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ABSTRACT: Hilbert's unpublished 1917 lectures on logic, analyzed here, are the beginning of modern
metalogic. In them he proved the consistency and Post-completeness (maximal consistency) of
propositional logic -results traditionally credited to Bernays (1918) and Post (1921). These lectures
contain the first formal treatment of first-order logic and form the core of Hilbert's famous 1928 book with
Ackermann. What Bernays, influenced by those lectures, did in 1918 was to chenge the emphasis from
the consistency and Post-completeness of a logic to its soundness and completeness: a sentence is
provable if and only if valid. By 1917, strongly influenced by PM, Hilbert accepted the theory of types
and logicism -a surprising shift. But by 1922 he abandoned the axiom of reducibility and then drew back
from logicism, returning to his 1905 approach of trying to prove the consistency of number theory
syntactically.
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1. Introduction

During the past hundred years, the most significant transformation of mathematical logic was
the shift from a logical to a metalogical perspective. Whereas Frege and Russell had each been
concerned to formulate a system of logic that was adequate for constructing the real numbers,
Godel was concerned with metalogical questions. The most important figure in the transition
from Russell to Godel was Hilbert. The metalogical questions with which Hilbert was occupied
-consistency, independence, completeness, and decidability- were excluded from Russell’s view
of logic but were central to Godel’s.

The present paper is an attempt to understand the evolution of Hilbert's metalogicall ideas
from his early treatment of logic (1905) to his mature views in his 1928 book Grundziige der
theoretischen Logik with his student Ackermann. We particularly emphasize unpublished
materials, especially Hilbert’s lecture courses from 1917 to 1923, because of the light they shed
on the evolution of his views. It turns out that the most important of those lecture courses is one
that he gave in 1917-18 and that survives in an authorized version at Gottingen. This course
documents an important shift in his treatment of logic from his earlier courses and provides the
conceptual framework for his Grundziige.
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Before discussing this 1917-18 course in detail, we begin by exploring how Hilbert’s
metalogical concerns influenced Godel.

2. Hilbert’s Influence on Godel

As is well known, the two most important results in the emergence of modern mathematical
logic were metalogical results due to Godel: the completeness theorem for first-order logic and
the incompleteness theorems for number theory and for higher-order logic (including the theory
of types). The problem of showing the completeness of first-order logic first appeared in print in
Hilbert and Ackermann’s Grundziige in 1928. This was a book which much influenced Gtdel
soon after its publication.

In the Grundziige, Hilbert considered completeness (“Vollstandigkeit”) in two senses. Both
senses were relative to an axiom system. The first meaning of completeness involved semantics,
namely that the axiom system allows the proof of “all correct (valid) formulas of a certain domain
that is characterized by its content” (1928, 33). The second meaning was what he called
“completeness in the sharper sense”, and was a purely syntactic notion. An axiom system was said
to be complete in the sharper sense if it was consistent but became inconsistent as soon as any
further axiom was adjoined to it. (Later, completeness in the sharper sense was sometimes called
Post completeness; see (van Heijenoort 1967, 264).)

The Grundziige showed, by using work of Bernays, that propositional logic not only was
complete but also was complete in the sharper sense (1928, 33).2 Then the book established that
first-order logic is not complete in the sharper sense, and posed the problem of proving that first-
order logic (“the restricted functional calculus”) is complete (1928, 68). Godel solved this
problem in his doctoral dissertation, whose culmination was his completeness theorem for first-
order logic.

Yet when one reads the published version (1930) of his doctoral dissertation, which was
considerably revised from the dissertation itself, one has the impression that Godel was primarily
influenced by Principia Mathematica rather than by Hilbert and Ackermann’s Grundziige. In
the published version, for example, Godel claims that the axiom system of first-order logic for
which he proves completeness is the same as that given in sections *1 and *10 of PM (1930,
103). Unfortunately, this claim is not correct. Rather, G6del's axiom system (including its rules of
inference) is, with one exception, symbol for symbol the same as the axiom system for first-order
logic in the Grundziige.3 Yet in his (1930) Godel did not mention the close relation between the
two systems. By contrast, in the dissertation he stated clearly that his axiom system was basically
that of the Grundziige (1929, 65).
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In fact, first-order logic is not considered at all in PM, not even as a subsystem of the theory of
types. In particular, in *10 of PM, which deals with propositional functions of a single variable,
Russell intends his axioms to apply to variables of any type. By contrast, in first-order logic the
variables can only range over the lowest type, i.. the type of individuals.

In his doctoral dissertation (1929) Godel does point out the essential equivalence of the
version of first-order logic found in the Grundziige and that found in *1 and *10 of PM. Once
again, however, he does not mention that he has modified *10 by omitting those axioms that
explicitly refer to types and by restricting the other axioms to apply only to the lowest type.

