

Recent Computability Models Inspired from Biology: DNA and Mem-
brane Computing

Gheorghe PÃUN, Mario J. PÉREZ-JIMÉNEZ

ABSTRACT: We briefly present two areas of natural computing, vividly investigated in the recent years: DNA com-
puting and membrane computing. Both of them have the roots in cellular biology and are rather developed
at the theoretical level (new concepts, models, paradigms of computer science, with mathematical and epis-
temological significance have been considered in this framework), but both areas are still looking for im-
plementations of a practical interest.

Keywords: Computer Science, Mathematics, Turing computability, Biochemistry, DNA computing, Membrane Com-
puting.

1 Introduction

In a great extent, the history of (theoretical) computer science is the history of at-
tempting to model (formalize) the computations performed in nature, starting with the
way the humans compute (this was, for instance, the explicit goal of Leibniz, at the
turn of seventeenth and eighteenth centuries, and of Turing, in 1935–36), going
through the supposed organization and functioning of the brain, of the networks of
neurons (this is the origin of finite automata, see McCulloch & Pitts 1943, Kleene
1956, and of neural networks area, see, e.g., Andersson 1996), and getting closer and
closer to the molecular biology, to the cell and its constituents. The general assump-
tion/observation is that life has used for millions of years many processes, taking places
in specific material environments and using specific material structures, which may be
considered as computing processes and devices.
 This assertion is debatable: What is a computation? Does nature computes? At
which levels? Which processes are and which are not computations? And so on and so
forth.
 We do not enter here this debate (we adhere to the opinion that nature just
evolves, the goal of life is life itself, and a process can be considered a computation
only by a human being, ‘computing’ is not a natural activity, but an artifact) and we
adopt a mathematical perspective: computing means Turing computing (an input-
output relation, established by “mechanically” following an algorithm: a precise se-
quence of instructions which always halts). Moreover, when we look to a piece of real-
ity we search suggestions for two basic ingredients of a computing model: data struc-
tures (supports for computing) and operations about these data structures. Of course,
these elements of any computing model do not exist as such, we abstract them from
the biochemical objects/structures and processes. (We anticipate, illustrating this dis-
cussion with the structure of the DNA molecules and the many operations which are
possible with these molecules.) After abstracting a data structure and some operations
about it, we can proceed in a rather standard way in order to obtain a computing de-
vice where the data structure can be processed by means of the considered operations:
consider an initial configuration of our device, consisting of one or several sets of op-
eration-based ‘instructions’ and a given collection of data; by using the instructions in
a specified manner we pass to a new configuration; by iterating the operations we ob-

Gheorghe PÃUN, Mario J. PÉREZ-JIMÉNEZ

72

tain a computation; define in some way the notion of a successful computation; start-
ing from the initial configuration of the ‘device’, where the input of the computation is
placed, and proceeding along a successful computation, we can get the output of the
computation, its result.
 This scenario is followed both in DNA and membrane computing, the two areas
of natural computing we are going to discuss in the next sections. Before going into
some details, some generalities are still worth mentioning. Natural computing is an
important trend of computer science looking for computing models – perhaps also
computers – inspired from the way nature “computes”, and it contains areas which
were already proved as successful both theoretically and practically. The examples of
neural networks and of genetic algorithms (more generally, of evolutionary comput-
ing) are illustrative in this respect. Especially interesting from our point of view are
genetic algorithms (see, e.g., Beyer 2001): optimization problems are formulated in
terms of improving a fittness function over a population of “chromosomes”, repre-
sented by strings of digits, which evolve by means of operations known from the ge-
netics, such as recombination and point mutation. At the first sight, this is just a ran-
dom walk through the space of possible solutions, a brute force approach, which
highly contrasts with the surprising success of such algorithms in a large number of
applications. There is no mathematical “explanation” of this success, but this observa-
tion brings optimism to natural computing research: the fact that life uses certain tools
(again, at an abstract level: data structures and operations), which were improved dur-
ing evolution, during a long interval of time, can be an indication that these tools have
some features which make them useful also for computing. If recombination, point
mutation, selection, etc, were useful and so efficient in genetic algorithms, why not as-
suming that other similarly useful tools and computing ideas can be found at the ge-
netic level or at upper levels, such as the living cell. Insisting at the DNA level we get
DNA computing, insisting at the cellular level we get the membrane computing.
 Some differences between the above mentioned areas are visible and interesting
for what follows. Neural networks and genetic algorithms are inspired from biology
and implemented on usual electronic computers. They aim at finding new types of al-
gorithms, for a better use of the classic computer, maybe for also improving the archi-
tecture of the classic computer. In turn, DNA computing has a different goal, a new
ambition: to use DNA molecules as a support for computing, to replace/supplement
the electronic chip with a “wet chip”. The need for this arises from the observation
that the electronic chips cannot continue too much to become smaller, cheaper, faster,
because, if they will do it as in the last decades (in sixties was formulated the so-called
Moore law, saying that every year the computers will become twice smaller, cheaper,
and faster; later the interval was increased to 18 months, then to two years, now the
law seems to be abandoned), they will soon reach the quantum barrier. Moreover, the
sequential computers have intrinsic efficiency limits (they cannot solve problems of
exponential complexity in a feasible time); a possible way to overpass this intrinsic
limit is the parallelism, but this raises serious difficulties in the electronic case, for in-
stance, in what concerns the control of processors, the energy they dissipate, etc. A
promise comes from biology, from DNA and cellular levels. The parallelism made

