el uso de la tierra en el diseño de políticas climáticas de mitigación, sobre todo 

en aquellas regiones con mayor densidad poblacional. 

Optimización de carteras tecnológicas para la generación eléctrica en la Unión Europea en un contexto 

de mitigación del cambio climático 

El capítulo 4 muestra un enlace entre un modelo de análisis integrado y un modelo de análisis de carteras 

de inversión que permite evaluar los posibles impactos de distintas opciones de generación eléctrica en 

términos de mitigación de emisiones y de seguridad energética en la Unión Europea hasta 2050. Las 

tecnologías recogidas en este análisis son la solar fotovoltaica, la solar térmica, la eólica, la generación 

nuclear, la biomasa y la captura y almacenamiento de CO2. 

La metodología desarrollada se basa en el uso de un modelo de análisis integrado para estimar el efecto 

marginal de los subsidios a cada una de las seis tecnologías mencionadas en la reducción de emisiones y 

en la seguridad energética (medida como el ratio entre la producción de energía doméstica entre el 

consumo total de energía) en la Unión Europea hasta 2050. Estos efectos marginales muestran que la 

mayoría de tecnologías renovables tendrán un efecto positivo tanto en la reducción de emisiones como 

en la seguridad energética. Sin embargo, algunas tecnologías como la biomasa o la captura y 

almacenamiento de CO2 podrían reducir la seguridad energética, debido a que necesitan recursos que la 

Unión Europea tendría que importar. 

Los resultados de este modelo se conectan con un análisis de carteras que estima qué carteras de 

tecnologías de generación de electricidad específicas serían óptimas (en el sentido de Pareto) y robustas 

frente a cambios en los parámetros. Los resultados muestran que existen combinaciones de subsidios a 

la generación de electricidad que, de una manera robusta, reducen las emisiones de GEIs e incrementan 

la seguridad energética. 

La metodología aplicada en este análisis debería ser considerada por los tomadores de decisiones, dado 

que genera información que va a reducir sustancialmente la incertidumbre a la hora de diseñar los 

distintos subsidios para la promoción de las energías renovables, lo que es de especial importancia dada 

la falta de información sobre los futuros desarrollos tecnológicos. 

Análisis integrado y optimización de distintos Objetivos de Desarrollo Sostenible en África del Este 

Los países en vías de desarrollo, especialmente los del África Sub-Sahariana, se enfrentan al desafío de 

hacer compatible su desarrollo económico con el logro de los objetivos en materia de política climática. 

En este sentido, el capítulo 5 se centra en los co-beneficios de la acción climática en distintos Objetivos 

de Desarrollo Sostenible en África del Este. 

El uso generalizado de la biomasa tradicional en los hogares en África del Este tiene importantes efectos 

negativos en términos de salud humana y como medioambientales. Por otro lado, las políticas para 

satisfacer las necesidades energéticas en esta región tienen efectos en, por lo menos, tres Objetivos de 

Desarrollo Sostenible: acción climática, mejora de la salud e incremento del acceso a la energía. Este 

estudio utiliza un modelo de análisis integrado para simular el impacto de los subsidios a distintas 

tecnologías, las políticas de uso de suelo y de la combinación de ambas medidas en las emisiones de GEIs, 
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la exposición a la contaminación y el acceso a la energía en África del Este, considerando distintas 

narrativas socioeconómicas. 

Los resultados muestran que las políticas de uso de suelo, basadas en la promoción de la producción y 

uso de bioenergía de manera sostenible, pueden reducir las emisiones de GEIs en la región cerca de un 

10%, pero retrasarían la consecución de objetivos relacionados con la mejora en la salud o el acceso a la 

energía. Una cartera óptima de subsidios a tecnologías energéticas de 11 a 14 dólares per cápita hasta 

2030 podría reducir las emisiones de GEIs hasta un 10%, reduciendo, a su vez, las muertes prematuras 

derivadas de la contaminación en un 20% e incrementando el acceso a la energía en hasta un 15%. 

Después de 2030, tanto las políticas de uso de suelo como los subsidios a las tecnologías se convierten en 

menos coste-efectivas y más dependientes del desarrollo generalizado de la región. El análisis muestra 

que los subsidios al biogás deberían priorizarse tanto en el corto como en el largo plazo, mientras que los 

subsidios a los gases licuados del petróleo (salud y acceso a la energía), a la solar fotovoltaica (acceso a la 

energía), al etanol (clima y salud) y al carbón vegetal (clima; si se combina con políticas de uso de suelo) 

dependerán del Objetivo de Desarrollo Sostenible que el tomador de decisiones (local o internacional) 

considere más relevante a la hora de financiar la transición hacia energías limpias. 

A pesar de que muchos de los países de África del Este incluyen políticas tecnológicas y de uso de suelo 

en sus objetivos voluntarios de reducción de emisiones, este estudio muestra que cada tecnología 

contribuye de manera diferente a cada objetivo y a cada grupo de personas, mientras que demuestra la 

importante conexión entre los dos tipos de política. Por eso, las políticas climáticas en esta región (y en 

los países en desarrollo en general) podrían beneficiarse del análisis integrado, ya puede aplicarse para 

identificar las sendas óptimas de transición. 

Conclusiones 

El objetivo de esta tesis doctoral es analizar los impactos y las sinergias de distintas políticas de mitigación 

del cambio climático. Para ello, se ha utilizado un modelo de análisis integrado que conecta distintos 

sistemas como el energético, el socioeconómico, el climático y el uso de suelo. También se han 

desarrollado módulos específicos y se han integrado los resultados con distintos métodos y herramientas 

con el objetivo de analizar los impactos de una forma consistente. Los resultados de la tesis muestran que 

las políticas de mitigación del cambio climático están directamente relacionadas con otros objetivos, lo 

que podría ser de interés tanto para los tomadores de decisiones como para la comunidad científica, sobre 

todo la centrada en la investigación interdisciplinar.  

La tesis doctoral está compuesta por cuatro estudios diferenciados, y cada uno analiza la relación de las 

políticas climáticas con otros objetivos como el uso de suelo, la seguridad energética, la salud o el acceso 

a la energía en un contexto de desarrollo. Sin embargo, se han obtenido importantes conclusiones 

generales. Durante todos los capítulos se aprecia una clara relación entre las políticas climáticas con otros 

objetivos, tanto en el caso de las soluciones basadas en cambios de comportamiento como en las 

tecnológicas. Es por esto que la conexión del diseño de las políticas de mitigación con otros objetivos 

específicos para cada región se presenta como un elemento esencial, no sólo para reducir los costes de la 

consecución de los objetivos, sino para obtener apoyo social, dado que, en caso de que una política 

climática afecte negativamente a otros objetivos, su implementación podría generar una importante 

resistencia en la sociedad.  
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Mientras que las políticas económicas genéricas, como el sistema de comercio de derechos de emisión, 

pueden ser efectivas para conseguir una determinada reducción de emisiones al menor coste posible, en 

algunos casos, desde un punto de vista más holístico, podría ser más beneficioso adoptar una serie de 

medidas más complejas a pesar de suponer un mayor coste. La principal diferencia del Acuerdo de París 

frente el Protocolo de Kyoto es la capacidad de cada región para definir sus propios objetivos de 

mitigación, lo que podría ser más adecuado para combatir el cambio climático, dado que cada región 

comprende de una forma más detallada sus prioridades o circunstancias nacionales. Esta flexibilidad del 

paradigma actual de política climática internacional debería ser tenido en cuenta por la comunidad 

científica a la hora de diseñar y desarrollar herramientas de análisis integrado que permitan relacionar las 

políticas climáticas con otros objetivos, de forma que sean útiles a la hora de incrementar la ambición de 

los objetivos climáticos y, por tanto, mitigar de una manera más efectiva los efectos adversos del cambio 

climático. 
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Abstract 

The large degree of transformational change that would be necessary to limit global temperature change 

to 2°C would not only avoid dangerous climate change, but will affect societies in many more aspects. 

Depending how these transformations are designed, they can have co-benefits and trade-offs for other 

economic, social or environmental objectives and influence the policy costs of reaching such objectives.  

The aim of this thesis is to assess synergies and trade-offs of climate change mitigation policies. For this 

purpose, an IAM has been used that integrates socioeconomic, energy, land and climate systems. 

Additional modules to this model have been designed throughout the course of the PhD, as well as a link 

with another method to process model outputs with the aim of assessing synergies and trade-offs and 

check for robustness of specific policies.  

More concretely, chapter 2 analyses the role of behavioural change in the climate change mitigation 

portfolio, and its impact on climate policy costs. Chapter 3 looks at the land use occupation of solar energy 

and the related environmental impacts in terms of land cover change and land use change emissions. In 

the next chapters, a link is introduced between an integrated assessment model and robust portfolio 

analysis. Chapter 4 uses this link to optimise low-carbon power technology investment portfolio in order 

to achieve both greenhouse gas emission savings and energy security improvement, while chapter 5 uses 

the link by optimizing energy technology subsidies, mixed with land policies, in developing countries to 

achieve simultaneous progress in three different Sustainable Development Goals. 
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Motivation 
The effect of human activities on global temperatures was first described scientifically by Callendar in 

1938 and the topic continued in the scientific debate in the following decades. By 1975, the seriousness 

and proximity of the effect of greenhouse gases (GHGs) on climatic change was firstly expressed in the 

scientific community (Broecker 1975). In 1986 and 1987, NASA climate scientist James Hansen gave 

testimony to the United States Congress on global warming, mentioning "global warming has reached a 

level such that we can ascribe with a high degree of confidence a cause and effect relationship between 

the greenhouse effect and the observed warming" (Hansen et al. 1988). Given the global scale of the 

problem, the Intergovernmental Panel on Climate Change (IPCC) was founded in 1988, dedicated to 

providing the world with an objective scientific view of climate change, its natural, political and economic 

impacts and risks, and possible response options (Weart 2008). Four years later, the United Nations 

Framework Convention on Climate Change (UNFCCC) was adopted with the objective to "stabilize GHG 

concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference 

with the climate system".  

The Kyoto protocol was signed in 1997 after a series of UNFCCC meetings, with the attempt to address 

the growth in GHG emissions on a global scale. The policy design of the Kyoto Protocol, both from the 

perspective of global burden sharing and national implementation of emission reduction targets, was 

based for a large part on that of the Montreal Protocol: an international agreement signed in 1987 with 

the purpose of reducing the global production of ozone-depleting gases, primarily chlorofluorocarbons 

(CFCs) (Morrisette 1989). By the time of the Kyoto Protocol (1997), policies under the Montreal Protocol 

already had curtailed over 70% of global ozone-depleting substances, primarily through reductions in the 

United States (US) and the European Union (EU) (UNEP Ozone Secretariat 2008). The policy design of the 

Montreal Protocol has often been mentioned as a key to its success (Sunstein 2007; Schmalensee and 

Stavins 2017; Brack 2017; Gonzalez, Taddonio, and Sherman 2015; Daniel et al. 2012). In the US, and 

initially also in the EU, tradable emission permits were used to cut down CFCs in an economically efficient 

way (Hammitt 2010). Between 1986 and 1994, about 85% of (forecasted) CFCs had been mitigated for an 

average price of $7,50 per kg in the US (Hammitt 2000), translating to a policy cost of CFC reduction of 

less than 0.01 % of Gross Domestic Product (GDP)1.The burden sharing process of the Montreal Protocol, 

in which developed regions initiated the CFC mitigation process with ambitious reduction targets, and less 

developed countries following later, is also seen as an important pillar of the Protocol´s success (Brack 

2017; Gonzalez, Taddonio, and Sherman 2015). 

Similarly, the Kyoto Protocol was based largely on these two pillars: OECD member countries were 

assigned obligatory greenhouse gas (GHG) reduction targets, to be achieved through the Emission Trading 

Scheme (ETS) which allowed companies to buy and sell GHG emission permits according to their needs, 

while non-OECD countries had no GHG reduction targets whatsoever during the first commitment period 

(2008-2012). An additional innovation to the Kyoto Protocol was the Clean Development Mechanism 

(CDM), in which actors in OECD countries had the flexibility to abate some part of their GHG reductions in 

non-OECD countries through buying Certified Emission Reduction units (CERs) from these countries. The 

perception behind this policy was that abatement costs are significantly lower in developing countries 

(and the source of GHG emissions does not matter for its atmospheric impact), while it would 

simultaneously drive clean development investments in such regions (J. Goldemberg et al. 1995). 

                                                           
1Calculated by multiplying the price by the total reduction for each year between 1986 and 1994 (Hammitt 2000), and dividing this by total US 
GDP (World Bank 2019) in these years. 
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However, the Kyoto protocol has not proven very successful, as it was never ratified by the US, the biggest 

emitter of GHG emissions at the time, and many other countries dropped out during or after the first 

commitment period by the end of 2012 (UN Treaty Database 2019). In those countries that ratified the 

Protocol with bindings targets for 2012, guaranteed through tradable emissions permits for GHG 

emissions, the policy did contribute to a moderate net reduction in GHG emissions (Cludius et al. 2018; 

Shishlov, Morel, and Bellassen 2016), but global emissions kept increasing significantly (Janssens-

Maenhout et al. 2017), and carbon leakage from those countries in the Protocol to those outside the 

Protocol to some extent has contributed to this increase (Aichele and Felbermayr 2015). 

So why was the Montreal Protocol so successful in taking on ozone depletion, while the Kyoto protocol, 

based on a similar mechanism, has not been successful in taking on climate change? Various answers to 

this questions have been given in literature, ranging from very specific policy design failures (Daniel et al. 

2012; Rosen 2015) to broad claims about the difference in certainty and cost-effectiveness of both 

problems (Philander 2018; Sunstein 2007). However, a key explanation can be found in the enormous 

differences between the level of transformational change required to address ozone depletion and 

climate change. Ozone depletion has been largely caused by CFC inputs in the chemical industry, and has 

been addressed by large efficiency improvements in this specific industry and by replacing the remaining 

inputs with hydrofluorocarbons (HFCs) (McCulloch, Midgley, and Ashford 2003). Instead, to address 

climate change, large reductions in anthropogenic Carbon dioxide (CO2), Methane (CH4), Nitrous oxides 

(N2O), and also HFCs are needed, translating to transformations in all industrial systems, in agricultural 

systems, in transport use, in domestic energy use and probably even in the human diet. Needless to say, 

addressing climate change requires far more involvement from all layers in society than addressing ozone 

depletion. This high level of transformational change will clearly not only avoid dangerous levels of climate 

change, but will affect societies in many more aspects (Edenhofer et al. 2014). Depending how these 

transformations are designed, they can have co-benefits and adverse side-effects for other economic, 

social or environmental objectives and influence the policy costs of such objectives (Clarke et al. 2014). 

For example, policies that limit climate mitigation to 2 degrees Celsius will yield significant co-benefits by 

avoiding air pollution (Markandya et al. 2018b), but also increase global competition for land (Scheidel 

and Sorman 2012).  

The intention to address climate change through the same mechanisms as ozone depletion, i.e. through 

binding global emission reduction objectives to be achieved by economic policies such as taxes, quotas 

and tradable permits, might have been underestimating the differences between these two global 

problems with respect to the scale of transformation and interrelatedness with other objectives. While 

tradable permits are proven to be very cost-effective in reducing emissions through achieving higher 

efficiency and replacing inputs, both in the case of CFCs (Hammitt 2000) and GHG emissions (Cludius et 

al. 2018), a potential problem with such policies is that they do not discriminate in how emissions are 

avoided, and purely focus on cost-effectiveness and not on other features of low-emission pathways. A 

key example of this problem under the Kyoto Protocol can be found in the misuse of the CDM: in order to 

abate GHG emissions as cheap as possible, private actors in OECD countries massively2 bought CERs from 

refrigerant manufacturers in non-OECD countries, achieved by eliminating HFC-23, a very potent GHG. 

Such HFC-23 elimination projects were so profitable that manufacturers in non-OECD countries built new 

factories to produce more of this harmful gas (Carbon Trust 2009). Apart from the counterproductive 

                                                           
2 Up to 59% of all CERs in the EU ETS by 2010 (The Economist 2010) 
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outcome of this policy, it also did not contribute at all to clean development in non-OECD countries, which 

was one of the intentions of the CDM. 

Instead, the scale of the climate change mitigation challenge and its interrelatedness with other policy 

objectives requires a broader set of policies which often depend on local conditions. A paradigm shift from 

controlled global action to largely voluntary national and sub-national action to mitigate climate change 

came first to expression at the UNFCCC in 2010 (Hourcade and Shukla 2015) and became the primary pillar 

of the Paris Agreement in 2015 (Chan, Brandi, and Bauer 2016; Kinley 2017), representing the most recent 

international agreement to address the global issue of climate change. In the Paris Agreement, each 

nation has proposed its Nationally Determined Contribution (NDC), proposing a set of policies and 

ambitions for 2030 which it deems achievable and in line with national or regional priorities. While the 

current mitigation effort proposed by countries in their NDCs will not be sufficient to stay below 2 degrees 

temperature increase (Robiou du Pont et al. 2016; Fawcett et al. 2015), this change of angle from 

obligatory to voluntary climate action seems to be successful in terms of global accordance on climate 

action as the ratification process of the Paris Agreement has been much faster than that of the Kyoto 

Protocol3. Although the US has again announced to drop out of the agreement, this time it is not expected 

to have such negative ramifications for the participation of other countries as it had for the Kyoto Protocol 

because climate objectives fit better to other national objectives and are less seen as additional 

obligations (Pickering et al. 2018).  

In contrast to the Kyoto Protocol, all developing countries have also proposed mitigation objectives in the 

Paris Agreement, often even more ambitious than those of developed countries (Robiou du Pont et al. 

2016). Most of NDCs from developing countries offer unconditional mitigation efforts as well as additional 

efforts that depend on various conditions, such as funding from developed countries through the Green 

Climate Fund (GCF), a fund established within the UNFCCC framework to assist developing countries in 

adaptation and mitigation practices to counter climate change (Climate Analytics 2017). Also, only months 

before the Paris Agreement in 2015, the United Nations defined the Sustainable Development Goals4 

(SDGs), which is seen as a roadmap for the sustainable development of developing countries until 2030. 

Climate change mitigation objectives have synergies with many of those SDGs, and the NDCs of developing 

countries served as a good opportunity to achieve progress on multiple SDGs that are linked to climate 

action, and receive funding for those goals (Dzebo et al. 2017). 

The scientific community has intended to support climate policy development through the use of 

economic models since the 1980s (J. Edmonds and Reilly 1983; Rotmans 1990; Schrattenholzer 1981; 

Nordhaus 1992), and many of these models have grown into Integrated Assessment Models (IAMs) by 

linking economic models with climate, energy system, land use models (JGCRI 2017; Stehfest et al. 2014). 

Scenarios from these models have been used in all IPCC reports to calculate the required mitigation efforts 

to avoid dangerous levels of climate change (Edenhofer 2015) and numerous studies have been 

performed on specific interactions related to climate or other environmental policies. Despite strong 

criticisms (Pindyck 2013a), the plurality of IAMs make them an ideal tool to investigate the interlinkage of 

climate policies with other policy objectives, a topic of increasing interests by policymakers and in line 

with recent paradigm changes in the field of international climate policy (Doukas et al. 2018). 

                                                           
3 https://unfccc.int/process/the-kyoto-protocol/status-of-ratification and https://unfccc.int/process/the-paris-agreement/status-of-ratification 
4 https://www.un.org/sustainabledevelopment/sustainable-development-goals/  

https://unfccc.int/process/the-kyoto-protocol/status-of-ratification
https://unfccc.int/process/the-paris-agreement/status-of-ratification
https://www.un.org/sustainabledevelopment/sustainable-development-goals/
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Objectives 
The objective of this PhD thesis is to contribute to the assessment of climate policy under the Paris 

Agreement and its potential co-benefits and trade-offs with other policy objectives. For that purpose, the 

first objective is to contribute to the design of IAMs and tools to abstract policy-relevant information 

from these models. IAMs are usually used to assess different climate change mitigation scenarios and the 

interaction between socioeconomic, energy, land use, emission and climate variables. However, 

depending on the initial interests of IAM developers, some modules are modelled in more detail than 

others, and the level of interactions in IAMs is continuously increasing due to growing demands for 

granularity by policymakers. This thesis contributes to the granularity of IAMs by developing additional 

modules and interactions, depending on the policy question. Also, this thesis links an IAM with a portfolio 

analysis tool which can be used to abstract robust policy-relevant information from such models. 

The second objective of this thesis is to contribute to the assessment of co-benefits and adverse side-

effects of climate change mitigation pathways. First, I look at the benefits of behavioural change in the 

EU on GHG emissions and land use inside and outside the EU (Chapter 2). Second, the potential adverse 

side-effects of the expansion solar energy in terms of increasing global land use are assessed in dense 

regions such as the EU, India, Japan and South Korea (Chapter 3). Third, the contribution of different 

power generation technologies to both emissions reductions and energy security in the EU is analysed 

(Chapter 4) and fourth, I look at the simultaneous impacts of land and energy technology subsidies in 

eastern Africa on different SDG objectives: climate action, good health and energy access (Chapter 5). 

These analyses will give an idea of the wide range of consequences that climate policies can have on other 

relevant policy objectives, as well as the geographical differences of such consequences. 
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Methodology 
The Global Change Assessment Model (GCAM) has been used for all four studies in this thesis. In three 

of the studies, separate modules are developed which enable to study novel interlinkages in the climate 

change mitigation context. The next subsection will give a detailed overview of the GCAM core model, its 

assumptions and purposes, while the details of the new modules are included in the different chapters of 

the thesis. The additional GCAM modules developed in this thesis are elaborated in the separate chapters 

for each study. 

Additionally, in two of the case studies of this thesis, the GCAM model has been connected with a robust 

portfolio analysis to analyse Pareto-optimality and robustness of GCAM outcomes. This method is also 

described in this methodology section. 

Global Change Assessment Model 
GCAM is an open-source integrated assessment model that was developed by the Joint Global Change 

Research Institute, a partnership between the Pacific Northwest National Laboratory (PNNL) and the 

University of Maryland. It is a dynamic-recursive, partial equilibrium model with technology-rich 

representations of the economy, the energy and agricultural sector, and land use, linked to a climate 

model that can be used to explore climate change mitigation policies, such as carbon taxes, carbon 

trading, regulations and accelerated deployment of energy technology. See Figure 1.1 for a graphical 

representation. 

The model is disaggregated into 32 geopolitical regions and operates in 5-year time steps from 1990 to 

2100. GCAM and its predecessors (e.g. MiniCAM) have been widely used in applications investigating 

future emission scenarios and energy technology pathways (J. A. Edmonds, Wise, and MacCracken 1994; 

S. Rao et al. 2017). GCAM is one of the four models chosen to develop the Representative Concentration 

Pathways of the IPCC’s 5th Assessment Report (Pachauri et al. 2015) and has been included in almost all 

major climate/energy assessments over the last few decades. Representative applications of the GCAM 

model include those of Edmonds and Reilly, 1983; Reilly et al., 1987; Edmonds, Wise and MacCracken, 

1994; Calvin et al., 2009; Wise et al., 2009; Ebi et al., 2014; Fisher et al., 2014; Collins et al., 2015; Shi et 

al., 2017. 

The energy system in GCAM includes primary energy resource production, energy transformation and the 

use of final energy forms to deliver energy services. The model distinguishes between depletable and 

renewable resources. Depletable resources include fossil fuels such as oil (both conventional and 

unconventional), gas, coal, and uranium (for nuclear power); renewable resources include different types 

of biomass (purpose-grown, municipal waste and residue), wind (on- and off-shore), geothermal energy, 

hydropower, rooftop solar photovoltaic (PV) equipment and non-rooftop solar, including Concentrated 

Solar Power (CSP). 

Land use and agricultural output in GCAM are calibrated for pre-defined Agro-Ecological Zones (AEZs), 

which sub-divide geo-political regions in 18 different types of land regions, based on differences in climate 

zones (tropical, temperate, boreal) and the length of growing periods for crops (Monfreda, Ramankutty, 

and Hertel 2009). The combination of geo-political and AEZs regions add up to a total of 283 land regions 
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globally, which are divided in land uses, such as commercial uses (crops, forestry) and non-commercial 

uses (natural forest, scrubs). 

 

Figure 1.1: Graphical representation of modelling structure in GCAM. Source: (L. Clarke 2013) 

Economic choice in GCAM sectors is based on a single numerical value that orders the alternatives by 

preference, defined as the choice indicator. In practice the choice indicator is either cost or profit rate, 

though other indicators are possible in principle. In cases where multiple factors influence a choice, such 

as passenger transportation (where faster modes are more desirable), the additional factors are 

converted into a cost penalty and added to the basic cost to produce a single indicator that incorporates 

all of the relevant factors. GCAM provides a flexible system for specifying choice functions at runtime on 

a sector-by-sector basis. Competition between different technologies in most sectors in GCAM is modelled 

through the Modified Logit model (J. F. Clarke and Edmonds 1993), defined by Equation 1.1 below. 

𝑠𝑖 =  
𝑎𝑖𝑝𝑖

𝛾

∑ 𝑎𝑖𝑝𝑖
𝛾𝑁

𝑗=1

        (1.1) 

The parameters s and p represent respectively the relative share and price of each technology i, and a and 

ɣ represent respectively the “shareweight” of each technology and the “logit exponent” of the whole 

sector. The fitness of a choice alternative is a sum of two components, one determined entirely by the 

choice indicator (e.g., cost), and another determined by factors not captured in the model, defined by the 

shareweight. The logit exponent determines the degree to which cost differences between different 

choice options in a sector influence the relative share of each option. 
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Equation 1.2 below shows how the market share (s) of alternative options (i,j) in GCAM depends on the 

pre-defined shareweight (a) and the price or cost (p) of each alternative, while the relevance of the latter 

depends on the logit exponent. The values of the shareweights in each market are estimated by comparing 

the costs and market share of each alternative in the base year. In markets where the end product of each 

alternative is exactly equal, such as the electricity market, shareweights are assumed to converge in the 

long term, such that only cost differences determine the share of each choice in the long term (by 2100). 

Competition between technologies in the electricity sector is based on the Levelised Costs of Energy 

(LCOE), dividing costs for capital, resources and maintenance by the output of electricity. 

𝑠𝑖

𝑠𝑗
=  

𝑎𝑖

𝑎𝑗
 (

𝑝𝑖

𝑝𝑗
)

γ

        (1.2) 

Economic land use decisions in GCAM are based on a logit model of sharing (McFadden 1974) with relative 

inherent profitability of using land for competing purposes. The interpretation of this sharing system in 

GCAM is that there is a distribution of profit behind each competing land use within a region, rather than 

a single point value. Each competing land use option has a potential average profit over its entire 

distribution. The share of land allocated to any given use is based on the probability that that use has the 

highest profit among the competing uses. The relative potential average profits are used in the logit 

formulation, where an option with a higher average profit will get a higher share than one with a lower 

average profit. The profit rate is the difference between the market price of the commodity and the 

production costs, which depend on land rent, fertilizer costs, other non-land costs and the crop yield. A 

land node structure defines the level of competition between different land uses. For example, 

competition between different crops is more intense than competition between crops and forest, while 

competition between crops/forest with pastures is again less intense. 

GCAM tracks GHGs, including CO2 (from fossil fuels, industrial porcesses and land use change), CH4, N2O 

and HFCs. The model also tracks air pollutants such as organic and black carbon (OC and BC), sulphur 

dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO) and non-methane volatile organic compound 

(NMVOC). GHG emissions drive radiative forcing and ultimately temperature change through the climate 

module, while air pollutants can be used to abstract potential health or crop damages. Taxes can be added 

to any emission type which would increase the costs of emission-intensive activities. To fix emissions to a 

certain level, emission caps can also be added, which function as tradable emission permits and 

endogenously calculate the required emission price in order to stay below the given cap. Welfare loss 

from emissions mitigation efforts through such policies can be calculated through a “deadweight loss” 

approach (Bradley, Watts, and Williams 1991), and depends on the marginal abatement cost curve, which 

is implicitly calculated through the detailed technological characterization of energy and agricultural 

sectors in GCAM. 

Population and GDP per geopolitical region are exogenously given in GCAM. This means that climate 

policies have no macro-economic consequences. Population and GDP estimates, among other parameters 

such as for example technology costs, crop yields and emission factors, are defined for five different 

Shared Socioeconomic Pathways (SSPs)(O’Neill et al. 2014). These SSPs serve as narratives with all 

parameters in each SSP being consistent within this narrative. The “Middle of the Road” narrative (SSP 2), 
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with medium values for all parameters, is used in chapter 2, 3 and 4, while chapter 5 looks at multiple 

narratives. 

Robust Portfolio Analysis 
A robust, multi-objective optimisation framework based on the principles of portfolio analysis and 

stochastic uncertainty analysis is employed for GCAM outcomes in chapter 4 and 5. The multi-objective 

optimisation process leads to the identification of Pareto optimal portfolios (POPs) of technology subsidies 

that are robust to the implicit uncertainty of model outcomes.  

Unlike single-objective optimisation, where the optimal solution of the problem is usually unique, the 

optimal solution in multi-objective optimisation is a set of performances across the various objective 

functions, for the optimisation of the complete set of which there emerge conflicts. Multi-objective 

optimisation can be described in mathematical terms as follows (minimisation): 

min 𝑦 =  [𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑛(𝑥)]  𝑠. 𝑡𝑜. 𝑥 ∈  𝛺 (1.3) 

 

Where 𝛺 is the feasible solution area and 𝑓1(𝑥), …, 𝑓𝑛(𝑥) are 𝑛 objective functions having conflict with 

each other.  

A solution in multi–objective optimisation is optimal (Pareto optimal solution) if there exists no other 

feasible solution that can increase the performance of the portfolio against one criterion without causing 

a simultaneous decrease against another criterion (assuming maximisation). The set of all Pareto optimal 

solutions is a Pareto optimal set (PS). The result of the optimisation process is a Pareto front (PF) of 

different efficient solutions, which feature a near-optimal trade-off between the objectives (Branke et al. 

2009; Metaxiotis and Liagkouras 2012): 

𝑃𝐹 =  {𝑦 = [𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑛(𝑥)]𝑇|𝑥 ∈ 𝑃𝑆} 

 

(1.4) 

 

Among the most widely used methods to generate the set of Pareto optimal portfolios in multi-objective 

optimisation problems is the ε-constraint method. The main idea in the ε-constraint method is to optimise 

one of the objective functions using the other objective functions (𝑝 –  1) as constraints. This study utilises 

the AUGMECON 2 method, an extension of the ε -constraint method (Mavrotas and Florios 2013) for 

driving the tri-objective optimisation model and generating the set of optimal portfolios. The AUGMECON 

2 method guarantees the generation of all Pareto optimal solutions, while avoiding the generation of 

other, non-optimal solutions. The portfolio optimisation problem is solved in the General Algebraic 

Modelling System (GAMS).  

Many parameters in GCAM are uncertain and to take this uncertainty into account, a stress test analysis 

is executed to identify which of the technology subsidy portfolios on the Pareto optimal front are most 

robust to differences in parameter values. The uncertain model parameters are considered to be 

stochastic, by sampling their values using a uniform distribution. At first, the “no uncertainty” Pareto Front 

is determined, referring to the set of portfolios that are obtained after the execution of the model, using 

deterministic values for all of the uncertain parameters. Then, Monte Carlo simulation is performed 

iteratively to sample random values for the uncertain parameters from the uniform distributions, and the 

model is then solved to generate the set of Pareto optimal portfolios. Eventually, the execution of multiple 
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Monte Carlo iterations results in a large number of differentiated Pareto fronts, which are analysed to 

draw conclusions over the robustness of the portfolios consisting the Pareto front when no uncertainty is 

considered. In both chapters where robustness analysis has been applied, 1,000 Monte Carlo iterations 

are performed. In chapter 4, uncertainty is treated as stochastic using the iterative trichotomic approach 

(ITA; Mavrotas and Pechak 2013), while in chapter 5, uncertainty is treated as deterministic through 

additional GCAM scenarios. 

The ITA approach proposes an “iterative” process developed in a series of computation round. In each 

computation round all POPs are allocated in three sets: the green set, the red set and the grey set. 

Eventually, in each round, ITA divides the optimal portfolios in the three subsets depending on their 

degree of participation in the T generated Pareto sets. The green set includes the portfolios that are 

present in all Pareto sets (PS_1, ..., PS_T) of the computation round, the red set includes the portfolios 

that were produced in the initial computational round but are not present in any of T Pareto sets in current 

computational round and the grey set includes portfolios that are present in some of T Pareto sets. In the 

first round (round with maximum uncertainty), a maximum number of portfolios is generated as candidate 

final POPs. The first round results only in green and grey sets, as there is no portfolio to be excluded (red 

set) from the Pareto set. In subsequent rounds some of these initial optimal portfolios are not present 

anymore in any of the T Pareto sets, so they join the red set. Along this process, the uncertainty of the 

model’s parameters is reduced (e.g. by reducing the standard deviation of a normal probability 

distribution or shrinking the interval of a uniform probability distribution). As the uncertainty is reduced, 

more portfolios from the grey set move to the green one (robust portfolios). Eventually, and as 

uncertainty gradually decreases, each one of the initial POPs is characterised as red or green, resulting in 

obtaining the final robust Pareto set. 

Deterministic uncertainty is estimated by means of scenario analysis: applying a range of parameter values 

in GCAM and abstract the results from GCAM runs as the potential uncertainty range. Specifically, the 

same policy scenarios can be run with a wider range of parameter values, such as defined in different 

SSPs, representing a wide range of possible scenarios. The range of the SSP simulation outcomes, which 

are different for each technology, define the ranges of the uniform distribution around the middle point 

of this range. Within this context, robustness is measured as a score from 1 to 1,000, based on the amount 

of Monte Carlo runs in which this portfolio is on the PF. 
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Structure 

The rest of the PhD thesis is structured as follows. Chapter 2 examines the role that voluntary behavioural 

change could play in climate change mitigation pathways. Mainstream literature on climate change 

concentrates overwhelmingly on technological solutions for this global long-term problem, while a change 

towards climate friendly behaviour could play a role in emission reduction and has received little 

attention. This study focuses on the potential climate mitigation by behavioural change in the European 

Union covering many behavioural options in food, mobility and housing demand which do not require any 

personal up-front investment. GCAM is used to capture both their direct and indirect implications in terms 

of greenhouse gas emissions. The results indicate that modest to rigorous behavioural change could 

reduce per capita footprint emissions by 6% to 16%, out of which one fourth will take place outside the 

EU, predominantly by reducing land use change. The domestic emissions savings would contribute to 

reduce the costs of achieving the NDC goal of the EU by 13.5% to 30%. Moreover, many of these options 

would also yield co-benefits such as monetary savings, positive health impacts or animal wellbeing. 