Overall, what GOdel appears to have done is the following. He took the idea of first-order logic
from Hilbert and Ackermann’s Grundziige and used the name that they gave it, namely “the
restricted functional calculus”. He adopted their symbolism and terminology, as he remarked in his
(1930, 103). He recognized that, by suitable modifications to *1 and *10 of PM, he could
formulate an axiom system for first-order logic that was essentially the same as the one in the
Grundziige. Finally, he took from the Grundzige the metalogical problem of proving the
completeness of first-order logic, and proceeded to solve it.

Surprisingly, Godel nowhere mentions that this metalogical problem was first posed by Hilbert
and Ackermann (1928) and, in more detail, in (Hilbert 1929, 8). Rather, Gtdel acts as if this
problem would occur to anyone, and states that, once a system of axioms has been given in a
purely formal way, “the question at once arises whether the originally postulated system of axioms
and principles of inference is complete” (1930, 103). But, as Dreben and van Heijenoort have
argued persuasively (1986, 44), this question did not arise in the tradition leading from Frege to
Russell, nor in the tradition of algebra of logic leading from Boole to Schrider. The question could
only arise when one abandoned the view of Frege and Russell that logic was universal (i.e. one
cannot step outside of it to study it), and studied formal axiomatic systems as mathematical
objects.

To what degree was Godel influenced by Lowenheim or Skolem to consider first-order logic?
In his 1929 dissertation, Gtdel certainly refers in footnote 15 to Skolem’s proof of the
Lowenheim-Skolem theorem, and in the published version he makes it clear that what he has in
mind is Skolem’s 1920 paper, but does not cite any of Lowenheim’s papers (1930, 108). The
1920 paper, which proved the Lowenheim-Skolem theorem for first-order logic and then
extended it to an infinitary logic, influenced Godel by supplying a technique in his completeness
proof. That paper, however, does not provide any kind of formal treatment of first-order logic. All
of Skolem’s theorems are semantic, and he blurs the distinction between syntax and semantics by
using “contradictory” to mean “not satisfiable”. In his 1923 paper Skolem does go part of the way
toward a formal treatment, giving a definition of first-order formula though not any axioms or rules
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of inference for first-order logic. Unfortunately, Godel did not know the 1923 paper when writing
his dissertation, as his later letters make clear (1986, 51). Although Skolem’s 1920 paper exerted
some influence on Godel’s use of first-order logic, the decisive influence in providing a conceptual
framework was Hilbert and Ackermann’s book, which gave a formal treatment of first-order logic
and posed the completeness problem for it.4

3. Background to Hilbert’s 1917-18 Lectures

Hermann Weyl wrote a very insightful obituary (1944) on Hilbert. Unfortunately, this obituary
gives the misleading impression that Hilbert’s work was very neatly divided into periods in which
he worked solely on one major area: 1885-1893 on the theory of invariants, 1893-1898 on
algebraic number fields, 1898-1902 on the foundations of geometry, 1902-1912 on integral
equations, 1910-1922 on physics, and 1922-1930 on the foundations of mathematics in general.

Weyl’s dates give a general picture of the major themes in Hilbert’s work, but are very
inaccurate when it comes to Hilbert’s research on logic and the foundations of mathematics.
Already in his 1891 lecture course on projective geometry, Hilbert was thinking seriously about
the foundations of geometry, and did so again in 1894 in a course specifically devoted to the
foundations of geometry (see (Toepell 1986)). The next year Hilbert published an early version
of his axiomatization of Euclidean geometry (1895). His ideas on this subject continued to evolve
up to and beyond his famous monograph, Grundlagen der Geometrie (1899), which was
devoted to metalogical questions about geometry: the consistency, independence, and
completeness of his axioms. It was, after all, in geometry that nineteenth-century mathematicians
first proved results about consistency and independence, mainly by using models. And in 1902, in
the French translation of his book, Hilbert included a metalogical axiom (not found in the original
German edition) whose purpose was to insure that a line contained points corresponding to all
real numbers. This metalogical axiom, which he called the axiom of completeness, stated that a
model of his geometrical axioms had to be maximal, i.e. not capable of being enlarged by new
elements while still satisfying the other axioms.5 Hilbert’s earliest version of his axiom of
completeness had already appeared in 1900 as part of his axiomatization of the real numbers
(1900). The transformation that was underway in Hilbert by 1900, but was not complete until
years later, was from thinking of axiomatization, consistency, and independence as of real concern
only to geometry and the real numbers to thinking of those matters as of fundamental concern to
all areas of mathematics, including mathematical logic.

Responding in 1905 to the paradoxes, Hilbert published his first paper devoted to the larger
issues of the foundations of logic and mathematics. For the first time, he used a formal symbolic
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language. The paper showed the influence of Schréder when, within it, the quantifier “for every x”
was represented by an infinitely long formula (Moore 1988, 107).