Recent Computability Models Inspired from Biology: DNA and Membrane Computing

73

possible by DNA molecules is really massive: billions of molecules – hence “proces-
sors” – can find room in a tiny biochemical test tube; moreover, biochemistry is highly
nondeterministic, which means that the control of computations could be of a new
type, “cheap” from several points of view.
 DNA computing deals with computing in vitro, with implementing algorithms in a
laboratory (there also are researches about DNA computing in vivo, mainly dealing
with the computing-like processes which take place in certain cells at the genetic level,
for instance, in ciliates). What about the cell, the smallest living unit we know? The cell
is a very complex biochemical “factory”, where many processes take place, some of
them of an informational type. Can the living cell be considered/interpreted/used as a
computing device? The question is not simple: What is a cell (from a mathematical
point of view)? Which features of the cell structure and which processes taking place
in the cell compartments are useful/essential for a computing model? After abstract-
ing a cell-like computing model, as we will immediately see, where should we try to
implement it, on a usual electronic computer (like in the case of genetic algorithms) or
on a bio-support (as it is the goal of DNA computing)? We do not answer here these
questions; the aim of this paper is only to let the reader having a first contact with
DNA and membrane computing areas, at an introductory and informal level. Details
(including further questions) can be found in the titles mentioned in the bibliography,
and the web pages devoted to the two discussed domains.

2 A Glimpse to DNA Computing

The fact that the DNA molecules can be used as a support for computing has been
speculated since several decades (Ch. Bennett, M. Conrad, etc), but the first (success-
ful) experiment has been reported in 1994, by L.M. Adleman. The problem dealt with
was the so-called Hamiltonian path problem for directed graphs: whether or not a
path exists which visits each node of a graph exactly once. The problem is known to
be computationally difficult (it is NP-complete), but the solution was very efficient
(obtained in linear time). Seen after eight years, the experiment looks simple from a
biochemical point of view: one encodes the nodes by single stranded DNA molecules
of length 20 (consisting of 20 nucleotides), then one encodes the edges of the graph
by single stranded DNA molecules which are complementary, in the Watson-Crick
sense, to the node-codes and consist of the second half of the code of the emerging
node and the first half of the target node of the edge, one places billions of such
molecules in a test tubes and one lets them to anneal and form double stranded mole-
cules; in this way, the edge-codes act as splints of node-codes, hence the possible
paths in the graph are encoded by chains of node-codes and edge-codes; by well-
known filtering procedures one selects the paths which visit all nodes exactly once
(the Hamiltonian ones); if any molecule exists which encodes such a path, then the
problem has the answer “yes”.
 Adleman’s experiment was a great event in computer science, in spite of the fact
that the graph considered was a small one, with only seven nodes and thirteen edges.
However, the experiment was the first one of this type, it proved that DNA comput-
ing is possible; in the terms of Hartmanis (1994), this was a demo. Many experiments

Gheorghe PÃUN, Mario J. PÉREZ-JIMÉNEZ

74

have followed, in USA, Japan, Europe, conferences were initiated in this area, a large
number of papers were published. However, up to now no computation of a practical
interest was reported. The passing from a toy-problem to a problem of a significant
size is not at all easy, because of the quantity of required DNA (and of other bio-
chemical tools), and, mainly, because of the difficulty of coping with errors. The bio-
chemical reactions cannot (yet) be perfectly controlled, the algorithms based on them
are error-prone, and this requests both progresses in bioengineering and in improving
the theoretical models (and in finding the adequate classes of problems to be attacked
in this area, e.g., with error resistant solutions).
 To abstract a little bit, Adleman has used as data structure the DNA molecule (sin-
gle or double stranded) and the annealing operations as the basic operation. In a mas-
sively parallel manner, this operation ensures the generation of all candidate solutions
of the problem (providing that “enough” DNA is present). The filtering phase, when
it was checked whether or not a solution exits, can be considered as the phase of read-
ing the result; it was done manually, but the number of steps was of the same order of
magnitude as the number of nodes of the graph – hence the linear time of solving the
problem.
 The many experiments which were reported in the meantime use similar data
structures (sometimes, circular molecules, or molecules with other shapes, such as
hairpins), but several other operations. One of the most interesting case is that of the
splicing operation, considered for the first time by T. Head, in 1987, in a theoretical
framework not directly dealing with computing. This operation was explicitly used in a
computing model by Pãun, Rozenberg, and Salomaa (1996), where the notion of an H
system was introduced. Because these systems are among the most investigated DNA
computing models and because they are typical for this area, we will present them with
some details in the next section. For further models of DNA computing we refer to
the web page www.wi.liacs.nl/home/pier/aaa, to the monograph Pãun, Rozenberg,
and Salomaa, 1998, to the proceedings volumes of the series of conferences DNA
Based Computers, initiated in 1995 in Princeton, as well as to the new Kluwer journal
Natural Computing and the new Springer series of books with the same title.

