
	
	

	

MÁSTER	UNIVERSITARIO	EN	

INFORMATION	TECHNOLOGY	AND	MANAGEMENT	

	
	

TRABAJO	FIN	DE	MÁSTER	
	

	
NG911	INDOOR	LOCATION	ANDROID	APP	

	
	
	
	
	
	
	

Alumna	 	 Sirés,	Artázcoz,	Carmen	
Directora	 	 Davids,	Carol	
Departamento		 Real	Time	Communications	
Curso	académico	 2018/2019	

	

	

	

	

Chicago,	22	de	julio	de	2019	

	 	 IIT	

	 	 2	

Abstract	

This	paper	describes	the	NG911	Indoor	Location	project	and,	more	specifically,	the	Android	app	

that	 has	 been	 developed	 for	 it.	 Since	 current	 GPS	 technology	 is	 unable	 to	 locate	 people	 in	

buildings	in	cases	of	emergency,	this	project	offers	a	solution	to	this	problem,	providing	a	way	to	

obtain	 the	 indoor	 location	of	a	person.	The	NG911-Indoor-Location	app	will	obtain	 the	 indoor	

location	of	the	calling	device	using	nearby	Bluetooth	beacons	and	the	BOSSA	Platform.	

First,	the	app	will	scan	for	Bluetooth	beacons	in	the	building,	obtaining	a	list	of	them.	Then,	it	will	

query	 the	 BOSSA	 Platform	with	 this	 list	 which	will	 answer	with	 the	 indoor	 location	 (address,	

building,	floor,	x,	y).	Finally,	it	will	establish	a	SIP	call,	sending	the	received	indoor	location	in	it.	

This	will	be	done	to	provide	a	more	accurate	location	for	the	person	to	be	easily	located	in	the	

case	of	an	emergency.	

Resumen	

Este	 documento	 describe	 el	 proyecto	NG911	 Indoor	 Location	 (ubicación	 en	 interiores)	 y,	más	

específicamente,	la	aplicación	para	Android	que	se	ha	desarrollado	para	ello.	Dado	que	el	GPS	no	

puede	 ubicar	 con	 precisión	 a	 las	 personas	 dentro	 de	 edificios	 en	 casos	 de	 emergencia,	 se	 ha	

desarrollado	una	manera	de	obtener	la	ubicación	en	el	interior	de	un	edificio	de	una	persona.	La	

aplicación	 NG911-Indoor-Location	 obtendrá	 la	 ubicación	 interior	 del	 dispositivo	 que	 realiza	 la	

llamada	mediante	el	uso	de	las	señales	recibidas	de	los	beacons	de	Bluetooth	más	cercanos	y	la	

plataforma	BOSSA.	

En	primer	lugar,	realizará	una	búsqueda	de	señales	Bluetooth	que	provienen	de	los	beacons	en	el	

edificio,	 obteniendo	 una	 lista	 de	 ellas.	 Posteriormente,	 realizará	 una	 consulta	 a	 la	 plataforma	

BOSSA	 con	 esta	 lista,	 que	 responderá	 con	 la	 ubicación	 interior	 (dirección,	 edificio,	 piso,	 x,	 y).	

Finalmente,	 establecerá	 una	 llamada	 SIP,	 enviando	 en	 ella	 la	 ubicación	 interior	 recibida.	 El	

objetivo	 de	 esto	 es	 proporcionar	 una	 ubicación	 más	 precisa	 para	 que	 la	 persona	 pueda	 ser	

encontrada	más	fácilmente	en	caso	de	emergencia.	

	 	

	 	 IIT	

	 	 3	

Laburpena	

Dokumentu	 honek	 NG911	 Indoor	 Location	 (barne-kokapena)	 proiektua	 deskribatzen	 du	 eta,	

zehatzago	 esanda,	 horretarako	 garatu	 den	 Android	 aplikazioa	 deskribatzen	 du.	 Larrieldietan	

GPSak	 eraikinen	 barruko	 pertsonak	 aurkitu	 ezin	 dituenez	 gero,	 eraikinen	 barrualdean	 dauden	

persona	horien	kokapena	lortzeko	bidea	garatu	egin	da.	NG911	Indoor	Location	aplikazioak	deiak	

egiten	dituen	gailuaren	kokapena	lortuko	du,	gertuen	dauden	Bluetooth	beaconen	bidez	jasotako	

seinaleak	eta	BOSSA	plataforma	erabiliz.	

Lehendabizi,	eraikinean	jarritako	beaconetatik	datozen	Bluetooth	seinaleen		araketa	egingo	da,	

haien	lista	bat	sortuz.	Ondoren,	BOSSA	plataformari	kontsulta	bat	egingo	dio	lista	horrekin,	eta	

BOSSA	plataformak	barne-kokapenarekin	erantzungo	du	 (helbidea,	 solairua,	 x,	 y).	Azkenik,	 SIP	

deia	 burutuko	 da,	 dei	 horretan	 lortutako	 barne-kokapena	 bidaliz.	 Honen	 helburua	 kokapen	

zehatzago	bat	lortzea	da,	larrialdi	bat	egonez	gero,	pertsona	azkar	eta	errazago	aurki	dadin.	

	

	 	 IIT	

	 	 4	

Table	of	Contents	

INTRODUCTION	..	10	

GOALS	..	11	

TECHNOLOGIES	INVOLVED	...	12	

BLUETOOTH	..	12	

SIP	(SESSION	INITIATION	PROTOCOL)	..	12	

HTTP	(HYPERTEXT	TRANSFER	PROTOCOL)	...	13	

JSON	(JavScript	Objetct	Notation)	...	14	

XML	(eXtensible	Markup	Language)	...	14	

NEXT	GENERATION	911	..	15	

NEXT	GENERATION	911	INTRODUCTION	..	15	

NEXT	GENERATION	911	COMPONENTS	...	17	

An	Array	of	BLE	Beacons	and	Gateways	..	17	

A	Database	and	Backend	Server	..	18	

Mobile	device	Applications	..	19	

Emergency	Services	IP	Network	...	20	

NG911-INDOOR-LOCATION	ANDROID	APP	...	24	

REQUIREMENTS	...	24	

PHYSICAL	ARCHITECTURE	...	24	

Calling	device	...	25	

Bluetooth	LE	Beacons	Array	..	25	

BOSSA	Platform	Location	Server	and	Database	..	26	

ESInet	...	26	

LOGICAL	ARCHITECTURE	..	29	

ANDROID	APP	STEPS	..	30	

Beacons	scanning	..	31	

BOSSA	Platform	API	HTTP	Request	..	32	

Establish	SIP	Call	through	the	ESInet	...	33	

LADDER	DIAGRAM	OF	A	CALL	..	35	

RESULTS	...	38	

	 	 IIT	

	 	 5	

DESCRIPTION	..	38	

INTERPRETATION	...	42	

TROUBLESHOOTING	..	43	

Scenario	to	capture	with	Wireshark	..	43	

Comparison	between	NG911	app	and	Sipdroid	app	..	44	

CONCLUSIONS	AND	FUTURE	DEVELOPMENT	..	47	

REFERENCES	...	48	

APPENDICES	...	50	

APPENDIX	A:	NG911-INDOOR-LOCATION	ANDROID	APP	CODE	..	50	

AndroidManifest.xml	...	50	

MainActivity.java	..	52	

CallActivity.java	...	55	

IBeaconScanner.java	...	56	

IBeacon.java	..	57	

HttpTx.java	..	59	

Json.java	..	59	

Data.java	...	59	

MIMEpart.java	..	60	

MIMEmessage.java	...	61	

NG911MessageFactory.java	...	62	

APPENDIX	B:	MANAGEMENT	OF	THE	ELEMENTS	OF	THE	ESINET	...	65	

ECRF:	Manage	PSAPs	...	65	

SBC:	Manage	Session	Agents	...	65	

SIP-D:	Start	process	...	66	

ESRP:	Start	process	..	66	

PSAPD:	Start	process	in	the	Columbia	Call-taker	...	67	

APPENDIX	C:	SIP	INVITE	..	68	

SIP	Invite	created	by	NG911	..	68	

SIP	Invite	captured	by	Wireshark	for	a	successful	call	from	Sipdroid	69	

	

	 	 IIT	

	 	 6	

Table	of	figures	

Figure	1:	SIP	Messages	flow	of		a	call	[4]	...	13	

Figure	2:	Indoor	Location	System	..	16	

Figure	3:	BLE	Beacons	and	gateways	map	in	Stuart	Building	..	18	

Figure	4:	Stored	data	about	the	beacons	in	JSON	Format	..	18	

Figure	5:	User	Application	home	screen	...	19	

Figure	6:	Tester	Application	Home	screen	..	20	

Figure	7:	ESInet	complete	architecture	...	21	

Figure	8:	PSAPs	in	the	Lost2	table	in	the	ECRF	..	23	

Figure	9:	Physical	architecture	of	the	NG911	System	...	25	

Figure	10:	AXA	Beacons	...	25	

Figure	11:	SIP-C.	Laptop	in	the	IIT	RTC	Lab	..	26	

Figure	12:	SIP-D.	Server	in	the	IIT	RTC	Lab	..	27	

Figure	13:	SBC.	Server	in	the	IIT	RTC	Lab	...	27	

Figure	14:	ESRP.	Server	in	the	IIT	RTC	Lab	...	27	

Figure	15:	ESXI	host.	Server	in	the	IIT	RTC	Lab.	...	28	

Figure	16:	Columbia	PSAP	(server	in	the	IIT	RTC	Lab)	...	28	

Figure	17:	Micro	Automation	PSAP	(VM	in	the	ESXi	host)	..	29	

Figure	18:	Indoor	Location	System	logical	architecture:	Bluetooth	array	(top	left),	BOSSA	Platform	

(top	right),	Android	App	(bottom	left)	and	ESInet	(bottom	right)	...	30	

Figure	19:	NG911	Created	classes	(left)	and	main	Sipdroid	classes	(right)	35	

Figure	20:	Ladder	diagram	of	a	NG911	call	from	the	SIP-C.	..	36	

Figure	21:	Ladder	diagram	of	a	NG911	call	from	a	phone.	...	37	

	 	 IIT	

	 	 7	

Figure	22:	NG911-Indoor-Location	app	Main	Screen.	...	38	

Figure	 23:	 NG911-Indoor-Location	 app	 general	 Settings	 Screen	 (left)	 and	 SIP	 Account	 Settings	

Screen	(right).	..	39	

Figure	24:	NG911-Indoor-Location	app	Status	Screen.	...	40	

Figure	25:	NG911-Indoor-Location	app	Info/Help	Screens.	..	40	

Figure	26:	NG911-Indoor-Location	app	Call	Splash	Screen.	..	41	

Figure	27:	NG911-Indoor-Location	app	Sipdroid	Call	Screen,	dialing	(left)	and	call	ended	(right).

	...	41	

Figure	28:	Calculated	indoor	location	in	Stuart	Building	in	comparison	with	real	indoor	location.

	...	42	

Figure	29:	Setup	to	capture	the	traffic	of	the	phone	in	Wireshark	(running	in	a	laptop).	44	

Figure	30:	Screenshot	of	Sipdroid	app	when	the	call	is	in	progress.	...	45	

Figure	31:	Screenshot	of	the	Micro	Automation	where	we	can	see	the	call	coming	in.	45	

	

	 	

	 	 IIT	

	 	 8	

Acronyms	

• ACK:	Acknowledgement	

• API:	Application	Programming	Interface	

• AWS:	Amazon	Web	Services	

• BCF:	Border	Control	Function	

• BLE:	Bluetooth	Low	Energy	

• BOSSA:	Bluetooth	and	Sensors	Array	

• DNS:	Domain	Name	Server	

• ECRF:	Emergency	Call	Routing	Function	

• ESInet:	Emergency	Services	IP	backbone	Network	

• ESRP:	Emergency	Service	Routing	Proxy	

• ESXI:	Elastic	Sky	X	Integrated	

• FCC:	Federal	Communications	Commission	

• GPS:	Global	Positioning	System	

• HTTP:	HyperText	Transfer	Protocol	

• ID:	Identifier	

• IIT:	Illinois	Institute	of	Technology	

• IP:	Internet	Protocol	

• JSON:	JavaScript	Object	Notation	

• LoST:	Location	to	Service	Translation		

• MIME:	Multipurpose	Internet	Mail	Extensions	

• NAT:	Network	Address	Translation	

• NG911:	Next-Generation	911	

• PAN:	Personal	Area	Network	

• PIDF-LO:	Presence	Information	Data	Format	–	Location	Object	

• PSAP:	Public	Safety	Answering	Point	

• RSSI:	Received	Signal	Strength	Indicator	

• RTC:	Real	Time	Communications	

• RTP:	Real-time	Transport	Protocol	

• SBC:	Session	Border	Control	

	 	 IIT	

	 	 9	

• SDP:	Session	Description	Protocol	

• SIP:	Session	Initiation	Protocol	

• UI:	User	Interface	

• URI:	Uniform	Resource	Identifier	

• URL:	Uniform	Resource	Locator	

• URN:	Uniform	Resource	Name	

• UUID:	Universally	Unique	Identifier	

• VM:	Virtual	Machhine	

• XML:	eXtensible	Markup	Language	

	 	 IIT	

	 	 10	

Introduction	

Nowadays,	everybody	is	very	reliable	on	the	current	emergency	system.	While	the	existing	911	

system	 has	 been	 very	 successful	 for	 years,	 it	 has	 been	 stretched	 to	 its	 limit	 with	 regards	 to	

technology	 advances.	 Besides,	 people	 place	 false	 trust	 on	 the	 current	 system,	 relying	 on	

assumption	that	it	is	easy	for	the	police	to	locate	them	if	they	call	for	an	emergency.		