This paper of 1905 was Hilbert’s last publication on logic and the foundation of mathematics
until 1918. One might be forgiven for thinking, as Weyl supposes, that Hilbert did indeed devote
all his intellectual energy during the intervening years to integral equations and physics.

But in fact Hilbert devoted considerable energy to foundational questions during those years.
This is most apparent if one considers, not Hilbert’s publications, but his lecture courses, for which
an authorized version exists in many cases. These show that his interest in foundational matters
continued throughout the years from 1905 to 1917. His interest in such matters did not arise out
of nothing in 1917, but was intensified from an interest for which there is evidence in almost every
intervening year.

Let us consider the surviving list of his lecture courses on foundational questions from 1905 to
1917, as it is found in his Nachlass:6

1905, Logische Prinzipien des mathematischen Denkens

1908, Prinzipien der Mathematik

1910, Elemente und Prinzipienfragen der Mathematik

1911-12, Logische Grundlagen der Mathematik (as well as lectures with this title by Hilbert,
Toeplitz, and Haar in the Seminar in Mathematics and Physics)?

1913, Einige Abschnitte aus der Vorlesung tiber die Grundlagen der Mathematik und Physik

1914-15, Probleme und Prinzipien der Mathematik (Einlage in Elemente und Prinzipienfragen
der Mathematik, 1910)

1916, Die Grundlagen der Physik I

1916-17, Die Grundlagen der Physik

1917, Mengenlehre

1917-18, Prinzipien der Mathematik und Logik

Of all these lecture courses, the most important for mathematical logic were the first one in 1905
and the last in 1917-18. The 1905 course was Hilbert’s first serious attempt to provide
foundations for logic and arithmetic, and is discussed in detail in (Peckhaus 1990, 50-75). But the
1905 course was abortive, since Hilbert realized, by the time he finished it, that it could not provide
an adequate foundation.

By contrast, the 1917-18 course did provide such a foundation. We now turn to that course.
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4. Hilbert’s 1917-18 Lectures on Logic: Metamathematics

One of the most striking features of this lecture course was how much it had in common with
his earlier interests. Logic was seen as a subject to study within mathematics, rather than the other
way around. What he had called “Axiomenlehre” in his 1905 lecture course (19053, 6) had in 1917
become the “axiomatische Methode”. But it was a mathematical method that was, in his view, as
appropriate for logic as it was for geometry or mechanics. It took questions that had originally been
part of geometry -questions of consistency and independence- and raised them in the context of
logic.

How natural it was for Hilbert to do so is clear from later developments, since almost all of
mathematical logic is now concerned with metalogical questions. How unnatural it was as well, in
one sense, is clear from statements in Principia Mathematica. In PM, it was objected that one
cannot prove that if p is equivalent to g, then q may be substituted for p in any formula;

This can be proved in each separate case, but not generally, because we have no means of

specifying (with our apparatus of primitive ideas) that a function is one which can be built up out of
these ideas alone.(Whitehead and Russell 1910, 120)

It is precisely here that the lack of metalogic is felt. Russell and Whitehead had no way of
specifying the notion of logical formula because they had no metalanguage. For them, it was
impossible to stand outside of the theory of types, and therefore it was impossible to prove the
independence of the primitive propositions of logic (1910, 95). (Already in the Principles of
Mathematics, Russell had argued that only the dependence of a primitive proposition of logic
could be established, by a proof of it from the others; its independence could not be established
(1903, 16).)

For Hilbert, it was vital to be able to stand outside of a system of logic by using a metalanguage.
Nevertheless, in 1917 he did not have the general notion of metalanguage, although he had
isolated many of its essential features. That general notion is due to Carnap (1934) and Tarski
(1935), both of whom were influenced by Hilbert.

Ironically, Russell himself later accepted the need for a kind of metalanguage. In his 1940 book
An Inquiry into Meaning and Truth, he argued that the “conception of a hierarchy of languages
is involved in the theory of types, which, in some form, is necessary for the solution of the
paradoxes” (1940 = 1980, 62). Such a hierarchy of languages, he insisted, was unavoidable,
although he acknowledged that his hierarchy was different from Carnap’s and Tarski's. Just how
different becomes clear when one realizes that if p is a proposition in Russell’s object language,
then the proposition not-p occurs in his metalanguage rather than in his object language. Thus, in
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contrast to propositional logic and first-order logic and today’s versions of the theory of types,
Russell’s 1940 object language was not closed under logical operations such as “not”.
Russell had already hinted at his notion of a hierarchy of languages in his 1922 introduction to
Wittgenstein’s Tractatus. There Russell argued that
every language has, as Mr. Wittgenstein says, a structure concerning which, in the language,

nothing can be said, but (...) there may be another language dealing with the structure of the first
language, and (...) to this hierarchy of languages there may be no limit. (1922, 23)

Nevertheless, what Russell had in mind was far from the notion of object language and
metalanguage, as we understand them today.