3 Computing by Splicing: H Systems

The abstract splicing operation was introduced in 1987 by T. Head, as a mathematical
model of the recombination of DNA molecules under the influence of restriction en-
zymes (and ligases) –therefore (theoretical investigations of) computing by splicing has
been initiated seven years before Adleman’s experiment.
 The splicing of two DNA molecules corresponds to two operations: cutting the
molecules by restriction enzymes and pasting together the fragments obtained in this
way, providing that they have matching sticky ends. For example, consider the follow-
ing two (double stranded) DNA molecules:

5' - CCCCCTCGACCCCC - 3'
3' - GGGGGAGCTGGGGG - 5'
and
5' - AAAAAGCGCAAAAA - 3'

Recent Computability Models Inspired from Biology: DNA and Membrane Computing

75

3' - TTTTTCGCGTTTTT - 5'
and the restriction enzymes TaqI and SciNI, for which the recognition sites are:

T C G A G C G C
A G C T and C G C G

espectively (we have also indicated the cuts that these enzymes make within their rec-
ognition sites). These enzymes will cut the above two molecules producing the follow-
ing four molecules:

5' - CCCCCT CGACCCCC - 3'
3' - GGGGGAGC, TGGGGG - 5'

5' - AAAAAG CGCAAAAA - 3'
3' - TTTTTCGC, GTTTTT - 5'

 Because the fragments obtained in this way have complementary sticky ends, the
annealing of sticky ends followed by ligation will either reproduce the two original
molecules, or the following two new molecules will be formed:

5' - CCCCCTCGCAAAAA - 3'
3' - GGGGGAGCGTTTTT - 5'
5' - AAAAAGCGACCCCC - 3'
3' - TTTTTCGCTGGGGG - 5'

 As a model of the above biochemical operation, T. Head considered a string op-
eration (passing from double stranded sequences to strings is allowed due to the pre-
cise Watson- Crick complementarity of nucleotides) which was further abstracted in
(Pãun 1996a). In short, one considers splicing rules of the form r=u1#u2$u3#u4, where
u1, u2, u3, u4 are strings over a given alphabet. Given such a rule r, and two strings
w1u1u2w2, z1u3u4z2, by the splicing of these strings we get the strings w1u1u4z2, z1u3u2w2.
The relation with the biochemical operation of recombination is clear: each string
u1u2, u3u4 corresponds to the site of a restriction enzyme, two sites stay together in the
same rule if they produce matching sticky ends, while the crossing is supposed to be
included in the context strings (hence it can be empty).
 From string operations we pass to language operations in the natural manner: con-
sider a set R of splicing rules (of any type) and a set L of strings; by splicing any two
possible strings from L we get a new set of strings, R(L); the process can be iterated,
starting either from R(L) or from L∪R(L) (the latter case corresponds to the observa-
tion that when a DNA molecule is present, we may assume that arbitrarily many cop-
ies of it are present, obtained by amplification; in the first case we may assume that the
reaction is complete, all old strings having been processed).
 In this way, a computing (language generating) device is obtained, of the form
γ=(V, A, R), where V is an alphabet, A is a set of strings over V , and R is a set of
splicing rules over V . Such a machinery generates a language in the following way:
start from the strings in A, splice them in all possible ways with respect to the rules in
R, add all resulting strings to A and iterate the process. The language generated by ,
denoted by L(γ), consists of all strings which can be obtained in this way. A standard
extension is to also consider a terminal alphabet, T⊆V , and to accept in L(γ) only the
strings consisting of symbols from T.