When	most	people	call	the	police,	they	assume	that	their	location	will	be	reliably	acquired	by	the	

police,	 using	 GPS.	 This	 is	 the	 first	 problem	 with	 GPS,	 because,	 according	 to	 a	 FCC	 (Federal	

Communications	 Commission)	 study	 [1],	 most	 911	 dispatch	 centers	 do	 not	 receive	 GPS	

information	from	a	cell	phone	caller.	For	this	reason,	usually,	it	is	the	caller	that	needs	to	describe	

the	indoor	location	in	a	building,	which	can	be	time	consuming	or	even	difficult	to	explain	in	some	

situations.		

On	the	other	hand,	there	is	the	problem	of	GPS	itself	(which	is	the	technology	that	could	be	used	

by	the	police	to	locate	the	caller).	It	is	true	that	most	cellphones	are	equipped	with	GPS	hardware,	

which	can	locate	callers	via	satellites.	This	can	be	a	good	solution	when	the	caller	is	in	an	open	

field,	 but	 when	 we	 are	 talking	 about	 inside	 homes,	 apartments,	 stores,	 hotels,	 or	 even	 in	

downtowns	where	 tall	 buildings	 block	 signals,	 the	GPS	 technology	performs	poorly,	 especially	

when	the	call	comes	from	inside	a	tall	building.	Moreover,	approximately	58	percent	of	wireless	

calls	to	911	come	from	indoors,	so	they	are	not	likely	to	deliver	a	location	at	all.	

If	a	person	was	calling	from	a	23rd	floor	of	a	50	story	building,	it	is	very	likely	that	they	would	not	

be	 located	 in	 time.	 In	some	types	of	emergencies	 (like	a	shooting	or	a	 fire),	 this	could	 lead	 to	

horrible	consequences	for	the	caller.		

For	these	reasons,	the	FCC	requires	mobile	carriers	to	improve	the	indoor	location	service	when	

calling	911,	and	this	is	why	the	NG911	Indoor	Location	System	has	been	created.	Using	Bluetooth	

beacons	and	the	BOSSA	Platform,	the	indoor	location	of	a	person	in	a	building	will	be	calculated,	

and	will	be	sent	to	the	police	in	order	for	them	to	locate	the	calling	device	more	easily.		

If	this	system	is	implemented,	the	time	saved	to	locate	the	911	callers	could	be	saving	10,000	lives	

every	year.	

	 	 IIT	

	 	 11	

Goals	

The	main	 goal	 of	 this	 project	 is	 to	 develop	 an	 Android	 App	 capable	 of	 fulfilling	 the	 following	

requirements:	

• Get	a	list	of	nearby	beacons:	scan	for	Bluetooth	beacons	signals	and	obtain	a	list	of	the	

closest	beacons	inside	of	a	building.		

• Get	the	indoor	location:	

o 	Make	a	HTTP	request	to	the	location	server	of	the	BOSSA	platform,	including	the	

list	of	received	beacons	in	the	URL.	

o Receive	 the	 HTTP	 response	 from	 the	 BOSSA	 platform,	 containing	 the	 indoor	

location	in	XML	format.	

• Establish	 the	 call:	 establish	 a	 SIP	 call	 with	 the	 ESInet,	 including	 the	 received	 indoor	

location	in	the	INVITE	message.	

The	app	will	be	easy	to	use	for	the	user,	with	a	very	simple	UI	and	limited	functionality.		

	 	 IIT	

	 	 12	

Technologies	involved	

Bluetooth	

Bluetooth	[10]	is	a	wireless	technology	standard	for	exchanging	data	between	fixed	and	mobile	

devices	over	 short	distances,	using	 short-wavelength	UHF	 radio	waves	 in	 the	 frequency	of	2.4	

GHz,	and	building	personal	area	networks	(PANs).		

A	beacon	is	a	small	Bluetooth	radio	transmitter,	powered	by	batteries.	It	transmits	Bluetooth	Low	

Energy	(BLE)	signals.	The	Bluetooth	enabled	smartphones	are	capable	of	scanning	and	displaying	

these	signals.	It	is	called	Low	Energy	because	the	power	that	it	requires	is	very	low.		

Within	this	project,	Bluetooth	is	the	technology	used	between	the	beacons	and	the	Android	App.	

The	beacons	are	constantly	broadcasting	Bluetooth	Low	Energy	signals,	and	the	phone	needs	to	

scan	them.		

SIP	(Session	Initiation	Protocol)	

SIP	[3]	is	an	application-layer	control	(signaling)	protocol	for	creating,	modifying,	and	terminating	

sessions	with	one	or	more	participants.	SIP	uses	different	type	of	messages.	The	invitations	are	

used	to	create	sessions.	They	carry	session	descriptions	that	allow	participants	to	agree	on	some	

parameters.	

SIP	makes	use	of	elements	called	proxy	servers	to	help	route	requests	to	the	user's	location	and	

authentication	and	authorization	of	users,	among	others.	

SIP	also	provides	a	registration	function	that	allows	users	to	upload	their	current	locations	for	use	

by	proxy	servers.	

Once	the	user	 is	registered,	the	messages	that	are	exchanged	between	the	two	parts	(and	the	

proxies	in	between	them)	are	shown	in	Figure	1:	

	 	 IIT	

	 	 13	

	

Figure	1:	SIP	Messages	flow	of		a	call	[4]	

The	format	of	the	SIP	URI	(which	is	the	resource	that	identifies	the	user,	and	goes	in	the	messages)	

is	the	following:	sip:alice@atlanta.com.	

Within	this	project,	SIP	is	the	protocol	that	is	used	to	establish	the	calls	between	the	calling	device	

and	the	PSAP	which	is	answering	the	call.	The	SIP	call	will	be	routed	through	the	ESInet	to	the	

nearest	PSAP,	depending	on	the	location,	that	is	inserted	in	the	INVITE	message.		

HTTP	(HyperText	Transfer	Protocol)	

The	Hypertext	Transfer	Protocol	(HTTP)	[5]	is	an	application-level	generic,	stateless	protocol	which	

can	 be	 used	 for	 many	 tasks	 through	 the	 extension	 of	 its	 request	 methods,	 error	 codes	 and	

headers.	HTTP	requests	are	messages	sent	by	the	client	to	initiate	an	action	on	the	server.	HTTP	

Response	is	the	message	that	the	server	sends	back	to	the	client,	answering	to	the	HTTP	Request.		

HTTP	defines	methods	to	indicate	the	desired	action	to	be	performed	on	the	identified	resource.	

The	main	methods	of	HTTP	are	the	following:	

• GET:	requests	a	representation	of	the	specified	resource.	Requests	using	GET	should	only	

retrieve	data,	but	some	parameters	can	be	specified	in	the	URL.		

• POST:	 requests	 that	 the	 server	 accept	 the	 entity	 enclosed	 in	 the	 request	 as	 a	 new	

subordinate	of	the	web	resource	identified	by	the	URI.	The	actual	function	performed	by	

	 	 IIT	

	 	 14	

the	POST	method	is	determined	by	the	server	and	is	usually	dependent	on	the	Request-

URI.	

• PUT:	requests	that	the	enclosed	entity	be	stored	under	the	supplied	URI.	If	the	URI	refers	

to	an	already	existing	 resource,	 it	 is	modified;	 if	 the	URI	does	not	point	 to	an	existing	

resource,	then	the	server	can	create	the	resource	with	that	URI.	

• DELETE:	requests	that	the	specified	resource	is	deleted.		

Within	this	project,	HTTP	will	be	used	to	perform	a	GET	Request.	The	mobile	device	will	make	a	

HTTP	GET	Request	to	the	BOSSA	Platform	API,	including	a	list	of	beacons	in	JSON	format,	in	order	

to	obtain	the	indoor	location.	The	location	server	of	the	BOSSA	Platform	will	answer	with	an	HTTP	

Response,	which	contains	the	indoor	location	in	XML	format.	

JSON (JavScript Objetct Notation)

JavaScript	Object	Notation	(JSON)	[16]	is	a	text	format	for	the	serialization	of	structured	data.	It	is	

derived	 from	the	object	 literals	of	 JavaScript.	 It	defines	a	 small	 set	of	 formatting	 rules	 for	 the	

portable	representation	of	structured	data.	An	example	of	JSON	is	the	following:	

{
 "name":"John",
 "age":30,
 "car":null
}

XML (eXtensible Markup Language)

Extensible	Markup	 Language	 (XML)	 [17]	 is	 a	 markup	 language	 that	 defines	 a	 set	 of	 rules	 for	

encoding	 documents	 in	 a	 format	 that	 is	 both	 human-readable	 and	 machine-readable.	 It	 is	 a	

textual	data	format	with	strong	support	via	Unicode	for	different	human	languages.	An	example	

of	XML	is	the	following:		

<note>
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
</note>

	

	 	

	 	 IIT	

	 	 15	

Next	Generation	911	

In	this	paper,	the	Next	Generation	911	system	will	be	described,	explaining	the	different	modules	

that	are	used	to	provide	an	accurate	indoor	location.	Besides,	the	NG911-Indoor-Location	Android	

App	will	be	described	in	more	detail.		

Next	Generation	911	Introduction	

Nowadays,	technology	brings	us	the	opportunity	to	improve	the	emergency	systems	and	make	

them	more	efficient.	A	part	of	this	improvement	comes	from	providing	an	accurate	location	of	

the	caller	when	calling	911.	This	has	a	double	purpose.		

• First	 of	 all,	 the	 location	 is	 used	 to	 route	 the	 call	 to	 the	 closest	 PSAP	 (Public	 Safety	

Answering	Point)	to	the	caller.		

• The	second	one	is	to	provide	a	very	accurate	indoor	location	for	the	dispatcher	and	first	

responder	in	order	to	find	the	person.		

For	this	purpose	to	be	achieved,	a	way	to	provide	the	accurate	location	is	needed.	This	system	is	

divided	 in	4	main	quadrants,	 shown	 in	Figure	2.	The	 top-left	quadrant	 represents	 the	array	of	

Bluetooth	LE	beacons.	The	top-right	quadrant	represents	the	Location	server	and	database,	used	

to	 provide	 the	 indoor	 location.	 These	 2	 quadrants	 form	 the	 BOSSA	 Platform.	 The	 bottom-left	

quadrant	represents	the	Bluetooth	Indoor	Location	Android	App,	which	is	the	one	that	the	caller	

will	use	to	call	911.	Finally,	the	bottom-right	quadrant	represents	the	ESInet	(Emergency	Services	

IP	backbone	Network).		

	 	 IIT	

	 	 16	

	

Figure	2:	Indoor	Location	System	

• First	of	all,	the	user	presses	“Call	911”	in	an	Android	App	running	on	a	mobile	device.	In	

this	moment,	 the	mobile	device	scans	 for	Bluetooth	signals	 from	the	Beacons	that	are	

close	to	it.	The	mobile	app	receives	a	set	of	beacons	IDs.	

• Then,	the	mobile	app	makes	an	HTTP	GET	Request	to	the	BOSSA	Platform.	It	sends	a	list	

of	beacons	 IDs	and	their	RSSI	 (Received	Signal	Strength	 Indicator)	 in	 JSON	format.	The	

location	server	of	the	BOSSA	Platform	answers	with	the	indoor	location	that	corresponds	

to	that	list	of	coordinates.	This	is	given	in	XML	Format	and	contains	the	address	and	the	

indoor	location	(Building,	Floor,	Room	and	x,	y	coordinates).		