5. The Structure of the 1917-18 Lectures

Hilbert’s 1917-18 course was divided into two parts. The first of these was devoted to the
axiomatic method, as embodied in geometry and in the real numbers, while the second dealt with
mathematical logic. The first part bore a close relationship to material in his Grundlagen der
Geometrie (1899). The material in the second part, however, differed substantially from anything
that he had written or published previously, and consisted of five chapters:

1. Der Aussagen-Kalkiil

2. Pridikaten-Kalkiil und Klassen-Kalkiil

3. Ueberleitung zum Funktionen-Kalkiil

4. Systematische Darstellung des Funktionen-Kalkiils
5. Der erweiterte Funktionen-Kalkiil

It is no accident that the titles of the four chapters in Hilbert and Ackermann’s book Grundzrige
der theoretischen Logik (1928) were the same as the chapters of the 1917-18 course. The one
exception was that chapters 3 and 4 of the course were combined to give chapter 3 of the book,
which was entitled “Die engere Funktionenkalkdil”.

We should not be surprised at the close relationship between the 1917-18 course and the
book. For in his preface Hilbert remarked that the book was based on that course and on two
other courses, “Logikkalkiil” given in 1920-21 and “Grundlagen der Mathematik”, given in 1921-
22 (1928, v). Yet the three courses were by no means mere duplicates of each other. The 1920-
21 course was much the shortest, consisting of merely 62 pages and containing only logic. The
1921-22 course, devoted to logic and the foundations of mathematics, was about 150 pages,
whereas the 1917-18 course was the longest, at 246 pages.

Of the three courses, the one given in 1917-18 has the closest textual relation to the 1928
book. In fact, there are numerous passages in the book which were taken more or less verbatim
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from the 1917-18 lectures. This is particularly true for chapters 2-4 of the book, whereas chapter 1
has a close relation to the 1920-21 course. For example, from the middle of p.37 to the end of
p.41 of the book (in chapter 2) corresponds almost verbatim to pp.98-105 of the 1917-18
lectures. In chapter 3, matters are more complicated. Thus pp. 48-53 of the book correspond to
pp.120-133 of the course, but by p.50 there was much evidence of including only selective
passages from the course. As for chapter 4, pp.93-99 of the book are taken almost verbatim from
pp.208-220 of the course. There are a large number of passages in the book that correspond
textually with the course, but for reasons of space we omit further examples.

A sentence from the beginning of the 1917-18 lectures on logic illustrates a fundamental
concept that remained basically unchanged in the 1928 book. In those lectures he wrote: “The
calculus of logic consists in the application of the formal method of algebra to the field of logic”
(1917-18, 63). And in his 1920-21 lecture course he repeated the same sentence, except that he
now replaced the word “algebra” by “mathematics”. This same sentence, slightly elaborated,
opens the 1928 book: “Theoretical logic, also called mathematical or symbolic logic, is an
application of the formal method of mathematics to the field of logic” (1928, 1). This emphasis on
the formal axiomatic method, on the manipulation of uninterpreted symbols by fixed rules, carried
over from the 1917-18 lectures to the book.

6. Propositional Logic in 1917-18

In his 1917-18 lectures Hilbert gave propositional logic an axiomatization which was essentially
identical with the one found in his 1905 lecture course (19053, 225-228; cf. Peckhaus 1990, 64).
Yet in the 1905 course he did not raise such metalogical questions of the consistency,
independence, and completeness of an axiom system for logic;8 now, in 1917, he did so. Before
we consider those metalogical matters, we wish to consider his axiomatization in some detail.

Hilbert in 1917-18 used the following symbols for propositional logic: 0 for a true proposition,
1 for a false proposition, = for equality (actually, logical equivalence of propositions), + for “and”,
x (or juxtaposition) for “or”, an overbar for “not”, and variables X, Y, Z for propositions. The axioms
that Hilbert gave were the commutative, associative, and distributive laws for + and x, the law of
identity X=X, a law stating that X = 0 or X = 1, and finally four special axioms:

9. X+X=1 10, XxX=0
11, 1+1=1 12, Xx1=X

These were essentially the symbols and axioms which he had given in his 1905 course, except that
in 1905 he used = rather than = for the logical equivalence of two propositions. Also, in 1917-18

72 THEORIA - Segunda Epoca
Vol. 12/1, 1997, 65-90



G.H. MOORE HILBERT AND THE EMERGENCE OF MODERN MATHEMATICAL LOGIC

he included the law stating that X = 0 or X = 1, as he had not done eatlier (1917-18, 64-66). In
neither course did he introduce rules of inference, and instead all arguments consisted of
equations -an approach that went back to Boole.