Chapter 3 analyses potential adverse side-effects of solar power on land use change. The transition to 

renewable energies will intensify the global competition for land. However, except for bioenergy, 

literature quantifying the environmental impacts of their expansion is scarce. Due to the expected 

relevance of solar energy in a decarbonized future, potential solar land requirements and related land use 

change emissions are computed for a selection of regions previously identified as vulnerable: the EU, 

India, Japan and South Korea. A novel method is developed within GCAM to assign land requirements to 

solar energy. At 50-80% penetration level in the electricity mix in those regions, solar energy will occupy 

1-5% of total land by 2050; land use change emissions making up for about one third of total life cycle 

emissions and up to 10% of emissions from natural gas fired electricity through the indirect competition 

with natural forest land.  

In chapter 4, the link between GCAM and robust portfolio analysis is introduced by measuring trade-offs 

between the potential of different low-carbon electricity technologies to mitigate CO2 emissions and 

improve energy security in the EU by 2050. The technologies considered include photovoltaics (PV), 

concentrated solar power (CSP), wind, nuclear, biomass and carbon capture and storage (CCS). The 

proposed approach measures the marginal impact of subsidies for the six power generation technologies 

until 2050 on CO2 emissions reduction and energy security improvement, measured as energy production 

as a percentage of energy consumption within the EU.  These GCAM outputs are linked with a robust 

portfolio analysis, based on Pareto optimality for portfolio analysis and Iterative Trichotomic Approach 

for robustness analysis, defining specific Pareto optimal portfolios of electricity generation technologies 

as the most robust to changes in parameters. The results are presented and discussed, mainly in terms of 

highlighting the robustness of the Pareto optimal solutions, which is essential for policymakers to be more 

confident when selecting technology portfolios that feature a high degree of uncertainty, regarding their 

vulnerability to different future developments. 

In chapter 5, co-benefits of climate finance for other development goals are investigated in a developing 

country context. Heavy reliance on traditional biomass for household energy in eastern Africa has 

significant negative health and environmental impacts. The African context for energy access is rather 

different from historical experiences elsewhere as challenges in achieving energy access have coincided 

with major climate ambitions. Policies focusing on household energy needs in eastern Africa contribute 

to at least three Sustainable Development Goals (SDGs): Climate Action, Good Health, and Improved 
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Energy Access. This study uses GCAM to simulate the impact of land policies and technology subsidies, as 

well as the interaction of both, on Greenhouse gas (GHG) emissions, exposure to air pollution and energy 

access in eastern Africa under a range of socioeconomic pathways. The results show that land policies 

focusing on increasing the sustainable output of biomass resources can reduce GHG emissions in the 

region by about 10%, but also slightly delay progress in health and energy access goals. An optimised 

portfolio of energy technology subsidies of 11 to 14 dollars per capita up to 2030 can yield another 10% 

savings in GHG emissions, as well as 20% lower mortality related to air pollution, while improving energy 

access by up to 15%. After 2030, both land and technology subsidy policies become less cost-effective, 

and more dependent on the overall development path of the region. The analysis shows that subsidies 

for biogas technology should be prioritised in both the short and long term, while the distribution of a 

potential subsidy budget over LPG (health and energy access), PV (energy access), ethanol (climate and 

health) and charcoal (climate; if linked to land policies) pathways would depend on the most relevant 

sustainable development goal from the perspective of local policymakers or international organisations 

such as the GCF.  

Finally, chapter 6 draws overall conclusions on synergies and trade-offs of climate mitigation policies, and 

lines out potential future research lines. 
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Introduction 
Mainstream literature on climate change concentrates overwhelmingly on technological solutions for this 

global long-term problem. Research effort has focused primarily on how the portfolio of existing and 

future technologies can contribute to meet the world’s energy demand over the next century and, at the 

same time, limit GHG emissions so that they are consistent with a stabilisation of temperature increase 

below 1.5 – 2 degrees Celsius with respect pre-industrial levels. For example, Pacala and Socolow (2004) 

showed that there is already a portfolio of measures that, if implemented, can deliver a significant 

reduction of emission during the first half of the century. Fifteen different measures were proposed in 

that influential paper to reduce GHG emissions (1 Gigatons of carbon (GtC) per year and option), out of 

which only one of these measures was a behavioural-based solution: reduce the use of private vehicles 

by 50%. 

The mitigation effort that will be needed is so great that additional changes in human behaviour will be 

necessary. According to Field et al. (2014), “The existence of limits to adaptation suggests 

transformational change may be a requirement for sustainable development in a changing climate — that 

is, not only for adapting to the impacts of climate change, but for altering the systems and structures 

economic and social relations, and beliefs and behaviours that contribute to climate change and social 

vulnerability” (technical summary, page 89). Samadi et al. (2016) argue that since behavioural changes 

towards more sustainable lifestyles have considerable potential to contribute to public policy goals and 

may even be indispensable for achieving some of these goals, future lifestyle assumptions should be 

assessed separately from technological assumptions in future energy scenarios. 

Apart from a handful of papers focusing on the housing and mobility demand (Dietz et al. 2009; Gifford, 

Kormos, and McIntyre 2011; van Sluisveld et al. 2016), food demand (Bajželj et al. 2014; Hallström, 

Carlsson-Kanyama, and Börjesson 2015; Elke Stehfest et al. 2009), or an overall set of behavioural 

measures (Wynes and Nicholas 2017; Faber et al. 2012), the total mitigation potential due to behavioural 

action has received little attention in literature (Barker et al. 2007; Roy et al. 2012). However, those few 

studies trying to quantify the impacts of behavioural change show substantive potentials for climate 

change mitigation. For example, Dietz et al. (2009) examine the achievable near-term reductions by 

altered adoption and use of available technologies in housing and mobility demand in the US. They found 

17 household action types in 5 behaviourally distinct categories by use of data on the most effective 

documented interventions that did not involve new regulatory measures. According to this study, the US 

could save an estimated 123 million metric tons of carbon per year in 10 years (20% of total household 

direct emissions or 7.4% of US national emissions), with little or no reduction in household well-being. 

Also for food demand, Bajželj et al. (2014) show a large mitigation potential for behavioural change. Using 

a global land-system model to estimate the impact of changing food demand on GHG emissions, they 

show that demand side reductions, such as reducing food waste and adopting a “healthy” diet, could more 

than offset the projected increase in GHG emissions from the agricultural sector due to global population 

growth. 

Most of the above mentioned studies on the potential of behavioural change for climate change 

mitigation are based on adding up the emission savings of separately calculated behavioural mitigation 

options (in the case of housing and mobility demand) or on sector-specific models (in the case of food 
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demand). Only two studies use a multi-sectoral IAMs (in both studies using IMAGE5) to model the overall 

impacts of preference changes in housing and mobility demand (van Sluisveld et al. 2016) and food 

demand (Stehfest et al. 2009). Although IAMs might not be ideal to represent the mitigation impacts of 

behavioural change due to methodological limitations, the limited representation of lifestyle changes in 

IAMs and general limitations in integrated assessment (van Sluisveld et al. 2016, p. 316-317), they are 

useful to analyse the interaction of behavioural change with other measures, such as technological change 

or policies.  

Since IAMs are commonly used by policymakers to assess different climate scenarios, it is important that 

the quantitative potential of behavioural changes in these scenarios is highlighted more prominently and 

independently of technology decisions (Samadi et al. 2016). In recent years, shared socioeconomic 

pathways (SSPs) have been increasingly used in IAMs to assess socioeconomic uncertainty in future 

climate scenarios (O’Neill et al. 2014). Each of these SSPs represent a package of background 

circumstances that greatly influences future scenarios. Future lifestyles form a part of these background 

circumstances, along with many other uncertainties. 

This study focuses on the potential climate mitigation by behavioural change in the EU6 that goes beyond 

the studies by Dietz et al. (2009), van Sluisveld et al. (2016) and Bajželj et al. (2014) as: a) it covers many 

of the options in food, mobility and housing demand, not only in the energy or food domain; and b) it uses 

GCAM, which captures the direct and indirect implications in terms of emissions. The results will focus on 

per capita GHG emissions savings due to behavioural change- with the recognition that behaviour change 

is not straightforward and some people will change their behaviour more easily than others7. Finally, this 

study discusses the co-benefits that are related to many forms of pro-environmental behaviour. 

While literature on the potential benefits of pro-environmental behaviour seems scarce, there is extensive 

literature on the question as of why people behave environmentally friendly and how to boost this kind 

of behaviour (Poortinga, Steg, and Vlek 2004; Ohe and Ikeda 2005; Fujii 2006; Ohtomo and Hirose 2007; 

Quimby and Angelique 2011; Shwom and Lorenzen 2012; Masud et al. 2015). The primary focus of this 

study however is the positive question on the extent to which climate-friendly behaviour can contribute 

to climate mitigation and not on the normative question on how people can adapt their behaviour and 

what are the appropriate instruments to achieve that. However, since the normative question is obviously 

related to the positive question, a short summary of the literature on the normative question is given in 

the discussion section. 

Method 
The method section is structured as follows. First, the application of GCAM for the purpose of this study 

will be elaborated. Then, the assumptions behind each modelled behavioural option will be shown. 

Finally, the baseline and policy scenario that are run on the background of these options will be briefly 

discussed. 

                                                           
5 Integrated Model to Assess the Global Environment, for details:  
http://themasites.pbl.nl/models/image/index.php/Welcome_to_IMAGE_3.0_Documentation 
6 The focus is on the EU-27, so excluding Croatia which joined the EU in mid-2013. The reason behind this is that the GCAM model does not yet 
include Croatia in the modelled EU-region. Croatia represented about 0.83% of total population and 0.33% of total GDP in the European Union 
in 2015 (source: EuroStat). 
7 Factors like income and household size (Poortinga, Steg, and Vlek 2004) and social influences (Staats, Harland, and Wilke 2004) are of high 
importance, among other factors. 
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Use of GCAM 
The way GCAM is used in this study significantly differs from other GCAM-based studies. The model is 

usually used to test the impact of mitigation polices. Since climate policies, energy policies and land 

policies usually focus on either the price or the production of certain goods, services or gases, demand is 

indirectly impacted due to a change in prices. In contrast, and following van Sluisveld et al. (2016) using 

the IMAGE model, here GCAM is used to model preference changes by consumers in two GCAM regions, 

EU-15 and EU-128. Indirectly, these preference changes will have an impact on prices and production of 

goods and services, which will have an impact on the production of GHG. Although the modelling is only 

applied to EU-15 and EU-12, the impacts of the modelled preference changes will be analysed on a global 

level. For these two regions, an independent and interconnected household waste module is developed 

in order to estimate the impacts of waste recycling by consumers (see Annex of this chapter). 

 

Figure 2.1: focus of scnearios in this study within GCAM structure 

Options for behavioural change 
In 2008, the total GHG footprint of the average EU-27 consumer equalled 9.73 tons of CO2 equivalent. 

Food demand contributed to 17% of this footprint, whereas mobility and housing demand contributed 

respectively to 23% and 29% of per capita footprint emissions (Arto et al. 2012). This study focuses on the 

behavioural options within these three consumption categories: food, mobility and housing. See Table 2.1 

for the specific options within each category. These options are chosen for their behavioural aspects. The 

idea behind the selection of these options is that they are free of charge and can be adopted from one 

day to another, without the need of personal monetary investments9. Whereas some options are mutually 

exclusive, others might limit the effectiveness of other options. Finally, I will also focus on a combination 

of options to see the total mitigation potential. To clarify what every option includes, and how it is 

calculated, each of the options is explained in detail in the rest of this section. 

Although I calculated the potential mitigation of all the listed options in absolute terms, I will present 

them on a per capita level. The reasoning behind this is as follows: while it is implausible that all EU-27 

residents take up a specific behavioural mitigation method from today or tomorrow onwards, for every 

                                                           
8 EU-15: Germany, UK, France, Italy, Spain, Austria, Netherlands, Belgium, Portugal, Sweden, Denmark, Finland, Greece, Ireland and 

Luxembourg. 
EU-12: Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovakia, Slovenia, Bulgaria and Romania 
9 Some behavioural options, such as public transport commuting, joining a car sharing program and waste recycling might require investment 

from public or private entities to meet the consumer´s demand.  
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specific individual it is not at all implausible to change his/her behaviour from one day to the next. Also, 

while some individuals are convinced about reducing their food waste and joining a car sharing program, 

others might prefer to follow a healthy diet and recycle their waste. Since preferences differ between 

individuals, I chose to show the mitigation potential and co-benefits on a per capita level.  

Table 2.1: List of behavioural options in this study 

Food demand Mobility demand Housing demand 

Healthy diet 

Vegetarian diet 

Vegan diet 

Food waste reduction 

 

 

 

 

Public transport commuting 

Carpool commuting 

Teleworking 

Urban Cycling  

Car sharing / Car club 

Avoid short flights 

Closer holidays 

Eco-driving 

Reduce heating / cooling 

Organic waste recycling 

Paper waste recycling 

Plastic/metal/glass waste recycling 

 

 

 

 

 

Food Demand 
This section explains how behavioural options regarding food consumption are modelled. See Kyle et al. 

(2011) for the methods and data sources used to model the agricultural and land-use system into GCAM. 

- Healthy Diet 

The assumed average healthy diet is considered to be ̀ healthy' on the basis of nutritional evidence (Willett 

2017; World Health Organization 2003; American Heart Association 2014). Following Bajželj et al. (2014), 

the dietary preferences in the EU-27 are respected, but with some foods that are deemed unhealthy 

above or below certain levels capped. See Table 2.2 for the precise current and assumed healthy diet for 

both EU-15 and EU-1210 11.  

- Vegetarian Diet 

A vegetarian diet does not include any meat, but does include dairy products and potentially fish products. 

This option is modelled by setting all the consumption of the GCAM categories Beef, Pork, Poultry and 

Sheep/Goat to zero. The reduction of calories will be replaced with the GCAM category MiscCrop 

(including, between others, all kind of legumes, vegetables, fruits and nuts) until the daily net amount12 

of 2500 calories per person per day is reached. 

- Vegan Diet 

Different than the vegetarian diet, the vegan diet does also not include dairy and fish products. The 

modelling method is exactly the same, replacing dairy products with MiscCrop products until the daily net 

amount13 of 2500 calories per person per day is reached. 

                                                           
10 I separate the diet in EU-15 and EU-12 due to their relevant dietary preferences. Estimations from Bajželj et al. (2014) for West-Europe are 
used as a proxy for EU-15 and the estimations for East-Europe as a proxy for EU-12. 
11 Since the food categories in GCAM do not exactly match with the categories in Table 2.2, the absolute changes in kcal/person/day were 
applied to the GCAM food category containing the relevant category of Table 2.2. 
12 Net amount of calories after the subtraction of all producer and consumer food waste 
13 See previous footnote 



21 
 

Table 2.2: Healthy diet assumptions 

Food Current diet [1] Healthy diet [2] Diet change 

 EU-15 EU-12 EU-27 EU-15 EU-12 

Kcal / person / day % change 

Vegetables 58 64 136 134 % 113 % 

Fruits 91 53 119 30.8 % 125 % 

Sugar / Sweeteners 318 308 150 -53 % -51 % 

Vegetable oils 514 326 360 -30 % 10.4 % 

Red meat [3] 260 180 57 -78 % -68 % 

Poultry 67 70 70 4.5 % 0 % 

Eggs 39 48 40 2.6 % -17 % 

Dairy 391 313 300 -23 % -4.2 % 

Fish [4] 56 40 50 -11 % 25 % 

All other food [5] 933 1209 1218 30.5 % 0.7 % 

TOTAL 2727 2611 2500 -8.3 % -4.3 % 

[1] (FAO 2011a) 

[2] Applying caps as interpreted by Bajželj et al. (2014) 

[3] Respecting the cultural red meat preferences within EU-15 and EU-12 

[4] Due to limitations in global fisheries, these are kept constant at an EU-27 average 

[5] Respecting the cultural food preferences within EU-15 and EU-12 

 
- Food Waste Reduction 

Since waste is a rather subjective term, there are several approaches to account for food losses. 

Technically, food used as feed for animals could be considered as food waste, as it involves a loss in final 

calories for human purposes. Furthermore, waste can be distinguished at the agricultural, postharvest, 

processing, distribution and consumption levels (Kummu et al. 2012; Bajželj et al. 2014) and consumption 

waste can be distinguished between avoidable, possibly avoidable (that some people eat and some people 

do not, like bread crusts or potato skins) and unavoidable food waste like vegetable peelings and meat 

carcasses (WRAP 2008a; Van Westerhoven 2013). Since I am focusing on behavioural mitigation, solely 

avoidable (including 50% of possibly avoidable) food waste on the consumer level is considered. 

Estimates from (FAO 2011b) are used to separate out the percentage of consumption waste from final 

food demand. Since the food demand estimations in GCAM are also based on FAO data, this seems the 

most sensible source for making assumptions on food waste. See Table 2.3 for the assumed food waste 

in EU-27 for different types of food. 

A food waste reduction potentially reduces GHG emissions in two ways: less final food demand leads to 

less agricultural emissions and less food waste leads to less waste emissions. The latter, however, depends 

on what happens with the food waste: emission savings of a food waste reduction will be significant if this 

food waste would otherwise get landfilled, but the net effect would be negative if the food will otherwise 
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be composted and used as a fertilizer, replacing mineral fertilizers (Bogner et al 2007). The current EU-27 

recycling rate will be assumed for this behavioural option, unless this option is combined with the Organic 

Waste Recycling14 option. More details on these calculations follow in the section on organic waste 

recycling. 

Table 2.3: Food consumption and waste in EU-27, 2010 

Food Total EU-27 Consumption [1] Total waste [2] Consumer waste [2] 

 Kcal / person / day % of total consumption 

Cereals 1177 34 % 22 % 

Roots and Tubers 136 52 % 10 % 

Oilseeds and Pulses 863 19.5 % 3 % 

Fruits and Vegetables 288 46 % 13.5 % 

Meat 570 22 % 10 % 

Fish and Seafood 180 31 % 8 % 

Dairy products 315 12.5 % 7 % 

TOTAL 3529.9 28.1 % 12.2 % 

[1] Includes all related industry and consumer wastes; FAOSTAT 

[2] FAO (2011), “Global food losses and food waste – Extend, causes and prevention. 

 

Mobility Demand 

This section explains how behavioural options regarding to transport use are modelled. For a detailed 

documentation on how the transport system is modelled in GCAM, see Mishra et al. (2013). The GCAM 

model uses estimates from the TREMOVE model (European Commission 2010a) for the base year 

calibration values in EU-15 and EU-12. Although the data from the TREMOVE model are based on 

modelled estimates rather than real observations, for reasons of consistency the same model is used for 

more detailed estimates such as the share of urban transport or commuting transport in total transport 

demand.  

- Public Transport Commuting 

This behavioural option assumes all commuting transport demand in EU-27 (i.e. from home to work and 

back) will be met by public transport services (i.e. bus and rail transport). The current regional public 

transport mix (i.e. the share of bus and rail transport) is extrapolated to meet all commuting transport 

demand from 2015 onwards. 

- Carpool Commuting 

Similar to the previous option, the focus is again on the current shares for commuting transport in EU-15 

and EU-12 and assume them to stay the same into the future. Similar to Dietz et al. (2009), this behavioural 

option is translated into numbers by stating a load factor of 2 for every commute car-trip, which is a 

                                                           
14 The combined effect of food waste reduction and organic waste recycling applies to two out of three behavioural profiles in the results 
section. 
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minimal definition of car-pooling. Current commuting transport demand that is met by public transport 

and bike/motorbike use is left untouched. 

- Teleworking 

In order to model the effects of working one day per week from home, demand for passenger commuting 

has been deducted by one fifth15. This method implicitly assumes that EU-27 citizens would normally work 

5 days per week away from home.  

- Urban Cycling 

This option aims to quantify the potential of bicycle usage for any purpose in urban areas only: trips within 

urban areas are on average quite short and streets within cities are generally flatter than streets outside 

cities. For non-urban passenger trips, it would be too difficult to generalise the potential for all EU-27 

member states. As a benchmark for the urban cycling potential, the urban cycling rate in the Netherlands 

(i.e. highest rate in the region) is expanded to the whole EU-27.  

- Car sharing / Car clubs 

Over the last decade, car sharing programs have been increasing significantly in popularity in the USA and 

Europe. Car-sharing is an innovative mobility option that allows individuals to pay for and use 

automobiles—on an as-needed basis—through membership programs (Millard-Ball et al. 2005). Although 

users of car sharing programs generally tend to drive less on average compared to car owners, due to the 

constant (rather than decreasing) marginal costs of driving that are faced in a car sharing program (Chen 

and Kockelman 2015), an equal amount of driven passenger kilometres by cars is assumed in this 

behavioural option in order to solely focus on the environmental benefits of car sharing, while the total 

amount of driven kilometres stays the same. This option assumes that shared cars are used for all car-

driven kilometres. 

Ignoring the behavioural impact of car sharing on transport mode switching, there are two main channels 

through which car sharing would decrease emissions: lower industrial emissions related with car 

production and a higher average fuel efficiency due to a faster replacement rate of car-club vehicles 

compared to privately owned vehicles (Chen and Kockelman 2015). Although the faster replacement rate 

due to higher utilization rates of car-club vehicles do limit the savings in industrial emissions, the latter 

does not seem to be cancelled out completely. In other words, intensively used car-club vehicles seem to 

drive a higher amount of total kilometres during their significantly shorter lifetimes16.  

- Avoid Short Flights 

The idea behind this behavioural option is to avoid flying whenever there is a ‘realistic’ travel alternative. 

With a realistic alternative, another way to get to the desired destination using a different transport mode 

is meant, that does not take more than 10 hours of travelling. About 25% of all passenger kilometres on 

                                                           
15 Note that we did not model any changes in heating or cooling demand, assuming that the individual’s heating/cooling demand at home and 
at work will be equal. 
16 This could be supported by the argument that due to their intensive usage, car-sharing vehicles need significantly more maintenance over its 
lifetime. GHG emissions related to maintenance are a lot lower than those related to production of vehicles (own elaboration based on the 
World Input-Output Database, WIOD)  
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intra-EU flights are estimated to be avoidable by these standards, and it is implicitly assumed that it 

remains 25% until 2050.  

This behavioural options assumes that these 25% of passenger kilometres will instead be travelled by a 

mix of coach, train, high-speed-rail and carpool transport. 

- Closer Holidays 

This behavioural option focuses on intercontinental leisure flights. Here, it is assumed that 50% of all 

intercontinental leisure trips (with an average distance of about 5000 km per trip) are replaced by intra-

EU trips with an average trip distance of 1000 km. All these replacing intra-EU trips will be performed by 

intra-EU air transportation. 

- Eco-Driving 

The focus of this option is on the application of “eco-driving” by car drivers. Eco-driving is a term used to 

describe energy efficient use of vehicles. It is a relatively easy way to reduce fuel consumption from road 

transport so that less fuel is used to travel the same distance (Carsten et al. 2016a). Although training 

might be necessary, every driver can choose to adapt this driving style, making it purely behavioural. Apart 

from fuel savings, eco-driving also avoids aggressive driving behaviour and is expected to increase road 

safety in general. Eco-driving techniques will be applied to all car-driven kilometres in this behavioural 

option. 

Housing Demand 

For housing demand, the building sector structure in GCAM (Kyle et al. 2010) is relevant as well as another 

innovation to the GCAM model zooming in on the municipal waste sector. See the Annex of this chapter 

for more details on this innovation. 

- Reduce Heating and Cooling 

For the effects of a voluntary reduction in heating consumption in the winter season, a thermostat set-

back from the average 21 degrees Celsius to 20 degrees Celsius is assumed. Such an indoor temperature 

change can be easily compensated by wearing extra clothing. Additionally, a reduced use of air-

conditioning in summer is assumed, increasing the target temperature from 25.5 to 26.5 degree Celsius.  

- Organic waste recycling 

This behavioural option assumes that all organic waste from households will be separated by the 

consumer, and therefore composted rather than landfilled or incinerated. The produced compost will be 

used to replace mineral fertilizers and sequester some of the carbon to the soil. 

- Paper/carton waste recycling 

This behavioural option assumes that all consumer paper waste will be recycled and used for producing 

new paper. Note that in 2010, EU-28 was the region with the highest amount of paper waste recycling 

globally (68%; EDPR 2015), so extra gains from recycling will be relatively limited. 

- Plastic/metal/glass waste recycling 
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This behavioural option assumes the recycling of all plastic, metal and glass waste by consumers. The 

composition of this category (i.e. the relative amount of plastics, metal and glass) is assumed to stay the 

same over time. 

Baseline emissions and comparison 
To compare the impacts of these behavioural mitigation options, two scenarios are used: a baseline 

scenario with no climate policy and another scenario with a climate policy based on the NDC adopted by 

the EU in the Paris Agreement, promising emission reductions up to 80% by 2050 compared to 1990 

emission levels17. Socioeconomic indicators from SSP2 are used for both scenarios, with separate waste 

module (see Annex of this chapter) to capture the relative impact of waste reduction and recycling by 

consumers. Figure 2.2 shows the evolution of GHG emissions with and without climate policy.  

 
Figure 2.2: Carbon emissions in EU-27 region until 2050 in two scenarios (million tons of CO-eq) 

Apart from the GHG emissions in EU-27 itself, from a consumption-based approach European citizens 

would also be responsible for a significant amount of GHG emissions in other parts of the world through 

consumption of imported goods. Similarly, other regions are responsible for GHG emissions inside EU-27. 

Some of the behavioural mitigation options have a significant impact on GHG emissions in other parts of 

the world, and so reduce the total carbon footprint without contributing towards the EU-27 emission 

targets, as these are not attributed as EU-27 emission savings in the UNFCCC framework. However, since 

this study focuses on the per capita emission savings due to behavioural change, it should not matter 

whether these savings take place in his/her house, in a neighbouring country or on the other side of the 

world. Therefore, the total per capita emission savings (regional and global) are counted for every 

behavioural option and, to have some kind of reference point, compared to per capita EU-27 emission 

saving targets based on the EU NDC. 

Results 

Overview 
This section shows the results in terms of GHG emissions and put these in perspective. Table 2.4 shows 

an overview of the total per capita GHG emission savings related to the baseline emissions for the period 

                                                           
17 With intermediate reduction targets of 20% in 2020, 40% in 2030 and 60% in 2040 compared to 1990 emission levels. 
http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx 

0

200

400

600

800

1000

1200

1400

1600

1800

1990 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050

Baseline

Climate

Policy

following

EU NDC



26 
 

2011-2050, assuming that these behavioural options would be adapted immediately18. Apart from these 

savings, it shows the share of Fossil Fuel & Industry (FFI) CO2
19 emission savings within the total GHG 

emission savings. Finally, the table also shows the share of emissions that are saved domestically within 

EU-27. All other emission savings have been realized in other regions in the world. 

Table 2.4: Overview of GHG emission savings per behavioural option 

Behavioural option Avoided GHG emissions: 

 Total 2011-2050 % CO2 (FFI) [1] % Domestic [2] 

Food demand:    

Vegan diet -8.2% 3.6% 66.1% 

Vegetarian diet -7.0% 4.7% 51.0% 

Healthy diet -5.3% 4.6% 58.9% 

Food waste reduction -2.4% 3.1% 49.5% 

Mobility demand:    

Public transport commuting -0.7% 93.1% 86.2% 

Carpool commuting -1.2% 92.3% 89.3% 

Teleworking -0.3% 92.3% 89.1% 

Urban Cycling -0.6% 92.8% 89.3% 

Car sharing / Car club -1.1% 87.3% 89.6% 

Avoid short flights -0.5% 93.2% 88.1% 

Closer holidays -0.5% 93.4% 88.9% 

Eco-driving -0.6% 92.3% 89.4% 

Housing demand:    

Reduce heating / cooling -0.6% 88.7% 89.0% 

Organic waste recycling -1.1% 8.1% 93.6% 

Paper waste recycling -0.6% 86.2% 125.9% [3] 

Plastic/metal/glass waste recycling -1.7% 93.9% 92.9% 

[1] Fossil Fuel & Industry: Includes all CO2 emissions related to fossil fuel use, but no CO2 emissions from land use 
change  

[2] Share of emission reductions within EU-27 region 

[3] Since this option reduces CO2 sequestration from foresting i.e. increases GHG emissions in other regions (by 
reducing demand for forest products), more than 100% of emission reductions occur in the within the EU-27. 

 

Some of these behavioural options would imply monetary savings for the consumer (see the part on co-

benefits later in this section). Literature suggests that these monetary savings will yield rebound effects, 

decreasing its effectiveness on total emission savings (Grabs 2015; Druckman et al. 2011). The final 

                                                           
18 Since the first model gives projection from 2015 onwards, in this case “immediately” means from 2015 onwards. 
19 FFI CO2 includes all CO2 emissions related to fossil fuel use, but no CO2 emissions from land use change  
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rebound effect depends on where the monetary savings are spent on. The lower the GHG intensity of the 

re-spending of savings, the lower the rebound effect of behavioural change. In some cases, re-spending 

could even save more emissions, if they are invested in, for example, rooftop solar installations or electric 

vehicles to replace their previous vehicle. Since no rebound effects are modelled, it is implicitly assumed 

that the re-spending of eventual savings have a negligible GHG intensity on average. Given the intrinsic 

motivation that is necessary to adopt green behaviour, the assumption that this intrinsic motivation will 

extend to eventual re-spending of savings seems reasonable. 

Discussion of individual results 

Food Demand 

As Table 2.4 shows, behavioural change in the demand for food leads to very significant GHG emission 

savings. For example, adopting a healthy diet would reduce accumulated per capita GHG emissions 

between 2011 and 2050 by 5.3%, only 4.6% of these GHG emission savings are fossil fuel related CO2 

emissions and 58.9% of these emission savings will occur within the EU. Fossil fuel related CO2 emissions 

only accounts for a very marginal share of all food-related emission savings. Instead, methane emission 

savings from the livestock industry, abated nitrogen oxides from soil utilization and negative land use 

change emissions due to decreasing land pressure from the agricultural system add up to the gross of the 

GHG savings due to behavioural change in the food sector. The majority of emission savings for each of 

the options is due to land use change (i.e. avoiding deforestation), mainly outside of the EU. 

It is important to keep in mind that a combination of food waste reduction with either of the diet changes 

strongly diminishes the impact of a food waste reduction. This is due to the fact that the majority of 

emissions in the food sector comes from meat consumption, and if less meat is consumed less is wasted 

as well.  

Mobility Demand 

In comparison to food demand, behavioural change in mobility demand leads to predominantly domestic 

CO2 savings. Generally, every option yields CO2 savings due to either a reduction of car or air travel. The 

fact that not all emissions savings are domestic CO2 emissions has to do with the footprint emissions in 

other regions related to the production of petroleum products, predominantly from unconventional oil. 

The only exception regarding the source of emission savings in the transport sector is the behavioural 

option of car sharing / car clubs. This option implicitly suggests that fewer cars are produced, and 

therefore mainly leads to savings in industrial emissions. However, about 37% of the emission savings due 

to car-sharing are the result of increase in average fuel efficiency due to a higher replacement rate of 

heavily used shared cars.  

One rather surprising result is that commuting by carpooling is more beneficial than commuting by public 

transport. It is important to keep in mind that the supply of public transport facilities is assumed to 

increase proportionally with higher utilization of public transport. This means that the load factor of every 

bus and train does not change as a result of higher utilisation, whereas the load factor of cars does change 

as a result of carpooling. This assumption might be subject to debate and a higher load factor for trains 

and buses might be expected if more people decide to use them due to economics of density (Caves and 

Christensen 1988). However, since the spatial dimension is missing in GCAM, it is hard to provide 

consistent estimates on the extent to which load factors should increase due to higher use of public 

transport systems. 



28 
 

Housing Demand 

Emissions in housing demand are mainly related to waste recycling: Table 2.4 shows that reducing heating 

in winter and cooling in summer has only a marginal effect on total emission savings. The recycling of 

organic waste leads to mainly methane emission savings due to reduced landfill emissions - the emission 

savings due to replacement of mineral fertilizers by compost and carbon sequestration by the use of 

compost does only marginally weigh up against the increased composting emissions. By contrast, 

industrial and paper waste recycling predominantly impact the demand for industrial energy, since it costs 

significantly more energy to make paper, metal, glass and plastic from raw materials than from recycled 

materials. This might explain why in many EU member states, recycling rates of paper, plastic, metal and 

glass are high relative to recycling rates of organic products: the recycled end-product of predominantly 

paper and metal is significantly more valuable than that of organic waste. 

As explained in the Annex of this chapter on the waste module, it is assumed here that separated waste 

will always be recycled, whereas mixed waste will always be landfilled or burned. However, there exist 

technologies that can filter out certain types of waste from initially mixed household waste in order to 

recycle it. These technologies are already often used for metal waste. The impact of Plastic/Metal/Glass 

recycling might therefore be overestimated, as some of these products might anyway be recycled in the 

future, with or without the contribution of the consumer. 

Behavioural profiles 
In order to provide an estimate of the total potential emission reduction, the savings in all categories 

cannot be simply added up. Some options are mutually exclusive (such as the diet choices) and other 

options limit the impact of each other (for example diet change and food waste reduction or carpooling, 

eco-driving and teleworking). Therefore, three different profiles for the adoption of green behaviour are 

described, each with a different mix of behavioural options that are adopted. Following Autio, Heiskanen, 

and Heinonen (2009), each profile is intended to represent a realistic behavioural style that people can 

identify themselves with, ranging from a very active to a more passive form of behavioural change. See 

Table 2.5 for the behavioural options included for each profile. 