• The	mobile	app	inserts	this	XML	indoor	location	in	the	MIME	Body	of	the	SIP	INVITE,	and	

sends	it	to	the	ESInet	(Emergency	Services	IP	Network).		

• This	call	is	routed	across	the	ESInet	to	the	nearest	PSAP,	basing	on	the	address	contained	

in	the	SIP	INVITE.	

	 	 IIT	

	 	 17	

Next	Generation	911	Components	

The	four	principal	components	that	are	part	of	this	project	are	the	following:	

An Array of BLE Beacons and Gateways

In	each	building,	there	is	a	group	of	beacons	and	gateways.		

• The	 BLE	 beacons	 (AXA/RUUVI)	 are	 Bluetooth	 Low	 Energy	 devices.	 They	 are	 clustered	

around	gateways.	They	have	two	functions:		

o They	are	used	to	determine	the	indoor	location.	They	emit	Bluetooth	signals	with	

their	ID,	so	that	the	calling	phone	will	receive	a	list	of	ID	and	their	RSSI.	This	will	

be	used	 to	determine	 the	 indoor	 location	of	 the	caller	by	querying	 the	BOSSA	

platform.		

o They	are	also	used	to	send	information	about	the	environment	conditions	to	the	

gateways.	

• The	gateways	(RedBear)	have	Bluetooth	and	Wi-Fi.	They	are	used	for	configuration	and	

monitoring	of	 the	beacons.	They	 interact	with	the	beacons	via	Bluetooth	and	with	the	

database	via	Wi-Fi.	Each	gateway	is	responsible	for	the	beacons	that	have	been	assigned	

to	them.	They	do	the	following:	

o Collect	the	temperature	and	humidity	of	the	beacons.	

o Send	 the	 temperature	 and	humidity	 reported	by	 the	beacons	 to	 the	database	

periodically,	and	their	battery	level	(of	the	gateways).	This	information	is	not	sent	

directly	to	the	database,	but	through	the	Particle	Cloud.		

These	devices	are	located	in	Stuart	Building	and	Alumni	Memorial	Hall.	A	map	of	the	beacons	and	

gateways	can	be	seen	by	logging	into	http://rtcmaps.herokuapp.com/login.	The	Figure	3	shows	

the	map	of	the	first	floor	of	Stuart	Building.	Clicking	on	the	blue	circles	(beacons)	or	red	circles	

(gateways),	some	information	about	them	can	be	seen.	

	

	 	 IIT	

	 	 18	

	

Figure	3:	BLE	Beacons	and	gateways	map	in	Stuart	Building	

A Database and Backend Server

These	components	are	located	remotely	on	an	Amazon	Web	Services	(AWS)	site.	

• The	database	will	be	used	in	2	different	cases.		

o On	 one	 hand,	 it	 will	 be	 used	 to	 determine	 the	 indoor	 location,	 as	 it	 has	 the	

physical	location	of	the	beacons.		

o On	the	other	hand,	it	will	be	used	to	store	other	information	about	the	beacons,	

collected	by	the	gateways,	like	temperature	and	humidity.	

	

Figure	4:	Stored	data	about	the	beacons	in	JSON	Format	

	 	 IIT	

	 	 19	

• The	 backend	 server	 hosts	 a	 number	 of	 API's	 that	 enable	 developers	 to	 easily	 extract	

information	from	the	database	and	to	process	that	information	to	produce	useful	results.		

o One	 of	 the	 important	 roles	 of	 this	 server	 is	 to	 provide	 the	 indoor	 location.	 It	

queries	for	the	physical	location	of	each	of	the	beacons	in	the	received	list	and	

then	performs	an	algorithm	to	calculate	the	indoor	location	of	the	caller.	

Mobile device Applications

There	are	3	main	applications	used	in	this	project:	

• End	user	 application:	 this	 is	 the	 android	 application	 that	 the	 caller	will	 use	 in	 case	of	

emergency.	When	the	user	presses	“call	911”,	 the	app	scans	for	Bluetooth	signals	and	

receives	some	from	the	beacons	nearby.	Each	signal	contains	the	ID	of	the	beacon.	Then,	

the	 app	 sends	 a	 list	 of	 {ID,RSSI}	 to	 the	API,	which	 queries	 the	 database	 to	 obtain	 the	

physical	locations	of	the	beacons	and,	after	performing	a	location	algorithm,	answers	with	

the	indoor	location	of	the	caller	(in	XML	format).	Finally,	the	app	includes	this	location	in	

the	MIME	Body	of	the	SIP	INVITE,	which	will	be	sent	to	the	ESInet,	in	order	to	be	routed	

to	the	nearest	PSAP.	This	app	will	be	explained	with	further	detail	in	this	document.		

o The	current	state	of	the	application	can	be	seen	in	GitHub	[9].		

	

Figure	5:	User	Application	home	screen	

	 	 IIT	

	 	 20	

• Tester	application:	this	app	allows	a	tester	to	generate	data	sets	in	different	locations	of	

a	building.	The	data	 is	collected	and	stored,	 in	order	 to	be	used	 for	analysis	purposes,	

failures’	detection	and	location	algorithms’	improvements.	

o The	current	state	of	the	application	can	be	seen	in	GitHub	[14].	

	

Figure	6:	Tester	Application	Home	screen	

• Operations	applications:	 these	were	built	to	help	Operations	and	Support	teams	learn	

the	 battery	 level	 of	 the	 gateways	 and	 the	 temperature	 and	 humidity	 sensed	 by	 the	

beacons.	

Emergency Services IP Network

The	ESInet	is	the	network	that	will	be	routing	the	calls	from	the	user	to	the	corresponding	PSAP.	

This	network	has	got	the	components	that	are	shown	in	Figure	7:	

	 	 IIT	

	 	 21	

	

Figure	7:	ESInet	complete	architecture	

This	is	the	complete	architecture,	which	is	followed	when	the	call	is	made	from	the	SIP	C	(as	in	

the	RTC	Lab),	but	when	we	make	the	call	from	the	android	app	in	a	mobile	device,	as	described	in	

this	document,	the	call	goes	directly	from	the	mobile	app	to	the	SBC,	in	which	it	is	registered.	

When	the	call	is	made	from	the	app	and	it	goes	into	the	ESInet,	it	performs	the	following	steps:	

• To	enter	the	ESInet,	the	call	goes	through	the	BCF/SBC,	which	sits	between	the	external	

networks	and	the	ESInet.		

• The	SBC	forwards	the	call	to	the	ESRP.	

• To	be	able	to	forward	the	call	to	the	corresponding	PSAP,	the	ESRP	has	to	query	the	ECRF	

(LOST2),	which	will	respond	with	the	PSAP	to	which	the	call	has	to	be	forwarded.	

• Then	the	ESRP	forwards	the	call	to	the	PSAP	that	the	ECRF	has	answered,	which	is	the	one	

that	corresponds	with	the	caller’s	location.		

When	the	call	is	made	from	the	SIP-C,	it	performs	the	following	steps:	

	 	 IIT	

	 	 22	

• The	SIP-C	routes	the	call	to	the	SIP-D	(sends	the	SIP	INVITE).	

• The	SIP-D	queries	the	Lost1	server	to	obtain	the	address	of	the	SBC.	

• The	SBC	forwards	the	SIP	INVITE	to	the	ESRP.		

• From	here	onwards,	the	steps	are	the	same	as	in	the	previous	case.	

The	main	functions	will	be	now	described:	

SBC (Session Border Control)

The	SBC	(Session	Border	Control),	is	an	element	of	the	BCF	(Border	Control	Function).	It	controls	

the	borders	to	resolve	problems	such	as	NAT	(Network	Address	Translation)	or	firewall	traversal.	

Among	the	main	functions	of	the	SBC,	the	most	important	ones	are	the	following:	

• Identification	of	emergency	calls	and	priority	handling	for	their	IP	flows.		

• Management	of	priority	marking	based	on	policy	for	emergency	calls.	

• Forwarding	of	an	emergency	call	to	an	ESRP.	

• To	 make	 an	 emergency	 call	 from	 the	 external	 network,	 the	 session	 agent	 has	 to	 be	

registered	in	the	SBC	to	be	able	to	enter	the	ESInet.		

o To	 register	 a	 Session	Agent	 (Appendix	B:	 SBC:	Manage	 Session	Agents),	 the	 IP	

Address	 needs	 to	 be	 provided,	 so	 any	 SIP	 User	 Agent	 using	 this	 IP	 Address	 is	

registered	in	the	SBC.	For	example,	if	the	Session	Agent	64.131.109.30	has	been	

registered,	the	SIP	User	Agent	android2@64.131.109.30	will	be	able	to	establish	

a	SIP	call.	

ESRP (Emergency Service Routing Proxy)

The	function	of	the	ESRP	is	to	route	a	call	to	the	next	hop.	It	receives	the	call	from	the	SBC	and	

has	to	forward	it	to	the	PSAP.	To	be	able	to	know	to	which	PSAP	it	has	to	forward	the	call,	it	needs	

to	make	a	query	to	the	ECRF.	It	sends	the	location	of	the	caller	and	the	ECRF	responds	with	the	

URI	of	the	PSAP	to	which	it	has	to	forward	the	call.	

ECRF (Emergency Call Routing Function)

The	ECRF	is	the	functional	element	which	is	responsible	for	providing	routing	information	to	the	

various	querying	entities.	 It	 is	queried	using	 the	LoST	Protocol	 (Location	to	Service	Translation	

Protocol).		

	 	 IIT	

	 	 23	

The	ECRF	gets	as	an	input	from	the	ESRP:		

• the	location	information	(either	civic	address	or	geocoordinates)	

• a	Service	URN	

It	performs	a	mapping	function	which	gives	as	a	result	the	URI	which	is	used	to	forward	the	call	

to	the	appropriate	PSAP.	Depending	on	the	request,	the	response	may	identify	the	PSAP	or	the	

ESRP.	In	addition,	the	ECRF	provides	the	capability	to	retrieve	other	location	related	URIs,	such	as	

Additional	Data	URIs.		

The	ECRF	will	decide	which	PSAP	to	forward	the	call	to,	basing	on	the	information	received	in	the	

PIDF-LO,	in	particular,	checking	the	a1	and	a2	fields	in	the	PIDF-LO.	

<ca:A1>IL</ca:A1>
<ca:A2>Chicago</ca:A2>

Then,	it	will	check	which	PSAP	is	associated	to	that	location	in	the	Lost2	table	that	corresponds	to	

the	US	and	send	this	information	to	the	ESRP.	Some	examples	of	the	current	PSAPs	that	appear	

in	this	database	can	be	seen	in	Figure	8.			

	

Figure	8:	PSAPs	in	the	Lost2	table	in	the	ECRF	

		

	 	 IIT	

	 	 24	

NG911-Indoor-Location	Android	App	

Requirements	

This	project	consists	of	the	development	of	an	Android	App	for	the	NG911	system.	This	app	will	

be	used	to	call	911,	providing	the	indoor	location	of	the	person	that	is	calling.	This	app	will	perform	

the	following	tasks:	

• R1:	The	app	should	be	able	to	scan	for	Bluetooth	signals	nearby.	

• R2:	The	app	should	be	able	to	detect	the	signals	of	the	beacons	that	are	in	the	range	of	

the	device.	

• R3:	The	app	should	be	able	to	convert	this	list	of	beacons	to	JSON	format.	

• R4:	 The	 app	 should	 be	 able	 to	 query	 the	 BOSSA	 Platform	 API,	 sending	 the	 detected	

beacons.		

• R5:	The	app	should	be	able	 to	obtain	 the	 response	 from	the	BOSSA	Platform	with	 the	

indoor	location	in	XML	format.		

• R6:	The	app	should	be	able	to	create	the	SIP	message,	inserting	the	indoor	location.	

• R7:	The	app	should	be	able	to	send	the	SIP	INVITE	message	with	the	indoor	location	to	

the	ESInet.		

Physical	architecture	

The	Figure	9	shows	the	physical	architecture	of	the	NG911	system:	

	 	 IIT	

	 	 25	

	

Figure	9:	Physical	architecture	of	the	NG911	System	

Calling device

The	device	from	which	the	user	performs	the	NG911	Call	is	an	Android	device.	It	needs	to	have	at	

least	Android	5.1	(which	corresponds	to	SDK	version	22).		

Bluetooth LE Beacons Array

The	Bluetooth	beacons	that	are	used	in	this	project	are	currently	AXA	Beacons.	These	devices	are	

Low	Energy.	They	only	broadcast	their	ID,	which	will	be	scanned	by	the	calling	device.		