Gheorghe PÃUN, Mario J. PÉREZ-JIMÉNEZ

76

 Splicing systems γ=(V, A, R) with finite sets A and R (hence without a terminal
alphabet) cannot generate all regular languages, but, conversely, the language L(γ) gen-
erated by such a system is regular. For Head rules this was proved by K. Culik II and
T. Harju already in 1991, while for Pãun rules it was proved by D. Pixton (1996).
 Splicing systems of the form γ=(V, T, A, R), with finite A and R, characterize the
family of regular languages, hence the power of finite automata. From a computa-
tional point of view, the competence of finite automata is too limited. A characteriza-
tion of recursively enumerable languages (hence of the power of Turing machines) is
obtained when using a set of splicing rules which is a regular languages (the rules are
written as strings, hence it makes sense to speak about the type of their language).
 From a computational point of view, the above mentioned results are quite “frus-
trating”: finite H systems compute only at the level of finite automata, while the com-
putational universality is obtained by using an infinite set of splicing rules. Fortunately,
the proof of the universality (Pãun 1996b) indicates a number of ways for overcoming
this drawback. This proof goes as follows. Starting from a type-0 Chomsky grammar
G, one constructs an equivalent extended H system γ whose sentential forms are cir-
cularly permuted versions of the sentential forms of G, and the simulation of the rules
of G takes place within suffixes of the sentential forms of γ (the circular permutation
ensures that each derivation step in G can be simulated in this way). Very crucial for
this “rotateand- simulate” procedure are the first and the last symbols of each senten-
tial form, which in fact are markers, holding some information about the current stage
of the simulation. That is, we can ignore the strings we splice as long as we know their
first and last symbols, and the splicing sites. In other words, it is sufficient to have a
finite number of splicing rules, and to associate with each rule certain “promoters”,
which are symbols whose presence allows the splicing of a given string.
 This observation leads to extended H systems with permitting contexts, whose rules have
associated finite sets of symbols such that a rule is applicable only to strings which
contain the associated symbols. Actually, many other types of controlled H systems
were considered. About a dozen such systems can be found in the literature, in general
imitating the types of controls known from the “classic” regulated rewriting area in
formal language theory. In particular, the following controls were investigated: forbid-
ding contexts (symbols are associated with rules and a string cannot be spliced if it con-
tains such a symbol), target languages (the splicing of two strings is allowed only if the
resulting strings belong to a given regular language which is associated with the rule or
associated with the whole set of rules; in the former case we say that we have local tar-
gets, and in the latter case we have a global target), programmed control (a next mapping is
given on the set of rules, which indicates the sequencing of rules), evolving sets of rules (at
each step, a different set of rules is produced, by point mutation rules which act on
the splicing rules themselves), double splicing (the strings resulting from the splicing of
two strings are immediately spliced again by any available rule), considering multisets of
strings (the strings are counted, by splicing they are consumed, the multiplicity of
strings resulting from a splicing operation is increased by one). References can be
found in the sources mentioned at the end of the previous section.

Recent Computability Models Inspired from Biology: DNA and Membrane Computing

77

 In all these cases one gets characterizations of recursively enumerable languages. Similar results
are obtained for various types of distributed H systems, where the strings and the set of
splicing rules are separated in various ways, so that a system of several “simple” H sys-
tems is obtained, working in a parallel manner and cooperating in obtaining a com-
mon result.
 All the proofs are constructive, hence, starting from universal type-0 grammars,
one can obtain universal H systems, hence programmable H systems able of computing at
the level of Turing machines.
 These results have some general consequences. The fact that iterated splicing with
respect to a finite set of rules computes only regular languages indicates that what we
can compute in the free mode (hence in the mode encountered in nature) is not too
much. Therefore, we need a further ingredient in order to achieve the desired univer-
sality.
 A series of possibilities are suggested by the controlled and the distributed H sys-
tems mentioned above. However, the controls and the distributed architectures con-
sidered up to now seem not easy to be implemented within the present day bio-
technology. So, an important dilemma arises: should we confine at the level of finite
automata and hope to implement a weak computing device based on splicing soon, or,
providing that we need a higher computing power, should we have to look for im-
proved models and for improved bio-technologies in order to, hopefully, implement a
universal DNA computer? A question of a great interest, to be addressed in an inter-
disciplinary team, in the near future.

4 Membrane Computing

DNA computing deals with processes taking place at the genetic level, with the hope
to repeat them in vitro. However, many processes which are observed in vivo cannot be
repeated at all, or they develop in a different way in vitro. A possible solution is to use
the cell itself as the environment of a computation, and this is the starting point of
membrane computing.
 The area is rather young – it was initiated by (Pãun 2000) (the paper was circulated
on web at the end of 1998) –but it is rather developed from a mathematical point of
view.
 We will recall here only the most basic ideas and results, the main classes of mem-
brane systems and their properties; for further details, we refer the reader to the web
page http://psystems.disco.unimib.it and to the monograph (Pãun 2002).
 Membrane computing starts from the assumption that the processes taking place
in the compartmental structure of a living cell can be interpreted as computations. Ab-
stracting from the biochemical details, one gets membrane systems (called also P sys-
tems), which, roughly speaking, consists of a cell-like membrane structure, in the com-
partments of which one places multisets of objects which evolve according to given rules
in a synchronous, parallel, and non-deterministic manner. The objects can be de-
scribed by symbols or by strings of symbols from a given alphabet. The objects can
also pass through membranes, the membranes can be dissolved, divided, created. An
evolution of a membrane system is a computation; we consider as successful only the

Gheorghe PÃUN, Mario J. PÉREZ-JIMÉNEZ

78

halting computations, with which a result is associated. Many classes of P systems were al-
ready considered in the literature. Most of them are computationally complete, i.e.,
equal in power to Turing machines. If an exponential workspace can be created (in
polynomial time), by dividing membranes, or by replicating string-objects, or by creat-
ing membranes from objects which can be replicated, then polynomial time solutions
to NP-complete problems can be obtained.
 The membranes appearing in a P system try to mimic the role and the functioning
of membranes from living cells. The basic function of biological membranes is to de-
fine compartments and to relate compartments to their environment, including neighbouring
compartments. The currently accepted model of the membrane structure is the so-
called fluid-mosaic model, proposed in 1972 by S. Singer and G. Nicolson. According to
this model, a membrane is a phospholipid bilayer in which protein molecules (as well
as other molecules) are totally or partially embedded.