Enthusiastic Profile: The enthusiastic adaptor is the typical person that does anything in his/her means to 

limit the personal footprint. He or she does not eat any meat or other animal products, does not 

unnecessarily waste any food, does not have a car, uses a bicycle whenever possible or public transport 

otherwise, applies eco-driving techniques using rental cars when travelling to places impossible to reach 

without a car, tries to avoids flying by taking alternative transport and by avoiding far destinations, prefers 

to put some extra clothes in winter or less clothes in summer instead of putting the thermostat or A/C 

higher and separates all types of household waste.  

Conscious Profile: The conscious adapter is well aware of all the environmental consequences of his/her 

actions, but does not want to give up certain basic needs for this. Instead, he or she is the modern 

metropolitan role model for environmental consumerism. He or she follows a healthy diet, without 

unnecessarily wasting any food, does not have a car and uses public transport and rental cars to get 

around (always applying eco-driving), tries to avoid flying when possible but does not want to give up 

exotic long-distance holidays. Finally, he or she separates all types of household waste. 

Convenient Profile: The convenient adapter is more or less informed about the environmental impact of 

his or her actions, but does not want to make significant adaptation to their lifestyle in order to reduce 
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this impact. Instead, he or she adopts some easy forms of green behaviour, such as reducing his or her 

food waste, carpooling with a colleague to work, applying eco-driving techniques and separating paper 

and other packaging waste from all other waste. 

Table 2.5: List of behavioural options adopted for each profile 

“Enthusiastic Profile” “Conscious Profile” “Convenient Profile” 

Food: 

Vegan diet 

Food waste reduction 

 

Mobility: 

Teleworking 

Car sharing / Car club 

Cycling 

Public Transport commuting 

Avoid Short Flights 

Closer Holidays 

Eco-Driving 

 

Housing: 

Less heating / cooling 

Organic waste recycling 

Paper/Carton recycling 

Plastic/Metal/Glass recycling 

Food: 

Healthy diet 

Food waste reduction 

 

Mobility: 

Teleworking 

Car sharing / Car club 

Public Transport commuting 

Avoid Short Flights 

Eco-Driving 

 

 

 

Housing: 

Organic waste recycling 

Paper/Carton recycling 

Plastic/Metal/Glass recycling 

 

Food: 

Food waste reduction 

 

 

Mobility: 

Carpool commuting 

Teleworking 

Eco-Driving 

 

 

 

 

 

Housing: 

Paper/Carton recycling 

Plastic/Metal/Glass recycling 

 

 

 
Combining several behavioural options that are discussed in this study makes up to significant mitigation 

portfolios. Table 2.6 shows that up to 16.2% of emissions can be saved when adopting many behavioural 

options.  

Table 2.6: Overview of GHG emission savings per behavioural profile 

 Total 2011-2050 % CO2 (FFI) [1] % Domestic [2] 

Convenient profile -5.6% 59.4% 76.4% 

Conscious profile -12.0% 35.7% 71.1% 

Enthusiastic profile  -16.2% 34.8% 74.5% 

[1] Fossil Fuel & Industry: Includes all CO2 emissions related to fossil fuel use, but no CO2 emissions from land 

use change  

[2] Share of emission reductions within EU-27 region 

 

As this mitigation potential through behavioural action is very significant, it can be compared to the total 

required mitigation promised by the EU in the Paris Agreement. Translating this agreed promise to 

cumulative per capita emissions, about 50 tons of carbon per capita have to be mitigated before 2050 

compared to the baseline scenario. This is 39.6% of total emissions in the period 2011-2050 according to 
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the baseline scenario. Figure 2.3 shows that the carbon reduction per capita due to the adoption of a 

climate-friendly behavioural profile reaches up to 14 tons of carbon equivalent, or 19 tons if the total 

footprint impact is counted20. 

 
Figure 2.3: Per capita GHG emission reduction compared to baseline emissions for the three behavioural profiles, accumulated 
from 2011 to 2050. Total savings are split between different domestic sectors and savings outside the EU-27 area.21 

An important conclusion to draw from this figure is that significant contributions can be made due to 

costless behavioural change, up to one third of the total EU mitigation target or over 40% when the total 

“footprint” impact would count. But even modest behavioural change could mitigate 7 tons of carbon per 

capita, or 5.5 domestic tons accounting for 11% of the total EU mitigation target. The amount of emission 

savings however decreases if a climate policy is active, since the GHG-intensity of all consumption 

categories will decrease due to such a policy. This interaction will be discussed in more detail later in this 

section. 

Sensitivity analysis based on timing of behavioural change adoption 
One rather strong assumption of the estimates in this section has been that modelled behavioural change 

will start immediately, from the very first period after the base year, in this case 201522. Although it is not 

impossible for any of the behavioural options to start from tomorrow onwards, it might be more realistic 

to expect a later starting date due to different barriers. Table 2.7 therefore gives the total emission savings 

compared to the baseline scenario dependent on when the individual starts to adopt a behavioural profile.  

                                                           
20 Although the figure seems to give slightly higher percentages, it should not be forgotten to subtract the small increase in emissions due to 
less biomass use from the total emission reduction. See also the next footnote. 
21 The sector “Biomass use” represents the change in biomass use for different end-use sectors. If positive, biomass use has decreased (which 
automatically leads to decreasing GHG emissions in the intermediate or end-use sectors) and the other way around. This is the way the GCAM 
model accounts for biomass emissions. 
22 Since GCAM runs in 5-year periods and the base year is 2010, the closest modelling year to the writing of this chapter is 2015. I am aware that 
this is effectively in the past, but the idea behind this is that the behavioural option is applied immediately. The 1-2 years of difference have a 
negligible effect on the total impact of each option. 
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Table 2.7: Sensitivity analysis of results based on starting year of behavioural change 

Behavioural option Total avoided emissions compared to baseline if behaviour is adopted by year: 
[1] 

 2015 2020 2025 2030 2035 2040 2045 2050 

Food demand:          

Vegan diet -8.18% -7.79% -7.33% -6.84% -6.32% -5.77% -5.21% -4.62% 

Vegetarian diet -6.99% -6.70% -6.37% -6.03% -5.66% -5.27% -4.87% -4.45% 

Healthy diet -5.27% -5.01% -4.73% -4.43% -4.11% -3.77% -3.43% -3.06% 

Food waste reduction -2.38% -2.24% -2.09% -1.93% -1.77% -1.60% -1.43% -1.26% 

Mobility demand:         

Public transport 
commuting 

-0.73% -0.65% -0.59% -0.51% -0.42% -0.32% -0.23% -0.12% 

Carpool commuting -1.16% -1.12% -1.04% -0.91% -0.74% -0.56% -0.39% -0.20% 

Teleworking -0.25% -0.23% -0.21% -0.18% -0.15% -0.12% -0.09% -0.05% 

Urban Cycling -0.60% -0.52% -0.46% -0.39% -0.32% -0.25% -0.17% -0.09% 

Car sharing / Car Club -1.06% -1.06% -0.96% -0.84% -0.68% -0.51% -0.35% -0.18% 

Avoid short flights -0.47% -0.42% -0.39% -0.34% -0.28% -0.22% -0.16% -0.08% 

Closer holidays -0.49% -0.43% -0.38% -0.33% -0.27% -0.21% -0.15% -0.08% 

Eco-driving -0.59% -0.58% -0.54% -0.47% -0.39% -0.29% -0.20% -0.10% 

Housing demand:         

Reduce heating / cooling -0.60% -0.52% -0.44% -0.37% -0.30% -0.22% -0.15% -0.08% 

Organic waste recycling -1.09% -0.93% -0.80% -0.67% -0.53% -0.40% -0.27% -0.13% 

Paper waste recycling -0.56% -0.54% -0.47% -0.41% -0.33% -0.25% -0.18% -0.09% 

Plastic/metal/glass waste 
recycling 

-1.66% -1.46% -1.27% -1.08% -0.87% -0.66% -0.46% -0.23% 

Behavioural profiles:         

Convenient -5.89% -5.48% -4.99% -4.41% -3.77% -3.09% -2.41% -1.68% 

Conscious -11.96% -11.19% -10.28% -9.28% -8.21% -7.06% -5.89% -4.65% 

Enthusiastic -16.24% -15.18% -13.93% -12.55% -11.08% -9.54% -7.96% -6.31% 

[1] In the case of land use change emissions, all emission reductions are count to the year the behavioural change 
takes place, also if the new vegetation is not completely grown yet.  

 

This table shows that even when individuals start being conscious about climate change, and act 

accordingly around 2025, solely by costless behavioural change they can mitigate 10% compared to the 

baseline emissions, which is equal to one fourth of the individuals’ share of the total mitigation target in 

the EU. Such an emission reduction is still significant and could be a more realistic target for most 

individuals and policy-makers than an immediate adoption of the enthusiastic profile. 
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Impact on domestic EU Climate Policy 
The majority of GHG emission savings due to behavioural change take place in the region itself. As can be 

seen in Table 2.6 and Figure 2.3, domestic emission savings contribute for around 75% of the total 

emission savings related with adoption of different behavioural profiles. As mentioned in the previous 

section, the European Union submitted an NDC to the Paris Agreement in 2015, committing itself to 

significant reductions in GHG emissions. 

There are various ways in which a climate policy can take form. Here, a cap-and-trade emission permit 

policy is assumed in which the determined carbon reductions as promised in the EU NDC are set and the 

GHG price in the market is variable. Such a price on GHG gases is expected to impact technology choices 

such that the necessary GHG emission cap is reached using the least-cost technological options. While 

there is certainly an overlap between the GHG emission savings due to a cap-and-trade policy and climate-

friendly behavioural change, a large part of the GHG emissions that would be abated by adopting one of 

the identified behavioural profiles would be unabated in case of a cap-and-trade climate policy. This is 

because the sectors that are impacted by the adoption of these profiles are generally the sectors that do 

not respond strongly to GHG emission prices. 

Table 2.8 shows an overview on the domestic impact of climate-friendly behavioural change with and 

without a cap-and-trade climate policy running on the background. It follows from these results that the 

policy costs related to a climate policy to realize the EU NDC by 2050 could be significantly reduced if the 

average EU citizen adopted a climate-friendly behavioural profile. Since the sectors targeted by such 

behavioural change are among the most expensive to be impacted by a climate policy in terms of policy 

costs, the impact that adopting a behavioural profile has on policy costs is larger than one would expect 

from the initial GHG emission savings. 

Table 2.8: Regional impact of behavioural change, climate policy and a combination of both 

Scenario  Accumulated GHG 

emission savings within 

EU-27 in 2011-2050 [1] 

Total policy costs 

2020-2050      

Trillion €(2010) 

Per capita policy 

costs 2020-2050 

€(2010)  

Baseline + Convenient profile -4.5% N/A N/A 

Baseline + Conscious profile -8.5% N/A N/A 

Baseline + Enthusiastic profile -12.1% N/A N/A 

EU NDC  -39.6% 1.99 3971.6 

EU NDC + Convenient profile -39.6% 1.72 3431.0 

EU NDC + Conscious profile -39.6% 1.54 3080.9 

EU NDC + Enthusiastic profile -39.6% 1.40 2793.2 

[1] Percentages with respect to baseline emissions, see Figure 2.2 
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Global “footprint” impact 
All behavioural options in this analysis have been modelled as consumer side preference changes. Thus, 

all behavioural change is independent from climate policies, and might be adopted due to environmental 

awareness as well as monetary, health or animal wellbeing considerations. An important co-benefit of 

this type of mitigation is that final demand for the polluting good or service has inherently disappeared. 

In contrast, a carbon tax would simply force demand away by imposing monetary implications. Although 

a carbon tax might also lead to directed technical change towards less polluting processes and products 

(Acemoglu et al. 2012; Aghion et al. 2016), a short to medium term pressure will exist towards 

consumption of the polluting good or service. In the case of zero or lower carbon taxes in other regions, 

this pressure will often lead to both industrial and terrestrial carbon leakage23 (González-Eguino et al. 

2017).  

 
Figure 2.4: Footprint impact due to adoption of behavioural change in EU-27 on GHG emissions outside the EU-27, representing 
in detail the savings within the non-domestic share from Figure 2.324 

 

Figure 2.5: Per capita amount of cropland that would be diverted into other land uses due to behavioural change in EU-27 (average 
for period 2011-2050) 

                                                           
23 Terrestrial carbon leakage defines the relocation of agricultural production due to a land use tax in the policy region. 
24 See footnote 21 for an explanation on the “biomass use” sector. 
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Although a limited form of carbon leakage might exist in the case of behavioural change through the 

depressing effect it could have on global energy and food commodity prices, this effect seems hardly 

visible in the results (see positive emissions in Figure 2.4). In fact, the results indicate that this effect will 

be more than offset by the reduced footprint emissions that behavioural environmentalism has (see 

negative emissions in Figure 2.4). A decreasing demand for food and energy in the EU-27 frees up 

agricultural land in other regions and avoids emissions related to the mining of energy resources.  

Like in Bajželj et al. (2014) and Alexander et al. (2015), a strong impact of diet changes and food waste 

reduction on (mainly) global land use change emissions (Figure 2.4) and land availability (Figure 2.5) can 

be observed. Interestingly, as shown in Figure 2.5 the reduction of land footprint by EU consumers would 

not only allow forest, grass, pasture and shrubs to grow back where they used to grow (or prevent them 

to be used for agriculture), but also encourage the production of biomass energy due to lower land costs. 

Consequently, the share of biomass in the global energy mix will significantly grow, crowding out fossil 

fuel use (see Figure 2.4).  

Finally, Figure 2.4 also shows small impact of behavioural change on the emissions related to liquids (oil 

refining) and gas processing. A lower demand for fossil fuels in the EU saves emissions related with the 

production of these fuels in other regions. Similarly, a saving in methane emissions can be observed, 

mainly due to a reduction in fossil fuel production. 

Co-benefits 
Several of the behavioural options discussed have significant co-benefits for either the adopters 

themselves or society as a whole. Although these co-benefits are not quantified in this analysis, they play 

an important role in the attractiveness to adopt a certain behaviour. Table 2.9 gives a brief overview of 

the potential co-benefits that go along with the adoption of behavioural options.  

This table shows that most behavioural options yield monetary co-benefits and also either personal of 

societal health co-benefits. For example, non-meat food products are generally cheaper than meat 

products and cycling, carpooling and flight avoiding also generally save money just as putting the 

thermostat to a lower level in winter. Car sharing and public transport systems could save individuals 

money as well, depending on the specific car share program or public transport operator.  

Adopting a healthy diet is by definition good for someone’s own health, whereas the adoption of a 

vegetarian and vegan diet could be good for one’s health as well, depending on the exact diet 

specifications25. Similarly, cycling could be healthy in the sense that it keeps someone fit, but it could 

simultaneously be unhealthy due to greater respiration of urban air pollution and the increased 

chance of street accidents (De Hartog et al. 2010), whereas eco-driving could only decrease one’s 

possibility to be involved in a car accident (Carsten et al. 2016b), improving the health impact for eco-

driving on average.  

Any option that reduces the amount of toxic gases in densely populated areas, generally due to transport, 

improves society’s health by doing so. Furthermore, the recycling of different waste streams improves 

public health directly if alternatively, the waste would have ended up on the streets, but also indirectly if 

                                                           
25 A vegan diet with too little protein consumption is for example rather unhealthy. 
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the waste would otherwise be incinerated or landfilled. Both waste management practices release gases 

that negatively impact public health.  

Table 2.9: Expected co-benefits of behavioural options 

Behavioural option: Co-benefits:  

 Monetary Own health Society health Animal 

wellbeing 

Food demand:     

Healthy diet x x  x 

Vegetarian diet x ~  x 

Vegan diet x ~  x 

Food waste reduction x   x 

Mobility demand:     

Public transport commuting ~  x  

Carpool commuting x  x  

Teleworking x  x  

Urban Cycling x ~ x  

Car sharing / Car club ~  x  

Avoid short flights x    

Closer holidays x    

Eco-driving x x x  

Housing demand:     

Reduce heating / cooling x    

Organic waste recycling   x  

Paper waste recycling   x  

Plastic/metal/glass waste 

recycling 

  x x 

X = certain co-benefit 

~ = dependent on specific attributes  

 

 
Finally, the reduction of meat consumption, even by a reduction of animal food waste, reduces the 

number of animals suffering in animal husbandry industries. This is the major reason why people generally 

adopt a vegetarian or vegan diet. The recycling of plastic waste also improves animal wellbeing as it 

prevents microplastics ending up in their food-chain (Derraik 2002).  

Apart from these co-benefits, voluntary engagement in pro-environmental behaviour seems to 

significantly improve someone´s subjective well-being according to evidence from the United States 

(Jacob, Jovic, and Brinkerhoff 2009), Canada (Schmitt et al. 2018), Germany (Welsch and Kühling 2011), 

Sweden (Kaida and Kaida 2016), Spain (Suárez-Varela, Guardiola, and González-Gómez 2016) and China 

(Xiao and Li 2011). For example, using samples from Canada and the United States, Schmitt et al (2018) 

confirm significantly positive impact on subjective well-being for 37 out of 39 pro-environmental 
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behaviours, including 9 behaviours of which the potential mitigation effort has been analysed in this 

study26. 

Another important conclusion is that it is hard to imagine any negative side-effects related to any of the 

modelled behavioural options with either monetary or health consequences27. Because of that, the only 

remaining incentives of why not to adopt these behavioural options will be driven by barriers such costs 

in terms of time or effort or personal preferences (Fujii 2006; Quimby and Angelique 2011). 

Discussion and conclusions 

Discussion and limitations 
Generally, as the limited studies in literature have shown, a change towards climate friendly behaviour by 

citizens can reduce GHG emissions substantially. Apart from that, many of these options usually have 

negative monetary costs and in some cases imply significant health co-benefits. This study analyses the 

impacts of preference changes that could contribute to the climate change mitigation portfolio, but for 

the normative question on how to change these preferences, I have to rely on the extensive existing 

literature on this topic.  

There seem to be several psychological barriers to behavioural change (Lorenzoni, Nicholson-Cole, and 

Whitmarsh 2007; Whitmarsh 2009; Quimby and Angelique 2011), even if the individual´s welfare or 

subjective well-being effect is positive (Gifford 2011; Schmitt et al. 2018). Being aware of the dangers of 

climate change helps the adoption of pro-environmental behaviour (PEB), but certainly not guarantees it 

(Semenza et al. 2008; Ohe and Ikeda 2005; Ozaki 2011; Lin 2013; Masud et al. 2015). Moreover, literature 

confirms that the adoption of PEBs has, apart from sociodemographic variables, a lot to do with 

environmental attitudes. These attitudes are, apart from influenced by environmental awareness and risk 

perception, but also by personal and social values such as social justice, community, frugality, and 

personal integrity (Fujii 2006; Gadenne et al. 2011; Hards 2011; Howell 2013; Poortinga, Steg, and Vlek 

2004). 

In order to boost the adoption of PEBs by citizens, public policy might be necessary. Since this study 

focuses on costless behavioural change due to preference changes, it is a matter of discussion if taxation 

should be a way to convince consumers to change their behaviour. Being taxed away from the 

consumption of a certain good is not the same as a preference change (although taxes can have some 

signalling effects, reducing the inherent demand for the good). Although recent literature indicates that 

taxes on unhealthy food products containing a certain amount of fat or sugar, as well as subsidies for 

healthy food products, have been very effective (Thow, Downs, and Jan 2014), such taxes do not 

necessarily increase consumer welfare (Lusk and Schroeter 2012) if the consumer inherently would have 

preferred the taxed product. 

Alternatively, consumers could be inherently convinced to change their preferences, for example by 

consistent public awareness campaigns about climate change (Fujii 2006; Lorenzoni, Nicholson-Cole, and 

Whitmarsh 2007). According to Howell (2013), such campaigns should provide a more holistic view of a 

lower-carbon future, rather than simple recommendations to combat climate change, as it increases 

                                                           
26 The behavioural options from this study that appear to positively influence subjective well-being according to Schmitt et al (2018) are: 
Vegetarian diet, Urban cycling, Car sharing / car club, Public transport and Carpool commuting (insignificant impact), Reduce heating / cooling, 
Organic waste recycling/composting, Paper waste recycling and Plastic/Metal/Glass waste recycling. 
27 Unless a wrong implementation of the option is applied, such as a vegan diet without protein consumption or a suicidal cycling style. 
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intrinsic motivation to adopt and sustain PEB. According to O’Neill and Nicholson-Cole (2009), it is 

important that such campaigns are not fearful, but rather link to individuals’ everyday emotions and 

concerns in the context of climate change. In terms of mitigation, a way of doing this is by relating climate 

change to local environmental issues and personal concerns, emphasising the additional benefits of PEBs 

(Lorenzoni, Nicholson-Cole, and Whitmarsh 2007). For example, persuasive campaigns against the 

consumption of meat have been realized by animal protection and food-focused NGOs. According to 

Laestadius et al. (2014), environmental NGO’s have however shown little incentives to campaign for a 

reduction in meat consumption as they appeared to be reluctant to mount campaigns explicitly 

encouraging personal behaviour change of any type. It makes sense that, when significant co-benefits are 

related with a certain type of behaviour (see previous section), the willingness of consumers to adopt this 

behaviour will increase. In any case, whether there are significant co-benefits involved or not, public 

awareness about climate change could be improved (Sheppard 2005; Moser 2010).  

Finally, voluntary mitigation by the public to adjust lifestyles can be maximized only if the general public 

and other stakeholders see the benefits of such sacrifices, which requires legislative and regulatory 

measures from industry, commerce, and government. Ultimately, effective mitigation of climate change 

requires both structural and behavioural changes toward a more sustainable society (Semenza et al. 

2008). The results from this study confirm that costless behavioural change can potentially contribute to 

a significant part of the total necessary climate change mitigation efforts, but that the majority of 

mitigation efforts still have to come from structural transformation in the energy system. Therefore, it is 

important that behavioural change appears in future energy and climate scenarios for policymakers, so 

that it’s potential can be assessed independent of technology decisions (Samadi et al. 2016). 

Conclusions and policy recommendations 
This chapter explored the mitigation potential of various types of behavioural actions in the food, 

transport and household sector, and sketches different green consumption profiles. Unlike Dietz et al. 

(2009), the behavioural options considered do not require investments in new or cleaner technologies. 

Therefore, there will be no need for upfront investments to be made by the consumer, which is an 

important barrier for making energy-saving investments (Costanzo et al. 1986; Gadenne et al. 2011). From 

an analytic point of view, the absence of technology requirements allows us to compare and add these 

results to mitigation portfolios that are based on the adoption of cleaner technologies, with few 

overlapping emission savings. 

A thorough analysis of the results show that costless behavioural change can contribute, if adopted 

immediately, up to one third of the EU target of GHG emissions by 2050, rising to 40% if all footprint 

emissions would count. But even a more convenient way of behavioural change as well as an average 

environmentally conscious living style adopted a bit later could contribute to 14% and 25% of the total 

mitigation effort respectively. 

The use of GCAM allows also to measure the international aspects of domestic behavioural changes. 

Interestingly, environmentally friendly behavioural change reduces emissions in other regions, which 

means that the positive “footprint” effect dominates the negative “carbon leakage” effect in the case of 

behavioural change. In contrast, forcing environmentally friendly behaviour with a GHG emission tax 

typically yields some carbon leakage to other regions (González-Eguino et al. 2017). 
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The inability to model the rebound effects of potential monetary savings of green behaviour with the 

model forced us to assume the monetary savings to be spent GHG-neutral. However, such rebound effects 

can reduce the total effectiveness of green behaviour up to 34% for housing and mobility options 

(Druckman et al. 2011) and 49% for food options (Grabs 2015). These limitations could be overcome in 

the future with the support of other modelling tools such as agent-based models and computable general 

equilibrium modes. 

The co-benefits of environmentally friendly behaviour can be in some cases significant and, therefore, 

could also encourage citizens to adopt this behaviour. There are a lot of potential gains in behavioural-

based mitigation if the citizens of the EU follow a more sustainable lifestyle. The adoption of a sustainable 

lifestyle in developed regions might simultaneously yield a more sustainable lifestyle in developing regions 

by giving a better example (Lange and Meier 2009). Surely in the case of behavioural options that imply 

significant co-benefits for the adopter, ´leapfrogging´ of sustainable lifestyle features might be a realistic 

climate mitigation strategy for developing regions (Schäfer, Jaeger-Erben, and dos Santos 2011). A good 

example of behavioural change from a developed nation could therefore be of relevant value for future 

climate scenarios.  

To conclude, policy makers predominantly look at taxes and subsidies in order to provide technological 

solutions to reach their climate targets. As follows from this analysis, behavioural effects can play a 

significant role in climate change mitigation portfolio and this potential should therefore be reflected in 

scenario studies aiming to provide comprehensive advice to policy makers (Samadi et al. 2016). More 

specifically, the results from this study imply that policymakers should put more effort in education and 

awareness programs in order to promote green behaviour by citizens, where it is important to focus on a 

more holistic view of a low-carbon future (Howell 2013) as well as individuals’ everyday emotions and 

concerns in the context of climate change (O’Neill and Nicholson-Cole 2009), for example by linking PEB 

with the additional benefits that come along with them. The policy costs of such measures are usually low 

compared to the implementation of taxes and subsidies and, in addition, they often lead to significant 

public co-benefits in terms of health and land use. 

Annex: Background modelling of mobility and housing options 

Mobility options 
- Public Transport Commuting 

In the base year (2010), around 20.7% and 17.9% of total passenger kilometres in respectively EU-15 and 

EU-12 were due to commuting between home and work. Of this commuting transport demand, only 

15.1% in EU-15 and 29.3% in EU-12 is being met by public transport services (European Commission 

2010b).  

- Carpool Commuting 

In the base year, car trips yielded around 76.2% of the total commuting passenger kilometres in EU-15, 

while around 58% in EU-12. Car load factors28 for commuting transport were 1.19 in EU-15 and 1.87 in EU-

12, whereas car load factors for all car transport were 1.65 and 2 respectively (European Commission 

2010b). Assuming a car load factor for commuting transport of 2 while respecting the share of commuting 

kilometres in total passenger kilometres (20.7% and 17.9% in EU-15 and EU-12 respectively), the overall 

                                                           
28 The average amount of people carried by one car. 
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load factor for all 4-wheel driven transport modes are increased to 1.85 in EU-15 and 2.05 in EU-12 to 

model this behavioural option. Finally, in order to model only the emission savings as a result of this 

behavioural change, any kind of price elastic behaviour in favour of car transport following this adjustment 

has been cancelled out. 

- Teleworking 

Since the commuting share of passenger transport is 20.7% and 17.9% in the EU-15 and EU-12 respectively 

(see previous options), total passenger transport demand was reduced by 4.14% in EU-15 and 3.6% in EU-

12. 

- Urban Cycling 

According to European Commission (2010), slow mode transport (walking and cycling) accounts for 18.9% 

of total urban passenger transport in the Netherlands in 2010, while total urban passenger transport 

accounts for about 29% of all passenger transport. Assuming the same percentage of slow mode transport 

in urban areas for the whole of EU-27, this comes down to an average share of 5.4% of total passenger 

transport that would be met by walking and cycling together. GCAM reports the share of walking to 

account for 1.9% of passenger transport in EU-27 in 2010, so the potential share of bicycles in total EU-27 

passenger demand is assumed to be around 3.5%. Note that while the cycling share is kept to 3.5% during 

all periods for this behavioural option, the walking share is subject to market competition (and decreases 

rapidly due to an increasing cost of travel time, see also: Mishra et al. 2013). 

- Car sharing / Car clubs: methods and assumptions 

The calculation used to make assumptions on both effects (based on various references) is as follows. 

Based on a ratio of 27 members per shared car in the United States, Millard-Ball et al. (2005) report an 

amount of 14.9 cars to be taken off the road for every car-club vehicle. Applying the ratio of 20 members 

per shared car in Europe, the estimate for Europe would be 11 cars per car-club vehicle. Correcting this 

estimate by the 40% reduction in vehicle kilometres of car-share members compared to private vehicle 

owners, this ratio comes down to 11 x 0.6 = 6.62. Finally, Chen and Kockelman (2015) state that the 

average privately owned new vehicle is replaced after approximately 6 years, whereas commercial car-

club operations replace cars every 2 to 3 years due to more vehicle kilometres and faster wear and tear 

(Mont 2004). Assuming that the wear and tear to the car and the remaining life time is the same for 

privately sold second hand cars and those sold by car sharing companies, it can be stated that a privately 

owned vehicle has 2 to 3 times the lifetime of a car-club vehicle. Applying a lifetime ratio of 2.529, this 

means that every car-sharing vehicle takes 6.62 / 2.5 = 2.65 vehicles off the production line when assuming 

that there is no reduction in car use between car owners and car sharers. Furthermore, an energy 

consumption related to car manufacture of 30 GJ per vehicle (Sullivan, Burnham, and Wang 2010) is 

assumed, as well as a growing demand for cars proportionally to the growing demand for passenger 

kilometres in both EU-15 and EU-12. See Table 2.10 for a summary on the assumptions made for modelling 

the impacts of car sharing. 

                                                           
29 This lifetime ratio is also applied to the assumed vehicle lifetime in GCAM (decreasing from 25 to 10 years), resulting in an increasing average 
fuel efficiency of cars. 
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Table 2.10: Assumptions made to model car-sharing impact 

Parameter Source Value Multiplier 

Vehicles replaced per car-club vehicle in USA (Millard-Ball et al. 
2005) 

14.9  

Correction for members per car-club vehicle in Europe (Millard-Ball et al. 
2005) 

 20/27 

Correction for reduced VKM by car-sharers compared to car 
owners 

(Millard-Ball et al. 
2005) 

 0.6 

Shared vehicle lifetime compared to privately owned 
vehicle lifetime30 

(Chen and 
Kockelman 2015; 
Mont 2004) 

 0.4 

Reduction of vehicle production for every car-sharing 
vehicle 

 2.65  

Manufacturing energy use per vehicle Sullivan et al (2010) 30 GJ  

Amount of passenger car sales in EU-27 in 2010 (base year) Oica.net 13.8 million  

 
- Avoid Short Flights 

All the passenger kilometres on national flights within EU-27 member states31 and all flights to 

neighbouring countries (multiplied by half if at least one of the partner countries is a large country such 

as Germany, France, UK, Italy, or Spain32) are summed to have a rough estimate of the potentially 

avoidable flights. About 25% of all passenger kilometres on intra-EU flights are found to be avoidable by 

these standards, and implicitly assume that it remains 25% until 2050. 

As an alternative to flying for medium distance trips, a new category is modelled with 4 possible travel 

alternatives: coach, train, high-speed-rail and carpooling. Although these transport modes are copied 

from the original GCAM model, significantly higher speeds are assumed for long distance bus, train and 

car transport (80, 100 and 100 respectively) and a higher load factor for cars33. Initially each of these 

categories take an equal share of the passenger kilometres to be replaced, but the mix between 

technologies is subject to mode competition as in other GCAM sectors. 

- Closer Holidays 

A rough analysis of Eurostat data on intercontinental passenger kilometres from EU-15 and EU-12 shows 

that respectively 85% and 91.5% of passenger kilometres are for leisure purposes and that the average 

intercontinental leisure trip by EU-15 and EU-12 consumers is respectively about 5900 km and 2680 km 

long. These estimates are implicitly assumed not to change until 2050. 

                                                           
30 See footnote 29 
31 Although some countries like Germany, France, Spain, Italy and the UK have large distances from one outer point to the other outer point, 
there are usually good train and bus connections available within the country borders. 
32 i.e. a flight from Brussels to Paris is considered to be avoidable but a flight from Brussels to Marseille unavoidable. The number of flights 
between Belgium and France is divided by two to have an estimate of avoidable flights. 
33 A load-factor of 2.8 is used, which is the average load factor of trips with BlaBlaCar, one of Europe’s biggest carpooling platforms for long 
distance trips (Munger 2018) 
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- Eco-Driving 

According to the ecoDriver project, the EU initiative that started in 2010 to promote this fuel-efficient 

driving style, the long-term fuel reduction due to eco-driving is estimated to be 5% (Carsten et al. 2016b). 

Following this number, this behavioural option is modelled by increasing the efficiency of all 4-wheel light 

duty vehicles by 5% from 2015 onwards. 

- Reduce Heating and Cooling 

To model the reduced usage of heating, the HDD input (heating degree days) was modified from 4920 to 

4625 in EU-15 and from 6311 to 5930 in EU-12, a change that reduces the need for heating in winter by 

about 1 degree Celsius. Similarly, the CDD input (cooling degree days) was modified from 373 to 328 in 

EU-15 and from 343 to 302 in EU-12 to model a reduced use of air-conditioning in summer.  

Waste options 
To model the impacts of waste recycling by consumers, the focus is on the three main streams of 

consumer waste: organic waste, paper/carton waste and non-paper packaging waste (consisting of mainly 

plastics, metals and glass). In most EU member states, it is possible for households to effectively recycle 

these types of waste by separating them. For modelling simplicity, 100% of separated waste is assumed 

to be recycled (8% actually ended up between mixed waste in 2010, predominantly separated organic 

waste in landfills) and that 0% of mixed waste is assumed to be recycled (8% of mixed waste was actually 

recycled in 2010).  

Since 66% of household waste ended up between mixed waste in 2010, it is hard to determine the 

contents of these waste streams. To know the contents of these waste streams, necessary for modelling 

the potential emission reductions, assumptions have to be made. To do so, a best practice example of 

waste separation in Europe is taken as example to gain information about the average household waste 

streams. According to (GAIA 2012), European best example is a door-to-door waste collection program in 

Usurbil, Hernani, and Oiartzun in the province of Gipuzkoa, Basque Country, Spain. The three towns 

together represented 33628 citizens with a GDP per capita level close to the EU-27 average. Except for 

the 20% of waste that was collected from street bins and local street cleaning services, all household 

waste in these villages was separately collected. The household waste in these villages consisted of 46.8 

% organic waste (of which 33.8% food and 13% garden waste), 18.3% paper/carton waste, 32.3% industrial 

packaging waste (including 14.1% glass and 15.2% plastic and metal) and 2.6% other waste, such as 

chemicals or minerals  

Since all EU-27 member states have a different waste collection scheme with regionally different 

priorities, the assumptions above on the total household waste composition have been extended every 

member state and the separated waste streams in each member state have been deducted from these 

assumed waste streams. The remaining waste (i.e. the composition after deducting the separated waste 

streams per member state) is assumed to be the composition of waste within the mixed waste stream. By 

these assumptions, 45.6% of all mixed household waste in the EU-27 is organic, 13.6% paper/carton, 33% 

non-paper packaging waste and a remainder of 7.8% mineral or chemical waste (left out of the model). 