In the 1917-18 course the first metalogical question that he considered was consistency. He
established the consistency of his axioms for propositional logic by giving an interpretation for
those axioms in terms of the numbers 0 and 1 with “A and B” interpreted as the minimum of A
and B, with “A or B” interpreted as the maximum of A and B, and with “not A” interpreted as 1 - A.
Since his axioms had a model, he concluded that they were consistent (1917-18, 70). This was
analogous to what he had done with the consistency and independence proofs that he had given
in 1899 for his axioms of Euclidean geometry; the one difference was that then the models were
infinite whereas now, in 1918, they were finite.

As for independence in propositional logic, Hilbert did not get very far. He offered only one
example, in which he modified the above arithmetic interpretation by letting “A or B” be
interpreted as the constant function 0. In this interpretation axioms 1-10 were true but 11 and 12
were false. Thus he established that axioms 11 and 12 were independent of the remaining ten
axioms (1917-18, 69).

Hilbert regarded completeness as the most important of these metalogical questions for
propositional logic. Yet at first it was not altogether clear what he meant by “completeness” in this
context, since he said that it essentially reduced to showing that the axiom system sufficed for
traditional syllogistic logic (1917-18, 67). Almost a hundred pages later, he finally defined
completeness (Vollstindigkeit) as what in his 1928 book he would call completeness in the
sharper sense, i.e. if any unprovable formula is appended to the axioms they become inconsistent
(Post completeness). He established completeness in this sense with an arithmetic
interpretation, along the lines of his consistency proof discussed two paragraphs above, by
showing that all his axioms had the value 0, together with the following argument: Suppose that
an unprovable formula A can be appended to the axioms without leading to a contradiction; A is
provably equivalent to a formula in conjunctive normal form, at least one of whose conjuncts has
among its disjuncts no propositional variable and its negation; by suitable substitutions, that
conjunct is provably equivalent to a disjunction of the variable X some number of times, and hence
to X itself; by substituting the negation of X for X, there is a contradiction.

It is surprising but significant that in 1918 Hilbert did not consider completeness -either for
propositional logic or for first-order logic- in the modern sense that every valid formula is provable.
It remained for Bernays to begin shifting the emphasis in that direction.

THEORIA - Segunda Epoca 73
Vol. 12/1, 1997, 65-90




G.H. MOORE HILBERT AND THE EMERGENCE OF MODERN MATHEMATICAL LOGIC

7. Bernays’ 1918 Habilitationsschrift

In 1918 Bernays submitted at Gottingen, under Hilbert's direction, a Habilitationsschrift
entitled “Beitrége zur axiomatischen Behandlung des Logik-Kalkiils”. The stimulus for this work
came from Hilbert’s 1917-18 course, as Bernays explicitly acknowledged (1918, iv). Bernays,
unlike Hilbert, made use of a simplified version of the axioms of propositional logic given in PM. At
the same time, Bernays expressed them in terms of Hilbert’s 1917-18 symbolism. As rules of
inference, Bernays used Modus Ponens (which was stated in PM, although not so clearly) and a
rule of substitution (which was not found in PM at all) (1918, 2).

Bernays remarked (1918, iv) that in the 1917-18 course Hilbert had proved the consistency
and completeness of propositional logic. This remark may be confusing until one recalls that
“completeness” here meant Post completeness. To some degree, Bernays changed the
emphasis from Post completeness to completeness, i.e. to showing that every valid formula is
provable (1918, 9). This is the first time that completeness in the modern sense was treated by
anyone as a possible property of a logic.

Bernays felt compelled to make a sharp distinction between the notion of “correct” formula
and “provable” formula, a distinction that he hinted was lacking in Hilbert’s earlier work. Moreover,
Bernays spoke of “valid” (allgemeingtiltig) formulas rather than of Hilbert’s “correct” formulas,
with the principal aim of showing that every provable formula is valid, and conversely (1918, 6).
Here Bernays took a valid formula to be one that is true with any assignment of truth-values to the
propositional variables. These distinctions avoided the occasional confusion in Hilbert's 1917-18
course as to whether the “correct” formulas were the valid ones or the provable ones.

Drawing these distinctions led Bernays to put forward what we would now call the soundness
of propositional logic (i.e. every provable formula is valid). He proved the soundness of his
propositional logic, and showed how consistency was then an immediate consequence, The proof
of soundness was quite modern; it consisted of showing that the axioms were valid and that the
two rules of inference preserved validity.