Figure 1: A membrane structure

 The (plasma) membrane is only partially permeable (in general, to small non-
charged molecules), but various molecules can pass through membranes by means of
protein channels. The transmembrane transfer can take place in a passive manner, e.g., by
diffusion towards the region of lower concentration, and in an active (mediated) man-
ner. Actually, there are two main types of protein channels: those which just select the
moving objects by their size, and those which interact with specific molecules when
helping them to cross the membrane; the latter type is called carrier protein.
 The protein channels are also important for the inter-cellular communication:
neighbouring cells can link their protein channels, and in this way, a complex commu-
nication network can be established among cells. It is important to note that the pro-
tein channels can be open or closed, depending on the contents of the adjacent com-
partments. For instance, if one of the cells is invaded by “undesired” molecules, then
the cell isolates itself from the neighbouring cells by closing the passage channels –
they may be re-opened again, once the emergency situation has been resolved.

Membrane Systems (with Symbol-Objects) – An Informal Introduction.
The membrane structure of a P system is a hierarchical arrangement of membranes (un-
derstood as three dimensional vesicles), embedded in a skin membrane, the one which
separates the system from its environment. A membrane without any membrane inside is
called elementary. Each membrane defines a region. For an elementary membrane this is

Recent Computability Models Inspired from Biology: DNA and Membrane Computing

79

the space enclosed by it, while the region of a non-elementary membrane is the space
inbetween the membrane and the membranes directly included in it. Figure 1 illus-
trates these notions. We label membranes (by positive integers in Figure 1) in order to
be able to address them in programming computations by membrane systems. Since
each region is delimited (“from the outside”) by a unique membrane, we will use the
labels of membranes to also identify (label) the regions they delimit.
 Each region contains a multiset of objects, and a set of (evolution) rules. The objects
are represented by symbols from a given alphabet. Typically, an evolution rule from
region r is of the form ca→cbinjdoutehere, and it “says” that a copy of the object a, in the
presence of a copy of the catalyst c (this is an object which is never modified, it only as-
sists the evolution of other objects), is replaced by a copy of the object b and two cop-
ies of the object d. Moreover, the copy of b has to enter “immediately” the inner
membrane of region r labeled by j (hence to enter region j), one copy of object d is
sent out through the membrane of region r, and one copy of e remains in region r.
Note that the considered evolution rule can be applied in the region r only if this re-
gion includes the membrane j.
 Membrane systems are synchronous, in the sense that a global clock is assumed, i.e.,
the same clock holds for all regions of the system. In each time unit a transformation
of a configuration of the system takes place by applying the rules in each region, in a non-
deterministic and maximally parallel manner. This means that the objects to evolve and the
rules governing this evolution are chosen in a nondeterministic way; this choice is
“exhaustive” in the sense that, after the choice was made, no rule can be applied any-
more in the same evolution step (there are not enough objects available anymore for
any rule to be applied now –this is the maximality of application).
 In this way, one gets transitions between the configurations of the system. A se-
quence of transitions is called a computation. A configuration is halting, if no rule is ap-
plicable in any region. A computation is halting if it reaches a halting configuration.
The result of a (halting) computation is the number of objects sent (through the skin
membrane) to the environment during the computation.
 Many modifications/extensions of this very basic model sketched above are dis-
cussed in the literature. We will briefly mention here only a few of them.
 The first extension is to consider a priority relation among rules. This means that
in each region a strict partial order relation on the set of rules from this region is given
–then, a rule can be chosen (to process a multiset of objects) in a given step only if no
rule of a higher priority is applicable.
 Another useful “control device” is the possibility to modify the membrane perme-
ability. Thus, a membrane can be made thinner (action δ) or thicker (action τ). A
membrane of normal thickness is dissolved by action δ (the objects of a dissolved
membrane remain in the region surrounding it, while the rules are removed; the skin
membrane cannot be dissolved), or made impermeable (no object can pass through
such a membrane) by action τ. An impermeable membrane is returned to normal
thickness (hence it is again permeable) by action δ.
 Many possibilities are offered by the communication commands. For instance,
there are a number of ways of weakening the programming power provided by inj : to