	

Figure	10:	AXA	Beacons	

The	 communication	 between	 the	mobile	 device	 and	 the	 beacons	 is	 performed	 by	 the	 use	 of	

Bluetooth.		

	 	 IIT	

	 	 26	

BOSSA Platform Location Server and Database

These	are	stored	in	AWS	(Amazon	Web	Services).	The	hosting	is	done	by	the	use	of	a	middleware	

called	Sails.js,	which	uses	Node.js	for	the	server.	This	is	where	the	API	is.		

The	communication	between	 the	calling	device	and	 the	BOSSA	Platform	 location	 server	API	 is	

performed	by	the	use	of	HTTP	between	the	device	and	the	API.	The	device	sends	an	HTTP	GET	

Request	to	the	API.	The	GET	request	includes	the	JSON	object	that	describes	the	data	gathered	by	

the	phone	application.	The	API	takes	the	information	in	the	object	and	uses	it	as	input	to	database	

queries	 and	 location	 algorithms.	 The	 resulting	 location	 information	 is	 sent	 back	 to	 the	 phone	

application	by	the	API	in	XML	format.			

ESInet

The	ESInet	consists	of	a	set	of	servers	that	are	currently	located	on	the	main	campus	of	IIT	(Illinois	

Institute	of	Technology),	in	the	RTC	(Real	Time	Communications)	Lab.	Some	of	them	are	servers	

and	some	others	are	virtual	machines	in	an	ESXi	host.	These	ones	are	the	Micro	Automation	PSAP,	

the	 Lost1,	 the	 ECRF	 (Lost2),	 the	 DNS	 server	 and	 a	 windows	 7	 Virtual	 Machine	 which	 runs	

Wireshark.	

	

Figure	11:	SIP-C.	Laptop	in	the	IIT	RTC	Lab	

	 	 IIT	

	 	 27	

	

Figure	12:	SIP-D.	Server	in	the	IIT	RTC	Lab	

	

Figure	13:	SBC.	Server	in	the	IIT	RTC	Lab	

	

Figure	14:	ESRP.	Server	in	the	IIT	RTC	Lab	

	 	 IIT	

	 	 28	

	

Figure	15:	ESXI	host.	Server	in	the	IIT	RTC	Lab.		

There	are	also	2	PSAPs	in	the	IIT	RTC	Lab:		

• Chicago	PSAP:	Columbia	PSAP	(developed	in	the	university	of	Columbia)	

• Chicago	South	PSAP:	MicroAutomation	PSAP	

	

Figure	16:	Columbia	PSAP	(server	in	the	IIT	RTC	Lab)	

	 	 IIT	

	 	 29	

	

Figure	17:	Micro	Automation	PSAP	(VM	in	the	ESXi	host)	

The	communication	between	the	calling	device	and	the	ESInet	is	performed	by	the	use	of	SIP.	A	

call	is	established	between	the	calling	device	and	the	PSAP.	This	call	goes	through	the	ESInet.		

Logical	Architecture	

An	Android	App	has	been	developed,	in	order	to	be	able	to	establish	a	call	in	which	the	indoor	

location	is	sent.	Figure	18	shows	the	main	four	Functional	Units	of	the	logical	architecture	of	the	

NG911	 Indoor	 Location	 system.	 The	 top-left	 quadrant	 represents	 the	 array	 of	 Bluetooth	 LE	

beacons.	The	top-right	quadrant	represents	the	Location	server	and	database,	used	to	provide	

the	 indoor	 location.	 These	 2	 quadrants	 form	 the	 BOSSA	 Platform.	 The	 bottom-left	 quadrant	

represents	the	Bluetooth	Indoor	Location	Android	App,	which	is	the	one	that	the	caller	will	use	to	

call	 911.	 Finally,	 the	 bottom-right	 quadrant	 represents	 the	 ESInet	 (Emergency	 Services	 IP	

backbone	Network).		

	 	 IIT	

	 	 30	

	

Figure	18:	Indoor	Location	System	logical	architecture:	Bluetooth	array	(top	left),	BOSSA	Platform	(top	right),	Android	
App	(bottom	left)	and	ESInet	(bottom	right)	

Android	App	Steps	

The	android	app	is	divided	in	3	main	steps:	

• When	the	Call	911	button	is	pressed,	the	first	step	will	be	to	scan	for	Bluetooth	signals.	It	

will	 receive	some	 from	the	beacons	nearby.	Each	signal	 contains	 the	 ID	of	 the	beacon	

[quadrant	top	left].	

• Then,	the	app	will	convert	the	list	of	beacons	to	the	required	JSON	format	that	has	to	be	

inserted	in	the	URL.	It	will	query	the	BOSSA	Platform	with	this	API,	sending	a	list	of	{ID,	

RSSI}.	 The	 BOSSA	 Platform	will	 answer	with	 the	 indoor	 location	 of	 the	 caller	 (in	 XML	

format)	[quadrant	top	right].	

• Finally,	the	app	will	insert	the	indoor	location	in	the	MIME	Body	of	the	SIP	INVITE,	which	

will	be	sent	to	the	ESInet,	in	order	to	be	routed	to	the	nearest	PSAP	[quadrant	bottom	

right].	

	 	 IIT	

	 	 31	

The	steps	that	the	android	app	performs	to	be	able	to	establish	a	call	and	send	the	indoor	location	

will	be	now	explained	in	detail.	

First	of	all,	the	user	will	press	the	911	CALL	button	to	start	this	process.	

Beacons scanning

The	first	step	when	the	user	has	started	the	process	is	to	scan	for	beacons	in	the	area.	This	will	be	

done	by	the	use	of	the	Android	Beacon	Library	[11].	Two	classes	have	been	created	for	the	use	of	

the	beacons:		the	classes	IBeacon	and	IBeaconScanner.		

The	IBeacon	class	defines	the	Beacon	object.	It	contains	the	parameters	that	will	be	necessary	to	

obtain	the	indoor	location.	The	main	attributes	that	define	a	beacon	are	the	following:	

• UUID	(Universally	Unique	Identifier):	The	purpose	of	the	ID	is	to	distinguish	beacons	in	

one	network,	from	all	the	beacons	in	other	networks.	All	the	beacons	in	the	network	will	

have	the	same	UUID.	

• Major,	Minor:	 these	 values	are	used	 to	 identify	one	 single	beacon.	 They	are	 values	 in	

between	0	and	65535.		

• RSSI	 (Received	 Signal	 Strength	 Indicator):	 This	 is	 not	 a	 parameter	 that	 the	 beacon	

broadcasts,	 but	 the	 strength	of	 the	 signal	 received	 from	 the	beacon,	measured	 in	 the	

Android	device.		

The	IBeaconScanner	is	the	class	that	will	contain	the	logic	to	perform	the	scanning	of	the	beacons.	

First,	 an	 object	 of	 this	 class	 will	 be	 created,	 specifying	 the	 period	 in	 between	measures.	 0.5	

seconds	will	be	the	period	used	in	this	app.	There	is	an	attribute	in	the	IBeaconScanner	class	in	

which	this	period	is	stored	when	the	object	of	this	class	is	created.	The	attribute	is	called	period.	

This	parameter	has	been	hardcoded.		

testCase = new IBeaconScanner(this, .5);

Where	“this”	represents	the	Activity	from	where	the	call	 is	made	(CallActivity).	Then,	the	start	

method	 will	 be	 called,	 indicating	 the	 duration	 of	 the	 scanning	 (in	 seconds),	 which	 has	 been	

hardcoded	too.		

testCase.start(5);

During	the	scanning,	all	the	detected	beacons	will	be	saved	in	the	class	IBeaconScanner,	in	a	list	

of	objects	of	the	class	IBeacon.	When	the	scanning	has	ended,	the	stop()	function	will	be	called.	

	 	 IIT	

	 	 32	

This	function	will	perform	the	http	request	that	follows	the	beacon	scanning	and	that	will	be	now	

explained.	

An	example	of	the	detected	list	of	beacons	is	the	following:	

[IBeacon{rssi=-91, major=1000, minor=575, uuid='fda50693-a4e2-4fb1-afcf-c6eb07647825'},
IBeacon{rssi=-84, major=1000, minor=539, uuid='fda50693-a4e2-4fb1-afcf-c6eb07647825'},
IBeacon{rssi=-91, major=1000, minor=515, uuid='fda50693-a4e2-4fb1-afcf-c6eb07647825'},
IBeacon{rssi=-94, major=1000, minor=575, uuid='fda50693-a4e2-4fb1-afcf-c6eb07647825'},
IBeacon{rssi=-91, major=1000, minor=515, uuid='fda50693-a4e2-4fb1-afcf-c6eb07647825'},
IBeacon{rssi=-92, major=1000, minor=515, uuid='fda50693-a4e2-4fb1-afcf-c6eb07647825'},
IBeacon{rssi=-85, major=1000, minor=552, uuid='fda50693-a4e2-4fb1-afcf-c6eb07647825'}]

For	this	part	of	the	app	to	be	developed,	a	simple	app	has	been	created.	This	one	only	performs	

the	beacon	scanning	and	the	HTTP	Request	to	the	API.	It	can	be	found	in	GitHub	[15].	

For	this	part	of	the	project	to	work,	the	Bluetooth	permission	has	to	be	activated.	This	is	because	

it	has	to	be	specified	 in	the	app	that	 it	will	need	to	make	use	of	the	Bluetooth	antenna	of	the	

phone.		

BOSSA Platform API HTTP Request

Once	the	mobile	app	has	got	a	list	of	beacons	available,	it	will	be	able	to	perform	the	HTTP	GET	

Request	to	the	API.	This	list	is	in	the	format	of	a	list	of	objects	of	the	class	IBeacon.	For	the	API	to	

calculate	the	indoor	location,	a	list	of	beacons	in	JSON	format	is	needed.		

The	app	contains	a	class	called	Json,	that	will	be	used	to	convert	the	list	of	beacons	to	the	correct	

format	required	by	the	API.	The	URL	used	to	make	the	HTTP	Request	to	the	API	has	the	following	

format:	

baseUrl?json[]={jsonObject1}&json[]={jsonObject2}&...&json[]={jsonObjectN}&algorithm=1

Where	the	base	URL	is	https://api.iitrtclab.com/indoorlocation/xml?.	Each	JSON	beacon	will	be	

inserted	in	the	following	format:	

json[]={jsonObject1}

The	JSON	objects	are	separated	by	“&”	between	them	and	separated	by	“?”	from	the	base	URL.	

Each	JSON	object	has	the	following	format:	

{"major":<major>,"minor":<minor>,"rssi":<rssi>}

An	example	of	a	complete	URL	is	the	following:	

	 	 IIT	

	 	 33	

https://api.iitrtclab.com/indoorlocation/xml?json[]={"major":1000,"minor":575,"rssi":-
91}&json[]={"major":1000,"minor":539,"rssi":-
84}&json[]={"major":1000,"minor":515,"rssi":-
91}&json[]={"major":1000,"minor":575,"rssi":-
94}&json[]={"major":1000,"minor":515,"rssi":-
91}&json[]={"major":1000,"minor":515,"rssi":-92}&json[]={"major":1000,"minor":552
,"rssi":-85}&algorithim=1

The	HTTP	GET	Request	will	be	performed	by	the	use	of	the	class	HttpGetRequestTask.	This	class	

performs	 a	 simple	 HTTP	GET	 Request	 and	 returns	 the	 response.	 The	 response	 comes	 in	 XML	

Format.	The	format	of	the	response	can	be	seen	in	the	following	example:	

<presence>
 <tuple>
 <status>
 <gp:geopriv>
 <gp:location-info>
 <ca:civicAddress>
 <ca:country>US</ca:countr y>
 <ca:A1>IL</ca:A1>
 <ca:A2>Chicago</ca:A2>
 <ca:A6>31st</ca:A6>
 <ca:PRD>W</ca:PRD>
 <ca:STS>St</ca :STS>
 <ca:HNO>10</ca:HNO>
 <ca:FLR>1</ca:FLR>
 <ca:x>19.247809719012466</ca:x>
 <ca:y>20.38418379 3285832</ca:y>
 </ca:civicAddress>
 </gp:location-info>
 </gp:geopriv>
 <timestamp>2019-04-24T22:35:11.4 01Z</timestamp>
 </status>
 </tuple>
</presence>

As	it	can	be	observed,	the	answer	provides	the	country,	state,	city,	address,	floor,	x	and	y.		

For	this	part	of	the	project	to	work,	the	internet	permission	has	to	be	activated	in	the	app.	This	

allows	the	app	to	connect	to	the	internet	and	send	or	receive	information.		