For the services and industrial sector (accounting for nearly one third of all mixed waste), waste has 

traditionally been much better separated. Therefore, the same mixture of separated waste is assumed to 

hold for mixed waste streams from these sectors, which are relatively small. Finally, data shows about 
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one fifth of the mixed waste to come from the waste collection industry. This is intentionally separated 

waste that has a degree of mixture too high to be recycled. Here it is simply assumed the average assumed 

waste composition as in the other 80% of mixed waste. The final assumed mixed waste contents in EU-27 

are assumed to be 34.3% organic waste, 15.4% paper/carton waste, 31.2% non-paper packaging waste 

and 19.1% other waste (mainly mineral). Note that the non-household sectors have only been modelled 

to have a full picture on all waste streams. All the behavioural options do apply to household waste only. 

In total, 89% of all mixed waste in EU-27 was treated within the area34, with the majority being landfilled 

(in some cases with methane recovery for biogas production). However, there is an important trend going 

on in Germany, the Benelux and Scandinavia to incinerate mixed waste, either with or without energy 

recovery. In the baseline estimates, it is assumed that open burning and unmanaged landfilling of waste 

will be phased out linearly until 2050 and also managed landfilling will be phased out linearly until 2100, 

following Directive 2008/98/EC on waste management. 

For the total emissions from landfilling, data from the European Environment Agency (EEA)35 on landfill 

emissions on managed and unmanaged landfill sites is used. Following the IPCC guidelines (IPCC 2007), 

unmanaged landfill sites have on average 40% less emissions per unit of waste compared to managed 

landfills36. For modelling simplicity, all landfill emissions in one period are assumed to come from waste 

that is landfilled in the same period. To fit the modelled waste streams (stemming from EuroStat data) 

with the EEA landfill emissions data, the methane yields per type of waste stream from Weitz et al. (2002) 

are used. Following the IPCC guidelines, CO2 emissions from municipal waste management are not 

modelled. 

- Organic waste 

Organic waste consists of both food waste and garden waste. Since food waste in EU-27 has been 

modelled, all other organic household waste is assumed to consist of garden waste (the relative share of 

garden waste is in line with the distribution in our case example of Gipuzkoa as explained in the beginning 

of this section). From 2010 onwards, per capita garden waste is assumed to remain constant over time. 

Food waste consists of unavoidable food waste (which is a by-product of food consumption, 

predominantly skins and peels of fruits and vegetables, carcasses of pork and chicken, coffee and tea 

disposals) and avoidable food waste from the production, distribution and consumption of food. The 

unavoidable waste stream by GCAM food category are estimated by connecting the share of unavoidable 

waste compared to avoidable waste as reported by WRAP (2008) with FAO (2011) estimates of avoidable 

food waste by food category. Estimates for unavoidable coffee and tea waste streams (NonFood-

MiscCrop) come from Van Westerhoven (2013). See the assumed estimates in Table 2.11. 

Landfilling of organic waste results in large amounts of methane due to the anaerobic decomposition of 

organic materials. These are responsible for 2.75% of total GHG emissions in EU-27 in 2010. When 

incinerated, there will be no methane emissions from organic waste but there will be CO2 emissions, which 

                                                           
34 With the other 11% being either exported or simply lost out of sight 
35 http://www.eea.europa.eu/data-and-maps/data/data-viewers/greenhouse-gases-viewer 
36 The reason that unmanaged landfills are assumed to yield less CH4 emissions is based on the assumption that these are less dense and more 
widespread (open garbage field) than managed landfills, such that there is less anaerobic degradation of biogenic sources. Obviously these 
unmanaged garbage fields have other negative side effects on landscapes and potentially health. 
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have a significantly lower warming potential37. The energy density of organic waste, however, is very low, 

so energy recovery from incineration is not very productive. Finally, the preferred treatment for organic 

waste is to compost it using anaerobic digestion, creating both biogas and a valuable organic fertilizer 

replacing mineral fertilizers and returning about 15% of the organic carbon contents back into the soil. 

This is a form of carbon sequestration (IPCC 2007). Some methane emissions are released in the 

composting process, but these are limited compared to the methane released with landfilling. In the same 

way as landfill emissions, data from EEA on composting emissions are linked with Eurostat data on total 

tonnes composted to estimate the methane and nitrous oxide emissions per unit of food and garden 

waste composted. Finally, estimates from Boldrin et al. (2010) Zero Waste Europe (2015) are used to 

estimate the total carbon and nitrogen content of both food and garden waste. 

Table 2.11: Assumed unavoidable waste streams from different food categories (% of total weight) 

Cereals 2.22% Meat 13.63% 

Oilseeds & Pulses 3.05% Fish 23.44% 

Fruits & Vegetables 15.51% Dairy 0.46% 

Rice 1.67% Coffee & Tea 11.06% 

Root Tubers 2.08%   

Source: Comparison between (WRAP 2008b), (FAO 2011b) and (Van Westerhoven 2013) 
 

- Paper/carton waste 

Paper waste has been separated, since nearly every EU member state offers the possibility to recycle 

paper and carton waste. Since paper products are made from pulp, which is obtained from forest 

products, the GCAM model can be helpful in calculating the emissions related to paper waste recycling. 

Like food and garden waste, paper waste is organic and therefore leads to methane emissions when 

landfilled. However, the rate in which one ton of paper waste produces methane is only about one fourth 

compared to that of food waste (Weitz et al. 2002a). When incinerated, paper products can yield 

significant energy recovery due to an energy density that is more than twice that of food and garden 

waste. Finally, recycling of paper waste leads to significant GHG savings: producing new paper out of 

recycled paper reduces the amount of energy needed for paper production by 40% (EIA 2006). However, 

with about 80% of the extra energy needed coming from biomass (black liquor) due to the high amount 

of wood waste in these production locations38, paper production from pulp consumes the majority of the 

biomass energy in the EU-27 energy mix for industrial products.  

- Plastic/metal/glass waste 

Although industrial products such as plastic, metal and glass do not emit GHG emissions when landfilled, 

they do emit other pollutants, which are currently not modelled within GCAM. These pollutants are also 

emitted when incinerated, along with CO2. Glass and metal waste might also lead to health damages or 

complicate the whole waste collection procedure by cutting into garbage bags due to their sharp edges. 

                                                           
37 Since food waste is a renewable source of (potential) energy, CO2 emissions resulting from food waste management are not counted by the 
IPCC standards. CH4 emissions due to landfilling are counted, as these would not have been released in a natural situation where the food 
would degrade aerobically. 
38 https://www.afandpa.org/about/af-pa-staff/statistics 

https://www.afandpa.org/about/af-pa-staff/statistics
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Incineration with energy recovery from predominantly plastic waste is interesting due to its high energy 

density: around 50% higher than paper waste and 4 times higher than food and garden waste. Plastic, 

metal and glass waste however is generally valuable when recycled: compared to producing new 

products, using recycled plastic, metal or glass reduces industrial energy use by 70%, 60-95% and 5-30% 

respectively (The Economist 2007). Given the average mixed waste composition in the EU-27, the average 

tonne of recycled industrial products is assumed to save about 30% of industrial energy compared to 

making the same final industrial products from virgin material (Zero Waste Europe 2015b). It is important 

to note is that the majority of savings comes from recycling metal waste, which saves 60% to 95% (for 

aluminium) compared to making these products from virgin materials. 
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Introduction 
The technologies harnessing renewable energy sources are characterized by a land use efficiency several 

orders of magnitude lower than fossil fuels (Capellán-Pérez, de Castro, and Arto 2017). As a consequence, 

the transition to these sources of energy is expected to intensify the global competition for land (G. L. Rao 

and Sastri 1987; S Nonhebel 2003; Scheidel and Sorman 2012). For example, the sprawl of bioenergy has 

been already identified as the major driver of recent land use change (LUC) in the developed regions 

(Trainor, McDonald, and Fargione 2016; Don et al. 2012). This competitive element causes a diversity of 

environmental impacts intensifying biodiversity loss, water use or indirect land use change (iLUC) 

emissions, i.e. emissions produced by using high yielding cropland for bioenergy purposes and therefore 

indirectly converting highly vegetated land elsewhere in the world to cropland to meet global food 

demand (Sanderine Nonhebel 2005; Ovando and Caparrós 2009; Calvin et al. 2014; Christopher B. Field, 

Campbell, and Lobell 2008; Gasparatos et al. 2017).  For example, the literature estimates iLUC emissions 

for liquid biofuels in the same magnitude order than combustion emissions of fossil fuels (Searchinger et 

al. 2008; Overmars et al. 2011; Fargione et al. 2008; de Castro et al. 2013).  

For other sources of renewable energy other than biomass, land requirements and the associated 

environmental impacts remain understudied in the literature from a quantitative point of view (Capellán-

Pérez, de Castro, and Arto 2017; Gasparatos et al. 2017). In the case of solar energy, the competitive 

element is usually expected to be negligible due to its higher relative energy density compared to other 

renewable energies and the possibility to integrate it in urban areas or non-productive land (de Vries, van 

Vuuren, and Hoogwijk 2007; Timilsina, Kurdgelashvili, and Narbel 2012; Sanderine Nonhebel 2005; 

Jacobson and Delucchi 2011), and as such is currently excluded from official statistical reporting and 

integrated assessment models (IAMs). However, recent studies based on satellite views of existing utility-

scale solar energy (USSE), either in the form of photovoltaics (PV) or concentrated solar power (CSP), show 

a land use efficiency  of up to six times lower than initial estimates based on theoretical grounds (De Castro 

et al. 2013; Rebecca R. Hernandez, Hoffacker, and Field 2014; Ong et al. 2013). Applying such observed 

land use estimates also reduces the potential contribution of rooftop space for solar energy compared to 

estimates based on theoretical grounds (Capellán-Pérez, de Castro, and Arto 2017; Paul Denholm and 

Margolis 2008).  

The installation of USSE on land is subject to a diversity of constraints: resource constraints, which are 

related to the solar irradiance in a certain area; geographical constraints such as the slope of the land; and 

regulatory constraints, e.g. the protected status of the land, often related to ecosystem and wildlife 

preservation (Rebecca R. Hernandez, Hoffacker, and Field 2015; Lopez et al. 2012; Deng et al. 2015; Turney 

and Fthenakis 2011; Rebecca R Hernandez et al. 2016; Mahtta, Joshi, and Jindal 2014). Therefore, it is 

commonly argued that solar power should be installed on deserts and dry scrubland which has abundant 

solar resource and are generally not suitable for human activities (usually referred to as “wasteland”) 

(Trieb et al. 2012; Mahtta, Joshi, and Jindal 2014; Rebecca R Hernandez et al. 2016). However, beyond 

hard restrictions, other features such as the lack of human settlements, road, electricity and water 

infrastructure, also complicate the construction, operation and maintenance of solar power in these areas 

(Rebecca R. Hernandez, Hoffacker, and Field 2015). On top of that, spatial frictions might occur if land 

which is classified as “wasteland” by official sources is in reality a biodiversity hotspot (Lovich and Ennen 

2011; R. R. Hernandez et al. 2014) or the home of vulnerable human communities (Yenneti, Day, and 

Golubchikov 2016; Sharma et al. 2015). Recent developments show that USSE in densely populated 

countries is often installed in arable land and in some cases even in forest land (Rebecca R Hernandez et 
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al. 2016; De Marco et al. 2014; Prados 2010; De Castro et al. 2013), driving environmental impacts such 

as LUC emissions for the same reasons as bioenergy does (Turney and Fthenakis 2011; R. R. Hernandez et 

al. 2014). 

Due to the potential relevance of solar energy in a decarbonized future, this study aims to quantify the 

potential land occupation and related LUC emissions of solar energy installed up to 2050, within a storyline 

of global climate action as proposed in the Paris Agreement (NDCs) with increased ambitions after 2030 

(Fawcett et al. 2015). To give a comparable picture of the relative sustainability of solar energy, these 

estimates are compared with CO2 emissions from natural gas fired electricity, and with LUC emissions 

related to bio-energy. 

This study concentrates on three regions: EU, India and jointly Japan and South-Korea, because of two 

main reasons:  

- Results on land use impacts were expected to be more relevant (Capellán-Pérez, de Castro, and 

Arto 2017) 

- A negligible or, in the case of India, well quantified potential of solar energy in so-called wasteland 

(Mahtta, Joshi, and Jindal 2014), reduces uncertainty about the outcomes of this study. 

Notwithstanding, these regions differ in terms of solar irradiation, latitude, land cover, energy use per 

capita and energy system. Table 3.1 shows some specific conditions of these three regions compared to 

US and China, where land availability frictions will be likely of less intensity. The EU has no deserts and a 

very limited amount of scrubland, and aiming for ambitious renewable energy targets, already in the 

medium term. India has a fast population growth and an even faster growing use of energy per unit of 

land, while urban space per capita is very limited and the majority of its land is used for sown or potential 

cropland. Japan and South Korea are characterized by very high energy use within a limited land surface, 

which consists mostly out of forestland. In contrast, countries such as the United States and China have 

either a lower population density, energy use density, higher urban space per capita or consist for a 

significant share out of deserts and scrubland that could potentially host solar power without involving in 

land competition. Recent observations indeed show that about half of solar energy in California is installed 

in either urban areas or scrubland (Rebecca R Hernandez et al. 2016). 

Higher solar irradiance translates to more energy output from the same panel and thus less land 

requirements per unit of energy. On the other hand, higher latitude translates to more shading of either 

PV panels or CSP mirrors, increasing the required land area for USSE to prevent self-shading of panels or 

mirrors (Martín-Chivelet 2016). Both solar irradiance and latitude strongly vary between the northern and 

Mediterranean part of the EU, while conditions in Japan and SK are more homogenous and are 

comparable to the Mediterranean part of Europe. With a higher DNI and lower latitude, conditions in 

India are considerably more favourable, with the north western part of the country being recognized as a 

solar energy hotspot (Mahtta, Joshi, and Jindal 2014). Figure 3.1 shows the relative geographical 

differences between the EU, India, Japan and South Korea. See the Method section how DNI and latitude 

influence land requirements of USSE in the three regions.  
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Table 3.1: Regional characteristics relevant for land requirements of solar energy. In bold the characteristics that make each of 
the chosen regions relevant for this study. 

Focus 

Region: 

Population 

density 

(inhabitants 

per km2) 

(Final) 

Energy use 

density  

(TJ per 

km2) 

Urban 

space per 

capita 

(m2) 

Share of land occupied by 

land use type: 

Solar in 

electricity 

mix (IEA 

2012) 

Renewable 

electricity 

target 

(approx.)  

[3] 

Desert/ 

scrub-

land 

Arable 

land 

Forest 

land 

2010 2050

[1] 

2010 2050

[1] 

2010 2010 2015 2030 

European 

Union 

128 119 16.9 17.4 209 4.0 % 28.6 % 44.9 % 3.3 % 47.5 % [4] 

India 405 521 9.6 31.7 18 9.7 % 55 % 24.2 % 0.4 % 24 % [1] 

Japan & 

S-Korea 

429 399 70 56 77 2.1 % 12 % 81.5 % 2.5 % 22 % [5] 

USA  36 49 9.7 10.2 595 8.6 % 18.1 % 36.5 % 0.8 %  

China 144 136 10.8 12.8 41 15.7% 13.5 % 18.6 % 0.8 %  

[1] Own estimates for 2050 are taken from a reference scenario run by GCAM based on SSP2 parameters (O’Neill et al. 2014). 
India target of 40% of electricity capacity based on non-fossil resources translate to 30% of non-fossil electricity output of 
which one fifth (6% of total electricity) is nuclear energy, based on a GCAM reference scenario with SSP2 parameters. 

[2] (Klein Goldewijk et al. 2011) 

[3] Based on initial renewable energy targets as proposed in Paris Agreement NDCs, either explicit or implicit (UNFCCC 2019). 

[4] (E3MLab & IIASA 2016) 

[5] (Lennon 2017) 

 

 

Figure 3.1: Comparison of solar irradiance and latitude between the European Union, India, Japan and South-Korea.                      
Source: https://power.larc.nasa.gov/ (NASA Langley Atmospheric Sciences Data Center, n.d.) 
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Method 

Solar Land-use module 
An additional module has been developed for the GCAM model to link the consumption of solar energy 

with land use, competing with other commercial (crops, timber and intensive pastures) or non-

commercial (non-commercial forest, pasture and arable land, scrubland) land uses. See part A in Figure 

3.2 for an overview of the AEZs within the three focus regions of this study.  

To introduce competition between existing land uses and land for solar energy, a yield in terms of energy 

output per unit of land has been defined for every AEZ. Equation 3.1 defines this yield for each AEZ, which 

depends on average solar irradiation (I) per AEZ, average efficiency of solar power plants (f1) at the year 

of installation (t), the averaged performance ratio over the life cycle of the solar power plant (f2) and the 

land occupation ratio (f3) (De Castro et al. 2013; Capellán-Pérez, de Castro, and Arto 2017). To estimate I 

per AEZ, we overlapped the solar irradiance annual average data (NASA Langley Atmospheric Sciences 

Data Center, n.d.) (tilt radiation, i.e. the position where the tilt coincides with the latitude, which is the 

optimal position of PV panels to take advantage of the solar resource at each location) with each AEZ and 

geopolitical region in GCAM 4 using a GIS tool. The land occupation ratio, defined by equation 3.2, 

depends on the packing factor (PF) of PV panels or mirrors and the Generator-to-system area (GSR) which 

is assumed to be 0.7 following real world observations (De Castro et al. 2013; Ong et al. 2013). The packing 

factor again depends on the average latitude of each AEZ and is defined by equation 3.3: the further from 

the equator, the more space is needed between the different panels or mirrors to avoid self-shading, so 

the lower the packing factor. The theoretical equation of PF dependent on the sun elevation, the sun 

azimuth and the tilt angle, which can be simplified assuming that tilt coincides with the latitude (β=∅) and 

taking the conservative shading criterion of avoiding shading only at noon (Martín-Chivelet 2016). For 

simplicity, the PF estimation is based on on fixed tracking PV systems. Solar yields can slightly differ (about 

25% in both ways) for 1- or 2-axis PV tracking systems or for CSP systems (Ong et al. 2013). 

𝜌𝑒
𝐴𝐸𝑍 = 𝐼𝐴𝐸𝑍 ∙ 𝑓1

𝑡 ∙ 𝑓2 ∙ 𝑓3
𝐴𝐸𝑍

                                                              (3.1) 

𝑓3
𝐴𝐸𝑍 = 𝐺𝑆𝑅 ∙ 𝑃𝐹𝐴𝐸𝑍                                                                           (3.2) 

𝑃𝐹𝐴𝐸𝑍 = 𝑐𝑜𝑠 𝛽𝐴𝐸𝑍 +
𝑠𝑖𝑛 𝛽𝐴𝐸𝑍

tan(66.55°−∅𝐴𝐸𝑍)
                                                (3.3) 

Part B in Figure 3.2 of the SM defines the solar yield per AEZ. Note that this figure only represents the land 

inputs per unit of energy output. The capital inputs per unit of output depend only on IAEZ , f1
t and f2 and 

given that the land costs only make up for only 0.05 to 2 % of the total costs of solar power (see part C in 

Figure 3.2), investors in solar energy tend to choose the location predominantly based on solar irradiance 

instead of the solar energy yield per land unit (Figure 3.1). Consistently exporting or importing large shares 

of solar energy between geographically and/or politically distinct regions faces both technical and 

geopolitical challenges. Therefore, I have chosen a conservative assumption that solar energy must be 

produced and consumed in the same geopolitical GCAM region. Further details and assumptions are listen 

in the Annex of this chapter. 
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Figure 3.2: Overview of Agro-Ecological Zones (AEZs; A), and solar yields (B) and relative land costs compared to capital costs of 
solar systems (C) for each AEZ. Note that there is regional breakdown between “EU-15” (representing the EU up to 2004) and “EU-
12” (representing countries that entered the EU from 2004 onwards, except Croatia) and between Japan and South-Korea. This 
means that if the same AEZ (number, see panel A) overlaps over these separated regions, they are treated as separated land 
regions.  

Use of non-competing space on rooftops and in wasteland  
Rooftop space is often used for smaller scale PV systems, and have the advantage of not competing for 

space with other uses and avoiding some of the losses related to electricity transmission and distribution. 

On the other side, rooftop spaces are often not optimal, and only about 2 to 3 % of urbanized surface area 
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can be used for PV systems (Capellán-Pérez, de Castro, and Arto 2017). Taking these limits into account, 

rooftop space is limited to 3% of expected urbanized land by 2050 (end year of the scenarios in this study) 

in each geo-political region, while non-optimality of rooftop space has been modelled through an supply 

curve which represents increasing capital costs for each additional space used for rooftop PV systems (P 

Denholm and Margolis 2008). 

Wasteland is identified as land that is not used and neither has potential for any other productive use 

from a human perspective, such as deserts and dry scrubland. By default, deserts are exempted from land 

competition in GCAM, while only 10% of current scrubland is included in the land competition module, 

taking into account both non-fertility of scrubland as well as the protected status of some of these land 

areas. However, except for those with protected status, most of these areas are suitable for solar power. 

The EU, Japan and SK have no deserts and a limited amount of scrubland (see Table 3.1), which in many 

cases are protected. Therefore, apart from the 10% of scrubland which enter by default into the land 

competition module, no availability of wasteland is assumed in these regions. For India, the pre-identified 

potential for PV and CSP capacity in wasteland (Mahtta, Joshi, and Jindal 2014) is included to the model 

as an alternative to competitive land. Further assumptions are listen in the Annex of this chapter. 

Scenarios 
In order to identify the effects that solar energy and bioenergy pathways have on land use and land use 

change emissions, three pathways have been modelled achieving a defined penetration level in the 

electricity mix from 2020 to 2050, using different electricity generation technologies: 

- Solar energy pathway (S): land-based PV, rooftop-based PV, CSP 

- Bioenergy pathway (B): Conventional, biomass gasification, CCS, Combined Heat and Power 

(CHP). 

- Non-land-occupying pathway (NL): wind, geothermal, rooftop-based PV, nuclear (in scenarios 

where penetration level cannot be reached with the first 3 technologies together) 

The land occupation impacts of solar and bioenergy are identified using equation 3.4. Land use change 

emissions per unit of output from 2020 to 2050 have been calculated using equation 3.5. Finally, the CO2 

payback period has been calculated using equation 3.6. In these equations, the subscript r defines the 

region, i defines the technologies included in either the solar- or bioenergy pathway, p the penetration 

level of these technologies in the electricity mix, NL defines non-land-occupying energy technologies and 

i(l) represents land-competing solar- or bioenergy, so not taking into account solar energy based on 

rooftops/wasteland or bioenergy from waste/agricultural residues. The parameter a defines the CO2 

emission factor per unit of output of the alternative thermal electricity generation technology (i.e. natural 

gas, coal). Scenarios are run until 2050, but delayed LUC emissions (due to differences in vegetation yet 

to be grown) are abstracted until 2100. 

𝐿𝑎𝑛𝑑 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛𝑖,𝑝,𝑟 = 𝑙𝑎𝑛𝑑 𝑓𝑜𝑟 𝑖𝑖,𝑝,𝑟 − 𝑙𝑎𝑛𝑑 𝑓𝑜𝑟 𝑖𝑁𝐿,𝑝,𝑟                          (3.4) 

𝐿𝑈𝐶 𝑝𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑢𝑛𝑖𝑡𝑖,𝑝,𝑟 =  
∑ (𝐿𝑈𝐶𝑖−𝐿𝑈𝐶𝑁𝐿)2020 𝑡𝑜 2050

𝑝,𝑟

∑ (𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑖−𝑜𝑢𝑡𝑝𝑢𝑡 𝑖𝑁𝐿)2020 𝑡𝑜 2050
𝑝,𝑟

                        (3.5) 

𝐶𝑂2 𝑝𝑎𝑦𝑏𝑎𝑐𝑘 𝑝𝑒𝑟𝑖𝑜𝑑𝑖(𝑙),𝑝,𝑟,𝑎 =  
∑ (𝐿𝑈𝐶𝑖−𝐿𝑈𝐶𝑁𝐿)2020 𝑡𝑜 2100

𝑝,𝑟

𝑜𝑢𝑡𝑝𝑢𝑡𝑖(𝑙)
2050=𝑚𝑎𝑥∗ 𝑎

                               (3.6) 
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Penetration levels 

As this study focuses on future scenarios in the context of global climate action, I focus on a range of solar 

energy penetration scenarios that are coherent with a decarbonizing electricity mix. See Table 3.2 for an 

overview of solar energy penetration estimates in literature focusing on a largely or completely 

decarbonized electricity mix in 2050. 

Table 3.2: Overview of solar penetration scenarios in literature of future electricity mix 

     Electricity generation Share electricity generation  

  Target 
year 

Total 
elect.  

% 
RES  

PV (incl. 
rooftop) 

CSP PV (incl. 
rooftop) 

CSP Total 
solar 

 

 scenario  TWh/y % TWh/y TWh/y % % % Source 

(Greenpeace 
2015) 

E[R] 
global 

2050 49,852 92% 9,914 8,138 19.9% 16.3% 36.2% Table 
13.1.8 

ADV E[R] 
global 

2050 67,535 100% 13,613 14,035 20.2% 20.8% 40.9% Table 
13.1.9 

(Jacobson et 
al. 2017) 

WWS 
global 

2050 103,368 100% 49,609 10,081 48% 9.72% 57.6% Table 
S6, S8 

WWS EU-
28 

2050 10,678 100% 4,588 491 43% 5% 47.6% Table 
S6, S9 

WWS 
India 

2050 8,725 100% 4,248 1,024 49% 12% 60.4% Table 
S6, S11 

WWS 
Japan 

2050 2,197 100% 1,873  86%  85.3% Table 
S6, S10 

WWS S 
Korea 

2050 1,699 100% 1,237 203 73% 11.93% 84.8% Table 
S6, S10 

(Singer et al. 
2011)(WWF) 

global 2050 35,389 100% 10,278 6,000 29% 17.0% 46.0% Table 
A1 

(Pam et al. 
2017)(EWG) 

global 2050 48,800 100%   69% 0% 69.0% Figure 1 

(Breyer et al. 
2017) 
 

global 2030 49,408 100% 21668  44%  44% Table 2 

Europe 2030 5,127 100% 1384  27%  27% Table 2 

India/ 
SAARC 

2030 3,376 100% 1880  56%  56% Table 2 

North-
east Asia 

2030 13,496 100% 6986  52%  52% Table 2 

 

In order to cover this wide range of possible penetration rates of solar energy, scenarios aiming for a total 

RES (renewable electricity share; wind, solar, biomass, geothermal, hydro) ranging from 30% to 90% in 

10% steps by 2050 were implemented. For each penetration level in each region, there is one scenario for 

each technology pathway (S, B and NL, see Scenarios section), where this technology becomes dominant 

over time. Total electricity output is fixed between all scenarios. See Figure 3.3 for a visual representation 

of the modelled penetration targets for the European Union. Although Table 3.2 mentions predominantly 

scenarios with 100% RES, this study does not aim for scenarios with a 100% share of RES, as backup 

systems based on natural gas are used at high penetration rates of intermittent energy sources (see 

Annex). Pathways for India, Japan and South-Korea were similar but starting from a different point, 

relevant to the actual share of RES by 2015. 

In scenarios in which bioenergy is the dominant technology, less bioenergy is used in non-electricity 

sectors, due to higher bioenergy prices. This leads to slightly higher mitigation costs in such scenarios 

which are not included in the comparison. Therefore, the LUC effects of bioenergy electricity scenarios 

will be slightly underestimated. For scenarios with solar energy and non-land occupying technology 
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dominance, regional bioenergy consumption is fixed. Bioenergy consumption in other regions is fixed in 

all scenarios, to avoid higher mitigation costs due to land pressure in other regions for scenarios with 

bioenergy and solar energy dominance, improving the comparability of scenario results. 

 

Figure 3.3: Example of intended penetration rates of all renewables in the electricity mix of the EU (30%-90%) and dominant 
technology starting around 8% in 2020. The intended penetration rate of the dominant technology (either solar energy, bio-

energy, or non-land occupying technologies; see Scenarios section) slowly dominates the renewable energy mix in each scenario. 

 

Figure 3.4: Realized solar penetration over time for each scenario. Darker lines represent higher solar penetration scenarios. See 
Scenarios section for more details on the modelled penetration levels. 

Due to various factors, such as the rigidity of the energy system (e.g. long lifespan of already installed 

generation capacity) and the way hydro-electricity is modelled in GCAM (as a fixed expected annual 

output; JGCRI 2016), actual penetration levels in each scenario do not meet intended targets. Also, the 

scenario aiming for 90% penetration in Japan and South Korea was unfeasible and was dropped. Actual 

penetration levels of solar energy are listed in Table 3.3. Figure 3.4 visualizes those scenarios and also 

shows that total electricity output is slightly increasing at higher solar penetration rates. This happens due 
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to the requirement of additional natural gas-based back-up electricity systems which are required to 

balance electricity demand and supply such high penetration rates. See the Annex of this chapter for a 

more detailed explanation. 

Table 3.3: Realized penetration levels of solar energy per region and aimed penetration level 

Region \ penetration target 30% 40% 50% 60% 70% 80% 90% 

European Union 25.7 34.8 43.9 53.0 62.2 71.3 78.6 

India 30.2 38.0 45.9 53.8 61.8 65.5 77.8 

Japan and South Korea 27.5 36.8 46.1 55.4 64.8 74.1 X 

 

Future efficiency of solar energy 

A wide variety of PV technologies currently exists at commercial level, and even more at research stage, 

with varying levels of performance. Although very high efficiencies can be obtained in research prototypes 

in the laboratory (>40%), the weighted average of global panel PV efficiency currently being installed 

(2017) is around 16% (Fraunhofer Institute for Solar Energy Systems 2018). Multi-Si technology currently 

dominates the market with  around 62% of new solar capacity (increasing trend in the last 25 years), 

followed by Mono-Si (33%), and the remaining 5% of capacity have been using thin-films (Fraunhofer 

Institute for Solar Energy Systems 2018).  

The efficiency of solar panels has been increasing in the last decades from ~8% in the 1980s. However, 

although potential for further technological improvement still exists, uncertainties exist on the future 

efficiency levels of PV due to factors such as thermodynamic limits (e.g. 34% for single junction cells, a.k.a 

Shockley–Queisser limit), increasing costs with technological complexity (e.g. multi-junction cells) and the 

trade-off between performance, flexibility and mineral availability (De Castro et al. 2013; Grandell and 

Höök 2015; Valero et al. 2018; Nathan S. Lewis 2016). 

This is a key parameter in our analysis given that a higher efficiency produces the same amount of 

electrical power on a smaller area, i.e. reducing its land footprint. Thus, to take into account the 

uncertainties in future technological developments and market share, three equally probable scenarios 

are considered for global PV module efficiencies of capacity installed by 2050: 20, 24 and 28%. No 

efficiency paths have been identified for CSP systems separately, and therefore the same progress is 

assumed relative to current efficiencies as for PV. This efficiency parameter is set equally for all countries 

since the current PV market is considered to be global. 

At the lower bound (20%), simpler, cheaper and more flexible technologies such as thin-film (e.g. 

amorphous silicon or organic cells), all using more abundant minerals, would dominate the market (De 

Castro et al. 2013; Nathan S. Lewis 2016; Kaltenbrunner et al. 2012; Shukla, Sudhakar, and Baredar 2016). 

The middle path (24%) corresponds to a scenario where single-junction technologies reach their maximum 

practical potential efficiency reachable at industrial production-level (Mayer et al. 2015; Swanson 2005). 

Finally, 28% reflects a scenario where more complex and expensive technologies such as multi-junction 

technologies or perovskite solar would take a significant share of the market by 2050 (Mayer et al. 2015; 

Philipps et al. 2014). 

Results 
Figure 3.5 shows for each scenario the amount of solar energy generated by 2050, divided by different 

solar energy technologies. It shows that utility-scale PV is the dominant solar energy technology in each 
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of the regions. Residential PV is relatively more dominant in the EU, while storage systems and CSP are 

more important in India. The rest of this section shows the land use consequences of these scenarios. 

 

Figure 3.5: Solar electricity in 2050 by technology for each scenario (reaching 24% average PV module efficiency in 2050) 

Land Occupation 
Table 3.4 shows the absolute and relative land requirements of solar energy, based on land that is 

(potentially) useful for human purposes (i.e. excluding “wasteland” and rooftops), for the simulated 

scenarios at different penetration rates and for the range of future solar PV module efficiencies. Due to 

the lower irradiance and higher latitude of Europe, absolute land use of per unit of solar output is almost 

twice as high as in Japan and SK and three times higher as in India (see part B of Figure 3.2). In the most 

extreme scenarios of high solar energy penetration and lowest solar PV modules efficiency, solar energy 

would require around 110,000 km2, 40,000 km2 and 20,000 km2 of land in respectively the EU, India and 

jointly Japan and SK, making up for respectively 2.8 %, 1.3 % and 5.2 % of all land area in those regions. 

As there are significant differences in solar irradiance within these regions, land occupation in relatively 

attractive areas can be twice as high as the regional average, as can be seen in Figure 3.6 for scenarios 

with a 53-55% penetration of solar energy.  