Gheorghe PÃUN, Mario J. PÉREZ-JIMÉNEZ

80

only indicate in (an object associated with this command has to enter any adjacently
lower membrane; the choice of a membrane to enter is nondeterministic), to associate
electrical charges both with objects and with membranes (a polarized object will enter the
region of any adjacently lower membrane of the opposite polarization; the polarization
of objects and of membranes may change during the computation).
 In the above, the symbol-objects were processes by multiset rewriting-like rules
(some objects are transformed into other objects, which have associated targets).
Coming closer to the trans-membrane transfer of molecules, we can consider purely
communicative systems, based on the three classes of such transfer known in the bi-
ology of membranes: uniport, symport, and antiport. Symport refers to the transport
where two molecules pass together through a membrane in the same direction, anti-
port refers to the transport where two molecules pass through a membrane simulta-
neously, but in opposite directions, while the case when a molecule does not need a
“partner” for a passage is referred to as uniport. In terms of P systems, we can con-
sider object processing rules of the following forms: a symport rule (associated with a
membrane i) is of the form (ab, in) or (ab, out), stating that the objects a and b en-
ter/exit together membrane i, while an antiport rule is of the form (a, out; b, in), stating
that, simultaneously, a exits and b enters membrane i; uniport corresponds to a “par-
ticular” case of symport rules, of the form (a, in), (a, out).
 Another way of organizing computations by communication only is to use carriers
(corresponding to “vectors” and to plasmids used in biochemistry), that is, to consider
objects of two types: carriers (“vehicles”) and passengers. As in the case of sym-
port/antiport, no object ever changes. The passengers can pass through membranes
only when carried by carriers. The used rules specify the way to attach passengers to
carriers, the way these “aggregates” pass through membranes, and the way to detach
passengers from carriers.
 It is worth mentioning that in the case of symport/antiport and in the case of car-
riers no object is created or destroyed, only the location of the objects can be changed.
Hence, the “conservation law” is observed – which does not necessarily happen in
other classes of P systems. Also, in both these cases the environment is an active par-
ticipant in the computation, holding as many copies of each object as necessary, and
involved in a two-way communication with the skin region of the system.

Structuring the Objects – P Systems with String-Objects.
In a cell, many objects can be considered as being atomic (with no internal structure),
but many other objects, such as, e.g., DNA molecules, have a structure, which, some-
times, can be described by a string. This leads to consider P systems where objects are
strings – hence the evolution rules are based on string processing operations: rewrit-
ing, splicing, insertion, deletion, cut-and-paste, etc.
 For instance, the rewriting rules are of the form (X→v; tar), where X→v is a usual
context-free rule and tar is a target indication, one of here, out, in, specifying in the
standard way the region where the result of rewriting should go. We can also append
to v the symbols δ and τ , which control the membrane thickness in the way discussed
above, or we can consider a priority relation among rules.

Recent Computability Models Inspired from Biology: DNA and Membrane Computing

81

 A computationaly powerful idea is to combine the rewriting of strings with their
duplication, considering rules of the form r:a→(u1, tar1)||(u2, tar2). By applying r to a
string w = w'aw'' we obtain the strings w'u1w'' and w'u2w', which are sent to regions as
indicated by the targets tar1, tar2, respectively.
 An attractive variant is to process the string-objects by the splicing operation, and
in this way a more uniformly biologically inspired device is obtained.
 In the case of P systems with string-objects, the result of a computation can con-
sists of all strings which are sent out of the system at any time during the computation
(hence it is no longer necessary to work with halting computations), or –in the case
when we take into consideration the number of strings (that is, we work with multisets
of strings)– the result is the number of strings sent out during the computation. In the
latter case, it is necessary to use string-processing operations which change the num-
ber of strings; rewriting and splicing does not have this property, but replication, and
splitting (cutting a string into two strings, with local changes at the cutting place) can
increase the number of strings. By sending strings out of the system or storing them in
certain “garbage” membranes, we can also decrease the number of string-objects.

Computational Completeness and Universality.
As we have mentioned before, many classes of P systems, combining various ingredi-
ents described above, are able of simulating Turing machines, hence they are computa-
tionally complete. Note that in the case when we deal with P systems which compute
numbers, we consider Turing machines as number recognizers; in the case of string-
objects we can obtain the family of languages which are recognized by Turing ma-
chines (the recursively enumerable languages). Always, the proofs of results of this
type are constructive, and this have the important consequence from the computabil-
ity point of view that we can get universal (hence programmable) P systems: starting from
a universal Turing machine (or an equivalent universal type-0 Chomsky grammar), we
get an equivalent universal P system. This implies that in the case of Turing-complete
classes of P systems, the hierarchy on the number of membranes always collapses (at
most at the level of the universal P systems). Actually, the number of membranes suf-
ficient in order to characterize the power of Turing machines by means of P systems
is always rather small: in most cases, two or three membranes suffice. We can con-
clude that the compartmental computation in a membrane structure (using various
ways of communicating among compartments) is rather powerful.