Establish SIP Call through the ESInet

Finally,	once,	the	app	has	got	the	indoor	location	available,	it	will	have	to	insert	it	in	the	SIP	INVITE	

message	and	establish	the	call.	For	the	call	to	be	established,	the	calling	device	has	to	send	a	SIP	

INVITE	 into	 the	 ESInet.	 The	 application	has	 to	 be	 registered	with	 the	 ESInet.	 	 In	 our	 case,	we	

register	the	application	with	the	Session	Border	Controller	(SBC)	at	the	edge	of	the	ESInet.		

	 	 IIT	

	 	 34	

Before	sending	the	SIP	INVITE,	the	app	will	insert	the	indoor	location	into	the	MIME	Body	of	the	

message.	The	app	will	make	use	of	two	classes	that	have	been	created	to	insert	indoor	location	in	

the	MIME	message	of	the	SIP	INVITE:	MIMEpart	and	MIMEmessage.	

• MIMEpart	 will	 define	 a	 part	 of	 the	 message.	 It	 will	 include	 the	 content	 and	 some	

parameters	that	describe	the	content.	

• MIMEmessage	will	include	all	the	parts	of	the	class	MIMEpart,	separated	by	boundaries.	

This	will	be	inserted	in	the	SIP	INVITE.	

The	class	NG911MessageFactory	has	been	created	 in	order	to	create	the	SIP	 INVITE.	This	class	

contains	a	method	called	createInviteNG911.	The	parts	that	will	be	inserted	in	the	SIP	INVITE	are	

the	SDP	(Session	Description	Protocol)	message	and	the	indoor	location.	This	will	be	done	in	the	

method	createInviteNG911	of	this	class.		

The	Sipdroid	[12]	class	is	the	main	activity	of	the	Sipdroid	App.	Once	executed,	it	will	start	the	911	

SIP	call.	This	class	is	part	of	the	Sipdroid	Library,	and	will	interact	with	other	Sipdroid	classes	in	

order	to	establish	the	SIP	Call.	

	 	 IIT	

	 	 35	

					 	

Figure	19:	NG911	Created	classes	(left)	and	main	Sipdroid	classes	(right)	

Ladder	diagram	of	a	call	

The	 ladder	diagram	of	a	call	shows	the	points	through	which	the	call	 travels.	This	diagram	has	

been	taken	out	of	a	Wireshark	trace	corresponding	to	a	call	established	in	the	lab,	so	instead	of	

having	a	mobile	device	calling,	the	call	is	established	from	the	SIP-C.	

The	diagram	in	Figure	20	has	been	obtained	from	a	Wireshark	trace.		

	

	 	 IIT	

	 	 36	

	

Figure	20:	Ladder	diagram	of	a	NG911	call	from	the	SIP-C.	

The	steps	are	the	following:	

• The	SIP-D	send	a	SIP	INVITE	to	the	SIP-D.		

• The	SIP-D	queries	the	LOST1	server	to	be	able	to	know	the	address	of	the	SBC.		

• The	LOST1	answers	with	the	address	of	the	SBC.		

• The	SIP-D	answers	with	a	100	Trying	message	and	forwards	the	SIP	INVITE	to	the	SBC.		

• The	SBC	answers	with	a	100	Trying	message	and	forwards	the	SIP	INVITE	to	the	ESRP.		

• The	ESRP	queries	the	LOST2,	in	order	to	discover	the	address	of	the	nearest	PSAP.		

• The	LOST2	takes	a	look	at	the	a1	and	a2	parameters	of	the	location,	and	answers	with	the	

address	of	the	PSAP	that	corresponds	to	them.	

• The	ESRP	answers	with	a	100	Trying	message	and	forwards	the	SIP	INVITE	to	the	indicated	

PSAP.	

• The	PSAP	answers	with	a	100	Trying	message	and	forwards	the	SIP	INVITE	to	a	call	taker.		

• The	call	taker	answers	with	a	100	Trying	message.		

• When	the	call	taker	answers	the	phone,	it	sends	180	Trying	message	to	the	PSAP,	which	

will	forward	it	in	the	same	order	as	the	SIP	INVITE	was	forwarded	but	inverted.	

• The	same	happens	with	the	200	OK	message	from	the	call	taker	to	the	SIP-C.	

• Finally,	the	SIP-C	will	send	an	ACK,	which	will	mean	that	the	call	is	established.		

• RTP	Communication	

	

	

	 	 IIT	

	 	 37	

If	the	call	was	established	from	a	mobile	device,	the	flow	would	be	the	one	shown	in	Figure	21.	

	

Figure	21:	Ladder	diagram	of	a	NG911	call	from	a	phone.	

For	this	to	work,	the	caller	has	to	be	previously	registered	in	the	SBC.		

	 	 IIT	

	 	 38	

Results	

Description	

After	the	app	being	developed,	it	has	been	tested	in	Stuart	Building.	The	flow	of	the	app	is	the	

following:	

When	the	user	opens	the	app,	the	main	screen	is	the	one	shown	in	Figure	22:	

	

Figure	22:	NG911-Indoor-Location	app	Main	Screen.	

This	screen	has	several	options:	

• Settings:	if	the	user	clicks	on	the	three	dots	on	the	top	right	corner,	a	“Settings”	button	

appears	there	and	the	user	can	click	on	settings.	This	will	redirect	the	user	to	the	settings	

screen	(Figure	23).		

	 	 IIT	

	 	 39	

	 	

Figure	23:	NG911-Indoor-Location	app	general	Settings	Screen	(left)	and	SIP	Account	Settings	Screen	(right).	

• Status:	 if	 the	 user	 clicks	 on	 “status”,	 the	 app	 will	 show	 the	 status	 of	 the	 captured	

Bluetooth	signals,	in	a	new	screen	(Figure	24).		

	

	 	 IIT	

	 	 40	

Figure	24:	NG911-Indoor-Location	app	Status	Screen.	

• Info/help:	 if	 the	 user	 clicks	 on	 “info/help”,	 the	 app	will	 show	 a	 screen	with	 different	

information	that	can	be	of	help	to	the	user	in	an	emergency	situation	(Figure	25).	

		

Figure	25:	NG911-Indoor-Location	app	Info/Help	Screens.	

• Call	911:	this	is	the	main	button	of	the	NG911	app.	When	the	user	clicks	on	“CALL	911”,	

the	app	performs	the	process	of	scanning	for	beacons,	getting	the	 indoor	 location	and	

establishing	the	SIP	call.	While	the	app	is	scanning	for	beacons,	it	will	show	a	splash	screen	

(Figure	26).	After	obtaining	the	indoor	location,	it	will	establish	the	SIP	call	and	show	the	

Sipdroid	Call	Screen	(Figure	27).	

	 	 IIT	

	 	 41	

	

Figure	26:	NG911-Indoor-Location	app	Call	Splash	Screen.	

	 	

Figure	27:	NG911-Indoor-Location	app	Sipdroid	Call	Screen,	dialing	(left)	and	call	ended	(right).	

	

	 	 IIT	

	 	 42	

Interpretation	

The	app	performs	the	following	steps	when	“CALL	NG911”	button	is	clicked:	

• In	 the	 case	 that	 the	 app	 doesn’t	 have	 the	 needed	 permissions,	 it	 requests	 for	 the	

permissions	to	the	user.		

• The	app	scans	for	Bluetooth	beacons	signals	and	detects	the	nearby	beacons	correctly.		

• The	app	converts	the	list	of	detected	beacons	with	their	RSSI	to	JSON	objects	in	order	to	

be	inserted	in	the	URL	that	will	be	used	to	make	the	HTTP	request.		

• The	app	creates	a	URL	using	the	JSON	objects	that	represent	the	beacons.	

• The	app	performs	the	HTTP	request	with	this	URL	and	receives	the	indoor	location	that	

corresponds	to	that	spot.	Tests	have	been	performed	in	Stuart	Building	in	order	to	test	

this.	The	floor	has	been	correctly	guessed	and	the	x,	y	coordinates	are	accurate	within	

approximately	5	meters.		

	

Figure	28:	Calculated	indoor	location	in	Stuart	Building	in	comparison	with	real	indoor	location.	

• The	app	starts	the	Sipdroid	activity	after	having	received	the	correct	indoor	location.		

• The	app	generates	the	correct	INVITE	message,	inserting	the	received	indoor	location	in	

the	 correct	 format.	 In	 order	 to	 know	 this,	 a	 comparison	has	 been	made	between	 the	

created	INVITE	message	in	the	NG911	App	and	a	message	captured	with	Wireshark	for	a	

	 	 IIT	

	 	 43	

successful	communication	using	the	Sipdroid	App.	These	messages	can	be	observed	 in	

Appendix	C:	SIP	INVITE	

Apart	 from	 the	 correct	 expected	 behavior	 of	 the	NG911-Indoor-Location	 app,	 there	 has	 been	

some	issues	when	establishing	the	call.		

The	SIP	Account	doesn’t	 get	 correctly	 registered	 in	 the	SBC,	 so	 the	 call	does	not	get	 correctly	

established.	We	have	observed	that	the	call	does	not	even	leave	the	phone,	as	there	are	no	SIP	

messages	coming	from	the	phone	that	we	can	see	in	Wireshark.	This	needs	to	be	examined	for	

future	development	of	the	app.	

Troubleshooting	

Scenario to capture with Wireshark

In	order	to	be	able	to	capture	the	messages	from	the	phone	with	Wireshark,	the	scenario	shown	

in	Figure	29	has	been	setup.		

• The	Android	phone	with	which	the	tests	have	been	done	and	that	has	been	used	in	order	

to	develop	the	app	doesn’t	have	any	SIM	card,	so	it	needs	to	be	connected	to	the	Wi-Fi.	

• Wireshark	is	running	in	a	laptop	(MacOS).	In	order	to	capture	the	traffic	coming	from	the	

Android	phone,	we	need	to	make	it	go	through	the	laptop.	

• For	this	reason,	the	laptop	needs	to	provide	Wi-Fi	to	the	Android	phone,	by	creating	a	Wi-

Fi	network	to	which	the	one	the	Android	phone	will	connect.		

• The	 laptop	 only	 has	 one	Wi-Fi	 interface,	 so	 in	 order	 to	 use	 it	 to	 provide	Wi-Fi	 to	 the	

Android	phone,	it	won’t	be	able	to	get	its	internet	connection	by	connecting	to	a	Wi-Fi	

network	(like	the	Wi-Fi	network	of	a	house,	university…).	

• The	internet	has	to	be	shared	with	the	laptop	using	a	cable.		

• An	 iPhone	with	 LTE	data	has	been	used	 to	provide	 Internet	 connection	 to	 the	 laptop,	

connected	by	a	wire.		

• The	 traffic	 goes	 from	 the	 Android	 phone,	 through	 the	 laptop	 (where	 Wireshark	 is	

running),	through	the	iPhone,	which	is	connected	to	the	Internet	by	LTE	celular	data.	

	 	 IIT	

	 	 44	

	

Figure	29:	Setup	to	capture	the	traffic	of	the	phone	in	Wireshark	(running	in	a	laptop).	

Comparison between NG911 app and Sipdroid app

We	can	perform	a	SIP	call	directly	using	the	Sipdroid	app.	The	difference	between	using	this	and	

using	the	NG911	app	is	that	if	use	the	Sipdroid	app	no	indoor	location	will	be	sent	in	the	SIP	INVITE,	

it	will	only	be	a	SIP	Call.	

Using	 the	 phone,	 several	 calls	 have	 been	 made	 with	 the	 Sipdroid	 app,	 which	 have	 been	

successfully	established.	The	settings	in	order	for	this	to	succeed	are	the	following:	

• Authorization	username:	android2	

• Password:	teamc255	

• Server	or	proxy:	64.131.109.30	

• Domain:	64.131.109.30	

• Username	or	Caller	ID:	caller1	

• Port:	5060	

When	the	call	 is	successfully	established	we	have	2	different	indicators.	First	of	all,	we	can	see	

that	the	dialing	screen	changes	to	“Call	in	progress”	(Figure	30).	Apart	from	this,	we	can	see	the	

call	coming	into	the	Micro	Automation	PSAP	if	we	connect	to	it	(Figure	31).	

	 	 IIT	

	 	 45	

	

Figure	30:	Screenshot	of	Sipdroid	app	when	the	call	is	in	progress.	

	

Figure	31:	Screenshot	of	the	Micro	Automation	where	we	can	see	the	call	coming	in.	

	

	 	 IIT	

	 	 46	

For	Sipdroid,	there	are	2	possible	cases:	

• Call	 gets	 correctly	 established:	 the	 call	 can	be	 seen	 coming	 into	 the	PSAP	and	 the	 SIP	

Messages	captured	in	Wireshark.	