The future land requirements of solar energy for each scenario and region can be put in perspective 

compared to the current level of built-up environment and agricultural cropland. From an environmental 

point of view, USSE is comparable to urbanized land, while from the perspective of size and utility, USSE 

is comparable to agricultural cropland, both requiring large plots of relatively flat land at limited height to 

capture as much sunlight as possible. In all regions, a large part of the built-up environment (urban and 

solar land) will consist of solar panels or mirrors (CSP) by 2050 if a significant part of the produced 

electricity comes from solar power. Land for solar would represent 80-100% of the current EU urban land, 

and over 100% for India (140-180%) and Japan and South-Korea (120-160%). From a different perspective, 

a significant part of the sunlight captured for commercial use would be used for electricity purposes 

instead of agricultural purposes, especially in Japan and SK (29-39%) and the EU (7.7-10%).  
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Table 3.4: Land occupation characteristics for a range of solar penetration levels and future solar PV module efficiencies by 2050 

Focus 

Region: 

Solar 

penetra-

tion 

level [1] 

Useful [2] land 

occupation by 2050 

Relative solar land occupation by 2050 

 

Rooftop 

generation 

Average 

“useful" 

[2] land 

occupation 

 % of 

total 

elect. 

Solar 

energy 

Bioenergy 

(%domestic) 

% of total 

land area 

Compared 

to urban 

area in 2010 

Compared 

to crop area 

in 2050 [3] 

% of total 

solar elect. 

2020–2050 

m2 per GJ 

solar elect. 

2020-2050 1000 Km2 

European 

Union 

26 % 21 – 28 366 (45 %) 0.5 – 0.7 % 20 – 27 % 1.9 – 2.5 % 26 – 27 % 5.3 – 6.7 

53% 53 – 69 614 (38 %) 1.3 – 1.7 % 50 – 66 % 4.8 – 6.3 % 14 – 15 % 6.1 – 7.8 

79 % 85 – 111 969 (32 %) 2.1 – 2.8 % 81 – 106 % 7.7 – 10 % 9.6 – 10 % 6.5 – 8.2 

India 30 % 10 – 14 596 (16 %) 0.3 – 0.5 % 46 – 62 % 0.6 – 0.9 % 9.4 – 10 % 1.8 – 2.3 

54 % 20 – 26 1051 (12 %) 0.7 – 0.9 % 88–118 % 1.2 – 1.6 % 5.7 – 6.0 % 1.8 – 2.3 

78 % 30 – 41 1516 (10 %) 1.0 – 1.4 % 137–182 % 1.9 – 2.5 % 3.4 – 3.6 % 1.9 – 2.5 

Japan and 

South-

Korea 

28 % 5 - 6 185 (17 %) 1.2 – 1.6 % 36 – 48 % 8.3 – 11 % 23 – 25 % 3.6 – 4.3 

46 % 9 – 12 279 (13 %) 2.3 – 3 % 68 – 89 % 16 – 21 % 16 – 17 % 3.7 – 4.5 

74 % 16 – 21 429 (10 %) 4 – 5.2 % 120 – 157 % 29 – 39 % 10 – 11 % 3.8 – 4.8 

 [1] These are realized penetration levels. See Scenarios section in the SM for more information. 

[2] Useful land occupation does not include the use of wasteland or rooftop space. Wasteland in India host 

about 11.5 – 12 % of solar energy throughout all penetration scenarios of solar energy in India. See Method 

section and Annex of this chapter for more details about wastelands in India. 

[3] Future crop area is abstracted from the same modelled scenario 

 

 

Figure 3.6: Geographical distribution of land occupied by solar energy within each region. See Method section and part A of Figure 
3.2 for more information on the land distribution used in this study. 

From a land cover perspective, “solarland” is a new type of land use, currently occupying an insignificant 

amount of land at global scale. Therefore, in scenarios with a high share of solar energy in the future 

electricity mix, current land uses have to make way for solarland. Figure 3.7 shows land cover changes as 
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a result of the land requirements for solar energy (see Table 3.4) within each of the three regions and land 

cover changes outside these regions, contributing to terrestrial carbon leakage (González-Eguino et al. 

2017). Within each region, solar energy expansion predominantly replaces or avoids future land 

conversions to other commercial land, such as cropland or commercial forest (e.g. for timber products). 

The magnitude of these commercial land cover changes depends largely on the region where solar energy 

penetration takes place. As crop productivities in the EU, Japan and SK are relatively high, displaced 

cropland area in these regions cause a larger increase in cropland area outside these areas, while in India, 

where crop productivities are relatively low, the opposite effect can be observed. This effect is smaller at 

lower penetration levels in the EU, Japan and SK, as more marginal cropland is transformed to solarland 

due to the low relative profitability of this cropland. Either directly or indirectly, expansion in solar energy 

will predominantly reduce non-commercial land cover on a global scale: for every 100 hectares of 

solarland in the EU, 31 to 43 hectares of natural forest will be cleared throughout the world, depending 

on the penetration level. The same amount of solarland in India will clear 27 to 30 hectares of natural 

forest land, and in Japan and SK, the ratio is 49 to 54 hectares. The location of these forest land clearings 

depend strongly on the type of crops that will be displaced within each region. 

 

Figure 3.7: Global land-cover changes by 2050 due to solar expansion, for a range of solar energy penetration levels and for an 
average efficiency of installed solar modules of 24% by 2050.  

Land use change emissions 
Figure 3.8 and Table 3.5 show the LUC emissions per unit of solar energy installed between 2020 and 2050 

associated to the different simulated scenarios. Table 3.5 also shows the emissions per m2 of land 

occupation by solar energy, which reflect how productive the occupied land would be for agriculture or 

forestry. At high solar penetration levels in the EU, direct and indirect LUC emissions between 2020 and 

2050 reach 8.5-11.5 grams CO2 per megajoule (MJ) of electricity, which represent about 10% of the 

emissions from natural gas combustion for producing the same amount of electricity. At lower 

penetration rates, LUC emissions equal around 5 to 7 % of emissions from natural gas combustion in the 
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EU, Japan and SK. The favourable conditions for solar energy in combination with a relatively low cropland 

productivity in India translate to LUC emissions of around 2 grams of CO2 per MJ of solar electricity at any 

penetration level. 

Since land for USSE predominantly replaces commercial land growing crops or timber products within 

each region, solar energy expansion displaces commercial timber production to currently unproductive or 

unused arable land in other regions, indirectly increasing carbon sequestration outside the region where 

the expansion takes place. At higher solar penetration rates however, increasing land pressure causes 

more natural forests to be used for timber production as the potential for using currently unproductive 

and unused arable land is limited, which increases land use change emissions outside the region. This 

effect is best visible for solar penetration scenarios in the EU, due to the high absolute amount of land use 

(See Figure 3.7).  

 

Figure 3.8: Land use change emissions related to land occupation per MJ of solar energy from 2020 to 2050 

Solar energy vs Bioenergy  
Integrated assessment models which link energy, economy, land and climate modules tend to rely strongly 

on the production of dedicated bioenergy crops in global climate change mitigation scenarios (Popp et al. 

2014). This section compares the land occupation and related LUC emissions of solar energy with those 

of bioenergy within such a model. 

Table 3.4 shows that land requirements for reaching certain levels of electricity penetration with solar 

energy are still significantly lower than land requirements to meet those same levels with bioenergy. Since 

yields for bioenergy crops are highly correlated with other crop yields, in contrast to the land use efficiency 

of solar energy, for which the latter can be installed in marginal land with limited crop yields, one would 

also expect higher land use impacts for bioenergy due to the displacement of more productive cropland 

(Christopher B. Field, Campbell, and Lobell 2008; Overmars et al. 2011; Searchinger et al. 2008). However, 

Table 3.5 shows that LUC emissions per square metre of dedicated land tend to be higher for solarland 

than for dedicated bioenergy cropland in most of the scenarios in this study. The reason behind this is 

that, due to a combination of technical and geopolitical reasons, solar energy is likely to be produced 

relatively close to the consumption point, while the market for bioenergy is global. As land tends to be 

more valuable in densely populated regions, this restriction can be problematic for reaching high solar 
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energy penetration levels in such regions. In contrast, up to 90% of land to grow the required bioenergy 

crops is located in other regions at high bioenergy penetration levels (see Table 3.4). In optimal market 

circumstances, as assumed in this study, bioenergy crops are imported from those regions with low 

projected productivity for other productive land uses and reasonable projected bioenergy productivity, 

translating to relatively low LUC emissions per m2 of land dedicated to growing bioenergy crops. 

Table 3.5: Land use change emissions and payback periods for solar and bioenergy penetration scenarios, for a range of future 
solar module efficiencies 

 Penetra-
tion level 

Direct and indirect land use change 
(LUC) emissions due to solar energy * 

Emissions by land area **  CO2 payback period relative to 
electricity from natural gas *** 

 % of 2050 

elect. mix 

Within 

region 

Outside 

region 

Total 

 

Solar energy Bioenergy Solar energy Bioenergy 

Average grams of CO2 per MJ electricity 
– 2020 to 2050 

Kg CO2 per global m2 of 
(useful) land 

Months 

European 

Union 

26 % 5.2 to 7.2 -1.8 to -1.3 3.5 to 6.0 3.6 to 4.3 3 3.8 to 6.0 46.9 

53 % 6.4 to 8.5 0.9 to 1.3 7.3 to 9.8 ~ 5.9 3.1 5.3 to 7.1 49.2 

79 % 6.9 to 9.5 1.5 to 1.9 8.5 to 11.5 ~ 6.4 3 5.7 to 7.3  49.3 

India 30 % 2.1 to 2.6 -1.1 to -0.5 1.0 to 2.1 1.3 to 2.4 2.3 0.5 to 1.1 41.7 

54 % 2.4 to 2.8 -0.8 to -0.4 1.6 to 2.5 2.5 to 3.0 2.3 0.7 to 1.1 43.2 

78 % 2.2 to 2.6 -0.6 to -0.3 1.6 to 2.3 2.9 to 3.2 2.4 0.7 to 1.1 43.9 

Japan and 
South-

Korea 

28 % 4.4 to 6.1 -0.9 to 0.2 3.5 to 6.3 3.7 to 5.8 2.7 2.3 to 4.4 47.7 

46 % 5.4 to 7.3 -0.6 to 0.2 4.8 to 7.4 5.0 to 6.1 2.6 2.7 to 4.2 47.3 

74 % 6.1 to 8.0 0.0 to 0.6 6.1 to 8.6 6.0 to 6.6 2.7 3.0 to 4.3 48.9 

* Dividing all LUC emissions from 2020 to 2050 to the total amount of generated electricity (including non-land-based sources, such as solar 
rooftops, wasteland or waste-to-energy plants for bioenergy) 

** Dividing all LUC emissions from 2020, including delayed emissions until 2100, by the total land area dedicated to solar and bioenergy by 

2050 (maximum point) 

*** Calculated assuming a thermal efficiency of 50% for natural gas power plants 

 

While emissions per m2 might be higher for solar energy, energy productivity per m2 is also significantly 

higher, which causes the average LUC emission footprint (CO2 per MJ) of solar energy to be significantly 

lower than that of bioenergy. Comparing LUC emissions with combustion emissions in a given period, as 

is done in Figure 3.8 and which follows the accounting principles of the United Nations Framework 

Convention on Climate Change for land use change emissions (United Nations 2012), can be problematic 

due to the effects of timing. Most LUC emissions tend to occur instantly, i.e. through deforestation, while 

avoided combustion emissions are saved continuously throughout a longer period of time. Therefore, the 

concept of “payback period” is commonly used to compare the LUC emission impacts of different types 

of bioenergy, which measures how long it takes until the emission savings related to the replacement of 

fossil energy with bioenergy reach the level of LUC emissions caused by the land clearing to grow these 

bioenergy crops (Elshout et al. 2015; Fargione et al. 2008). Using this same concept, Table 3.5 compares 

the payback period of solar- and bioenergy for electricity, replacing electricity from natural gas 

combustion. The table shows that payback periods of solar energy depend significantly on the penetration 

level and future solar module efficiencies, but in general are significantly lower than for bioenergy and 
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will never get as high as one year. See Figure 3.9 for a graphical visualization of the difference in payback 

periods between solar- and bioenergy. Note that these results do only focus at solar and bioenergy based 

in land that is useful for human purposes. Solar energy in urban areas and wasteland, as well as bioenergy 

from waste or agricultural residue, is assumed not to contribute to any LUC emissions. 

 

Figure 3.9: Graphical representation of CO2 pay-off principle, showing scale differences between solar- and bio-energy and 
between regions. For 53-55% penetration scenarios and solar module efficiency ranging from 16% in 2020 to 24% in 2050 

Discussion 
When quantifying the carbon footprint of renewable energy, literature solely focuses on emissions in the 

manufacturing, transport and construction phases of solar energy systems (Pehl et al. 2017). By defining 

the land requirement of solar energy within an integrated assessment model that integrates energy, land, 

socioeconomic and climate systems, this study estimates the geographical land use requirements and 

related LUC emissions of solar energy within climate change mitigation scenarios. The obtained results 

represent a contribution to the novel field of research which analyses the environmental impacts of 

significantly up scaling renewables other than biomass (Miller and Keith 2018).  

A combination of technical and geopolitical reasons complicates the installation of solar energy far from 

consumption points. Therefore, high solar energy penetration in relatively densely populated regions with 

high energy per capita demands can require a significant share of land in such regions, up to about 2.8% 

in the EU and 5.2% in Japan and SK, respectively reaching and surpassing the current built-up area in these 

regions. The most relevant factors influencing the land use per unit of solar energy are solar irradiation, 

latitude, and future solar module efficiencies. On a regional scale, land for solar energy predominantly 

competes with cropland and commercial forest land. On a global scale however, 27 to 54% of the required 

land will indirectly displace natural forest land, with large environmental consequences (Powers and Jetz 

2019). LUC emissions for solar energy projects in developed regions such as the EU, Japan and SK between 

2020 and 2050 make up for 5 to 10% of emissions from natural gas combustion for power generation. 

Despite a high population density, LUC emissions related to solar energy in India are significantly lower, 

due to a combination of higher solar irradiance, lower latitude and lower cropland productivity. With LUC 

emission payback periods of 1 to 7 months, solar energy is significantly more sustainable in terms of land 
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use impacts per unit of electricity than bioenergy, which has to replace natural gas for electricity during 4 

years to offset LUC emissions related to its land occupation. 

Numerous Life Cycle Assessments (LCA) have been performed for solar energy, with a very wide range of 

results depending on many factors, such as the year of construction, solar module efficiency, mounting 

system, solar irradiation and more (Ludin et al. 2018). Among relatively recent LCAs on mono-crystalline 

and multi-crystalline silicon PV modules with an efficiency of around 15-16 %, which represent the average 

solar module currently in the global market, estimated CO2-equivalent greenhouse gas emissions per MJ 

of electricity range from 4 to 20 grams, depending strongly on the solar irradiation where the modules 

are installed (Ludin et al. 2018; Louwen et al. 2016). Comparing that estimate with the results from this 

study means that land-related emissions for new solar projects are about half the amount of current 

capital-related life cycle emissions, or one third of total life cycle emissions of new solar projects. 

It is often proposed to install solar energy within the urban environment or in wasteland, avoiding issues 

with land competition or LUC emissions(Rebecca R. Hernandez, Hoffacker, and Field 2015; Mahtta, Joshi, 

and Jindal 2014). However,  suitable locations for installing solar in the urban environment are very limited 

(Capellán-Pérez, de Castro, and Arto 2017), while land classified as wasteland might actually be 

biodiversity-rich and be home of vulnerable human communities (Yenneti, Day, and Golubchikov 2016; 

Lovich and Ennen 2011). Therefore, a more promising solution to reduce the land footprint of solar energy 

in densely populated regions, apart from reducing energy demand (Grubler et al. 2018), is to combine 

solar energy with agriculture within the same land area through the concept of agrivoltaic systems (Dupraz 

et al. 2011). While early test sites using this concept seem promising (Amaducci, Yin, and Colauzzi 2018), 

it has not been included in this paper’s modelling task, as more research is required to get realistic 

estimates of the concept’s potential. 

Using an existing integrated assessment model to perform this study on the potential land impacts of solar 

energy expansion, I was bound to the limitations of this model. One of these limitations was the 

geographical distribution of land regions in the model (see Method section), which defined the boundaries 

of the geographical competition to host solar energy within each region. This pre-defined distribution was 

originally based on differences in crop yields, but is not ideal for defining the geographical diversity of 

solar energy “yields” within a region (see part B of Figure 3.2). This limitation could be dampened in future 

work by using land cover layers that match better with geographical differences in solar irradiation and 

latitude. It was also not possible to differentiate between land suitable for vegetative uses such as 

agriculture, forestry or pasture and land suitable for solar energy, generally limited by slope of the land 

(Deng et al. 2015). Therefore, it is implicitly assumed that those hectares that are converted to solarland 

in our scenarios, are also suitable for hosting solar energy. Similarly, for those land areas suitable for solar 

energy and not suitable for commercial crops or forests, such as dry scrubland and deserts, the inclusion 

of a “wasteland” category in India should resolve a large part of this limitation. To extend the analysis 

performed in this study to other regions, it is important to have a well-quantified potential for solar energy 

in “wasteland”. The larger this potential, the higher will be the uncertainty of the obtained results. 

To date, land use for solar energy is negligible compared to other human land uses. However, the obtained 

results show that in future scenarios with a largely decarbonized electricity system, high penetration rates 

of solar energy will require significant amounts of land to be filled with solar panels or mirrors to capture 

sunlight. This novel type of land use might become more significant in the future than several other human 

land uses which are currently being tracked; hence, it is recommended to official agencies to start tracking 
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it. Similarly, the inclusion of this new type of land competition in integrated energy-land-climate models 

would therefore be beneficial to capture a larger range of implications of specific energy scenarios.  

Annex 

Solarland module: supplementary information 
The solarland module specifies the requirement of land for land-based solar energy. These systems, either 

in the form of PV or CSP, only enter into the energy system through electric power generation. At the 

electricity consumption point, centrally generated electricity competes with distributed generation, 

dominated by rooftop solar systems. Figure 3.10 shows how the energy system in GCAM demands 

solarland through this module. 

 
Figure 3.10: Representation of how the solarland module is included within the energy system in GCAM. Adapted from: (JGCRI 
2016) 

Solar energy produced on solarland in different AEZs (see Method section in chapter 1 and part A of Figure 

3.2) compete for their market share within the solar subsector of electricity, separately within each GCAM 

region. The scenarios in this study, stimulating solar technologies (including rooftop solar) to represent 

up to 90% of the electricity mix, imply large subsidies, bringing costs down to around zero in some cases. 

Therefore, competition between different AEZs in the solar market, and also between utility scale power 

(“Electric Power Generation” in Figure 3.10) or distributed rooftop solar, goes through the Logit model 

(see equation 3.7 and 3.8) instead of the Modified Logit model (see equation 1.1 and 1.2 in the Method 

section in chapter 1), as the former behaves better for values close to zero (Train 2003; JGCRI 2016). Here, 

s and p representing respectively the relative share and price of each technology (i,j), and a and β 

representing respectively the “shareweight” of each technology and the “logit coefficient” of the whole 

sector. 

𝑠𝑖 =  
𝑎𝑖exp (𝛽𝑝𝑖)

∑ 𝑎𝑖exp (𝛽𝑝𝑖)𝑁
𝑗=1

        (3.7) 
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𝑠𝑖

𝑠𝑗
=  

𝑎𝑖

𝑎𝑗
exp (𝛽(𝑝𝑖 − 𝑝𝑗))       (3.8) 

The shareweight of each AEZ, defining a pre-determined technology preference, has been defined by the 

relative share of the total land area of that AEZ within every region. For example, this means that if the 

LCOE in each AEZ of a certain region were exactly equal, solar energy production would be evenly spread 

over the region with each AEZ hosting the share which corresponds to its share of total land area. Similarly, 

the shareweight of solar energy from wasteland in India (see Method section of this chapter) equals the 

total relative wasteland area in India (ATLAS 2011), and the shareweight of rooftop solar is equal to the 

relative share of urban land by 2010 and increases proportionally with simulated population increase until 

2050.  

 

 

Figure 3.11: Representation of how the solarland module is included in the land competition structure of every AEZ in GCAM. 
Land uses in grey and green do not compete for land. Adapted from: (JGCRI 2016) 

The solarland module introduces competition of solarland with other land uses. See Figure 3.11 for a 

graphical representation of how solarland enters into the land use competition structure of GCAM. Since 

the type of land required for solar energy matches most with the type of land required for growing crops, 

solarland has been included within the “Crops” land node. This means that, upon observation of real world 

trends, solarland is assumed to primarily replace cropland or other non-used arable land (De Marco et al. 

2014; Rebecca R Hernandez et al. 2016; Prados 2010; De Castro et al. 2013). Indirectly, solarland will 

compete with forestland (managed and unmanaged) and both scrub- and grassland that is assumed not 

to be protected and to be suitable for crops. In a more indirect way, solarland also competes with pastoral 

land. Rooftop solar is assumed to enter in urban land, which is exogenous in GCAM, while wasteland is 

assumed to be located in deserts and dry scrubland that is not suitable for crops, and therefore also 

exogenous.  
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Like in other studies (Mahtta, Joshi, and Jindal 2014; Deng et al. 2015; de Vries, van Vuuren, and Hoogwijk 

2007), some limitations are implemented for the possibility of installing utility scale solar capacity in some 

AEZs, primarily based on solar resources. Utility Scale PV capacity is excluded for AEZ 13 to 16 (see part A 

of Figure 3.2), which are located in far northern areas with very little radiation and extreme seasonal 

variability or in highly mountainous areas. In mountainous areas, solar irradiance can be relatively high, 

but high slopes prevent the installations of utility scale PV systems. Instead, rooftop PV systems in these 

areas are implicitly included in our estimate for total rooftop potential in each region (see Method section 

of this chapter). CSP technologies only use direct normal component of sunlight intensity, which is limited 

or subject to high variability in many regions, making CSP systems uneconomical in such regions (de Castro 

and Capellán-Pérez 2018; Mahtta, Joshi, and Jindal 2014; Deng et al. 2015). Therefore, the potential of 

CSP is limited to north western India and some parts of southern Europe (AEZ 1 to 9 and a small part of 

AEZ 10 in western Europe). 

Other assumptions 

Update of solar generation and costs 

GCAM is calibrated until 2010, which means that by structure, the technological “preferences” of 2010 

are remembered into the future. This has significant implications for solar energy. Compared to no-policy 

scenarios in GCAM, the actual output of solar electricity in 2015 (IEA 2017b) is about 4 times higher in the 

EU and 10 times higher in Japan. This increased “preference” has important implications for actual and 

future land use for solar power in all scenarios. Therefore, to take these developments into account, the 

electricity mix and total electricity consumption for the EU, India, Japan and South-Korea have been 

calibrated for 2015 following the IEA energy balance database (IEA 2017b). More detailed sources are 

used to estimate the share of utility-scale and residential PV in the EU and Japan (SolarPower Europe 

2014; Hahn 2014). For India and South-Korea, where the penetration of solar PV in 2015 was insignificant, 

equal shares of utility-scale and residential PV are assumed in 2010, and the relative shares of 2015 follow 

from model optimization.  

Capital costs of solar energy systems are expected to decrease in the future, while the efficiency of the 

technology is expected to increase. For the future costs of solar energy projects, GCAM considers on 

learning-curve models (Muratori et al. 2017). The higher estimates for overnight capital costs of 

residential PV and utility-scale PV as reported by the IEA (IEA 2015) have been used for 2015, while median 

estimates have been used for the costs of CSP. For future periods, the original GCAM learning curve has 

been applied until 2050 (Muratori et al. 2017). See Figure 3.12 for the assumed cost evolution of the solar 

technologies used. However, these assumptions do not affect the results given that the level of total solar 

penetration is imposed and both PV and CSP technologies are assumed to have the same power density. 

See Table 3.6 for the electricity mix calibrated for 2015. The considered cut-off size between utility-scale 

and residential PV is 250 kWp. Utility-scale PV contributes to central electric power generation, while 

residential PV is treated as rooftop solar in the model (see Figure 3.10). Preferences for all solar 

technologies are modelled to converge by 2050. Nuclear power in Japan, which is below 1% in 2015 due 

to the Fukushima incident in 2011, is modelled to return step by step such that it represents 20% of 

Japanese electricity by 2030, as is projected in the Japanese NDC submission (UNFCCC 2019). 
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Figure 3.12: assumed costs of solar technologies 

Table 3.6: Calibrated 2015 electricity mix of regions/countries in this study 

% of total 

electricity in 2015 EU-27 India Japan 
South 
Korea 

 
Fossil energy 42.60% 81.89% 82.15% 67.28% 

Bioenergy 6.24% 1.92% 3.98% 0.57% 

Nuclear 26.58% 2.71% 0.93% 29.80% 

Other renewables 21.23% 13.08% 9.51% 1.65% 

Utility Scale PV 1.95% 0.37% 1.95% 0.65% 

Residential PV 1.23% 0.04% 1.49% 0.05% 

CSP 0.17% 0.00% 0.00% 0.00% 
  

Source: (IEA 2017b; SolarPower Europe 2014; Hahn 2014) 

Indian Wasteland 

In contrast to the EU, Japan and South-Korea and despite its high population density, India has plenty of 

land identified as wasteland. Wasteland is land that is not used for human purposes, such as desert- and 

scrubland, degraded pasture and degraded cropland, old mining grounds and various other land 

categories (ATLAS 2011). Installing solar power on wasteland avoids competition with agricultural land. 

By excluding land with an average slope greater than 2.1%  and land with low solar irradiance, Mahtta et 

al. (2014)  estimate the maximum amount of solar power capacity that could be installed on wasteland to 

be 6000 GW for PV and 2500 GW for CSP. Using a 20% average capacity factor, this translates into 37.84 

EJ per year and 15.77 EJ per year of electricity of PV and CSP respectively.  

Although this land is currently considered to be wasteland by the central government, some of this land 

could potentially be turned into cropland or grazing land by, for example, chemical fertilisation. GCAM 

assumes that 10% of current grass- and scrubland could potentially overcome physical and bureaucratic 

limitations to be turned into commercial land (cropland, grazing land or commercial forest land). Since 

the purpose of this study is to measure the impacts on land competition, the overlap between wasteland 

that could become commercial and wasteland that is suitable for solar power (Mahtta, Joshi, and Jindal 

2014) is estimated and results to be 13.4% of (i.e. the solar power potential in current wasteland that is 

included into land competition by GCAM assumptions). Since this 13.4% will already be included in the 

land competition module of GCAM, the remaining 86.6% of the solar power potential is modelled as an 

alternative “resource” that can host solar power capacity without entering into land use competitions. 

However, due to the limitations of solar capacity in desert- and scrubland, such as grid proximity, water 

availability and remoteness from inhabited places, it is assumed that the construction and wiring costs of 

such installations (25% of total costs for large scale solar power projects in 2014; Hahn 2014) could 

increase up to 100% in the most remote parts of these wasteland areas. On top of that, for CSP projects, 

the lack of cooling water could require air cooling, which consumes 7-9% of the produced electricity, while 

hybrid air/water cooling in the case of some water availability requires 5% of the produced electricity (DoE 

2009). Therefore, the cost of CSP in wasteland are assumed to increase by up to 9% of the installation 
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costs due to water scarcity (see eq. 11 in Capellán-Pérez, de Castro, and Arto 2017), and the maximum 

potential CSP output in wasteland drops by an average of 5% due to this limit. See Figure 3.13 for the total 

potential solar electricity in Indian wasteland and the extra costs per unit of output due to physical limits. 

Since these additional costs are highly uncertain, I performed tests to steepen and flatten the cost curve 

(assuming a maximum construction and wiring cost increase of respectively 200% and 50% instead of 

100%) for solar energy in wastelands, and observed only marginal changes in the relative amount of solar 

energy installed in wastelands (< 5% difference). 

PV CSP  

6,000 2,500 
GW(Mahtta, Joshi, and 
Jindal 2014) 

37.84 15.77 
max EJ (20% average 
capacity factor) 

32.76 13.65 
max EJ after wasteland 
correction (86.6%) 

32.76 12.97 
max EJ after distracting 
air cooling inefficiency 
CSP 

 

 

 

Figure 3.13: Potential output and additional costs in $(1975) (standard cost unit in GCAM) per EJ for PV and CSP installed in 
Indian Wasteland 

Location-dependent grid costs for renewable energy 

The best conditions for renewable energy such as wind and solar are not necessarily close to demand 

hubs. For scenarios modelled in this study, strong convergence of solar capacity to areas with high solar 

resources within a certain region (i.e. Southern Europe, North West India, see Figure 3.1), but which are 

not necessarily close to demand hubs, should increase total grid costs of the energy system. For example, 

in a study  where 80% of European electricity consumption comes from renewable energy of which one 

fourth would be imported from Northern Africa, about 10% of new investments would be dedicated to 

grid expansion (McKinsey & Company 2010). 

To take into account such grid costs related to a geographically unbalanced output of solar energy within 

a region, equation 3.9 represents the assumed additional grid costs per AEZ (CAEZ) as a function of the 

relative solar energy output in this AEZ.  

𝐶𝑡
𝐴𝐸𝑍 =

𝑜𝑢𝑡𝑝𝑢𝑡𝑡
𝐴𝐸𝑍∗𝑔𝑒𝑜_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝐴𝐸𝑍

𝑇𝑜𝑡𝑎𝑙 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑡−𝑜𝑢𝑡𝑝𝑢𝑡𝑡
𝐴𝐸𝑍      (3.9) 

Since grid requirements also depend on the geographical distribution of energy demand, equation 3.10 

shows how the “geo multiplier” per AEZ depends on the relative amount of urban land in that AEZ, 

which serves as a proxy for electricity demand within each AEZ.  

𝑔𝑒𝑜_𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟𝐴𝐸𝑍 =  (
4∗𝑇𝑜𝑡𝑎𝑙 𝑈𝑟𝑏𝑎𝑛𝑙𝑎𝑛𝑑

𝑈𝑟𝑏𝑎𝑛𝑙𝑎𝑛𝑑𝐴𝐸𝑍 )
0.3

    (3.10) 

Due to this formula, grid costs would be limited if solar capacity is installed in AEZs with high electricity 

demand. On the other hand, grid costs increase exponentially if all solar capacity is being installed in the 

same AEZ, and costs would be even higher if only a small part of electricity demand would be located in 
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this AEZ. Costs are calibrated such that total grid costs at high penetration scenarios in the EU represent 

about 5% of the total LCOE with a balanced geographical distribution of solar energy generation and up 

to 15% with an unbalanced geographical distribution of solar energy (i.e., all solar energy installed in the 

AEZ 8 and 9; see part A of Figure 3.2). These assumptions are expanded to India, Japan and South-Korea. 

Management of RES variability in GCAM 

At high penetration rates of intermittent energy sources such as wind and solar in the electricity system, 

storage or back-up systems are required to meet electricity demand at all hours. Therefore, GCAM 

assumes increasing back-up requirements with intermittent energy penetration. The cost of a backup 

technology is modelled on a gas turbine with a 5% capacity factor. To avoid back-up costs, solar and wind 

energy can be combined with on-site capital-intensive storage systems (i.e., electric batteries; Wise et al. 

2010). 

Both back-up and storage systems increase the total land requirements for solar energy. In the case of 

back-up systems, total electricity production increases for the same level of final electricity demand, which 

means that more solar energy has to be installed to reach a certain penetration level, and consequently 

more land is required to host the additional solar energy. For example, with a target of 80% solar in the 

electricity mix with 10 EJ electricity demand, 8 EJ solar would be produced. However, given that gas 

backup increases total required electricity production by 0.4 EJ (5%), a total of 8.32 EJ of solar would be 

required to actually reach 80% of total electricity production, ultimately increasing the land requirements 

for solar energy. Storage systems suffer full-cycle efficiency losses. Therefore, more solar capacity is 

required to make up for these losses, hence increasing land use. To take these losses into account, a 15% 

lower land use efficiency for solar energy with storage has been assumed (based on a 75% average round-

trip efficiency of storage systems and 60% of solar electricity being stored; Paul Denholm and Margolis 

2008). 

Trade in bio-energy 

While GCAM assumes a global market for bio-energy by default, domestic and imported resources have 

been separated for the purpose of this study. Although it makes economic sense in various occasions to 

trade bio-energy resources over large distances due to large differences in production costs, the transport 

costs for imported biomass are on average higher than for regionally produced bio-energy (Hamelinck, 

Suurs, and Faaij 2005). In order to control the origin of biomass production and to represent the bio-

energy market more realistically, domestic bio-energy production has been separated in the three focus 

markets (EU-27, India, Japan + South-Korea). Following Hamelinck et al (2005), transport costs of imported 

bio-energy are set to 3.15 $(2015) per GJ and are 33% higher than transport costs for domestically 

produced bio-energy ($2.36 per GJ), while keeping average transport costs of total bio-energy 

consumption in 2010 equal to other regions and as assumed by default ($2.63 per GJ). This change is 

predominantly important for those scenarios where bio-energy technologies are modelled as the 

dominant renewable energy technology (See Scenarios section of this chapter).
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Introduction 
The EU has set a long-term goal of reducing greenhouse gas (GHG) emissions by 80-95%, when compared 

to 1990 levels, by 2050. Towards achieving this target, the Commission has published an Energy Roadmap 

for 2050 to explore cost-efficient ways to make the European economy more climate-friendly and less 

energy-consuming, while also increasing competitiveness and security of supply (European Commission 

2016a). One quarter of global GHG emissions was caused by fossil fuel combustion in power plants, while 

in Europe emissions of fuel combustion by energy industries amounted to 28.2% of total GHG emissions 

(Janssens-Maenhout et al. 2017). Decarbonising electricity generation is therefore crucial to the efforts 

towards climate change mitigation (Arvesen et al. 2018) and has the potential to almost totally eliminate 

CO2 emissions by 2050, by exploiting renewable energy sources (e.g. solar, wind, biomass, etc.), using 

other low-emission alternatives like nuclear power plants, or maturing and diffusing carbon capture and 

storage (CCS) technologies in fossil fuel power stations (European Commission 2016b).  

On the basis of the above, the need to secure support for coordinated environmental, climate, and energy 

planning emerges. Particularly, the process of designing technological mixes for electricity generation 

takes on special significance in the context of energy and environmental planning. In this process, cost-

related parameters are first examined; however, other characteristics must also be taken into 

consideration, including the level of dependence on imported resources; the corresponding energy 

security and efficiency of the territory; and the social and environmental impact that the use of the 

available technologies might entail (Valentine 2011). Thus, energy planning facilitates the long-term 

design of the electricity generation mix that best reconciles security of supply, sustainability (economic, 

social and environmental) and competitiveness (Hickey, Lon Carlson, and Loomis 2010). What is also 

important is the diverse nature and uncertain potential of energy technologies that currently are or may 

later be available to mitigate GHG emissions (Pugh et al. 2011). The long service life of power generation 

assets and the high level of uncertainty, both stemming from the horizon subject to analysis, strongly 

impact the different variables of the selection problem, which are a synthesis of technological, economic, 

regulatory and environmental variables (deLlano-Paz et al. 2017). This further poses a challenge to 

policymakers trying to invest funds in an optimal electricity generation portfolio (Pugh et al. 2011).  