Computational Efficiency.
The computational power (the “competence”) is only one of the important questions
to be dealt with when defining a new computing model. The other fundamental ques-
tion concerns the computing efficiency.
 A deterministic Turing machine can be simulated in polynomial time by a family of
deterministic P systems (see Pérez-Jiménez et al. 2002b), and a deterministic P system
of the type (Cat, Pri, tar, δ, τ) (hence working with symbol -objects, and using all fea-
tures: catalysts, priorities, the control of membrane thickness, and addressing by here,
out, inj) can be simulated by a deterministic Turing machine with a polynomial slow-
down (see Zandron et al. 2001). This means that by using such systems we cannot

Gheorghe PÃUN, Mario J. PÉREZ-JIMÉNEZ

82

solve exponential problems in polynomial time, in spite of the fact that exponentially
many objects can be produced in linear time, for instance, by rules of the form a→aa.
Therefore, in order to improve the computational performance of our systems it is
necessary to provide more e_cient ways for producing an exponential space. Three
such ways have been considered so far in the literature, and all of them were proven to lead
to polynomial solutions of NP-complete problems.
 These three ideas are membrane division, membrane creation, and string replica-
tion.
 Very briefly, in the case of membrane division one uses rules of the form
[ia]i→[ib]i[ic]i (the membrane with label i is divided, the contents of the former mem-
brane is replicated in the two resulting membranes, with the exception of object a,
which is replaced by b and c in the resulting membranes, respectively), in the case of
membrane creation one uses rules of the form a→[ib]i (a new membrane, with label i,
is created from object a), while in the case of string duplication one uses rules of the
form a→u1,||u2 (from a string xay one passes to the strings xu1y, xu2y, maybe with tar-
gets associated with the resulting strings).
 By using such operations, one can obtain an exponential workspace (in the form of
membranes or string-objects) in a linear time, and in this way one can devise “P algo-
rithms” which can solve NP-complete problems in polynomial (often, linear) time.
This assertion was illustrated by SAT, the Hamiltonian path problem, the problem of
inverting one-way functions, etc.
 In the systems discussed up to now we have considered membrane structures
which correspond to trees. An attractive generalization is to consider arbitrary graphs
(in such a case, the “regions” associated with the nodes do not necessarily have a spa-
tial counterpart in the form of a membrane structure – unless we consider direct
communication among regions, corresponding to the inter-celular communication
through common protein channels). A related possibility is to consider “tissue-like” P
systems, with several elementary membranes swiming in a common environment, di-
rectly linked (hence communicating) or not.
 The research in membrane computing area is rather active, but up to now no bio-
implementation of a computation was reported in terms of P systems. In turn, several
implementations of various classes of P systems on the electronic computer were re-
ported; such implementations have a didactic interest, but not yet a practical interest
(the electronic computer cannot support such important features of membrane sys-
tems as nondeterminism and parallelism).
 However, theoretical applications of (notions and ideas central to) P systems were
considered in several papers: to artificial life (Suzuki et al. 2001), for simulating the
photosynthesis (Nishida 2001), to linguistics (Bel Enguix 2002).
 This leads to considerations concerning the significance of P systems (for biology,
for mathematics, and for computing). The approach is clearly motivated from a
mathematical point of view, not only because it is natural to (try to) model the cell
computational behavior, but also because the new computing model has a number of
intrinsically interesting features. Examples of such features are: the use of multisets,
the inherent parallelism, the possibility of devising computations which can solve ex-

Recent Computability Models Inspired from Biology: DNA and Membrane Computing

83

ponential (intractable) problems in polynomial time (by making use of an exponential
space created in a natural manner). At this moment, all these features are only poten-
tially useful from a practical computational point of view. How should the implemen-
tation problem be approached? Should one try to develop, in laboratory, wet mem-
brane computers (as this happens now in DNA computing), or should one try to im-
plement P systems on electronic computers? We have mentioned that the latter ap-
proach has a long and quite successful tradition in natural computing, and perhaps,
this will also be the case for membrane computing, possibly implemented on a dedi-
cated architecture, specifically designed for P systems (as sometimes advocated).

5 Concluding Remarks

Our excursion through DNA and membrane computing was selective and superficial,
without any attempt to enter into technical details –and also without any attempt to
discuss the significance of this intellectual enterprise from a more general point of
view. Maybe it is too early for addressing such questions, as, for the time being, we
still have no answer to the basic question whether or not DNA and membrane com-
puting will be useful for practical applications. However, what is already clear is that
these domains are very attractive from a mathematical point of view, that they raise
new problems, including questions about the very contents of the idea of computing,
and suggest new computing paradigms, of a more natural type, which make necessary
rethinking, perhaps, of basic computer science notions. Just an example: both theo-
retical and practical computer science are based on handling strings, in most cases in a
local manner (by “rewriting”); however, we can compute at the level of Turing ma-
chines by splicing, which is an operation common in nature and completely different
from rewriting; moreover, in the membrane computing area we compute at the uni-
versal level by using a data support with a rather weak structure, the multisets, again
very close to the contents of the compartments of living cells. What about recon-
structing the computability on the basis of multisets or of splicing? What about de-
signing computers using the multisets or the splicing? Is this possible? Is this useful?
Questions which are not in the scope of this paper.

BIBLIOGRAPHY

Adleman, L. M. (1994) "Molecular computation of solutions to combinatorial problems", Science 226,
1021–1024.