• Call	doesn’t	get	established:	no	SIP	messages	can	be	seen	leaving	the	phone	in	Wireshark.	

This	case	is	the	same	as	when	the	user	tries	to	call	911	using	the	NG911	app.		

	

	

	

	

	 	 IIT	

	 	 47	

Conclusions	and	Future	Development	

The	Android	app	 that	has	been	developed	 in	 this	project,	by	 the	 collaboration	with	 the	other	

modules	(the	array	of	beacons,	the	BOSSA	Platform	and	the	ESInet),	brings	the	emergency	system	

to	a	new	level,	where	by	pressing	a	button,	the	police	can	obtain	a	very	accurate	location	of	a	

person	in	a	building.	By	the	use	of	very	simple	devices	and	technologies,	a	huge	improvement	can	

take	place.	

The	developed	app	is	able	to	combine	different	technologies	and	interact	with	all	modules	of	the	

NG911	system,	performing	the	needed	conversions	between	all	of	them.	It	can	obtain	a	 list	of	

beacons	 that	 are	 near	 the	 phone	 by	 the	 use	 of	 Bluetooth,	 it	 can	 perform	 an	 HTTP	 Request,	

interacting	with	the	BOSSA	Platform	to	obtain	the	indoor	location	and	it	can	establish	a	SIP	call	

through	the	ESInet,	 including	the	 indoor	 location	 in	 it.	This	 lets	the	system	not	only	 locate	the	

caller	in	a	more	accurate	and	easy	way,	but	also	send	the	call	to	the	nearest	PSAP,	so	that	the	

emergency	is	solved	in	the	most	efficient	way.		

This	system	is	moving	forward,	and	can	still	be	improved	in	several	ways.	One	direction	in	which	

the	project	can	be	improved	is	by	providing	the	updated	location	to	the	police,	after	the	call	has	

been	made.	

The	location	algorithm	can	also	be	improved	in	accuracy,	and	also	by	providing	information	such	

as	the	name	of	the	rooms	instead	of	the	x,	y	coordinates.		

This	system	can	be	improved	in	many	ways,	but	it	is	the	base	for	the	future	emergency	system.		

According	to	the	FCC,	more	than	10.000	lives	a	year	could	be	saved	if	the	location	of	a	person	is	

provided	when	calling	911.	

	 	 IIT	

	 	 48	

References	

[1] GuardLlama	Article	on	NG911,	2019	[Online]	Available:	

https://guardllama.com/blogs/news/10-000-lives.	[Accessed	in	2019]	

[2] FCC,	 Wireless	 E911	 Location	 Accuracy	 Requirements,	 2014	 [Online]	 Available:	

https://www.documentcloud.org/documents/2195636-fcc-third-nprm-february-

2014.html#document/.	[Accessed	in	2019]	

[3] RFC	3261:	Session	Initiation	Protocol	(SIP),	2002	[Online]	Available:	

https://tools.ietf.org/html/rfc3261.	[Accessed	in	2019]	

[4] RFC	3665:	Session	Initiation	Protocol	(SIP)	Basic	Call	Flow	Examples,	2003	[Online]	

Available:	https://tools.ietf.org/html/rfc3665.	[Accessed	in	2019]	

[5] RFC	2616:	HyperText	Transfer	Protocol	(HTTP/1.1),	1999	[Online]	Available:	

https://tools.ietf.org/html/rfc2616.	[Accessed	in	2019]	

[6] C.	Davids,	V.	K.	Gurbani,	S.	Loreto	y	R.	Subramanyan,	«Next	Generation	911:	Where	Are	

We?	What	Have	We	Learned?	What	lies	ahead?»	IEEE	Communications	Magazine,	

January	2017.	

[7] C.	Davids,	J.	Moreno	Valdecantos,	B.	Dworak,	C.	Tovar,	B.	Ramaswamy	Nandakumar	and	

M.	Patil,	"Dispatchable	Indoor	Location	for	Mobile	Phones	Calling	for	Emergency	

Services,"	pp.	21-27,	2015.	

[8] C.	Davids,	C.	Davids,	B.	Ramaswamy	Nandakumar,	N.	Okhandiar,	F.	Rois,	C.	Ljazouli	and	

A.	Calle	Murillo,	"Dispatchable	Indoor	Location	System	for	Mobile	Phones	based	on	a	

Bluetooth	Low	Energy	Array,"	IEEE,	pp.	1-8,	2017.	

[9] NG911-Indoor-Location	Android	App	GitHub	Repository,	Carmen	Sirés,	2018	[Online]	

Available:	https://github.com/carmensires/NG-911-Bluetooth-Indoor-Location.	

[10] 	IEEE	802.15.1-2002	-	IEEE	Standard	for	Telecommunications	and	Information	Exchange	

Between	Systems	-	LAN/MAN	-	Specific	Requirements	[Online].	Available:	

https://standards.ieee.org/standard/802_15_1-2002.html	[Accessed	in	2019].	

	 	 IIT	

	 	 49	

[11] 	Android	Beacon	Library	[Online].	Available:	https://github.com/AltBeacon/android-

beacon-library.	[Accessed	in	2019]	

[12] 	Sipdroid	[Online]	Available:	https://github.com/i-p-tel/sipdroid.	[Accessed	in	2019]	

[13] 	Wireshark	trace	for	a	NG911	call	from	the	SIP-C	in	IIT	RTC	Lab,	September	2018	[Online]	

Available:	

https://drive.google.com/file/d/1D6Mt1iVbcmTjAiPcR4f2F4klOvYQNRDZ/view?usp=shar

ing	[Accessed	in	2019]	

[14] 	Test	App	GitHub	Repository,	Luke	Logan,	2018	[Online]	Available:	

https://github.com/lukemartinlogan/TestApp.		

[15] 	Bluetooh	and	HTTP	Test	App	GitHub	Repository,	Carmen	Sirés,	2019	[Online]		

https://github.com/carmensires/Bluetooth_http_TestApp.		

[16] 	RFC	8259:	The	JavaScript	Object	Notation	(JSON)	Data	Interchange	Format,	2017	

[Online].	Available:	https://tools.ietf.org/html/rfc8259.	[Accessed	in	2019]	

[17] 	W3C:	Extensible	Markup	Language,	2008	[Online].	Available:	

https://www.w3.org/TR/xml/.	[Accessed	in	2019]	

	 	 IIT	

	 	 50	

Appendices		

Appendix	A:	NG911-Indoor-Location	Android	App	Code	

The	code	can	be	found	on	the	GitHub	repository	for	the	app	[9].	The	main	files	are	the	following:		

AndroidManifest.xml

The	 android	manifest	 is	 the	 file	 that	 specifies	 the	 configuration	 for	 the	 app.	 It	 describes	 the	

activities	used	by	the	app	and	declares	the	needed	permissions	for	the	app.		

Permissions

 <uses-permission android:name="android.permission.BLUETOOTH" />
 <uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
 <uses-permission android:name="android.permission.CALL_PHONE" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.WRITE_INTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.READ_INTERNAL_STORAGE"/>
 <uses-permission android:name="android.permission.MODIFY_AUDIO_SETTINGS"></uses-
permission>
 <uses-permission android:name="android.permission.RECORD_AUDIO"></uses-permission>
 <uses-permission android:name="android.permission.PROCESS_OUTGOING_CALLS"></uses-
permission>
 <uses-permission android:name="android.permission.WRITE_SETTINGS"></uses-permission>
 <uses-permission android:name="android.permission.READ_PHONE_STATE"></uses-
permission>
 <uses-permission android:name="android.permission.ACCESS_WIFI_STATE"></uses-
permission>
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"></uses-
permission>
 <uses-permission android:name="android.permission.READ_CONTACTS"></uses-permission>
 <uses-permission android:name="android.permission.WRITE_CONTACTS"></uses-permission>
 <uses-permission android:name="android.permission.WAKE_LOCK"></uses-permission>
 <uses-permission android:name="android.permission.DISABLE_KEYGUARD"></uses-
permission>
 <uses-permission android:name="android.permission.CAMERA"></uses-permission>
 <uses-permission android:name="android.permission.VIBRATE" ></uses-permission>
 <uses-permission android:name="android.permission.CHANGE_WIFI_STATE" ></uses-
permission>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" ></uses-
permission>
 <uses-permission android:name="android.permission.GET_ACCOUNTS" ></uses-permission>
 <uses-permission android:name="android.permission.BROADCAST_STICKY" ></uses-
permission>
 <uses-permission android:name="android.permission.READ_CALL_LOG"></uses-permission>
 <uses-permission android:name="android.permission.WRITE_CALL_LOG"></uses-permission>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"></uses-
permission>
 <uses-permission android:name="android.permission.INTERACT_ACROSS_USERS_FULL"></uses-
permission>

	 	 IIT	

	 	 51	

Activities

 <activity
 android:name="com.android.albert.ng911.MainActivity"
 android:label="@string/app_name"
 android:theme="@style/AppTheme.NoActionBar"
 android:launchMode="singleInstance">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 <category android:name="android.intent.category.DEFAULT"/>
 </intent-filter>
 </activity>
 <activity
 android:name="com.android.albert.ng911.CallActivity"
 android:label="@string/main_name"
 android:theme="@style/AppTheme.NoActionBar">
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.android.albert.ng911.MainActivity" />
 </activity>
 <activity
 android:name="com.android.albert.ng911.status"
 android:label="@string/main_name"
 android:theme="@style/AppTheme.NoActionBar">
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.android.albert.ng911.MainActivity" />
 </activity>
 <activity
 android:name=".infoActivity"
 android:label="@string/main_name"
 android:theme="@style/AppTheme.NoActionBar">
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.android.albert.ng911.MainActivity" />
 </activity>
 <activity
 android:name="com.android.albert.ng911.InfoDetail"
 android:label="@string/main_name"
 android:theme="@style/AppTheme.NoActionBar">
 <meta-data
 android:name="android.support.PARENT_ACTIVITY"
 android:value="com.android.albert.ng911.MainActivity" />
 </activity>

	

	 	 IIT	

	 	 52	

MainActivity.java

This	 is	 the	first	activity	that	will	be	shown	when	the	app	 is	opened.	The	function	that	 is	called	

when	the	screen	is	shown	is	the	onCreate()	method.	

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 getSupportActionBar().setDisplayHomeAsUpEnabled(true);
 getSupportActionBar().setLogo(R.drawable.ng911icon2);
 getSupportActionBar().setDisplayUseLogoEnabled(true);
 //Bluetooth turn on
 bluetooth=new BluetoothChecker(getApplicationContext());
 bluetooth.enableBluetooth();
 //turn wifi on
 WifiHelper wfhelper = new WifiHelper(this);
 wfhelper.enableWifi();
 //create views
 bindViews();
 bindButtons();

 fa=this;

 //Show first name of the user
 SharedPreferences SP =
PreferenceManager.getDefaultSharedPreferences(getBaseContext());
 String strFName = SP.getString("fname", "");
 nameView = (TextView) findViewById(R.id.firstname);
 //if registered get from facebook account
 try {
 if (Profile.getCurrentProfile().getFirstName()!="")
 strFName=Profile.getCurrentProfile().getFirstName();
 }catch(Exception e){System.out.println(e);}
 nameView.setText(strFName);
 permissionsCheck();
 }

If	the	user	has	not	granted	the	needed	permissions	before	opening,	he/she	will	be	asked	to	grant	

them	when	opening	the	app.	

 private void permissionsCheck() {
 Log.i("AAAA " + MAIN_ACTIVITY,"checking permissions");
 if (!getPackageManager().hasSystemFeature(PackageManager.FEATURE_BLUETOOTH_LE)) {
 finish();
 }
 if (ContextCompat.checkSelfPermission(this, Manifest.permission.BLUETOOTH) !=
PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.BLUETOOTH},
 1);
 }
 if (ContextCompat.checkSelfPermission(this, Manifest.permission.BLUETOOTH_ADMIN)
!= PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,