When Bernays began to prove completeness, he did so by showing that Post completeness
implies that every valid formula is provable (1918, 9). To establish Post completeness, he
essentially used the argument that Hilbert gave in the 1917-18 lectures. As Bernays remarked, his
result gave a decision procedure for determining whether an arbitrary formula is provable by
reducing it to conjunctive normal form and ascertaining whether in each of the conjuncts there
occurred some variable and its negation (1918, 15). By contrast, in his 1917-18 lectures, Hilbert
had not mentioned decision procedures at all, although in his published lecture “Axiomatisches
Denken” (1918) he did emphasize, as he had already in his 1900 Paris lecture, the importance of
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the solvability of 2 mathematical question in a finite number of steps. This would later evolve into
the Entscheidungsproblem.

Bernays carried Hilbert’s ideas much further, in regard to independence proofs in propositional
logic, than Hilbert had done in his 1917-18 lectures. In particular, after showing that one of the
axioms in PM for propositional logic was redundant, he established that, in his simplified version,
the other four axioms in PM were independent of each other. He did so by using finite arithmetic
interpretations in the style of Hilbert’s own work on consistency and independence. In some
cases, when an arithmetic interpretation was not at hand, he simply introduced abstract tables
(generally with three or four elements) to show the result of the operations “not” and “or” on
those elements. In each case, the formulas provable with the table had some distinguished value
(usually 0) while the formula to be shown independent had some different value (1918, 28-41).
In effect, Bernays was investigating many-valued logic, although he did not look at the matter in
this way.

The results in Bernays’ Habilitationsschrift were not published until 1926, when he
emphasized the connection of his results with PM and left unspoken the strong connection with
Hilbert’s 1917-18 lectures. In (1926) Bernays included his 1918 proof of completeness and his
analysis showing that four of the axioms of propositional logic in PM were independent while the
fifth followed from the other four. But he omitted his 1918 results on various possible systems of
deduction for propositional logic that relied on rules of inference rather than on axioms, and, in the
simplest case that he considered, used only one axiom (1918, 52). These “natural deduction”
systems were later rediscovered, and extended to first-order logic, by Gentzen.

In their 1928 book Hilbert and Ackermann used Bernays’ 1918 version of the axioms for
propositional logic (simplified from those in PM). Hilbert himself first used Bernays’ version while
giving a course on foundations of mathematics during the winter semester of 1921-22. Ironically,
Hilbert had used something close to Bernays’ version in the 1917-18 lectures, but within his
axioms for first-order logic, not propositional logic.

8. First-Order Logic in 1917-18

One of the most striking features of Hilbert’s 1917-18 lectures was their explicit and detailed
treatment of first-order logic. The significance of Hilbert's use of first-order logic is only clear
when we understand that, before Hilbert, first-order logic was not treated as a separate subsystem
of logic. The person who is often cited as a counterexample to our claim about first-order logic is
Lowenheim. It is true that Lowenheim (1915) distinguished carefully between quantification over
individuals and quantification over relations. Moreover, he did indeed prove his famous theorem,
which, in the form that Skolem (1920} later stated it, was that a satisfiable first-order sentence is
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satisfiable in a denumerable domain. But Léwenheim's proof of this theorem made essential use
of infinitely long formulas, which Skolem (1920) adopted as well, only to abandon them for the
usual first-order logic two years later. Lowenheim’s 1915 paper used a first-order logic which
included infinitely long formulas, and so was not based on first-order logic alone.

Thus, in 1917-18, when Hilbert gave his lecture course, first-order logic (without infinitely long
formulas) had been considered by almost no one. Frege's original logic of the Begriffsschrift
(1879), for example, repeatedly quantified over properties, e.g. in formulas 76 and 77, in his
treatment of sequences. Likewise, Peano's postulates for the positive integers (1889) quantified
over all classes. Thus both Frege's and Peano's logics were higher-order, not first-order. And the
Russell-Whitehead theory of types (1910) was also a kind of higher-order logic.?

Other than Hilbert the only person who, during 1917-18, seems to have considered
something close to first-order logic was Hermann Weyl. In his book Das Kontinuum, Weyl
certainly rejected quantification over higher-order objects (1918, 20-21). Yet he took the natural
numbers as given within his logic, which was in that sense stronger than first-order logic.
Moreover, he rejected the unrestricted use of the principle of the excluded middle, and so was
certainly not proposing classical first-order logic. No evidence is known that shows Hilbert and
Weyl discussing first-order logic at that time. But Hilbert did give his well-known lecture on
axiomatic thinking in Zurich in September 1917, and since Weyl taught in Zurich at that time, he
may well have attended his Doktorvater Hilbert’s lecture.

In his 1917-18 lectures, Hilbert distinguished carefully between propositional logic, first-order
logic, and higher-order logic. He carefully gave a recursive definition of first-order formula, and
then stated axioms for first-order logic.