Andersson, J. A. (1996) An Introduction to Neural Networks, Cambridge, MA: The MIT Press.
Bel Enguix, G. (2002) "Preliminaries about some possible applications of P systems in linguistics" in Pre-

proceedings of Workshop on Membrane Computing, Curtea de Arge¸s, Romania, 81–96.
Beyer, H.-G. (2001) The Theory of Evolution Strategies, Berlin: Springer.
Conrad, M. (1972), "Information processing in molecular systems", Currents in Modern Biology 5, 1–14.
Culik Culik II, K., Harju, T. (1991) "Splicing semigroups of dominoes and DNA", Discrete Appl. Math. 31,

261–277.
Hartmanis, J. (1994) "About the nature of computer science", Bulletin of the EATCS 53, 170–190.
Head, T. (1987) "Formal language theory and DNA: An analysis of the generative capacity of specific, re-

combinant behaviors", Bulletin of Mathematical Biology 49, 737–759.
Kleene, S. C. (1956), "Representation of events in nerve nets and finite automata", Automata Studies,

Princeton, NJ: Princeton University Press, 3–42.

Gheorghe PÃUN, Mario J. PÉREZ-JIMÉNEZ

84

McCulloch, W. S., Pitts, W. H. (1943) "A logical calculus of the ideas immanent in nervous activity", Bulle-
tin of Mathematical Biophysics 5, 115–133.

Pãun, Gh. (1996a) "On the splicing operation", Discrete Appl. Math. 70, 57–79.
Pãun, Gh. (1996b) "Regular extended H systems are computationally universal", J. Automata, Languages,

Combinatorics 1, 27–36.
Pãun, Gh. (2000) "Computing with membranes", Journal of Computer and System Sciences 61, 108–143.
Pãun, Gh. (2002) Membrane Computing. An Introduction, Berlin: Springer.
Pãun, Gh., Rozenberg, G., Salomaa, A. (1996) "Computing by splicing", Theoretical Computer Science 168/2,

321–336.
Pérez-Jiménez, M. J., Romero-Jiménez, A., Sancho-Caparrini, F. (2002a) Teoría de la Complejidad en modelos

de Computación Celular con membranas, Sevilla: Ed. Kronos.
Pérez-Jiménez, M. J., Sancho-Caparrini, F. (2002) Computación Celular con membranas, Sevilla: Ed. Kronos.
Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F. (2002b), "Decision P systems and the

P6=NP conjecture" in Pre-proceedings of Workshop on Membrane Computing, Curtea de Arge¸s, Romania,
345–354.

Pixton, D. (1996), "Regularity of splicing languages", Discrete Appl. Math. 69, 101– 124.
Suzuki, Y., Fujiwara, Y., Takabayashi, J., Tanaka, H. (2001) "Artificial life applications of a class of P sys-

tems: Abstract rewriting systems on multisets" in C. Calude, Gh. Pãun, G. Rozenberg, A. Salomaa
(eds.) Multiset Processing. Mathematical, Computer Science, and Molecular Computing Points of View, Lecture
Notes in Computer Science, 2235, Berlin: Springer, 299–346.

Turing, A. M. (1936) "On computable numbers, with an application to the Entscheidungsproblem" in
Proceedings of the London Mathematical Society, Ser. 2, 42, 230–265.

Zandron, C., Ferretti, C., Mauri, G. (2000) "Solving NP-complete problems using P systems with active
membranes" in I. Antoniou, C. S. Calude, M. J. Dinneen (eds.) Unconventional Models of Computation,
London: Springer, 289–301.

Gheorghe Pãun is Ramon y Cajal Researcher at Rovira i Virgili University. He works in theory of formal
languages, molecular computing based on DNA and cellular computation with membranes (model cre-
ated by himself in October 1998). He is member of European network MolCoNet and permanent mem-
ber of the Institute of Mathematics of Academy of Romania since 1994. He has published around 400
articles in prestigious scientific journals (almost 300 of them are reviewed in the Mathematical Re-
views). He has published 22 books about Mathematics and Computation, and 14 books about popular
mathematics.

Address: Institute of Mathematics of the Romanian Academy, PO Box 1-764, 70700 Bucureºti, Roma-
nia, and Rovira i Virgili University, Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain. E-mail:
gpaun@imar.ro, gp@astor.urv.es

Mario de Jesús PÉREZ JIMÉNEZ is lecturer in Computer Science and Artificial Intelligence area at Uni-
versity of Seville, where he manages the Group of Research in Natural Computation. He works in not
conventional models of computation. He has been responsible of a project supported by European
Community (Finite Model Theory and Bounded Arithmetic) and nowadays of another supported by McyT
(Desarrollo, verificación y automatización de modelos moleculares y celulares con membranas). He has
published 8 books of Mathematics and Computation, and more than 60 scientific articles in national and
international journals. He is member of European Molecular Computing Consortium.

Address: Department of Computer Science and Artificial Intelligence, Sevilla University, Avenida Reina
Mercedes s/n, 41012 Sevilla, Spain. E-mail: Mario.Perez@cs.us.es