Typically, integrated assessment modelling can prove very valuable to meeting the challenges of 

sustainability (Jakeman and Letcher 2003) and give fruitful insights in the tradeoffs and synergies among 

policy goals; support the identification of important cross-sector interactions; and to some extent 

consider uncertainty, in factors such as population and economic growth, technology development, 

human behavior, and climate change (Shi et al. 2017). Furthermore, IAMs typically treat uncertainty 

deterministically, i.e. by means of scenarios (Nikas, Doukas, and Papandreou 2019); Jakeman and Letcher 

(2003) recognise the need for improved techniques of uncertainty and sensitivity analysis as a central 

challenge in the use of IAMs. Last but not least, climate-economy modelling by means of IAMs typically 

excludes policymakers and other stakeholder groups or, limits their participation to the extent of partly 

formulating the assumptions, by which modelling simulations are driven (van Vliet, Kok, and Veldkamp 

2010).  

As a valuable tool in the management of such complex environmental and energy problems (Uusitalo et 

al. 2015), decision support systems have the potential to effectively summarise and bring together 

various, distinct consequences related to alternative planning options (Doukas 2013). As the recent 

literature suggests, a broadly established approach to meeting the challenges associated with the 
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definition of energy plans for a certain territory or region can be found in Modern Portfolio Theory (MPT). 

Typically, the portfolio approach is based on the solution of problems with one objective function seeking 

to minimise either the cost or the risk of the portfolio, subject to different constraints, also considering 

that real electricity generation assets can be defined in terms of cost or return and economic risk, for each 

alternative technology (deLlano-Paz et al. 2017). The most exhaustive and complete reviews on the 

application of MPT in energy planning are found in the studies of Delarue et al. (2011) and Jano-Ito and 

Crawford-Brown (2017).  

It is noteworthy that, given that problems of this particular domain are subject to numerous objectives 

and criteria, the existence of a single optimal solution leading to one particular course of action, upon 

which the decision maker has no influence, is rarely achieved or meaningful. A solution to this challenge 

lies in the identification of a Pareto set of optimal solutions (Hamilton et al. 2015). Reaching a set of near-

optimal solutions provides a much more fruitful input into the decision making process (Lempert et al. 

2016), and is easier to explain than any other practical recommendation. Such analysis is crucial as it can 

provide a measure of confidence in the ability to differentiate between different decisions (Jakeman and 

Letcher 2003; Weyant 2017). Portfolio analysis is commonly employed in applications with multiple 

objectives and widely supports stochastic treatment of uncertainty. 

In this study, a link between GCAM and Portfolio Analysis is developed, providing more fruitful and robust 

policy recommendations. Baker and Solak (2011) have previously used modelling results from the 

Dynamic Integrated Climate-Economy (DICE) model and MiniCAM (older version of the GCAM model) 

IAMs in a stochastic optimisation-oriented PA; while Pugh et al. (2011) aggregated different technological 

scenarios from the GCAM model into one specific scenario and built a Ranked ROI-oriented optimal R&D 

electricity generation portfolio. The present study, however, utilises GCAM outputs to evaluate electricity 

generation technologies by simultaneously considering two optimisation criteria, namely maximisation of 

CO2 reduction and energy security, and deals with stochastic uncertainty instead of discrete scenarios to 

obtain robust optimal technological portfolios.  

Method 
Both GCAM and Robust Portfolio Analysis have certain concrete advantages in supporting decision making 

in environmental and energy planning as well as climate policy. This study makes an endeavor to 

synthesise these models in an integrated approach and provide stakeholders with a fully featured, robust 

decision support framework. The first step features the formulation of the Portfolio Analysis model, in the 

aim of providing a set of optimal alternatives (Pareto set), instead of one optimal solution, which is rarely 

the case in this problem domain. To formulate the bi-objective problem, suitable objective functions 

(optimisation criteria) and constraints must be first defined. The second step requires the application of 

the GCAM model in order to extract key quantitative information on the climate-energy bi-objective 

problem to be solved. The outputs of the IAM can be inserted as parameters in the bi-objective model 

(e.g. as objective function coefficients, constraints, etc.). In the next step, the optimisation process is 

enhanced with robustness features. The selected method of multi–objective modelling, namely the 

AUGMECON2 method, supports incorporation of stochastic uncertainty by appropriately applying Monte 

Carlo simulation and the ITA technique. Finally, these three discrete steps lead to a specific, well-defined 

set of robust optimal portfolios. This kind of information is highly important for decision makers when 
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selecting technological portfolios that feature a high degree of uncertainty regarding their Pareto 

optimality. The proposed approach is summarised in concrete steps in the Figure 4.1.  

 

Figure 4.1: Proposed approach steps 

Step 1: Problem formulation 
This study suggests an integrated approach to evaluate the performance of electricity generation 

technologies on an EU-27 level and in a timescale until 2050. To achieve this, a bi-objective programming 

mοdel for PA under uncertainty is utilised so that numerical results provided by the GCAM model can be 

appropriately aggregated.  

The analysis particularly focuses on six low-carbon generation technologies (𝑖 = 1 … 6), namely T1: solar 

PV, T2: solar CSP, T3: wind, T4: nuclear, T5: biomass and T6: CCS. The focus is on these six technologies as 

they are highly relevant for subsidisation in the near future towards reducing CO2 emissions at the EU 

level. Furthermore, geothermal or other technologies with smaller potential, however relevant, are not 

included to avoid complicating the portfolio analysis. See Table 4.1 for a list of what is exactly subsidised 

under each technology pathway T. 

Table 4.1: technologies included in each subsidy pathway for the EU electricity sector 

PV CSP Wind Nuclear Biomass CCS 
- PV 
- PV with 
storage 

- CSP 
- CSP with 
storage 

- Onshore wind 
- Onshore wind 
with storage 

- Third 
generation 
nuclear plants 

- Conventional 
- Bio-
gasification 
- Combined 
heat and power 

Additional CCS 
costs of Coal, 
Biomass, Gas 
and Oil power 
plants 

 

Input from the GCAM model provides ten different subsidy values (𝑗 = 1 … 10), calculated as a 

multiplication of the unitary subsidies ($/GJ of electricity output, from 10 to 100% of the LCOE in 2010) 

with the electricity consumption of the analysed technology in 2050. As the short-term impact of policies 
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promoting new technologies is considerably reduced by the rigidity of the electricity system, the robust 

portfolio analysis is applied in the results for 2050 so that the effects of the technologies can be clearly 

visible. 

The problem is solved according to two optimisation criteria. The first objective function seeks to 

maximise the reduction of GHG emissions corresponding to specific budget investment:  

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑍2 = ∑ ∑ 𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗) ∗ 𝐵(𝑖, 𝑗) 

10

𝑗=1

6

𝑖=1

 

Where 𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗) is the emissions reduction achieved by the 𝑖th technology under budget 

option 𝑗.  

The second objective is to maximise the system’s energy security again in relation to the allocated budget.  

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑍1 = ∑ ∑ 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 (𝑖, 𝑗) ∗ 𝐵(𝑖, 𝑗) 

10

𝑗=1

6

𝑖=1

 

Where 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 (𝑖, 𝑗) is the contribution to energy security of technology 𝑖 under budget option 𝑗.  

The objective functions’ coefficients, namely emissions reduction (𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗)) and energy 

security (𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦 (𝑖, 𝑗)) are collected as an outcome of the GCAM model. The decision variables of the 

model are binary. The binary variables 𝐵𝑖, 𝑗 represent the existence of the “𝑖 technology and 𝑗 subsidy” 

options corresponding to the specific technology selection ((𝐵𝑖, 𝑗  =  1) or not (𝐵𝑖, 𝑗 =  0)).  

The model also incorporates five specific constraints.  

1. First of all, a budget constraint is used in order to secure that the cumulative cost of approved 

applications does not exceed a previously defined, overall budget. 

∑ ∑ 𝑆𝑢𝑏𝑠𝑖𝑑𝑦 (𝑖, 𝑗) ∗ 𝐵(𝑖, 𝑗) ≤ 𝑚𝑎𝑥𝐵𝑢𝑑𝑔𝑒𝑡 

10

𝑗=1

6

𝑖=1

 

Where 𝑚𝑎𝑥𝐵𝑢𝑑𝑔𝑒𝑡 is the total available budget and 𝑆𝑢𝑏𝑠𝑖𝑑𝑦 (𝑖, 𝑗) the 𝑗th cost option of 

technology 𝑖. In the specific application, the available budget is set equal to 35% of the maximum 

cost of all six technologies. 

2. This application also defines a minimum bound of emissions reduction to be achieved by the 

portfolio.  

∑ ∑ 𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑖, 𝑗) ∗ 𝐵(𝑖, 𝑗) ≥ 𝑚𝑖𝑛𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 

10

𝑗=1

6

𝑖=1

 

Where 𝑚𝑖𝑛𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 is the minimum required reduction of GHG emissions and 

𝐺𝐻𝐺𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑖, 𝑗) the emissions reduction when selecting the 𝑗th cost option of technology 𝑖. 
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The emission reduction target is set equal to 40% of the emissions reduction that would be 

achieved if all technologies were subsidised at 100% of their total cost.  

3. Specific bounds are imposed to control the distribution of budget across the energy generation 

technologies, and with a focus on specific energy sources. In particular, it is considered preferable 

that nuclear projects do not dominate a portfolio, due to a lack of public support in several 

countries in the EU. This condition is expressed with the following constraint, defined as “nuclear 

energy is not allowed to be receive more than 30% of the total available budget”: 

𝑆𝑢𝑏𝑠𝑖𝑑𝑦(𝑁𝑢𝑐𝑙𝑒𝑎𝑟, 𝑗) ∗ 𝐵(𝑁𝑢𝑐𝑙𝑒𝑎𝑟, 𝑗) < 0.3 ∗ 𝑚𝑎𝑥𝐵𝑢𝑑𝑔𝑒𝑡, ∀ 𝑗 = 1 … 10 

4. The next constraint allows for the determination of specific energy technology preferences. 

Through this particular constraint wind and photovoltaic energy are preferred as dominant 

technological sources, and the allocation of budget in such generation technologies “must thus 

collectively equal to more than 40% of the total available budget”.  

𝑆𝑢𝑏𝑠𝑖𝑑𝑦(𝑃𝑉, 𝑗) ∗ 𝐵(𝑃𝑉, 𝑗) + 𝑆𝑢𝑏𝑠𝑖𝑑𝑦(𝑤𝑖𝑛𝑑, 𝑗) ∗ 𝐵(𝑤𝑖𝑛𝑑, 𝑗) ≥ 0.4 𝑚𝑎𝑥𝐵𝑢𝑑𝑔𝑒𝑡, ∀ 𝑗 = 1 … 10 

5. In order to assure that only one budget option is allocated per technology, the following 

constraint is added.  

∑ 𝐵(𝑖, 𝑗) 

10

𝑗=1

≤ 1, ∀ 𝑖 = 1 … 6 

The constraint guarantees that, in the case of purchasing a new technology with a certain amount 

of budget, purchasing the same technology with another amount of budget is not possible. 

Table 4.2: Overview of problem definition 

Decision Variables Description 

𝑩𝒊, 𝒋 

If 𝐵𝑖, 𝑗 =1 the pair “𝑖 technology and 𝑗 

subsidy” is approved.  

Otherwise if 𝐵𝑖, 𝑗 =0 the corresponding 

technology-subsidy pair is rejected. 

Objective Functions  Description 

𝒎𝒂𝒙𝒊𝒎𝒊𝒔𝒆 𝒁𝟏 
maximise the reduction of GHG emissions 

corresponding to specific subsidy  

𝒎𝒂𝒙𝒊𝒎𝒊𝒔𝒆 𝒁𝟐 
maximise the system’s energy security 

corresponding to specific subsidy  

Constraints Description 

Budget constraint Overall implementation cost must be less 

than 35% of maximum (i.e. if all technologies 

were subsidised at 100%). 

Emissions reduction target Overall emissions reduction must be greater 

than 40% of maximum (i.e. if all technologies 

were subsidised at 100%). 
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Nuclear constraint Participation of Nuclear power cannot be 

greater than 30%. 

Wind and PV dominance  More than 40% of the total available budget 

must be allocated to wind and PV energy. 

Unique subsidy constraint One budget option can be allocated per 

technology. 

 

Step 2: Input data (GCAM scenarios) 
From each subsidy scenario, the following outcomes are abstracted for the year 2050: 

- Sum of total subsidies spent 

- EU-wide CO2 reduction compared to baseline scenario 

- EU-wide increase in energy security, here defined as energy self-sufficiency:  
𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝐸𝑈

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝐸𝑈
 

For calculating the subsidy, the unitary subsidies ($/energy unit, from 10 to 100% of the energy technology 

Levelised Cost of Energy - LCOE) are multiplied with electricity consumption of the examined technology 

in 2050. LCOE is calculated from a mixed set of data on capital and maintenance costs, efficiency, capacity 

factors, etc. The modelling assumptions used in this chapter are documented in Muratori et al. (2017). 

From these outputs, the cost effectiveness for reducing emissions and improving energy security can be 

expressed, which are the key drivers for technologies to be on the Pareto front. Figure 4.2 shows the 

GCAM outputs in terms of cost-effectiveness for emission reductions and energy security. In terms of 

emission reductions, biomass and CCS technologies are most cost-effective up to around 100 billion dollar 

of subsidies, and are then bypassed by nuclear and wind technologies. PV and CSP are less cost-effective 

in reducing emissions by baseline GCAM assumptions. In terms of energy security, both CCS and biomass 

have a negative impact on energy security in the EU, as the inputs for those technologies will be for a large 

part imported from outside the region. Instead, all other technologies contribute positively to energy 

security, and nuclear and wind technologies are again more cost-effective than PV and CSP. 

 

Figure 4.2: Cost effectiveness of electricity technology subsidies in 2050 in terms of emission reductions and energy security 

Step 3: Uncertainty Management and Robustness Assessment 
After selecting the input data the PA model as described in Step 1 is run, resulting in a set of optimal 

portfolios, i.e. the Pareto Front, the robustness of which is assessed through the iterative trichotomic 

approach (ITA; Mavrotas and Pechak 2013) in this step. 
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The uncertainty characterising the estimation of technology performance, in reducing GHG emissions as 

well as contributing to energy security, is expressed by introducing normal distributions for relevant 

technologies’ values. Specifically, the mean value for the normal distributions is set equal to the estimated 

values as obtained from the runs of the GCAM model, and the standard deviation of the iterations equal 

to 5%, 4%, 3%, 2%, 1%, and 0% corresponding to six ITA rounds. The whole process (model building, 

random sampling, Pareto set generation) is implemented within the GAMS platform. 1,000 Monte Carlo 

iterations are performed for each ITA computation round. It must be noted that, in the specific 

application, a 94% acceptance threshold for the green set is determined (if a portfolio is present in 94% 

of Pareto sets i.e. in 940 out of 1,000). 

The results of multi-objective ITA are shown in Table 4.3. There are in total 842 POPs that participate in 

1,000 Pareto sets of the initial round. At subsequent iterations, the standard deviation of sampling 

distributions is reduced as shown in the first column of Table 4.3. Eventually, on the last round the final 

Pareto set is obtained; this comprises 16 POPs of R&D electricity generation technologies. The additional 

information that ITA gives is that it reveals which of these 16 portfolios can be considered more certain 

than others. The degree of certainty for each portfolio is directly related to the corresponding round that 

it enters the green set (the earlier the portfolio enters the green set, the more certain the decision maker 

can be about its Pareto optimality). 

Table 4.3: ITA results  

  Green Red Grey 

𝝈 = 𝟓% Round 1 0 0 842 

𝝈 = 𝟒% Round 2 0 321 521 

𝝈 = 𝟑% Round 3 1 546 295 

𝝈 = 𝟐% Round 4 2 704 136 

𝝈 = 𝟏% Round 5 3 779 60 

𝝈 = 𝟎% Round 6 16 826 0 

 

Results 
The 16 POPs that survived the ITA check for robustness are drawn in Figure 4.3, representing the robust 

Pareto front of this optimisation problem. The size of the bubbles represents the robustness levels, 

identified by the round in which this POP appeared in the green set (Table 4.3). POP A represents the most 

robust set, while also representing an “optimal” package of simultaneous contribution to emission 

reductions and energy security. POP B is the second-most-robust set, and the best choice if focusing more 

on emission reductions, while POP C is a less robust set, but the best choice if focusing more on energy 

security. For these three POPs, Table 4.4 shows the distribution of the subsidy budget over the different 

technologies, as well as the contribution of each technology to emissions reductions and energy security 

improvements. This table shows that under the constraints of this portfolio analysis, and with a subsidy 

budget of nearly 3 trillion $(2015), this budget will be predominantly spent on PV, while wind and nuclear 

contribute most to emission reductions and energy security. The contribution of biomass and CCS 

technologies in such a package depend largely on the importance of energy security from the perspective 

of the policymaker. Note that, at a lower budget, these portfolios will change and predominantly the less 

cost-effective technologies, such as PV and CSP, will lose their share of the total budget. 
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Figure 4.3: Final Pareto front of robust portfolios 

Table 4.4: Distribution of energy security improvement, emission reductions and subsidy budget over different electricity 
generation technologies for three POPs, identified in Figure 4.3 

Technology Contribution to portfolio’s 
total energy security 

Contribution to portfolio’s 
total emissions reduction 

Share of total portfolio 
budget 

 A B C A B C A B C 

PV 25.73% 28.58% 24.35% 13.91% 13.71% 17.05% 36.41% 36.41% 39.19% 

CSP 8.90% 3.72% 8.42% 5.03% 2.59% 6.16% 11.61% 4.36% 12.51% 

Wind 30.77% 34.18% 29.12% 22.53% 22.20% 27.60% 18.49% 18.49% 19.92% 

Nuclear 40.40% 44.89% 38.24% 36.79% 36.25% 45.06% 25.81% 25.81% 27.79% 

Biomass -4.91% -6.86% -0.22% 12.10% 14.09% 0.85% 5.16% 9.89% 0.13% 

CCS -0.89% -4.51% 0.08% 9.64% 11.44% 3.21% 2.52% 4.87% 0.45% 

 

Conclusions 
This study links two models used to explore potential strategies of climate change mitigation and energy 

planning, namely an IAM with a robust portfolio analysis model. The application particularly focuses on 

the evaluation of EU-27 electricity generation options in a long-term perspective (2050). The analysis 

properly integrates the GCAM model results into a portfolio generation model, while also treating 

exogenous uncertainty stochastically. The outcome of the proposed approach is a set of optimal electricity 

generation portfolios, among which the most robust is selected.  

The results give an indication on how subsidisation among the energy generation technologies should be 

allocated to optimise between emission reductions and energy security. The analysis shows that 

technologies like PV, wind and nuclear energy must be prioritised and subsidised; while investments in 

biomass and CCS depend on the importance of energy security in the policymakers’ point of view. Further 

analysis of the inherent stochastic uncertainty indicates that the three technologies with the largest 

shares in the portfolio budget also appear to be the most robust, in the context of this particular problem. 

Policymakers are therefore provided with clear recommendations regarding PV, wind and nuclear, as well 

as flexibility to select among different options in CCS, CSP and biomass. 
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It is important to note that the calculated outputs of this analysis are strongly dependent on the modelling 

assumptions; the results should be carefully interpreted, while taking into consideration the assumptions 

outlined and referred to in the “Input Data” section. For instance, introducing other power generation 

options, or applying a different budget, could have an impact on the resulting subsidisation portfolios and 

therefore constitute an interesting future direction of the proposed research. 

Finally, it should be noted that by providing information on the level of certainty associated with resulting 

policy options thereby maximising the robustness of the results and adding value for policymakers, the 

latter are not actively involved in the study. There is huge potential in involving both policymakers and 

other stakeholder groups in policy analysis, in order to understand the motives and strategies of all actors 

relevant in the required transformations (Turnheim et al. 2015), as well as exploit their expertise to bridge 

knowledge gaps and further reduce the various uncertainties in this domain (Nikas et al. 2017). In this 

respect, it would be interesting to work with stakeholders and decision makers in climate action, by 

expanding the method to some other regions and/or technologies, or eliminating any of the used ones; 

as well as to better incorporate real-world context in the modelling assumptions, constraints and 

parameters of the modelling exercise.  
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Introduction 
Heavy reliance on traditional biomass for household energy in developing countries has significant 

negative health and environmental impacts (Masera et al. 2015), a problem that is especially acute in sub-

Saharan Africa (SSA). Household air pollution (HAP) from the use of solid cooking fuels is among the top 

three environmental risk factors contributing to illness and death worldwide. In SSA, children under 5 die 

at higher rates from HAP exposure than in any other world region (Forouzanfar et al. 2016). Meanwhile, 

SSA hosts many woodfuel “hotspots”, where a large fraction of fuelwood and charcoal is harvested 

unsustainably, contributing significantly to GHG emissions (Robert Bailis et al. 2015) and forest 

degradation (Kiruki et al. 2017; Ndegwa et al. 2016). Moreover, with only around 20% of its population 

having access to modern energy sources, energy access levels in SSA are lower than in any other region 

(World Bank and IEA 2017).  

All three problems—air pollution, GHG emissions and energy access—are recognised by the United 

Nations in its 2030 Agenda for Sustainable Development, in which ambitious SDGs are proposed to solve 

each of them by 2030 through SDG 3 (good health), SDG 7 (affordable and clean energy) and SDG 13 

(climate action). Although focusing on improving access to modern energy sources is showed to help 

progress in many other SDGs, including those on health and climate action (Nerini et al. 2017), countries 

in SSA would have to achieve unprecedented rates of progress to obtain universal electricity access within 

the coming decades (N. D. Rao and Pachauri 2017), as proposed in SDG 7. Instead, improving the efficiency 

of biomass energy systems is a cost-effective alternative for reducing forest degradation and HAP in the 

short term (Smeets, Johnson, and Ballard-Tremeer 2012; Nerini, Ray, and Boulkaid 2017). 

This high dependence of rural communities in SSA on locally gathered energy sources, often with resulting 

forest degradation and health problems, was no different in pre-industrial eras of currently developed 

countries (Elias and Victor 2005). Over time, the energy systems of these countries went through a long 

transition path with multiple radical and incremental innovations (Geels and Schot 2007), each innovation 

bringing in energy service cost savings and/or quality improvements (Fouquet 2010). Leapfrogging of 

modern technologies by technologically poor countries is a well-known concept. Technologies without 

long supply chains or network infrastructure are more likely to be adopted via leapfrogging in developing 

countries (Tukker 2005; Szabó et al. 2013). The African context for energy access is rather different from 

historical experiences elsewhere as challenges in achieving energy access and installing energy 

infrastructure have coincided with major climate ambitions and climate impacts (Agbemabiese and 

Nkomo 2012). Furthermore, increasing reliance on charcoal in SSA may impose significant ecological 

constraints unless overall dependence on traditional biomass is reduced in favour of modern energy 

sources and services (Santos et al. 2017). Consequently, innovative frameworks are needed that can 

reconcile energy access, health and climate ambitions along a feasible but nevertheless ambitious 

timeframe. 

In regions where the lack of access to modern energy sources and consequential high dependence on 

unsustainably harvested traditional biomass are major causes of GHG emissions and premature mortality, 

land policies and technology subsidies will likely constitute effective policy instruments for sustainable 

development. The GCF has been founded to fund such initiatives in developing countries, which are often 

cost-effective in mitigating GHG emissions, but which would not be exercised due to a lack of financial 

means. Due to a combination of demographic and climate conditions, eastern Africa is a hotspot for 
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unsustainable biomass harvesting (Robert Bailis et al. 2015). Exploring synergies of climate action with 

other SDGs and analysing uncertainty of policy prescriptions are key to effective climate policy and 

research (Doukas et al. 2018). This study therefore uses GCAM to simulate the impact of land policies and 

technology subsidies, as well as the interaction of both, on GHG emissions, exposure to air pollution and 

energy access in Eastern Africa under a range of socioeconomic pathways. Subsequently, a robust 

portfolio analysis is further applied to optimally allocate a subsidy budget over different technologies to 

simultaneously tackle these three interrelated problems. 

 

 

 

Figure 5.1: Visualisation of the three-dimensional challenge for Eastern Africa (in every panel surrounded by green 
boundary), with (A) the share of population that lacks access to modern cooking fuels in 2015 (IEA 2017a); (B) the 
death rate from indoor air pollution per 100,000 people in 2015 (Forouzanfar et al. 2016); and (C) the non-renewable 
biomass (NRB) fraction of fuelwood production in 2009, assuming “normal” exploitation of the commercial surplus 
(Robert Bailis et al. 2015).  

C 

B 

A 
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Background 

Challenges 
Eastern Africa39 is one of the poorest regions in the world, with the lowest percentage of the population 

living in urban areas (ACCES 2014), which is one of the main reasons why a large share of its people lack 

access to modern energy sources (see part A in Figure 5.1). Like in the majority of SSA and South-Asia, the 

high reliance on traditional biomass causes the death rate due to indoor air pollution in eastern Africa to 

be around 50 per 100,000 people (see part B in Figure 5.1). At the same time, the high share of 

unsustainably harvested biomass in eastern Africa (around 56% of all biomass; see part C in Figure 5.1) 

makes it an interesting region to explore co-benefits between climate action and other SDGs. 

Average GHG emissions per capita in eastern Africa are still relatively low (about 1/3 those of China and 

1/6 those of the United States by 2010), but emissions per unit of final energy are relatively high (about 3 

times those of China and the United States) (IEA, 2017; Janssens-Maenhout et al., 2017). This is mainly 

due to the reliance on traditional biomass, which, apart from the land use change emissions due to 

unsustainable production, causes large amounts of fugitive emissions when combusted (Masera et al. 

2015). About 40% of direct and indirect GHG emissions in 2010 were related to the gathering, 

transformation and use of biomass resources. 

The rural population in eastern Africa, over three-fourths of the total population, suffers very low levels 

of access to both electricity and clean cooking fuels (World Bank and IEA 2017). On average, more than 

80% of rural households in eastern Africa gather their biomass, taking up to two hours a day per household 

member, while inefficient cooking stoves cause female household members to spend many hours per day 

cooking (ACCES 2014). The high domestic use of biomass resources translates to around 117,000 deaths 

per year due to HAP by 2015 (Forouzanfar et al. 2016). Ambient air pollution (AAP) is also an increasing 

problem in the region, leading to around 32,000 premature deaths per year by 2015, expected to increase 

in the next decades. 

Solutions 
Technologies that increase the output of biomass resources per unit of land, such as rotational woodlot 

systems and agroforestry, can be promising and cost-effective solutions to land degradation and 

deforestation (Smeets, Johnson, and Ballard-Tremeer 2012; Nyadzi et al. 2003; Iiyama et al. 2014). Such 

solutions do however not contribute to levels of access to modern energy sources, neither to a reduction 

of HAP or AAP. In fact, a higher abundance of biomass resources could translate into higher consumption 

and pollution exposures. In order to improve the quality of cooking and reduce exposure to related air 

pollution, other technologies are required that improve the efficiency of using biomass, such as clean 

biomass cooking stoves (ACCES 2014; Nerini, Ray, and Boulkaid 2017) and improved charcoal kilns (Iiyama 

et al. 2014; Rob Bailis et al. 2013). However, even if clean cooking stoves are used for biomass, WHO Air 

Quality Guidelines are often not met (Pope et al. 2017). 

Technologies that substitute biomass as an energy source, predominantly for cooking, usually also 

improve energy access levels and reduce exposure to air pollution. For example, Liquefied Petroleum Gas 

(LPG) has proven to effectively displace some demand for biomass as cooking fuel in developing countries 

                                                           
39 The description of “eastern Africa” in this study is linked to the region as defined in GCAM, the model used in the core of this study. It includes 
the following countries: Burundi, Comoros, Djibouti, Eritrea, Ethiopia, Kenya, Madagascar, Rwanda, Somalia, Sudan, South-Sudan and Uganda. 
See Figure 5.1 for a geographical perspective. 



86 
 

and contribute to net reductions in GHG emissions and HAP (Singh, Pachauri, and Zerriffi 2017; Bruce et 

al. 2018). Ethanol cooking stoves have clear benefits for HAP as well, although GHG benefits depend on 

the feedstock used to produce ethanol (Gopal and Kammen 2009), and examples for large-scale 

implementation are limited (Benka-Coker et al. 2018; Mudombi et al. 2018b). Biogas has proven to be 

successful in improving energy access, avoiding forest degradation and improving health (Gosens et al. 

2013; Clemens et al. 2018), and is particularly interesting for rural households in eastern Africa as such 

systems require local resources, predominantly animal manure (M.G. Mengistu et al. 2015; Gwavuya et 

al. 2012). Electric cooking is the cleanest possible way of cooking, as no emissions are released in the 

cooking process. Photovoltaics (PV) also reduce emissions related to electricity production to the very 

minimum, and their flexibility allows for affordable electricity off the central grid (Mandelli et al. 2016). 

While cooking on electricity is not common for off-grid households due to high voltage requirements 

(World Bank 2015), rural PV and to a lesser extent biogas can improve energy access through many other 

applications (Rahman et al. 2014; Dalla Longa et al. 2018; Szabó et al. 2011).  

In the last decades, numerous projects have been developed to scale up the use of clean cooking stoves, 

many of them depending on financial support (Quinn et al. 2018; Clemens et al. 2018; Usmani, Steele, and 

Jeuland 2017) and in many cases funded by the GCF40. Subsidies for clean energy technologies can help 

overcome barriers and improve households´ access to modern forms of energy, in support of sustainable 

development (Töpfer 2017). While most of such projects succeed in increasing ownership of such stoves, 

sustained use is not always guaranteed, with “stove stacking” as a result, often related to availability, 

reliability, economic flexibility and cultural factors (Ruiz-Mercado and Masera 2015). With increasing 

income, households seem to be willing to pay the additional cost for clean cooking options like ethanol 

(Takama, Tsephel, and Johnson 2012); however, continued use, as compared to initial adoption, also 

depends on factors such as reliability of fuel supply over time (Mudombi et al. 2018a). 

Method 
The goal of this study is to estimate an optimal mix of technology and land policies to simultaneously 

reduce GHG emission, reduce exposure to air pollution and improve energy access. In the core of this 

analysis, GCAM is used to simulate future policy and socioeconomic scenarios for eastern Africa. Through 

different methodologies, outputs from each policy scenario are translated to progress parameters that 

are relevant to SDG objectives. These parameters are fed into a robust portfolio analysis that finds a mix 

of policies that maximises progress in each of the SDGs in a Pareto-optimal way that is robust for a range 

of socioeconomic pathways. Figure 5.2 gives an outline of the study design and the Method section. 

                                                           
40 https://www.greenclimate.fund/what-we-do/projects-programmes 

https://www.greenclimate.fund/what-we-do/projects-programmes
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Figure 5.2: Flowchart showing outline of study design and Method section 

A. Scenario design 
Three different socioeconomic pathways have been considered, each with a scenario with and without 

land policies, making up for six scenarios to assess the interactions of these two factors. On top of each of 

these scenarios, six different technology pathways and 20 different subsidy levels have been modelled, 

resulting in a total of 720 policy scenarios implemented in the model runs, to investigate the impact of 

land policies and technology subsidies on GHG emissions, health, and energy access: 

- 3 SSPs41 for each initial GCAM scenario: 

o SSP2: A middle of the road pathway, based on historical patterns 

o SSP3: A rocky road pathway, featuring high population, low GDP per capita, urbanisation, 

crop yields, technological progress and pollution controls 

o SSP5: A fossil-fuelled pathway, featuring low population, high GDP per capita, 

urbanisation, crop yields, technological progress and pollution controls 

- 2 initial GCAM scenarios: 

o NO LAND POLICY: baseline without options to increase sustainable forest output 

o LAND POLICY: scenario that includes educational policies, to be fully effective by 203042, 

focusing on teaching forest and agricultural land owners how to increase the sustainable 

supply of biomass by rotation forestry and agroforestry practices. 

                                                           
41 These SSPs were selected to include the widest range of possible scenarios, where SSP3 is seen as a lower extreme and SSP5 as a higher 
extreme to economic development. SSP projections were used for: population, income, urbanisation, supply and demand for both energy and 
agricultural commodities and emission factors.  
42 This means that, by 2030, land owners are indifferent between applying and not applying these methods and are driven by profit 
maximisation. As such programs are assumed to take time, the program is assumed to be for 33% effective by 2020 and for 66% effective by 
2025. 
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- 20 subsidy scenarios for 6 different technology pathways43, where technology costs are subsidised 

in 5% steps until 100%44. See Table 5.8 in this chapter’s Annex for all assumed technologies, costs 

and efficiencies of the technologies included in these pathways: 

o LPG path: LPG stoves and fuel production costs 

o PV path: electric stoves and PV projects (utility-scale, mini-grid and off-grid) 

o Biogas path: Biogas digesters and burners 

o Ethanol path: Ethanol stoves and fuel production costs 

o Improved Charcoal path: Improved charcoal stoves and improved charcoal kilns 

o Improved Fuelwood path: Improved fuelwood stoves and suitable woody biomass 

feedstocks 

If modelled on top of a land policy scenario, the charcoal and fuelwood technology subsidies are linked to 

sustainable biomass inputs. In other words, as a condition for receiving subsidies for producing charcoal 

with improved kilns, or producing woody biomass feedstocks suitable for improved cooking stoves, 

production inputs have to come from sustainable woodlot or agroforestry systems. 

In a next step, the policy outcomes in terms of progress on each of our three objectives are extracted for 

the years 2020, 2030 and 2040 for a robust portfolio analysis. Two different annual subsidy budget 

constraints are applied to this process: 

- Low: starting from $ 3.5 billion (USD at 2015 values) in 2020 (~$11 per capita), increasing by 5% 

per year, reaching $ 5.7 billion by 2030 (~$14 per capita) and $ 9.3 billion by 2040 (~$20 per 

capita).  