Let us first consider his recursive definition. Today such recursive definitions of well-formed
formula are the basis for many metatheorems about formulas, and are an essential tool for the
logician. But this was not the case in 1917, and even Hilbert did not then use his definition to
prove anything about all formulas (although he did do so in 1921-22; see Section 11 below).
Nevertheless, Hilbert gave the first rigorous definition of first-order formula. In effect, the
definition was given in a metalanguage. The importance of this definition lies in its treatment of
formulas as purely syntactic objects, i.e. as strings of symbols devoid of meaning. (Recall that
Russell and Whitehead argued that there could be no definition of formula of PM and insisted that
there was no way to prove statements about all formulas of PM.)

Hilbert’s definition was preceded by a precise statement of the primitive symbols, three kinds
of variables (propositional, individual, and functional variables), the corresponding three kinds of
constants, three logical signs (not, or, for every), and parentheses. Here the functional variables
had “empty places”, and in this Hilbert was influenced by Frege. Hilbert’s definition of formula (or

76 THEORIA - Segunda Epoca
Vol. 12/1, 1997, 65-90




G.H. MOORE HILBERT AND THE EMERGENCE OF MODERN MATHEMATICAL LOGIC

“expression”, as he called it) then consisted of taking the six kinds of variables and constants as
expressions (provided that the empty places were filled in with individual variables or constants)
and, finally, with the following recursive clauses: If A is an expression, so are “not A”, "A or B" and
“for every x, A” (1917-18, 129-130). With small changes, this was the definition of first-order
expression found in Hilbert and Ackermann’s book (1928, 51-52).

Hilbert’s 1917-18 axioms for first-order logic consisted of two kinds. The first kind was a
simplified version of five of the axioms for propositional logic in PM (although PM was not
explicitly mentioned in this context). The second kind consisted of six axioms for quantifiers
(axioms that differed considerably from those in PM). Finally, Hilbert stated a rather complex set
of rules of inference, including Modus Ponens and various rules on quantifiers and substitution.
(Recall that he used no rules of inference for his version of propositional logic.) In Hilbert and
Ackermann’s book (1928, 53) the propositional axioms in first-order logic were unchanged from
the 1917-18 lectures, except in the omission of the axiom that Bernays (1918) had proved
redundant; the axioms for quantifiers and the rules of inference were quite different, given in the
book in a much simpler form than in the lectures and credited to Bernays.

After these preliminaries, Hilbert turned to various metalogical questions about first-order
logic. The first of these was consistency. He began by separating from first-order logic the part
that used only propositional variables and no quantifiers. Thus, as axioms for this part, he used his
first five axioms and, as rules of inference, he took substitution and Modus Ponens. (In effect, this
was a system of propositional logic, but a different one from that presented earlier in his 1917-18
lectures.) To prove the consistency of this propositional part of first-order logic, he once again
gave a finite arithmetic interpretation with values 0 and 1, with “or” interpreted as the arithmetic
product, and with “not X” interpreted arithmetically as 1 - X. Then the five axioms had the value 0,
and the rules of inference preserved the value 0, giving that all provable formulas had value 0.
From this it followed that this propositional part was consistent, since if two contradictory formulas
were provable, one of them would have the value 1. He then extended this proof to show that all
of first-order logic is consistent, but added that there was no guarantee that first-order logic would
remain consistent if unobjectionable “contentual” assumptions were included (1917-18, 150-
155).

Then Hilbert turned to the question of the “completeness” of first-order logic (i.e. Post-
completeness). As a first step, Hilbert proved Post-completeness for the propositional part of
first-order logic, in the way discussed in Section 6 above. The arithmetic interpretation that he
used to establish the consistency of first-order logic suggested to him a way to prove that first-
order logic was not Post-complete. In that interpretation, he had shown that all provable formulas
had value 0; hence it sufficed to find a formula that was not provable but had value 0. His candidate
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was “if there is an x such that F(x), then for every x, F(x)”. He was able to show that this had value
0 in his interpretation, and this formula was certainly not valid, but he was unable to prove that this
formula was not provable in his system (1917-18, 152-156). By 1928, Ackermann had managed to
show that this formula was not provable in first-order logic, thereby establishing that first-order
logic was not Post-complete; the proof was given in his joint book with Hilbert (1928, 66).

It seems surprising that in 1917-18 Hilbert did not consider at all whether first-order logic is
complete in the modern sense and did not pose this problem until his book with Ackermann in
1928. But this becomes more comprehensible when we realize that, in 1917 and over the next
decade, Hilbert was trying to advance simultaneously on several different but interrelated fronts
within logic and number theory (consistency, decidability, Post completeness). Hilbert did not
have any idea that the completeness of first-order logic would later become central to modern
work in mathematical logic.