	 	 IIT	

	 	 53	

 new String[]{Manifest.permission.BLUETOOTH_ADMIN},
 2);
 }
 if (ContextCompat.checkSelfPermission(this,
Manifest.permission.ACCESS_COARSE_LOCATION) != PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.ACCESS_COARSE_LOCATION},
 3);
 }
 if (ContextCompat.checkSelfPermission(this,
Manifest.permission.ACCESS_FINE_LOCATION) != PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.ACCESS_FINE_LOCATION},
 4);
 }
 if (ContextCompat.checkSelfPermission(this, Manifest.permission.INTERNET) !=
PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.INTERNET},
 5);
 }
 if (ContextCompat.checkSelfPermission(this, Manifest.permission.READ_CALL_LOG) !=
PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.READ_CALL_LOG},
 6);
 }
 if (ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_CALL_LOG)
!= PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.WRITE_CALL_LOG},
 7);
 }
 if (ContextCompat.checkSelfPermission(this,
Manifest.permission.ACCESS_NETWORK_STATE) != PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.ACCESS_NETWORK_STATE},
 7);
 }
 if (ContextCompat.checkSelfPermission(this, Manifest.permission.READ_CONTACTS) !=
PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.READ_CONTACTS},
 7);
 }
 if (ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_CONTACTS)
!= PackageManager.PERMISSION_GRANTED) {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.WRITE_CONTACTS},
 7);
 }
 if (ContextCompat.checkSelfPermission(this, Manifest.permission.WRITE_SETTINGS)
!= PackageManager.PERMISSION_GRANTED) {
 boolean settingsCanWrite = Settings.System.canWrite(MainActivity.this);
 if (!settingsCanWrite) {
 Intent intent = new Intent(Settings.ACTION_MANAGE_WRITE_SETTINGS);
 startActivity(intent);
 }
 } }

	 	 IIT	

	 	 54	

The	MainActivity	has	got	several	buttons	that	can	be	pressed.	Their	listeners	are	the	following:	

public class StartOnClickListener implements View.OnClickListener {

 @Override
 public void onClick(View v) {

 switch (v.getId()) {
 case R.id.callButton:
 Intent intent = new Intent(v.getContext(), CallActivity.class);
 startActivity(intent);
 Log.i("AAAA " + MAIN_ACTIVITY,"Call button pressed");
 break;

 case R.id.statusButton:
 Intent intent2 = new Intent(v.getContext(), status.class);
 startActivity(intent2);
 Log.i("AAAA " + MAIN_ACTIVITY, "Status button pressed");
 break;

 case R.id.infoButton:
 Intent intent3 = new Intent(v.getContext(), infoActivity.class);
 startActivity(intent3);
 Log.i("AAAA " + MAIN_ACTIVITY, "Info button pressed");
 break;
 }

 }
 }

On	the	top	of	the	screen,	a	menu	bar	is	shown,	with	the	option	to	go	to	the	app	settings;	

@Override
 public boolean onOptionsItemSelected(MenuItem item) {
 // Handle action bar item clicks here. The action bar will
 // automatically handle clicks on the Home/Up button, so long
 // as you specify a parent activity in AndroidManifest.xml.
 switch (item.getItemId()) {

 //noinspection SimplifiableIfStatement
 case R.id.action_settings:
 Intent myIntent = new Intent(this, org.sipdroid.sipua.ui.Settings.class);
 startActivity(myIntent);
 return true;
 // For going back to home. Handle back button toolbar
 case android.R.id.home:
 finish();
 return true;
 }

 return super.onOptionsItemSelected(item);
 }

	

	 	 IIT	

	 	 55	

CallActivity.java

When	the	user	clicks	on	the	CALL	911	button,	the	CallActivity	is	started.	This	is	the	activity	that	

calls	the	class	to	scan	for	the	Bluetooth	beacons,	and	when	it	ends,	performs	the	http	request	to	

the	location	server	of	the	BOSSA	platform.	After	this	has	finished,	it	opens	the	Sipdroid	activity,	

to	establish	the	call.	While	performing	all	of	this	logic,	it	shows	a	splash	activity.	

When	 the	 CallActivity	 is	 created,	 it	 starts	 an	 instance	 of	 the	 IBeaconScanner	 activity,	 which	

performs	the	scanning	and	when	it	finishes,	it	performs	the	HTTP	GET	request.		

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_splash);
 sended=false;

 //When the Splash time finishes, it will open the Sipdroid Activity
 new Handler().postDelayed(new Runnable() {
 public void run() {
 Intent intent = new Intent();
 intent.setClass(CallActivity.this, Sipdroid.class);
 CallActivity.this.startActivity(intent);
 CallActivity.this.finish();
 }
 }, SPLASH_DISPLAY_TIME);

 try {
 //Create bluetooth scanner
 bluetoothScanner = new IBeaconScanner(this, period);
 bluetoothScanner.start(scan_period);
 }
 catch(Exception e) {
 e.printStackTrace();
 finish();
 }
 }

	

	 	 IIT	

	 	 56	

IBeaconScanner.java

This	class	is	initialized	with	the	scanning	duration	(5	seconds)	and	the	period	between	scanning	

(0.5	seconds).	After	creating	the	instance,	the	start	method	is	called.	

 //Starts the scanning during the established scan_period
 public void start(int scan_period) {
 try {
 this.scan_period = scan_period;
 this.current_time = 0;
 this.beaconManager.bind(this);
 this.timer.schedule(this, 0, Math.round(period * 1000));
 this.scan_enabled = true;
 }
 catch(Exception e) {
 e.printStackTrace();
 stop();
 }
 }

The	detected	beacons	are	stored	in	a	list	in	this	same	class.	

 private final RangeNotifier beaconCB = new RangeNotifier() {
 @Override
 public void didRangeBeaconsInRegion(Collection<Beacon> beacons, Region region) {
 if(!scan_enabled)
 return;
 for(Beacon x:beacons){
 IBeacon beacon = new IBeacon(x.getRssi(),
x.getId2().toInt(),x.getId3().toInt(),x.getId1().toString());
 Log.i(IBEACON_SCANNER,"beacon detected: "+beacon.toString());
 beaconList.add(beacon);

 }
 Log.i(IBEACON_SCANNER,"beacon list: "+beaconList.toString());
 }
 };

When	the	scanning	stops,	the	stop	method	is	called.		

 //This is called when the scanning stops
 public void stop() {
 timer.cancel();
 timer.purge();
 beaconManager.unbind(this);
 scan_enabled = false;
 this.finished= true;
 makeHttpRequest();
 }

The	makeHttpRequest	method	performs	the	http	get	(using	the	HttpTx	class)	request	and	saves	

the	data	in	a	static	data	class,	to	be	used	by	Sipdroid.	In	this	method,	the	JSON	class	is	used	to	

	 	 IIT	

	 	 57	

convert	the	list	of	beacons	(objects	of	the	class	IBeacon)	to	a	JSON	string	that	needs	to	be	used	in	

the	URL	to	perform	the	HHTTP	GET	request.	

//Makes an HTTP get request to obtain the indoor location
 public void makeHttpRequest(){
 for(IBeacon b: beaconList){
 try {

json.updateMyJsonIndoor(String.valueOf(b.getMajor()),String.valueOf(b.getMinor()),String.
valueOf(b.getRssi()));
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }

 try {
 String result = httptx.HttpGetRequest(json.readMyJson());
 Data d = Data.getInstance();
 d.setReceived(result);
 } catch (JSONException e) {
 e.printStackTrace();
 }
 }

IBeacon.java

This	class	defines	the	beacons.	It	uses	the	altbeacon	library.	

public class IBeacon {
 private int major, minor;
 private String uuid;
 private LinkedList<Integer> rssiSet;
 private double x, y;

 public IBeacon(int rssi, int major, int minor, String uuid) {
 rssiSet = new LinkedList<>();
 rssiSet.add(rssi);
 this.major = major;
 this.minor = minor;
 this.uuid = uuid;
 }

 public int getRssi() {
 int sum = 0;
 for (int x:rssiSet)
 sum+=x;
 return sum/rssiSet.size();
 }

 public void add(int rssi) {
 rssiSet.add(rssi);
 }

 public int getMajor() {
 return major;
 }

	 	 IIT	

	 	 58	

 public void setMajor(int major) {
 this.major = major;
 }

 public int getMinor() {
 return minor;
 }

 public void setMinor(int minor) {
 this.minor = minor;
 }

 public void setPosition(double x, double y) {
 this.x = x;
 this.y = y;
 }

 public String getUuid() {
 return uuid;
 }

 public void setUuid(String uuid) {
 this.uuid = uuid;
 }
 public long getKey(){
 return getKey(major,minor);
 }
 public static long getKey(int major,int minor){
 return Long.parseLong(""+major+minor);
 }

 @Override
 public String toString() {
 return "IBeacon{" +
 "rssi=" + getRssi() +
 ", major=" + major +
 ", minor=" + minor +
 ", uuid='" + uuid + '\'' +
 '}';
 }
}

	

	 	 IIT	

	 	 59	

HttpTx.java

This	class	is	used	to	perform	the	Http	request.	It	receives	the	JSON	string	to	insert	in	the	URL.	

public static String baseUrl = "https://api.iitrtclab.com/indoorlocation/xml?";
public String HttpGetRequest(String json) {
 String url = baseUrl+json;
 try {
 result = new HttpGetRequestTask().execute(url).get();
 } catch (ExecutionException e) {
 e.printStackTrace();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 return result;
 }

Json.java

To	set	the	Json	coordinates:	

public void updateMyJsonIndoor(String Major, String Minor, String Rssi) throws
JSONException {
 JSONObject json = new JSONObject();
 json.put("major", Integer.parseInt(Major));
 json.put("minor", Integer.parseInt(Minor));
 json.put("rssi", Integer.parseInt(Rssi));
 beaconsJson.put(json);
 }

To	read	the	coordinates	in	order	to	be	inserted	in	the	URL:	

public String readMyJson()throws JSONException {
 String jsonStr = "";
 JSONObject json_i;
 for(int i=0;i<beaconsJson.length();i++){
 json_i = beaconsJson.getJSONObject(i);
 jsonStr+="json[]="+json_i.toString()+"&";
 }
 jsonStr+="algorithim=1";
 return jsonStr;
 }

Data.java

When	 the	 indoor	 location	 (in	 xml)	 is	 received	 from	 the	 server,	 it	 is	 stored	 in	 the	 static	 class	

Data.java.	It	will	be	retrieved	from	here	when	it	needs	to	be	inserted	in	the	MIME	body	of	the	SIP	

INVITE.	

public class Data {

 public String captured,json;
 public final static Data data= new Data();

	 	 IIT	

	 	 60	

 final String DATA="Data";

 public Data(){ }

 /* Static 'instance' method */
 public static Data getInstance() {
 return data;
 }

 public String getReceived()
 {
 return this.captured;
 }

 public void setReceived(String captured)
 {
 this.captured = captured;
 }

 public String getJson()
 {
 return this.json;
 }

 public void setJson(String b)
 {
 this.json = b;
 }

 public void deleteReceived()
 {
 this.captured=null;
 }

 public void clear() {
 this.captured="";
 }
}

MIMEpart.java

The	indoor	location	in	XML	format	has	to	be	inserted	in	the	MIME	body	of	the	SIP	INVITE.	For	this,	

first	the	MIME	part	is	represented	by	this	class.	

public class MIMEpart {
 String version;
 String contentID;
 String contentType;
 String contentTransferEncoding;
 String content;

 /**
 * Constructor with all the fields
 *
 * @param version
 * @param contentID
 * @param contentType
 * @param contentTransferEncoding

	 	 IIT	

	 	 61	

 * @param content
 */
 public MIMEpart(String version, String contentID, String contentType, String
contentTransferEncoding, String content) {
 this.version = version;
 this.contentID = contentID;
 this.contentType = contentType;
 this.contentTransferEncoding = contentTransferEncoding;
 this.content = content;
 }

 /**
 * Constructor without specifying MIME version
 *
 * @param contentID
 * @param contentType
 * @param contentTransferEncoding
 * @param content
 */
 public MIMEpart(String contentID, String contentType, String contentTransferEncoding,
String content) {
 this.version = "1.0";
 this.contentID = contentID;
 this.contentType = contentType;
 this.contentTransferEncoding = contentTransferEncoding;
 this.content = content;
 }

 /**
 * Most basic constructor.
 *
 * @param contentID
 * @param contentType
 * @param content
 */
 public MIMEpart(String contentID, String contentType, String content) {
 this.version = "1.0";
 this.contentID = contentID;
 this.contentType = contentType;
 this.contentTransferEncoding = "8bit";
 this.content = content;
 }

 @Override
 public String toString() {
 String part = "";
 part += "\r\nMIME-Version: " + version;
 part += "\r\nContent-ID: <" + contentID + ">";
 part += "\r\nContent-Type: " + contentType;
 part += "\r\nContent-Transfer-Encoding: " + contentTransferEncoding + "\r\n";
 part += "\r\n" + content;
 part += "\r\n";
 return part;
 }
}

MIMEmessage.java

When	the	MIME	part	is	created,	the	MIME	message	can	be	formed	by	the	different	MIME	parts.		