- High: starting from $ 10.5 billion in 2020 (~$32 per capita), increasing by 5% per year, reaching $ 

17.4 billion by 2030 (~$43 per capita) and $ 27.9 billion by 2040 (~$60 per capita). 

Finally, an optimal subsidy portfolio is identified for each of these three timepoints, with and without a 

land policy, and for each subsidy budget, adding up to a total of 12 subsidy portfolios. The robustness level 

of each portfolio is measured by the extent to which the policy outcomes depend on socioeconomic 

variables, summarised in the different SSPs. 

B. Models and methods 

GCAM adaptations 

The geopolitical region of Eastern Africa has been adjusted for this study to better replicate the actual 

situation. As with GCAM-China (Yu et al. 2014) and GCAM-India (Yu et al. 2017), urban energy demand 

was separated from rural energy demand and specific residential energy demands, such as cooking, 

lighting, refrigeration and TVs were separated from other residential energy uses. Furthermore, the 

provision of centrally generated electricity to rural areas faces additional costs related to the required 

extensions in transmission and distribution networks, while mini-grids have been added as an alternative 

for rural energy demand. Mini-grid electricity can be generated by diesel engines, biogas installations, 

solar PV or mini-hydro. Electricity can also be generated off-grid using solar energy with battery back-up. 

Charcoal production has been separated from other industrial activities and uses fuelwood as an input, 

                                                           
43 Subsidies are modelled for technology pathways instead of individual stoves to avoid stove stacking, which undermines the cost effectiveness 
of financial support and is more challenging to model. 
44 For all pathways, the subsidies cover all capital costs. Capital costs for fuels are calculated as the difference between the final consumer price 
and the price of required production inputs (for LPG, the price of crude oil is taken as the “input” price). Implicitly, subsidy policies for LPG and 
Ethanol will be rationed to avoid subsidised fuels to be used for transport. 
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with different potential kiln technologies, each with different capital costs, efficiency and other energy 

inputs and outputs. Sustainable fuelwood supply was separated from unsustainable fuelwood supply. 

Sustainable supply requires a large base of forested land but does not have a direct impact on land use 

change emissions and can only increase if other land uses are replaced by forestry. Unsustainable 

fuelwood supply needs existing forest land to be cut down and therefore causes land use change 

emissions that are equal to the CO2 content of fuelwood45. Since the amount of untouched forest area in 

Eastern Africa is limited, unsustainable supply is subject to a hard limit46. The supply of manure has been 

linked to the animal sector. Manure is set as a secondary output from cattle, pigs, poultry, sheep and 

goats and can be used for direct combustion (dung), for digesting to produce biogas or for non-energy 

purposes. In half of the scenarios, land use policies are applied, in which more wood-productive rotation 

forestry systems are included as an alternative for regular forestry as well as the possibility of agroforestry, 

e.g. mixing trees in agricultural land (see Table 5.10 in Annex). See Table 5.8 in this chapter’s Annex for an 

overview of all cost, efficiency and emission assumptions and references. 

The choice function applied in GCAM fits very well to the eastern African context, as it avoids full 

convergence to a single cost-effective technology for cooking or electricity generation by recognising the 

diverse set of preferences within the region. The shareweights defining the residential energy mix for 

cooking ( 

Table 5.11 in Annex) and the share of PV in off-grid generation ( 

Table 5.9 in Annex) have been calibrated for 2015 instead of 2010, to represent more recent preferences 

and market structures. On top of the default GCAM structure, three measures have been applied to adapt 

economic choice better to the reality in eastern Africa: 

- Upfront investment costs of cooking stoves is one of the main barriers for the adoption of 

improved cooking stoves in low-income households (Bensch, Grimm, and Peters 2015). This 

barrier is taken into account by assuming income-dependent discount rates (DR) for cooking 

stoves and electrical appliances, varying by time, between urban and rural consumers, and 

between SSPs. The same income-to-DR curve is applied as in a similar exercise for India (Ekholm 

et al. 2010), ranging up to 80% for rural households in 2010. For more costly and long lasting 

technology such as PV and biogas systems, a market DR of 13% is applied, as literature shows that 

the uptake of such systems depend largely on access to financial credit (Gujba et al. 2012; Mulu 

Getachew Mengistu et al. 2016). 

 

- From a consumer perspective, the time needed to obtain an energy source plays an important 

role for cooking fuel preferences, apart from the price of the stove and the energy source. It is 

important to take the relevance of time into account, as fuelwood gathering, nowadays the most 

common way to obtain energy for cooking in Sub-Saharan Africa (ACCES 2014), will become less 

preferred as income increases, holding everything else constant. Therefore, gathered fuelwood 

for cooking purposes is separated from purchased fuelwood. The costs of gathered fuelwood are 

defined by the value of the time spent on gathering, and an additional cost related to fuelwood 

                                                           
45 The IPCC estimate for a CO2 content of 110 kg per GJ of fuelwood has been used 
46 Using FAO data, the total above-ground carbon stock in Eastern Africa was estimated to contain 2127 million tons of carbon. Dividing this by 
the carbon content of one exajoule (EJ) of fuelwood energy, 30 million tons of carbon (110 tons of CO2), it is assumed that total unsustainable 
fuelwood supply cannot surpass 71 EJ, which is equal to 45 years of consumption at 2009 levels (1.58 EJ of unsustainable fuelwood 
consumption; Bailis et al., 2015). 
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scarcity. The costs for purchased fuelwood (defined as Market fuelwood in Table 5.8) is defined 

by the same scarcity component, on top of the observed retail price of fuelwood. The time costs 

of fuelwood gathering has been calibrated for 2015 based on the estimated amount of households 

gathering and purchasing their fuelwood, and is assumed to increase proportionally with average 

GDP per capita in the region. Improved biomass cooking stoves often require smaller pieces of 

wood, adding extra labour costs to users who gather their resources, while some stoves are 

directly designed to use purchased wood briquettes or pellets. Due to these limitations to use 

gathered wood for improved cooking stoves, only purchased wood is assumed to be suitable for 

such cooking stoves. 

 

- By default, GCAM does not take into account power requirements for energy consumption. 

However, power and reliability constraints limit the potential of off-grid and (to a lesser extend) 

mini-grid electricity for many household applications (Bhattacharyya 2012; World Bank 2015). 

Therefore, a market called “power charge” is implemented into the Eastern Africa region in 

GCAM, which comes as a secondary output of centralized grid electricity with a 1-to-1 ratio and 

of mini-grid electricity with a 1-to-2 ratio. Power charge is then modelled as a secondary input for 

electric cooking and air-conditioners with a 1-to-1 ratio and to refrigerators and “other 

appliances” with a 1-to-2 ratio. Lighting and TVs do not require any power charge and thus are 

assumed to be able to fully function with off-grid energy solutions (World Bank 2015). 

Air pollution models 

Household air pollution (HAP) 

HAP is one of the most hazardous risk factors for households in developing countries, which still rely 

significantly on solid fuels for residential use (mainly cooking). In absolute terms, never before did so many 

people rely on solid fuels for residential uses as nowadays (3 billion; Bruce et al., 2015). The use of those 

fuels inside household creates high levels of PM2.5, which result in demonstrated health impacts. 

According to the World Health Organization (WHO), household air pollution driven premature deaths 

would reach 3.8 million each year. Using data for India, Balakrishnan et al. (2013) created an econometric 

model showing the variables that have a significant impact on exposure to HAP and the evaluation of the 

affecting variables has also been recently reported by the WHO (WHO 2018). 

However, there is not a common way to transform indoor emissions into PM2.5 concentration levels, which 

makes it difficult to estimate the exposure inside a household, without data coming from empirical 

studies. In this study, a soft direct link was created between indoor PM2.5 primary47 emissions and indoor 

PM2.5 concentrations. First, the historical HAP deaths of East African countries (Forouzanfar et al. 2016) 

are compared with the primary PM2.5 emissions from cooking (Bond et al. 2007). Combining these data, it 

is possible to calculate the resulting premature deaths per unit of PM2.5 emissions. Since GBD database 

provides a range of observed deaths instead of a single value (lower bound, median and upper bound), 

deaths per unit of emission were calculated for the complete range. Nevertheless, during this study, the 

median value has been used. However, when validating this procedure I realized that the correlation drops 

around 1% per year between 2010 and 201548, so that same annual drop is applied to future projections. 

Historical and assumed future coefficients are visible in Figure 5.3. Then, by applying the projected median 

                                                           
47 Primary PM2.5 emissions are approximated by adding up black carbon (BC) and organic carbon (OC) emissions 
48 This decline can be attributed to features such as ventilation and the cooking location (Balakrishnan et al. 2013) or features as health care 
and household size that affect the impact of exposure to air pollution on pre-mature deaths. 
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coefficients to future PM2.5 indoor emissions (output of the GCAM model), future premature deaths are 

directly estimated. 

 
Figure 5.3: Historical (until 2015, dashed) and projected premature deaths per 1000 tons of indoor PM2.5 emissions by period. The 
lines represent the lower and upper bounds (in grey) and the median value (in blue).  

One limitation of this methodology is that all of the secondary particles created from the emission of other 

pollutants, such as SO2, are left out out of the study. However, consulted experts have pointed out that, 

for analysing HAP, these secondary elements do not play a very significant role, while there are important 

factors for ambient air pollution effects.  

Ambient air pollution (AAP) 

AAP derived from residential emissions has only been explored in a limited number of other studies (Chafe 

et al. 2014), while recent literature has demonstrated that it is an important factor in some parts of the 

World (Conibear et al. 2018). In this study, ambient air pollution is calculated for each region by 

introducing the emission projections obtained from the GCAM model into the air quality TM5-FASST 

model. 

TM5-FASST is a source-receptor air quality model that reports the ambient air pollution related mortalities 

from a defined emission set. To that end, the model calculates the PM2.5 and O3 concentration levels by 

adding up the emissions of a wide range of pollutants and their inter-regional interactions. As this model 

is divided into 56 regions and covers the entire world in 100x100 km grids, it is adequate to apply to 

Eastern Africa. All the details and documentation about the model are provided by Van Dingenen et al. 

(2018). In order to connect this model to the GCAM model, GCAM emissions have been re-allocated into 

country level based on the IIASA RCP emission database, and then re-aggregated into TM5-FASST regions. 

The detailed procedure can be found in Markandya et al. (2018). 

Finally, the calculated mortalities for direct (indoor) and indirect (ambient) air pollution are added up to 

estimate the total impact of each scenario on mortality, which can be seen as an indicator for overall 

exposure to air pollution. 

Robust Portfolio Analysis 

In order to evaluate the impacts that different subsidy portfolios have on climate action, health and 

energy access, a multi-objective optimisation framework based on the principles of portfolio analysis has 

been used. Based on the cost effectiveness of technology subsidies for each of these three goals, the 
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optimisation identifies Pareto-optimal subsidy portfolios under a given subsidy budget, and the 

robustness of each portfolio to a wide range of variables in the GCAM model. Key parts on the proposed 

methodology are explained in the Method section of chapter 1. 

Portfolio Analysis Optimisation 

Here, a tri–objective optimisation problem is modelled, since this study optimises over three evaluation 

criteria or objectives: 

1) Maximisation of GHG emission reductions 

2) Maximisation of avoided premature deaths 

3) Maximisation of energy access tier change 

To optimise certain subsidy budgets over six different technologies, twelve optimisation problems are 

solved, outlined in the Scenarios section (A). 

The input datasets used for the portfolio analysis come from GCAM. These datasets provide information 

on the contribution of each technology to each of the objective functions under twenty (20) different 

subsidy values. The GCAM modelling exercise is based on the SSP datasets to find the margins of 

uncertainty around policy effectiveness, which are used for the stress test analysis. In the context of 

eastern Africa, SSP3 and SSP5 can be seen as extreme scenarios of respectively low and high development, 

and are expected to represent the margins of uncertainty for policy implementation, although in a few 

situations, the average conditions as represented in SSP2 translate to highest or lowest cost-effectiveness. 

The results for SSP1 and SSP4 are expected to lie in most cases within the margins of the three modelled 

SSPs, and these SSPs have therefore not been run explicitly. 

For the portfolio analysis, in particular, the midpoint of the ranges of the three SSP modelling outcomes 

is used. The outcome of each of the twelve portfolio analysis optimisation runs constitutes a Pareto Front 

of optimal energy portfolios. Each portfolio is a set of energy technologies, among which different 

subsidisation levels are distributed, corresponding to different contribution to the optimisation criteria. 

Information on how each technology participates in the portfolios in terms of subsidy, GHG emissions 

reduction, energy access and pollution-related mortality reduction can be easily extracted from the 

portfolio analysis.   

Robustness Analysis 

The proposed approach effectively assesses the robustness of the resulting optimal portfolios, by 

examining the effects of both deterministic and stochastic (non–deterministic) uncertainty.  

Deterministic uncertainty is assumed by means of scenario analysis: different scenarios have been 

analysed in terms of technology performance in each of the abovementioned parameters, but also in 

terms of the maximum budget that can be granted to support these technologies. Regarding stochastic 

uncertainty, which is inherent in these parameters, this is incorporated into the model through a Monte 

Carlo simulation. At first, the “no uncertainty” Pareto Front is determined, referring to the set of portfolios 

that are obtained after the execution of the model, using deterministic values for all of the uncertain 

parameters. Then, Monte Carlo simulation is performed iteratively to sample random values for the 

uncertain parameters from the uniform distributions, and the model is then solved to generate the set of 

Pareto optimal portfolios. Eventually, the execution of multiple Monte Carlo iterations results in a large 
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number of differentiated Pareto fronts, which are analysed to draw conclusions over the robustness of 

the portfolios consisting the Pareto front when no uncertainty is considered. In this analysis, 1,000 Monte 

Carlo iterations are performed, and the robustness score of each portfolio is defined by the number of 

Monte Carlo runs in which this portfolio appears on the Pareto front. 

As stated above the GCAM model is run for the three SSP scenarios separately for every subsidy level. The 

SSPs are seen here as an uncertain set of conditions that affect the performance of every technological 

subsidy policy. The purpose of the robust portfolio analysis is to define robust subsidy portfolios for any 

of the SSPs 2, 3 and 5 that might be valid in the future. In this way, the range of the SSP simulation 

outcomes, which are different for each technology, define the ranges of the uniform distribution. An 

example of how the range of the three SSP outcomes affects the uncertainty boundaries of a certain 

technology is given in Table 5.1. The uncertainty ranges differ among the technologies. As it is clearly 

indicated in the table, the higher the range of the SSP outcomes is, the wider the range of uncertainty in 

the uniform distribution is considered. A portfolio analysis problem, in which technologies with narrow 

uncertainty boundaries are optimised, is thus expected to be more robust among the different SSPs 

compared to one with wide uncertainty range, depicting vulnerability to the SSP simulation outcomes. To 

better clarify this, in the unusual scenario where the resulting performance of a technology is identical 

among the different SSPs, the portfolios resulting from the optimisation will be completely robust, when 

uncertainty is examined in terms of different SSP realisation.  

Table 5.1: Example of SSP-based uncertainty boundaries for robustness (LPG technology) 

Mid-point of the performances 
across three SSPs 

Range of performances across the 
three SSPs 

% Range of performances across the 
three SSPs 

Energy 
access 

Air 
pollution 
exposure 

Climate 
impact 

Energy 
access 

Air 
pollution 
exposure 

Climate 
impact 

Energy 
access 

Air 
pollution 
exposure 

Climate 
impact 

0.000439 62.9566 0.17109 4.2E-06 0.436791 0.001689 0.96% 0.69% 0.99% 

0.003189 455.108 1.24059 2.25E-05 2.955247 0.016963 0.71% 0.65% 1.37% 

0.00579 825.195 2.25515 3.66E-05 12.78863 0.033728 0.63% 1.55% 1.50% 

0.161016 23751.5 59.9151 0.00087 746.8392 1.943537 0.54% 3.14% 3.24% 
 
Uncertainty boundaries (ranges of the uniform distribution) = distance from 
avg. of the % Range of performances across the 3 SSPs 

 
 
[0.99,1.01] 

 
 
[0.98,1.02] 

 
 
[0.98,1.02] 

 

C. Definitions of Sustainable Development indicators 
This study tries to allocate land and technology policies to optimise the progress among three SDGs, 

concretely climate action (SDG 13), good health (SDG 3) and improved energy access (SDG 7). This section 

describes how these SDGs are translated to measurable outputs from the models that are used. 

Climate action:  

For Climate Action, the focus is on GHG emissions which are extracted from the GCAM model. For the 

purpose of this study, emissions of gases with a direct global warming potential (GWP), such as Carbon 

Dioxide (CO2), Methane (CH4), Nitrous Oxides (N2O), but also on gases with an indirect GWP related to 

ozone formation such as Carbon Monoxide (CO) and Non-Methane Volatile Organic Compounds (NMVOC) 

are tracked. Table 5.2 shows the assumed GWPs of these gases. 
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Good health 

Health progress is defined by reductions in premature mortality due to indoor and outdoor air pollution, 

predominantly caused by the direct and indirect smoke from cooking stoves. While air pollution also 

causes non-lethal health damage, mortality is used as a proxy for total exposure to air pollution in the 

region. 

Table 5.2: Assumed emission GWPs  

Gas 100-yr Global Warming Potential  (GWP) 

Carbon Dioxide (CO2) 1 

Methane (CH4) 21 

Nitrous Oxides (N2O) 310 

Carbon Monoxide (CO) 1.9 

Non-Methane Volatile Organic Compounds 
(NMVOC) 

3.4 

Source: Fourth Assessment Report by the IPCC (2007) 
https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html 

 

Improved energy access 

For the access to affordable and clean energy, the tier-framework methodology as defined by the World 

Bank (2015) is followed, taking the average of two separate “tier” measurements, ranging from 1 (no 

access or low quality) to 5 (high access and quality), one for electricity access and another one for cooking 

with an equal weight for both, leaving out energy access for heating in this exercise as the need for heating 

is limited in Eastern Africa. 

Electricity access 

The modelled GCAM scenarios provide total rural and urban consumption of electricity for lighting, TVs, 

refrigeration, air conditioners, cooking and other uses. For estimating household electricity access, these 

totals have to be translated to electric services for each individual household. The variety of appliances 

per household is used as a proxy of access to energy services. See Table 5.3 for a list of indicative electric 

appliances per tier level. Electric cooking stoves are excluded, as they will be included in the cooking 

energy access estimation (see section A: scenarios). The electricity supply of each household requires a 

certain amount of power capacity which depends on the variety of electric appliances per household. 

Table 5.4 indicates the required power supply systems at each tier level. Since power capacity 

requirements are linked to appliances in GCAM through the “power charge” market (see GCAM 

adaptations in previous section), identifying the variety of appliances per each individual household would 

give a good impression of the quality of their electricity supply.  

Levels of energy consumption in tier 1, which use solely batteries as a source of electricity supply, are too 

small to be able to distinguish from tier 0 within this modelling framework. Therefore, tier 0 and 1 are 

joined together, calling it tier 1, and representing households with no direct electricity access. GCAM 

outputs are translated to household tier levels through the following assumptions: 

- Tier 5: Percentage of households using an air conditioner. Implicitly, these households are assumed to 

also use a refrigerator and TV and no household uses more than one air-conditioning system49.   

                                                           
49 Although some households will have more than 1 refrigerator or air-conditioning system, the quantity of such households to be so low that it 
will hardly impact the energy access tier structure. 
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- Tier 4: Percentage of households using a refrigerator, except for those in tier 5, implicitly assuming that 

all those households also use a TV and that no household uses more than one refrigerator. 

- Tier 3: Percentage of households using a TV, except for those in tier 4 or 5 and except those households 

which do not at least consume 219 kwh (washing machine + food processor) per year in the category 

“other appliances”50. The number of households that consumes at least 219 kwh per year for other 

appliances, is calculated by subtracting the share of households in tier 4 multiplied by 340 kwh and the 

share of households in tier 5 multiplied by 500 kwh from total consumption in this category, and dividing 

this by 219.  

- Tier 2: Percentage of households that is not linked to other tier levels. 

- Tier 1: Percentage of households with no direct electricity supply. The percentage of households using 

kerosene for lighting is used as a proxy for this category, and kerosene use per household in this category 

is estimated by estimating total kerosene use for lighting in 2010 divided by the estimated number of 

households without electricity access in 2010 (88% of rural households and 35% of urban households51). 

Table 5.3: Indicative electric appliances per tier level. Source: (World Bank 2015): table 6.13 

Appliances Watt 
equivalent 
per unit 

Hours per day Minimum annual consumption, in kWh 

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 

Task lighting 1 / 2 4 / 8 1.5 2.9 2.9 5.8 5.8 

Phone charging 2 2 / 4 1.5 2.9 2.9 2.9 2.9 

Radio 2 / 4 2 / 4 1.5 5.8 5.8 5.8 5.8 

General lighting 12 4 / 8 / 12  17.5 17.5 35 52.5 

Air circulation 20 / 40 4 / 6 / 12 /18  29.2 87.6 175.2 262.8 

Television 20 / 40 2  14.6 29.2 29.2 29.2 

Food processing 200 0.5   36.5 36.5 36.5 

Washing machine 500 1   182.5 182.5 182.5 

Refrigerator 300 6    657.0 657.0 

Iron 1100 0.3    120.5 120.5 

Air conditioner 1500 3     1,642.5 

Total   4.5 73 365 1,250 3,000 

 
Table 5.4: Indicative electricity supply required per tier level. SHS = Solar home system. Source: (World Bank 2015): table 6.3 

Capacity Tier 1 Tier 2 Tier 3 Tier 4 Tier 5 

Power capacity 
ratings (minimum 
in W or daily Wh) 

3 W 50 W 200 W 800 W 2000 W 

12 Wh 200 Wh 1 kWh 3.4 kWh 8.2 kWh 

Supported 
appliances 

Very low-
power 
appliances 

Low-power 
appliances 

Medium-power 
appliances 

High-power 
appliances 

Very high-power 
appliances 

Typical Supply 
Technologies 

Solar 
lantern 

Rechargeable 
battery, SHS 

Medium SHS, fossil 
fuel-based 
generator, mini-
grid 

Large SHS, fossil 
fuel-based 
generator, mini-
grid, central grid 

Large fossil fuel-
based 
generator, 
central grid 

                                                           
50 Washing machines are a better proxy for tier 3 households than TVs according to Table B2, but no data has been found on the use of washing 
machines in eastern Africa. Therefore, an additional requirement for tier level 3 is implemented based on consumption in the category “other 
appliances”, which includes washing machines. 
51 Source: https://data.worldbank.org/indicator/eg.elc.accs.zs 

https://data.worldbank.org/indicator/eg.elc.accs.zs


96 
 

2.1. Cooking energy access 

Since electricity access is divided in 5 tier levels, cooking energy access needs also to be divided in 5 levels 

to be consistent before taking an average of the two types of energy access. Table 5.5 shows the 

distribution of different cooking methods to 5 tier levels. The distribution is intended to be quality-based, 

focusing on the comfort of each technology and the time required for the cooking process (largely defined 

by efficiency of technology) and obtaining the required energy inputs for the cooking process (World Bank 

2015; Nerini, Ray, and Boulkaid 2017). Since this study assumes equal energy requirements (after 

correcting for efficiency losses) for cooking per capita, the use of each cooking technology can simply be 

multiplied by its corresponding tier to get an average cooking tier in the region. 

Table 5.5: Energy access tier categories for measuring cooking access 

Tier 1: Tier 2 Tier 3 Tier 4 Tier 5 

- Gathered fuelwood: 
open fire 
- Agricultural Residue: 
open fire 
- Dung: open fire 

- Purchased fuelwood: 
open fire, ICS 
- Charcoal: Traditional 
- Agricultural Residue: 
ICS 
- Dung: ICS 

- Charcoal: ICS 
- Kerosene 

- LPG 
- Biogas 
- Ethanol 
- Electric: 
traditional 

- Electric: 
Induction 

 

Results 
In this section baseline results are presented of scenarios with and without land policy and for different 

SSPs, the impact that different technology policies have on these indicators, and the identified Pareto-

optimal subsidy portfolios and their robustness levels for different years and for scenarios with and 

without land policies. 

Impacts of SSP and land policy scenarios 
Socioeconomic pathways have considerable impacts on the future viability of reaching SDGs (O’Neill et al. 

2014). Figure 5.4 shows the estimated scenario-dependent progress in these SDGs in the short (2020), 

medium (2030) and longer (2040) term52. First, it shows that each scenario is in line with global trends 

with respect to developing regions: GHG emissions and energy access levels increase over time, while 

relative mortality decreases over time due to a decreasing exposure to indoor air pollution. In terms of 

climate action, SSP3 leads to slightly higher GHG emissions in the short term (more forest degradation), 

but slightly lower emissions in the long term (less fossil fuel consumption), compared to SSP2. For SSP5, 

exactly the opposite can be observed. In terms of health, there is clearly lower progress in SSP3 and higher 

progress in SSP5, compared to SSP2. Land policies, which increase the sustainable output of biomass 

resources, will affect SDG progress; GHG emissions related to the uptake and use of biomass resources 

decrease significantly as a result of such land policies. However, the higher availability of low-quality 

biomass resources also has some delaying effect on progress regarding health and access to cooking 

energy. Figure 5.5 shows energy access results for the same set of scenarios, but separately for rural and 

urban access. Access for cooking fuels are shown in original cooking fuel use in all scenarios. Figure 5.6 

shows the supply side results of these same scenarios. It shows how higher supply of sustainable biomass 

                                                           
52 There is no focus on scenarios beyond 2040 as the high rate of development in eastern Africa causes large uncertainty in possible outcomes, 
making policy analysis less meaningful. 
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due to land policies also translate to higher demand, and also shows the contribution of mini-grids to rural 

electricity access. 

  
Figure 5.4: Modelled progress in climate action, health and energy access goals in eastern Africa, for three different SSPs and for 
a scenario with and without land policy (land policy impact on electricity access is negligible and results have been omitted).  

 
Figure 5.5: Separately rural and urban energy access for cooking energy and electricity for each SSP, by cooking method and tier 
level (see Method section C) respectively 
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Figure 5.6: Supply and demand for forest resources, and supply of electricity, by SSP and category 

Impacts of technology subsidies on SDG progress 
Technology subsidies in developing countries have the potential to reduce reliance on traditional biomass 

and increase energy access through leapfrogging towards more efficient ways to use biomass resources 

or towards modern energy technologies (Goldemberg 1998). By applying six different pathways of 

technology subsidies upon both the baseline and land policy scenario, up to 2040, the impact of these 

subsidies on progress towards each of the three SDGs that are analysed in this study is measured.  

Figure 5.7 shows total subsidy spending in scenarios with 100% subsidised technologies, on the short, 

medium and longer term, separately for each of technology pathway, and divided between “fuel costs” 

(technology to produce energy in each pathway) and “stove costs” (technology to use each energy carrier 

for cooking purposes). The figure also shows how subsidy spending increases as a higher share of the costs 

is subsidised. This increase is often exponential, as the higher a technology subsidy, the higher the uptake 

of this technology. Figure 5.8 shows the impacts of 100% technology subsidies on the cooking energy mix, 

separately for rural and urban households. It shows that LPG and PV subsidies have a very high uptake in 

urban households, and on the longer term also in rural households. Instead, biogas subsidies only have a 

persistent impact on cooking choices in rural households, while the maximum impact of ethanol and 

charcoal technology subsidies on the rural and urban cooking mix is limited. Fuelwood technology 

subsidies have profound impacts on the cooking energy mix in both rural and urban households, and while 

they accelerate the uptake of clean cooking stoves significantly, they also delay the transition to modern 

cooking fuels. Miscellaneous results for subsidy scenarios are shown in Figure 5.9. It shows a profoundly 

different impact of PV subsidies on electricity access between rural and urban households: in rural areas, 

such subsidies help a shift from tier 1 (no access) to tier 2, while in urban areas, they shift households 

from tier 2 to tier 3. Subsidies for biogas systems slightly increase total manure uptake, and significantly 

increase the use of manure for biogas purposes. It shows that land policies have a profound impact on 
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the way how ethanol and charcoal subsidies affect the use of different production technologies, and on 

the impact of fuelwood subsidies on land degradation. 

 
Figure 5.7: for a range of SSP outcomes, total subsidy spending for 100% subsidy scenarios for each subsidy pathway and separated 
between subsidies for cooking stoves and for energy production (A) and subsidy spending relative to % of technology pathway 
subsidised (B; baseline scenario). NOTE: logarithmic scale used to distinguish pathways at lower levels of subsidisation) 

 

 
Figure 5.8: For SSP2 baseline & land policy scenario, effects of 100% subsidy scenarios on rural and urban cooking energy mix 
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Figure 5.9: Miscellaneous results for PV (A), biogas (B), Ethanol (C), Charcoal (D) and Fuelwood (E) subsidy pathways  
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Figure 5.10: Cost effectiveness of energy technology subsidies in terms of GHG emissions, premature mortality and 
energy access levels for scenarios with and without land policy, by 2020, 2030 and 2040. 

Figure 5.10 shows the relative cost effectiveness of technology subsidy packages53 (as described in section 

A: Scenarios). I that subsidies for biogas systems are the most cost-effective for each of the indicators, 

scenarios and years: depending on the subsidy level and the socioeconomic pathway, subsidies for biogas 

systems translate to GHG abatement costs as low as $17 per ton of CO2-equivalent, and avoid one air 

pollution-related death for every $30,000 invested54. In contrast, subsidies for fuelwood pathways are 

only reasonably cost-effective for reducing GHG emissions in the short term (2020), with the condition 

that subsidies are tied to land policies. Subsidies for charcoal pathways are more cost-effective and, if tied 

to land policies, they are the second-best option for mitigating climate change in terms of cost 

effectiveness and robustness. LPG and ethanol subsidies are second-best options for improving health in 

the short and medium term. Subsidies for solar PV are very cost-effective for improving overall energy 

access in the short term, but long-term effects depend strongly on the development pathway (i.e. with 

higher development, PV subsidies contribute relatively less to energy access levels). The figure also shows 

that, throughout all scenarios, the impact of socioeconomic pathways cause technology subsidy impacts 

to become more uncertain over time.  

Pareto-optimal and SSP robust technology subsidy portfolios 
Subsidies for each of the technology pathways in this study contribute to at least one of the SDGs analysed 

in this study, and most technologies contribute to all three SDGs simultaneously (Figure 5.10). However, 

depending on the scenario and the point in time, some technology pathways are more cost-effective than 

                                                           
53 Cost effectiveness of technology subsidies on progress in energy access should be interpreted as billion $(2015) per increased energy access 
tier level in the entire region (i.e. average increase over all households). Take into account that such region-wide increments in energy access 
have taken currently developed countries several decades to centuries (Fouquet 2010). 
54 Note that the maximum impact of each technology subsidy package is limited, even if they are 100% subsidised. These limits are most clear 
for ethanol, charcoal and biogas pathways, due to biophysical limits to the availability or sustainability of the main inputs for these technologies 
(sugarcane/molasses, fuelwood and animal manure for ethanol, charcoal and biogas respectively)  
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others for a specific SDG (and some result in negative outcomes). Therefore, technology subsidy portfolios 

are identified that are both Pareto-optimal in contributing to each of the three SDGs, and at the same 

time robust over a range of future socioeconomic pathways. Figure 5.11 shows these portfolios with a 

lower subsidy budget for a baseline and land policy scenario in 2020, 2030 and 2040. For each scenario 

and year, one portfolio is selected that is relatively robust to SSP uncertainty and representative for the 

Pareto curve of that scenario, and show the distribution of subsidies and impacts of these portfolios in 

Table 5.6. 

 
Figure 5.11: Technology subsidy portfolios for a “low” budget that are Pareto-optimal in terms of simultaneously avoiding GHG 
emissions, premature deaths and improving energy access for baseline and land policy scenarios in 2020, 2030 and 2040. Size of 
dots illustrates robustness against SSP uncertainty. For an interactive three-dimensional version of this figure:  
https://www.bc3research.org/dj.vandeven/3D_low.html  

Table 5.6: Total impact and contributions per technology for 6 selected Pareto optimal subsidy portfolios with “low” budgets 

 Global warming potential Air pollution related Mortality Energy Access Tier 

Port-
folio 
Figure 
5.11 

Impact  
(Mt 

CO2eq) 

Relative contribution by 
technology (% of Total)* 

Impact   
(1000 

deaths) 

Relative contribution by 
technology (% of Total)* 

Impact     
Δtier 
level 

Relative contribution by 
technology (% of Total)* 

L PV bg et ch fw L PV bg et Ch fw L PV bg et ch fw 

A 69.0 33 8 51 5 2 0+ 29.0 18 4 75 2 2 0 0.256 23 20 52 3 1 0+ 

B 64.7 31 10 48 5 6 0+ 28.3 17 5 73 2 4 0 0.261 21 24 50 2 3 0+ 

C 123.7 13 8 72 7 1 0 34.2 9 5 80 5 2 0 0.286 12 17 63 7 1 0 

D 117.9 19 6 69 2 4 0+ 34.1 14 3 78 1 4 0 0.266 20 13 64 0 3 0 

E 89.7 32 18 50 0 0+ 0 26.0 24 9 67 0 0 0 0.213 31 21 48 0 0 0 

F 130.2 37 14 49 0+ 0+ 0 29.3 29 7 63 0+ 0+ 0 0.25 37 16 47 0 0+ 0 

* These numbers represent relative contributions of each technology to the SDG progress of the total subsidy portfolio. Numbers are rounded to 
whole percentage levels, and 0+ defines a small positive number before rounding. 
L = LPG, bg =biogas, et = ethanol, ch = charcoal, fw = fuelwood, Mt = million ton 

 

The figure and table show that, in the short and medium term, technology subsidy portfolios contribute 

more to each of the SDGs without a land policy. In terms of GHG emissions, this can be explained by a 

https://www.bc3research.org/dj.vandeven/3D_low.html
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higher margin for improvement without land policy, i.e. replacing biomass consumption will avoid further 

forest degradation. Since subsidising charcoal is more cost-effective if combined with a land policy (see 

Figure 5.10), charcoal subsidies make up a higher share of the subsidy portfolio in scenarios with land 

policy, and therefore these portfolios contribute less to health and energy access goals. In the longer term 

(2040), the opposite can be observed: technology subsidies contribute more to SDGs in the land policy 

scenario. This can be explained by a higher scarcity of biomass resources by 2040 in a scenario without 

land policy, which leads to higher consumption of non-biomass energy sources, even without technology 

subsidies, and therefore a lower impact of these subsidies. In each portfolio, subsidies for biogas systems 

contribute most to each of the SDGs, and mostly to progress in terms of health. This can be explained by 

the relative attractiveness of biogas systems in rural areas (see Figure 5.8), where predominantly 

unhealthy fuelwood stoves will be replaced. 

These modelling results show that an efficient allocation of relatively low technology subsidy portfolios of 

11 to 14 dollars per capita per year can improve energy access levels by up to 15%, while reducing GHG 

emissions in the region by over 10% and avoiding around 20% of air pollution-related deaths in the short 

and medium term. Higher subsidy budgets of > 32 dollar per capita per year (Figure 5.12) are relatively 

less cost-effective, since the most cost-effective solutions (see Figure 5.10) are already included in low 

subsidy budgets.  

 
Figure 5.12: Technology subsidy portfolios for a “high” budget that are Pareto-optimal in terms of simultaneously avoiding GHG 
emissions, premature deaths and improving energy access for baseline and land policy scenarios in 2020, 2030 and 2040. Size of 
dots determine robustness to SSP uncertainty. For an interactive 3-dimensional version of this figure: 
https://www.bc3research.org/dj.vandeven/3D_high.html  

Discussion 
While subsidies to any technology yield the desired outcomes in a modelling exercise, in the real world 

this can be significantly harder. In the developing country context of eastern Africa, the dominance of 

traditional biomass and the availability of “free” fuelwood in combination with social conditions in rural 

https://www.bc3research.org/dj.vandeven/3D_high.html
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areas make “leapfrogging” towards modern energy technologies less straightforward than in models, 

which largely depend on the technical and economic viability of such technologies (Murphy 2001). The 

relation between land use policies and technology policies is quite important as land use policies lead to 

increased dependence on biomass at a later stage, which is a type of rebound effect, since the greater 

availability of biomass effectively makes it easier and cheaper to gather and use biomass. Consequently, 

the combination of land use policies and technology subsidies needs to be tailored to the context of each 

country and in some cases also at sub-national level. It is also not necessarily cost-effective to subsidise 

the costs of a shift to modern energy over a long period: Figure 5.10 shows that technological solutions 

become costlier and thus less effective in the longer term. 

More detailed analysis at sub-national level and in some cases at local or district level could reveal 

significant differences in patterns of demand and supply, related to differences in income, biomass 

scarcity and other factors. Policies supporting sustainable land use, for example, might target those areas 

where higher productivity could support non-consumptive forest uses (recreation, tourism, various 

ecosystem services) while areas that are more prone to exploitation might instead support more effort 

on technology subsidies. The success of policies subsidising biogas installations depends also on local 

conditions, such as water availability and livestock ownership. In other words, policies and institutions 

may need to be more local and less national in their application. Designing such policies, however, 

requires a more disaggregated analysis than can be provided through this approach, as has been done 

through the MOFUSS model (Ghilardi et al. 2016). In the meantime, those technologies that are cost-

effective and robust across different scenarios, such as biogas, may warrant additional support beyond 

subsidies to ensure sustained use: e.g. creating robust maintenance facilities, training technicians, 

ensuring access to spare parts, etc. (Rupf et al. 2015; Clemens et al. 2018). 

Table 5.7: Appearance of the measures taken in this study in the INDCs of individual Eastern African countries 

Country Demand side measures in INDC Land Policy measures in INDC 

 LPG PV Biogas Ethanol Improved 
Charcoal 
Kilns 

Improved 
Cooking 
Stoves 

Rotation 
Forestry 

Agro-forestry 

Burundi N E E N E E E E 

Djibouti E E N N N N N E 

Ethiopia I E I I I I E E 

Eritrea E E E N E E E I 

Kenya I E I I I I I I 

Madagascar I E I I E E E E 

Rwanda E E E N E E E E 

Somalia E E E N E E E E 

Sudan E E N I N E E E 

South-Sudan I E I N N E E E 

Uganda I E I I I E E E 

 E = Explicitly mentioned as INDC measures 
I = Could be implicitly part of mentioned INDC measures 
N = Not mentioned as INDC measures 
Source: http://www4.unfccc.int/submissions/indc/Submission%20Pages/submissions.aspx 

 

Table 5.7 shows the measures included in the (intended) National Determined Contributions of the region. 

Essentially all mention land policy measures in one way or another, since land use is now widely 

recognised as a critical factor in meeting climate goals. Demand-side measures are not as prominent but, 

in many cases, also included. What few countries have done is to explore the interaction between 
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demand-side measures and land use policies, which has been addressed in this paper, at least to some 

first approximation for the region as a whole. Consequently, the results suggest a need for more 

investigation of these interactions, and greater disaggregation in models and data. Coupling more detailed 

data on biomass extraction that reveals hotspots (Robert Bailis et al. 2015) with forward-looking demand 

studies could inform the Nationally Determined Contributions and identify feasible solutions that occupy 

a more manageable policy space. 

Conclusions 
This study links two methods used to explore potential co-benefit strategies for climate change mitigation, 

increasing energy access and reducing exposure to air pollution. GCAM is used to reflect as best as possible 

the energy/resource situation in eastern Africa and to simulate the effects of subsidising a selection of 

technologies, as well as a robust portfolio analysis to find optimal portfolios of subsidies to identify trade-

offs in progress across three SDGs, by reducing GHG emissions, reducing exposure to air pollution and 

increasing energy access until 2040. The portfolio analysis systematically integrates the GCAM model 

results into a portfolio generation model, while also treating stochastic uncertainty related to 

socioeconomic development pathways in eastern Africa.  

The results give an indication of how effective land policies and technology subsidies are in simultaneously 

mitigating climate change, reducing exposure to air pollution, and increasing energy access, and which 

combinations of policies are most successful in doing so. The analysis shows that biogas technologies 

should be prioritised and subsidised in both the short and long term, showing very high cost-effectiveness 

for progress across all three SDGs. Subsidies for most other energy technologies focused on in this study 

are also relatively cost-effective in the short-to-medium term, and the distribution of a certain subsidy 

budget over LPG (health and energy access), PV (energy access), ethanol (GHG emissions and health) and 

charcoal (GHG emissions; if linked to land policies) pathways would depend on the preferred SDG in the 

policymakers’ point of view. Subsidies for fuelwood pathways are less cost-effective, even if linked to land 

policies to guarantee the sustainable production of biomass inputs. Land policies alone can avoid up to 

10% of total GHG emissions in the region in the near term, while having a somewhat delaying effect for 

progress regarding health and energy access goals. Optimally allocated technology subsidies of around 11 

to 14 dollars per capita in the short-to-medium term have the potential to avoid another 10% of GHG 

emissions, while avoiding around 20% of deaths by reducing exposure to air pollution, and improving 

energy access by up to 15%. Both land and technology subsidy policies become relatively less effective 

and more uncertain in the longer term. Thus there are trade-offs across these goals and the respective 

SDGs, which need to be better analysed and researched in order to guide policies and finance programs, 

such as those of the GCF. 

Annex 
Table 5.8: Cost, conversion and emission assumptions for newly added or changed sectors in GCAM 

    Emission factor 

Input / Source Output / 
Technology 

Non-energy 
Costs [1] 

Coefficient 
[1] 

CO2 CO CH4 NM-
VOC 

N2O SO2 Nox BC OC 

From To $(2015) per GJ 
output 

Input per 
Output 

Kg per GJ 

Coal [2] [2]  100.1         

Refined Liquids [2] [2]  71.9         

Natural Gas [2] [2]  52.1         
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Unsustainable 
Fuelwood 

[2] [2]  110.0         

Refined Liquids Diesel 12.11 1          

Diesel Diesel Rural 4.15 1          

Refined Liquids Kerosene 8.79 1          

Kerosene Kerosene Rural 3.66 1          

Refined Liquids LPG (t.p. 1) 27.97 1          

LPG LPG Rural 6.54 1          

Solar Central Grid 
Electricity / PV 
(t.p. 2) 

59.31 - 15.80 1          

Diesel Mini-grid 
Electricity / Diesel 
engine 

8.81 - 8.14 3.33 - 2.94  0.052 0.009 0.007 0.002 0.44 0.186 0.006 0.003 

Local Biogas Mini-grid 
Electricity / Gas 
turbine 

8.81 - 8.14 3.33 - 2.94  6E-05 0.003 8E-06 3E-04 8E-07 1E-04 2E-06 8E-07 

Mini-Hydro Mini-grid 
Electricity / Mini-
Hydro 

21.94 - 26.79 1          

Solar Mini-grid 
Electricity / PV 
(t.p. 2) 

70.03 - 18.66 1          

Central Grid 
Electricity 

Rural Residential 
Electricity 

18.06 – 15.26 1.283 - 
1.269 

         

Mini-Grid 
Electricity 

Rural Residential 
Electricity 

9.03 – 7.63 1.117 - 
1.104 

         

Rooftop PV 
standalone 

Rural Residential 
Electricity (t.p. 2) 

143.29 - 43.52 1          

Central Grid 
Electricity 

Urban Residential 
Electricity 

9.03 – 7.63 1.246 - 
1.234 

         

Rooftop PV 
connected 

Urban Residential 
Electricity (t.p. 2) 

95.26 - 25.46 1          

Rooftop PV 
standalone 

Urban Residential 
Electricity (t.p. 2) 

143.29 - 43.52 1          

Fuelwood Charcoal 
Production / EM 
kiln 

0.00 2.20  12.94 2.865 4.163 0.009 0 0.004 0.081 0.364 

Fuelwood Charcoal 
Production / Hot 
Tail kiln (t.p. 5) 

0.62 2.04  14.21 2.179 1.743 5E-04 0 0.002 0.133 0.594 

Diesel Charcoal 
Production / Hot 
Tail kiln 

 0.012  “ “ “ “ “ “ “ “ 

Fuelwood Charcoal 
Production / 
Container kiln 
(t.p. 5) 

9.96 1.72  2.503 0.965 2.503 1.643 0 0 1.172 0.262 

Diesel Charcoal 
Production / 
Container kiln  

 0.008  “ “ “ “ “ “ “ “ 

Charcoal 
Production / 
Container kiln 

Electricity  10.39  “ “ “ “ “ “ “ “ 

Fuelwood Charcoal 
Production / 
Container kiln 
mini-grid (t.p. 5) 

12.61 1.72  2.503 0.965 2.503 1.643 0 0 1.172 0.262 

Diesel Rural Charcoal 
Production / 

 0.008  “ “ “ “ “ “ “ “ 
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Container kiln 
mini-grid 

Charcoal 
Production / 
Container kiln 
mini-grid 

Mini-grid 
Electricity 

 10.39  “ “ “ “ “ “ “ “ 

Charcoal 
Production 

Charcoal (Retail) 7.00 1.00          

Fuelwood Market Fuelwood 
(t.p. 6) 

3.50 1.00          

Fuelwood or 
Market 
Fuelwood 

Residential 
Cooking / 
Traditional 

0.00 7.14  44.45 2.549 10.52 0.038 0.26 0.419 0.47 2.102 

Market 
Fuelwood 

Residential 
Cooking / ICS (t.p. 
6) 

0.63 5.26  40.02 0.682 10.13 0.032 0.222 0.357 0.401 1.793 

Manure use for 
energy 

Residential 
Cooking / 
Traditional 

0.00 10.00  39.47 4.537 14.98 0.245 0.185 0.384 1.968 8.801 

Manure use for 
energy 

Residential 
Cooking / ICS 

0.63 7.69  20.68 2.341 20.73 0.205 0.11 0.229 1.171 5.237 

Agricultural 
Residue 

Residential 
Cooking / 
Traditional 

0.00 7.14  28.34 3.277 3.667 0.021 0.128 0.511 0.652 2.915 

Agricultural 
Residue 

Residential 
Cooking / ICS 

0.63 5.26  17.62 1.526 8.571 0.056 0.084 0.335 0.427 1.91 

Charcoal Residential 
Cooking / 
Traditional 

0.16 4.17  25.93 1.487 6.136 0.022 0.152 0.244 0.055 0.491 

Charcoal Residential 
Cooking / ICS (t.p. 
5) 

0.63 3.33  22.73 0.863 5.559 0.019 0.129 0.209 0.047 0.419 

Kerosene Residential 
Cooking / 
Kerosene 

0.83 2.70 – 2.47  0.045 0.008 0.007 0.002 0.382 0.162 0.005 0.002 

LPG Residential 
Cooking / LPG 
(t.p. 1) 

2.08 1.89 – 1.61  0.021 0.002 0.003 2E-04 6E-04 0.084 8E-04 3E-04 

Ethanol Residential 
Cooking / Ethanol 
(t.p. 4) 

2.08 1.89 – 1.61  0.021 7E-04 0.003 4E-05 6E-04 0.084 8E-04 3E-04 

Biogas Residential 
Cooking / Biogas 
(t.p. 3) 

0.83 1.89 – 1.61  3E-05 0.002 5E-06 2E-04 5E-07 8E-05 1E-06 5E-07 

Electricity Residential 
Cooking / Electric 
(t.p. 2) 

2.04 1.37  0 0 0 0 0 0 0 0 

Electricity Residential 
Cooking / 
Induction (t.p. 2) 

5.21 1.19  0 0 0 0 0 0 0 0 

Regional 
biomass 

Ethanol / 
cellulosic ethanol 
(t.p. 4) 

38.4 2.06 – 1.95          

Regional sugar 
for ethanol 

Ethanol / sugar 
cane ethanol (t.p. 
4) 

28.6 1          

Ethanol Ethanol Rural 4.27 1          

SugarCrop (in 
kg) 

Regional sugar for 
ethanol (in GJ) 

 582.5          

Molasses (in kg) Regional sugar for 
ethanol (in GJ) 

 2018.7          

Sugar 
production  (in 

Molasses 
(secondary 
output; in kg) 

 6.14          
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kg sugar 
output) 

Manure use for 
energy 

Biogas / 6 m3 
digester (t.p. 3) 

17.33 3.66  0 0 0 0 0 0 0 0 

Manure  Manure use for 
energy 

 1.00  0 0.891 0 0 0 0 0 0 

Manure  Other uses / 
Manure 
Management 

 1.00  0 0.308 0 0.038 0 0 0 0 

Beef: non-
pasture feed 
(Mixed systems; 
in kg) 

Manure (Dung; in 
GJ) 

 4.06  - - - - - - - - 

Beef: pasture 
feed (Mixed 
systems; in kg) 

Manure (Dung; in 
GJ) 

 8.12  - - - - - - - - 

Dairy: non-
pasture feed 
(Mixed systems; 
in kg) 

Manure (Dung; in 
GJ) 

 88.36  - - - - - - - - 

Dairy: pasture 
feed (Mixed 
systems; in kg) 

Manure (Dung; in 
GJ) 

 176.72  - - - - - - - - 

Pork: non-pas-
ture feed (in kg) 

Manure (Dung; in 
GJ) 

 47.04  - - - - - - - - 

Poulty: non-
pas-ture feed 
(in kg) 

Manure (Dung; in 
GJ) 

 7.28  - - - - - - - - 

Sheep / Goat: 
non-pasture 
feed (Mixed 
systems; in kg) 

Manure (Dung; in 
GJ) 

 3.65  - - - - - - - - 

Sheep / Goat: 
pasture feed 
(Mixed systems; 
in kg) 

Manure (Dung; in 
GJ) 

 7.3  - - - - - - - - 

Beef / Dairy / 
Sheep / Goat: 
pasture feed 
(Pastoral 
systems; in kg) 

Manure (Dung; in 
GJ) 

 -  - - - - - - - - 

[1] If a range of values is given, this refers to the price or coefficient range from 2010 (first number) to 2050 (second number). Coefficient is the inverse of efficiency. 
[2] For non-renewable energy resources, GCAM assumes a fixed carbon content per unit of energy and the costs are based on the assigned resource curve. For more 
information on these resource supply curves, see http://jgcri.github.io/gcam-doc/energy.html#resources  
- (JGCRI 2017): Values with blank background are based on default GCAM v4.4 assumptions. For emissions, these values are based on IPCC emission factors (fossil fuels) 
or on base-year mapping of output values with EDGAR database: http://edgar.jrc.ec.europa.eu/overview.php?v=432_GHG&SECURE=123 
- Rural costs for modern fuels are assumed to be 15% higher than urban costs, due to distribution costs. 
- IPCC 6th assessment Report: https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf  
- (IRENA 2015); Resource potential has been modelled based on Gaul, Kolling, & Schroder (2010), with cost increasing with higher use of this potential (e.g. declining 
marginal productivity with increasing capacity). Therefore, observed costs in the reference scenario are reported, which increases from 2010 to 2050. 
- (Deichmann et al. 2011): Additional costs for rural grids (on top of grid price for urban electricity demand, as by GCAM default estimate) are assumed at $9.03 in 2010, 
representing the grid price that connects on average 80% of (total) households in Kenya and Ethiopia according to the supplementary material of this reference. Both 
countries have an urbanisation rate of around 20% and so the 80% assumption means that 3/4th of rural consumers will be connected at this price. The 3/4 point is 
chosen as an average instead the 1/2 point, since grid costs are exponential as a larger percentage of the population is to be reached (i.e. grid costs reach very high 
points if more than 3/4th are connected). Rural grid costs are assumed to decline at the same pace over time as other grid costs. 
- These values are chosen to match 2010 electricity generation with 2010 electricity consumption, with coefficients declining at the same pace over time as those 
assumed in the default GCAM version (see upper row). 
- EPA, 2014: emission factors for greenhouse gas inventories: https://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf ; CH4 and 
N2O of Biomass Ethanol respectively 3 and 5.5 times lower than for LPG 
- Input costs set to match 2010 liquid fuel prices in GCAM to Kenyan retail energy prices according to Kenyan National Bureau of Statistics: https://www.knbs.or.ke/ and 
solid fuel prices to retail energy prices in Ethiopia (Benka-Coker et al. 2018) 
- See Table A2 
- (Robert Bailis et al. 2015) for EM kilns; (Rob Bailis et al. 2013) for other kilns 
- (Nerini, Ray, and Boulkaid 2017) 
- (Benka-Coker et al. 2018); costs and efficiency of ethanol cooking stoves comparable to LPG stoves 

http://jgcri.github.io/gcam-doc/energy.html#resources
https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf
https://www.epa.gov/sites/production/files/2015-07/documents/emission-factors_2014.pdf
https://www.knbs.or.ke/
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- (Gopal and Kammen 2009); ratio molasses to sugar production calculated as SugarCrop input (kg) -/- Sugar output (kg) divided by sugar output (kg) 
- (APEC 2010); non-feedstock costs assumed as additional costs for sugar cane and cellulosic ethanol 
- (Smith et al. 2000); Table 4: using estimates for dung and must (agricultural residue) “tm” stoves a s proxy for Traditional and “ivc” stoves as proxy for ICS, based on 
inputs. For fuelwood, the difference between Acacia-3R (proxy for Traditional) and Acacia-ivs (proxy for ICS) is applied to the GCAM default values for biomass emissions 
in Eastern Africa (see green reference). 
- (Garland et al. 2017); used to re-allocate default GCAM BC and OC emissions between fuelwood and charcoal  
- (Saud et al. 2011); for ICS, the difference in CO emission factors (see grey reference) is assumed to explain 71% of the differences in BC and OC factors, based on (Carter 
et al. 2017) 
- Assuming emission factors differences between traditional and ICS for charcoal follow the same trend as for fuelwood, corrected by assumed relative efficiency 
improvements of ICS  
- Based on dividing 13% of the costs (fixed charge rate for capital with lifetime of 8 years or more) of a 6 m3 biogas digester ($932 according to the Uganda Domestic 
Biomass Programme + 15% per year for operation and maintenance) by the amount of biogas it tends to produce annually (8.76 GJ), assuming a 5% dry matter content, 
30 days retention time and caloric value of 55 MJ per kg of CH4  
- Represents amount of livestock products (in kg) needed for 1 GJ of manure output (higher means less manure per kg of final product), assuming caloric content of 
manure according to (Santoianni et al. 2008); 100% manure availability is assumed for livestock while being fed with non-pasture feed, 50% for livestock in mixed systems 
while feeding itself with pasture, and 0% for livestock in fully pastoral systems. 
 
t.p. refers to Technology Pathway, and represent the subsidised pathways 1 to 6 (see section A: Scenarios of Method section) 

 
Table 5.9: Overview of assumptions and sources for mini-grids and solar PV installations and costs 

 2013 2013   2010 2013 2015 

 Total off-grid 
capacity in 
MW 

PV off-grid 
capacity in 
MW 

 Total Eastern Africa in Tera 
Joules 

Burundi 1.23 0.40 Total off-grid electricity 1318.36 1770.78 2072.56 

Djibouti 1.00 0.16 Off-grid PV electricity 7.2 338.04 600 

Ethiopia 20.89 13.28 Off-grid diesel 
electricity 

811.16   

Eritrea 0.56 0.56 Off-grid mini-hydro 
electricity 

500   

Kenya 29.00 10.00  
- Translation of capacity values in left column to electricity output, 
assuming 65% and 22.5% capacity factors for non-PV (diesel 
engines and mini-hydro) and PV respectively 
- Estimated by assuming same share total electricity production 
compared to 2013 
- For 2010, given the small number, all solar is assumed to be 
generated off-grid. For 2015, a continuation of the trend from 2010 
to 2013 is assumed. 
- (Gaul, Kolling, and Schroder 2010); rough estimation 
- Calculated as Total off-grid -/- PV -/- mini-hydro 

Madagascar 15.16 3.00 

Rwanda 1.58 0.30 

Somalia 0.96 0.96 

Sudan 22.21 8.47 

Uganda 7.55 3.46 

 
 
For 2010 and 2015: (IEA 2015), For battery costs surplus 
costs: (Ardani et al. 2017). For post-2015, cost path based 
on GCAM projections (Muratori et al. 2017). 

Total Eastern Africa 100.13 40.58 

Total in GWh 339.039488 79.9930285 

- (IRENA 2015) 
- (Ondraczek 2013) 
- (SEI 2016) 
- Based on a global database of electricity generation capacity off the main 
grid by country (for those countries which have data available), a regression 
analysis is applied to estimate the amount of off-grid capacity for countries 
with no data available: 
Off-grid MW = [3.08 – 0.045*(Electrification Rate) + 0.021*(Urban share of 
population)] * (Total TW electricity generation) 
The amount of off-grid PV capacity is estimated from another regression 
analysis by: 
Off-Grid PV MW = [-508.55 + 108.65*(Annual Solar Irradiance) + 4.38*(GDP 
per capita)] * (Population in Billions) 
For Somalia and Eritrea, these formulas ended up of PV off-grid capacity being 
larger than total off-grid capacity, so PV off-grid capacity was limited such that 
it provides all assumed off-grid capacity. 
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Table 5.10: Assumptions for rotation forestry and agroforestry 

Land 
area 

Woodlot 
(Acacia) 
production in 
forestry [1] 
(ton/hect/yr) 

Above ground 
carbon 
uptake [2] 
(ton C/hect 
/yr) 
 

Below ground 
carbon 
uptake [3] 
(ton C/hect/ 
yr) 

% of max 
wood prod. in 
cropland with 
max 10% crop 
yield loss [4] 

 GCAM Crop 
type 

Compatibility 
coefficient for 
agroforestry 
(competition for 
light, water and 
nutrients) [5] 

AEZ01 0.04 0.02 0.02 70%  Corn 80% 

AEZ02 3.02 1.74 1.23 64%  FiberCrop 90% 

AEZ03 5.51 3.17 1.72 58%  MiscCrop 39% 

AEZ04 7.5 4.31 1.79 52%  OilCrop 80% 

AEZ05 9.01 5.18 1.64 46%  OtherGrain 90% 

AEZ06 10.02 5.76 1.44 40%  PalmFruit 0% 

AEZ07 0.04 0.02 0.02 70%  Rice 0% 

AEZ08 3.02 1.74 1.23 64%  Root_Tuber 100% 

AEZ09 5.51 3.17 1.72 58%  SugarCrop 80% 

AEZ10 7.5 4.31 1.79 52%  Wheat 100% 

AEZ11 9.01 5.18 1.64 46%  Pasture 0% 

AEZ12 10.02 5.76 1.44 40%  Biomass 0% 

[1] (Nyadzi et al. 2003; Iiyama et al. 2014): Acacia has been chosen as tree species as it is compatible with charcoal 
production; Values based on productivity range in reference. These values are also the assumed yields for Rotation 
Forestry. 
[2] A conversion factor of 0.50 was assumed to transform dry timber to carbon content (Nair 2011a; García de Jalón 
et al. 2018) 
[3] It was assumed that belowground carbon sequestration was between 25% and 90% of aboveground carbon 
sequestration depending on the potential suitability for agriculture of the agro-ecological zones (Nair 2011b). 
[4] (García de Jalón et al. 2018); for each crop, this value has to be multiplied with the last column ([5]) and the 
woodlot yield for the actual wood production per hectare ([1]) 
[5] Tree crops and Rice are assumed not to be compatible with the studied agroforestry systems. Pasture and biomass 
have been excluded for concerns on modelling realism 

 
Table 5.11: Assumptions on residential energy use based on Demographic and Health Surveys (DHS) in eastern African countries 

Eastern Africa 
average: 

% of households in cooking with: % of households owning a: Household 
size***: 

  Elect Gas* Keros Charc Wood Crop Dung TV Refrig Airco** 

2010 Urban 1.9% 6.9% 11.4% 48.8% 28.1% 1.6% 1.1% 44.58% 16.73% 4.00% 5.13784 

[1] Rural 0.0% 0.3% 0.4% 6.6% 86.0% 2.9% 3.7% 5.09% 0.90% 0.01% 6.230655 

2015 Urban 9.8% 7.0% 7.7% 45.8% 28.5% 0.5% 0.5% 54.81% 19.84% 4.13% 4.97206 

[2] Rural 0.2% 0.6% 0.3% 7.3% 85.1% 2.5% 3.9% 6.62% 0.93% 0.02% 6.089795 

Source DHS: ICF International, 2015. The DHS Program STATcompiler. Funded by USAID. https://www.statcompiler.com 
* Gas includes LPG, biogas and natural gas 
** Air-conditioner ownership interpreted from: https://www.jraia.or.jp/english/World_AC_Demand.pdf, assuming 1% of air-conditioners to 
be in rural areas 
*** Source household size: https://globaldatalab.org/areadata/hhsize/  
Based on DHS data from:  
2010 cooking mix based on: Burundi, Ethiopia, Kenya, Madagascar, Rwanda, Uganda (representing 70% of urban, 84% of rural population) 
2015 cooking mix based on: Ethiopia, Kenya, Madagascar, Rwanda, Uganda (representing 68% of urban, 79% of rural population) 
Appliance ownership based on: Burundi, Ethiopia, Kenya, Rwanda, Uganda (representing 60% of urban, 75% of rural population) 

 

 

https://www.statcompiler.com/
https://www.jraia.or.jp/english/World_AC_Demand.pdf
https://globaldatalab.org/areadata/hhsize/
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Conclusions 
The aim of this thesis is to assess synergies and trade-offs of climate change mitigation policies. For this 

purpose, an IAM has been used that integrates socioeconomic, energy, land and climate systems. 

Additional modules to this model have been designed throughout the course of the PhD, as well as a link 

with another method to process model outputs with the aim of assessing synergies and trade-offs and 

check for robustness of specific policies. The outputs of this thesis show that climate change mitigation 

policies are strongly linked with other potential policy objectives, which may be of interest for 

policymakers and the scientific community of cross-cutting research. 

However, the use of IAMs for climate policy has been criticised on the use of arbitrary functional forms 

and parameter values and therefore potentially misleading outputs for climate policy (Pindyck 2013b, 

2017). In this thesis, I tried to avoid this “misuse” of the model through the way each study is focused: 

- by focusing on already existing climate objectives as documented in NDCs, whether or not based 

on proper decision making, the discussion on the social cost of carbon is circumvented. 

- when developing new IAM modules, all parameters are based on documented values and 

functional forms are calibrated by checking if model simulations match recent real-world 

observations. 

- by documenting model outcomes as a difference between the policy and the “baseline” scenario 

without policy, such that, if a core function of the model is flawed, it will affect all scenarios, but 

the difference between scenarios will be considerably less flawed. 

- by applying an additional tool to check and select model outcomes based on robustness to 

parameter changes. 

Nevertheless, the outcomes of this study, certainly those expressed in absolute numbers, should be taken 

with caution, as it is virtually impossible to assess the full range of uncertainty through an IAM. 

Despite their limitations, IAMs are an ideal tool to assess synergies and trade-offs between climate policies 

and other policy objectives (Clarke et al. 2014). Specifically, the integration of scientific knowledge on 

both energy and land systems in GCAM makes it an ideal tool to assess trade-offs between energy-based 

and land-based objectives for the design of climate policies. But also the function of economic choice in 

GCAM, recognising different preferences between consumers and identified through historical 

observations, has been of high value for assessing behavioural consumer changes in the EU and household 

cooking choices in eastern Africa. From my point of view, these benefits of using a model with 

documented knowledge and with internationally recognised capabilities outweigh the potential flaws that 

this approach would entail. 

This thesis consists of four separate studies, contributing to different parts of knowledge on how climate 

policies interact with other potential policy objectives such as land use, energy security, health and energy 

access in a development context. Though, some general conclusions can be drawn from this thesis. 

Throughout all chapters, a clear interaction between climate change mitigation policies and other policy 

objectives can be observed, both when focusing on behavioural and technological solutions (see Table 6.1 

for an overview of the identified synergies and trade-offs throughout all chapters). Therefore, linking the 

design of climate change mitigation policies with other region-specific policy objectives is often crucial, 

not only for achieving these other policies at a lower policy cost and therefore inherently decreasing the 

policy costs of achieving mitigation objectives, but also to gain sufficient support from society for implying 
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such climate policies. In contrast, if a certain climate policy clearly strikes with other policy objectives, its 

introduction will likely cause resistance.  

While generic economic policies such as tradable emission permits may have the capability to achieve an 

emission reduction goal at the lowest possible policy costs, in many cases it might actually be beneficial 

from a holistic point of view to adopt a more complex set of policies, even if that entails higher policy 

costs. The main difference of the Paris Agreement compared to the Kyoto Protocol, i.e. the possibility for 

every nation to define its own mitigation targets, might better fit to the climate change problem, as each 

nation understands its domestic circumstances and priorities. However, this flexibility of the current 

paradigm of international climate policy should be exploited better by the scientific community, providing 

policymakers with integrated analysis comparing climate objectives with other policy objectives (Doukas 

et al. 2018), a necessity that might also help to make NDCs more ambitious and therefore successfully 

mitigate dangerous climate change. 

Table 6.1: Identified synergies and trade-offs of climate policies and strategies studied in this thesis. 

Chapter Regional 
focus 

Policy / strategy Synergies Trade-offs 

Ch 2: The potential of 
behavioural change for 
climate change 
mitigation 

EU Food-related 
behavioural change 
 

Avoiding global 
LUC 

 

Mobility/household 
behavioural change 
 

Improving health 
(not quantified) 

 

Ch 3: The potential land 
use requirements and 
related land use change 
emissions of solar 
energy 

EU 
India 
Japan 
S Korea 

Using solar energy 
(and bio-energy for 
comparison) to 
decarbonize 
electricity sector 
 

 Land occupation 
and indirect LUC 

Ch 4: Identifying 
optimal technological 
portfolios for European 
power generation 
towards climate change 
mitigation 
 

EU Subsidies for 
specific low-carbon 
technologies in the 
power sector 

Increasing energy 
self-sufficiency 
(solar, wind and 
nuclear) 

Decreasing energy 
self-sufficiency 
(CCS and biomass) 

Ch 5: Integrated policy 
assessment and 
optimisation over 
multiple sustainable 
development goals in 
eastern Africa 

Eastern 
Africa 

Land policies to 
increase sustainable 
biomass output 
 

 Slight decrease in 
health and energy 
access objectives 

Technology subsidy 
policies to replace 
traditional biomass 
use 

Significant 
increase of health 
and energy access 
objectives 
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Further research 
Future research in the field of integrated assessment modelling probably will need to focus more on the 

impacts of climate policies on non-climate objectives, and vice versa, instead of informing only about 

climate policies such as carbon taxes or caps (Pindyck 2017). As such objectives differ strongly between 

regions, it is also important for future research on climate policy to listen well to local stakeholders. For 

every country or region, different pathways can be evaluated to achieve a given mitigation objective, and 

potential synergies and trade-offs of those pathways can be compared. To do so, strong interactions are 

required between different academic fields to produce strong and robust cross-cutting research. Also, 

from a practical point of view, outcomes from IAMs should be more frequently tailored, potentially with 

alternative tools or methods as is done in chapter 4 and 5 of this thesis, to provide policymakers with 

more useful and certain results. Given the enormous range of uncertainty behind modelling outcomes, 

just comparing results from different IAMs in model ensembles is not necessarily useful from a 

policymaker´s perspective (Doukas et al. 2018). 

Specifically related the studies provided in this thesis, there is plenty of potential further research to be 

done. First, behavioural change can be integrated better into IAMs, as they are likely necessarily to achieve 

ambitious climate ambitions. More concretely, it would be interesting to quantify the co-benefits of 

different types of behavioural change and compare those with the co-benefits of technological solutions. 

Second, the impacts of solar energy on land use can also be compared to other local policy objectives, 

such as reducing water scarcity and reducing nitrogen leakage. Through that context, the land occupation 

of solar energy can also have local synergies with other environmental objectives, despite contributing to 

an indirect decline in natural forest land. Third and last, the modelling exercise done for eastern Africa 

can be extended to more developing regions and with more sub-regional detail to give a more complete 

picture of the potential of climate finance to reduce emissions in developing countries, while contributing 

to other SDGs. 
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