	 	 IIT	

	 	 62	

public class MIMEmessage {

 String version;
 String contentType;
 String boundary;
 List<MIMEpart> parts;

 public MIMEmessage(String version, String contentType, String boundary,
List<MIMEpart> parts) {
 this.version = version;
 this.contentType = contentType;
 this.boundary = boundary;
 this.parts = parts;
 }

 /**
 *
 * @param contentType
 * @param boundary
 * @param parts
 */
 public MIMEmessage(String contentType, String boundary, List<MIMEpart> parts) {
 this.version = "1.0";
 this.contentType = contentType;
 this.boundary = boundary;
 this.parts = parts;
 }

 @Override
 public String toString() {
 String mime = ""; //no need to introduce CRLF, it's introduced in the method
'setBody' of 'BaseMessage.java'

 for(MIMEpart part: parts) {
 mime += "--" + boundary;
 mime += part.toString();
 }

 mime += "\r\n--" + boundary + "--\r\n";//last boundary indicating end of MIME
message
 return mime;
 }
}

NG911MessageFactory.java

The	invite	message	is	created	in	this	class.	

public static Message createInviteNG911(String call_id, SipProvider sip_provider, SipURL
request_uri, NameAddress to, NameAddress from, NameAddress contact, String body, String
icsi, String location) {
 long cseq = SipProvider.pickInitialCSeq();
 String local_tag = SipProvider.pickTag();
 // String branch=SipStack.pickBranch();
 if (contact == null)
 contact = from;

 String method = SipMethods.INVITE;
 String remote_tag = null;

	 	 IIT	

	 	 63	

 String branch = null;

 String via_addr = sip_provider.getViaAddress();
 int host_port = sip_provider.getPort();
 boolean rport = sip_provider.isRportSet();
 String proto;
 if (request_uri.hasTransport())
 proto = request_uri.getTransport();
 else
 proto = sip_provider.getDefaultTransport();

 String qvalue = null;

 //creation of new message
 Message req = new Message();
 // mandatory headers first (To, From, Via, Max-Forwards, Call-ID, CSeq):

 request_uri.setURL("urn:service:sos"); //NG911
 req.setRequestLine(new RequestLine(method, request_uri));

 ViaHeader via = new ViaHeader(proto, via_addr, host_port);
 if (rport)
 via.setRport();
 if (branch == null)
 branch = SipProvider.pickBranch();
 via.setBranch(branch);
 req.addViaHeader(via);
 req.setMaxForwardsHeader(new MaxForwardsHeader(70));

 //[NG911] Set 'To: ' header to urn:service:sos
 req.setHeader(new Header(SipHeaders.To, "urn:service:sos"));
 //NG911

 req.setFromHeader(new FromHeader(from, local_tag));
 req.setCallIdHeader(new CallIdHeader(call_id));
 req.setCSeqHeader(new CSeqHeader(cseq, method));
 // optional headers:
 // start modification by mandrajg
 if (contact != null) {
 if (((method == "REGISTER")||(method == "INVITE")) && (icsi != null)){
 MultipleHeader contacts = new MultipleHeader(SipHeaders.Contact);
 contacts.addBottom(new ContactHeader(contact, qvalue, icsi));
 req.setContacts(contacts);
 }
 else{
 MultipleHeader contacts = new MultipleHeader(SipHeaders.Contact);
 contacts.addBottom(new ContactHeader(contact));
 req.setContacts(contacts);
 }
 // System.out.println("DEBUG: Contact: "+contact.toString());
 }
 if ((method == "INVITE") && (icsi != null)){
 req.setAcceptContactHeader(new AcceptContactHeader(icsi));
 }
 // end modifications by mandrajg
 req.setExpiresHeader(new ExpiresHeader(String
 .valueOf(SipStack.default_expires)));
 // add User-Agent header field
 if (SipStack.ua_info != null)
 req.setUserAgentHeader(new UserAgentHeader(SipStack.ua_info));

	 	 IIT	

	 	 64	

 /**
 * Set custom headers for NG911
 */

 //Expires:
 if(!(req.hasHeader(SipHeaders.Expires))) req.setExpiresHeader(new
ExpiresHeader(3600));
 //Accept-Language:
 Header acceptLanguage = new Header("Accept-Language", "en");
 req.setHeader(acceptLanguage);

 //Priority:
 Header priority = new Header("Priority", "emergency");
 req.setHeader(priority);

 //Geolocation:
 String from_uri = from.getAddress().toString().substring(4); //remove 'sip:'
part from the URI
 Header geolocation = new Header("Geolocation", "<cid:"+from_uri+">; inserted-
by=\"" + from.getAddress().getHost() + "\"; used-for-routing");
 req.setHeader(geolocation);

 //Date:
 DateFormat dateFormat = new SimpleDateFormat("EEE, d MMM yyyy HH:mm:ss ZZZZ");
 Date date = new Date();
 req.setDateHeader(new DateHeader(dateFormat.format(date)));

 /**
 * Add location to body
 *
 * Location will be added as part of a MIME message
 */

 String randomString = Random.nextString(50);
 String boundary = "NG911" + randomString; //this is the boundary of the MIME
body
 String mimeType = "multipart/mixed";

 //SDP part of the MIME body
 MIMEpart sdpMIME = new MIMEpart(call_id, "application/sdp", body);

 //Location part of the MIME body
 MIMEpart locationMIME = new MIMEpart(from_uri, "application/pidf+xml",
location);

 //MIME body
 List<MIMEpart> content = new ArrayList<MIMEpart>();
 content.add(sdpMIME);
 content.add(locationMIME);
 MIMEmessage mimeBody = new MIMEmessage(mimeType, boundary, content);

 req.setBody(mimeType + "; boundary=" + boundary + "", mimeBody.toString());
 return req;
 }

	

	 	

	 	 IIT	

	 	 65	

Appendix	B:	Management	of	the	elements	of	the	ESInet	

ECRF: Manage PSAPs

The	first	step	is	to	login	in	the	ESXi	vmware	(10.15.98.30)	

• Username:	root	

• Password:	Joejoe11!	

Then	 choose	 Lost2	 (which	 has	 the	 ECRF).	 The	 terminal	 opens	 and	 the	 processes	 need	 to	 be	

restarted:	

Username: root
Password: teamc255
service postgresql restart
service tomcat7 restart

Then,	to	add	any	PSAPs	or	modify/delete	them,	the	following	steps	are	necessary:	

In	pgAdmin	(127.0.0.1:57660/browser/),	we	go	to	lost	à	lost2	(the	password	is	911test).		

The	hierarchy	 to	 follow	 is	Databases	à	 lost	à	 schemas	à	 public	à	 tables.	 Right-clicking	on	

civic_us	 and	 choosing	 View/Edit	 Data	à	 all	 rows,	 a	 table	 displays,	 with	 all	 the	 PSAPs.	 In	 the	

bottom,	there	is	the	possibility	to	add,	edit	or	delete	any	PSAP.		

For	example,	for	the	Chicago	PSAP,	it	would	be	sip:psap@psapd.ng911main.iit.edu.	The	a1	is	“il”	

and	the	a2	is	“chicago”.	

After	saving	it,	the	processes	would	need	to	be	restarted	as	explained	previously.		

To	check	that	the	PSAP	has	been	correctly	added,	a	call	can	be	made	and	captured	with	Wireshark.	

SBC: Manage Session Agents

The	first	step	is	to	login	using	Putty,	into	10.15.99.100:	

• Username:	user	

• Password:	0r@cle!!	

To	add	a	new	session	agent,	the	following	steps	need	to	be	performed:	

Main_Campus_SBC> enable
Main_Campus_SBC# configure terminal
Main_Campus_SBC(configure)#session-router
Main_Campus_SBC(session-router)#session-agent

	 	 IIT	

	 	 66	

Main_Campus_SBC(session-agent)# sel

By	using	sel,	all	the	actual	session	agents	are	shown.	In	each	step,	all	the	options	can	be	displayed	

by	using	“?”.	After	doing	“sel”,	and	choosing	a	session	agent,	by	writing	“show”	command,	all	the	

details	of	the	selected	session	agent	are	shown.	To	add	a	session	agent:	

Main_Campus_SBC(session-agent)# hostname <ip address>
Main_Campus_SBC(session-agent)# ip_address <ip address>
Main_Campus_SBC(session-agent)# port 5060
Main_Campus_SBC(session-agent)# realm-id public

After	the	question	of	saving	the	changes,	write	“yes”,	and	the	session	agent	would	be	added.	After	

exiting	configuration	mode:	

Main_Campus_SBC# save-config
Main_Campus_SBC# activate-config

To	delete	a	session	agent:	

Main_Campus_SBC(session-agent)# no <ip address>

All	this	configuration	can	be	saved	with	a	name:	

Main_Campus_SBC(configure)# backup-config <name>

And	restored:	

Main_Campus_SBC(configure)# restore-backup-config <name>

SIP-D: Start process

Connect	via	Putty	to	10.15.98.8:	

• Username:	root	
• Password:	teamc255	

cd /ng911/sipd
./sipd.sh

ESRP: Start process

Connect	via	Putty	to	10.15.99.3:	

• Username:	root	
• Password:	teamc255	

cd /ng911/sipd
./sipd.sh

	 	 IIT	

	 	 67	

PSAPD: Start process in the Columbia Call-taker

Connect	via	Putty	to	10.15.99.7:	

• Username:	root	

• Password:	teamc255	

cd /ng911/psapd
./psapd.sh

	 	

	 	 IIT	

	 	 68	

Appendix	C:	SIP	INVITE	

SIP Invite created by NG911

INVITE urn:service:sos SIP/2.0
Via: SIP/2.0/TCP 98.193.88.66:33988;rport;branch=z9hG4bK38745 Max-Forwards: 70
To: urn:service:sos
From: <sip:android2@64.131.109.30>;tag=z9hG4bK06143326
Call-ID: 457029456297@98.193.88.66
CSeq: 1 INVITE
Contact: <sip:android2@98.193.88.66:33988;transport=tcp>
Expires: 3600
User-Agent: Sipdroid/1.0/SM-G920T
Accept-Language: en
Priority: emergency
Geolocation: <cid:android2@64.131.109.30>; inserted-by="64.131.109.30";
used-for-routing
Date: Wed, 3 Jul 2019 21:25:59 GMT-05:00 Content-Length: 1146
Content-Type: multipart/mixed;
boundary=NG911f052KQD9zCUS0bkPZgoQFWGJSbmENL88CAspmv1aAoJWEiz2H2
--NG911f052KQD9zCUS0bkPZgoQFWGJSbmENL88CAspmv1aAoJWEiz2H2 MIME-Version: 1.0
Content-ID: <457029456297@98.193.88.66>
Content-Type: application/sdp
Content-Transfer-Encoding: 8bit
v=0
o=android2@64.131.109.30 0 0 IN IP4 98.193.88.66 s=Session SIP/SDP
c=IN IP4 98.193.88.66
t=0 0
m=audio 21000 RTP/AVP 8 0 101
a=rtpmap:8 PCMA/8000
a=rtpmap:0 PCMU/8000
a=rtpmap:101 telephone-event/8000
a=fmtp:101 0-15
m=video 21070 RTP/AVP 103
a=rtpmap:103 h263-1998/90000
--NG911f052KQD9zCUS0bkPZgoQFWGJSbmENL88CAspmv1aAoJWEiz2H2 MIME-Version: 1.0
Content-ID: <android2@64.131.109.30>
Content-Type: application/pidf+xml Content-Transfer-Encoding: 8bit
<presence><tuple><status><gp:geopriv><gp:location-
info><ca:civicAddress><ca:country>US</ca:country><ca:A1>IL</ca:A1><ca:A2>Chica
go</ca:A2><ca:A6>31st</ca:A6><ca:PRD>W</ca:PRD><ca:STS>St</ca:STS><ca:HNO>10</
ca:HNO><ca:FLR>1</ca:FLR><ca:x>19.247809719012466</ca:x><ca:y>20.3841837932858
32</ca:y></ca:civicAddress></gp:location-info></gp:geopriv><timestamp>2019-07-
04T02:25:56.895Z</timestamp></status></tuple></presence>
--NG911f052KQD9zCUS0bkPZgoQFWGJSbmENL88CAspmv1aAoJWEiz2H2—

“--NG911f052KQD9zCUS0bkPZgoQFWGJSbmENL88CAspmv1aAoJWEiz2H2”	 would	 be	 the	

separator	between	MIME	Parts	of	the	MIME	Body	of	the	message.	The	last	MIME	Part	is	the	PIDF-

LO	(the	XML	representing	the	physical	location	of	the	calling	device).	

	

	 	 IIT	

	 	 69	

SIP Invite captured by Wireshark for a successful call from Sipdroid

	

	