9. First-Order Logic vs. Higher-Order Logic

One of the most striking features of Hilbert’s work on logic is how he attempted to establish a
result for a subsystem and then to extend the result (e.g. consistency or Post-completeness) to
larger and larger subsystems, with the aim of eventually extending the result to the entire system.
This is how he proceeded, for example, in 1905 when he established the consistency of a very
weak system of number theory. In his 1920 lecture course “Problems of Mathematical Logic”, he
again proceeded to show the consistency of a weak system of number theory and to sketch how
the proof might be extended to all of number theory (1920, 36-46).

But in the 1917-18 lectures Hilbert paid no particular attention at all to the consistency or Post-
completeness of number theory. Surprisingly, he instead considered higher-order logic, and the
theory of types, in considerable detail. In that context, he treated the whole numbers within
second-order logic as predicates of predicates (1917-18, 193), in a manner reminiscent of Russell
and Frege. (That treatment of whole numbers carried over to Hilbert and Ackermann’s book
(1928, 86).)

Shortly before, when Hilbert gave his lecture “Axiomatic Thinking” in Zurich in 1917, he
praised “the ingenious mathematician and logician Russell” for his very successful work in
axiomatizing logic, and regarded as the “crowning achievement of axiomatization” the completion
of Russell’s work in axiomatizing logic (1918, 412). This positive attitude toward PM is very
apparent at the end of the 1917-18 lectures, where Hilbert accepted the ramified theory of types,
stating that “the introduction of the axiom of reducibility is the appropriate means to fashion the
theory of types into a system in which the foundations of higher mathematics can be developed”
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(1917-18, 246). Hilbert preserved this sentence almost unchanged in his book with Ackermann
(1928, 113), but in the meantime he had become critical of the axiom of reducibility (1928, 115).

With that one exception, the chapter on higher-order logic in Hilbert and Ackermann’s book is
taken, often verbatim, from the 1917-18 lectures. The book follows those lectures in arguing for
the insufficiency of first-order logic and the need to extend it to a higher-order logic, in showing
how the paradoxes require this extended logic to have types, in remarking that one could stop at
second-order logic, and in seeing the need for the axiom of reducibility to overcome difficulties
that would arise otherwise with the real numbers (e.g. in showing that every bounded set of real
numbers has a least upper bound).

By 1920, when Hilbert next gave a lecture course on foundational matters, he had some
reservations about the axiom of reducibility as a way of obtaining the union of a predicate of
predicates, something that was needed for least upper bounds (1920,32). Moreover, he now
thought that Russell, by using this axiom, was turning from constructive logic to the axiomatic
method.

Hilbert discussed this axiom once more in his lecture course during the winter semester of
1921-22. By that time, he had come to the conclusion that the axiom of reducibility was not a
satisfactory solution to the problem of providing a foundation for analysis. Treating this axiom in
the form that every second-order predicate of individuals is equivalent to some first-order
predicate, he then took as given a domain of individuals together with certain basic properties and
basic relations. For an arbitrary choice of basic properties and relations, he observed, the axiom of
reducibility was certainly not satisfied. It would be necessary, in each case, to complete the system
of basic relations in such a way that the axiom of reducibility would be satisfied. But one had not
seen how to obtain such a completion by purely logical concept-construction or by a logically
constructive process. He then argued for a return to the axiomatic standpoint and for giving up the
logicist goal of founding arithmetic and analysis through logic alone, since the reduction to logic
survived in name only. The axiom of reducibility was not logically self-evident, as were the general
rules of deduction, but it was plausible that it did not lead to a contradiction. This plausibility,
however, depended on the usual axioms for analysis, and his goal was to get beyond mere
plausibility. He concluded that transfinite logic (i.. logic which considered infinite domains) was
not capable of providing a secure foundation for arithmetic: either transfinite logic was handled
purely formalistically (in which case it was imprecise and offered no protection from
contradictions) or it was made so precise in content (“inhaltlich”) that contradictions were avoided
(in which case one did not attain a foundation for the usual arguments in analysis and set theory)
(1921-22, 99-100).
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10. The Two 1920 Lecture Courses

During 1920 Hilbert gave two lecture courses on mathematical logic. The first of them, called
“Problems in Mathematical Logic”, was delivered in the summer semester, while the second,
called “The Calculus of Logic”, took place in the winter semester of 1920-21. There are quite
substantial differences between the two courses. The first was by far the more polemical of the
two, and began with criticisms of Brouwer and Weyl, apparently his first public criticism of their
foundational work.10 It was concerned with the paradoxes of logic and set theory as well as with
revisions in the foundations of arithmetic that had been proposed in recent years by Poincaré,
Zermelo, Russell, Weyl, and Hilbert himself. Hilbert regarded Poincaré as continuing in the
tradition of Kronecker’s prohibitions against set theory. By contrast, Hilbert insisted that any
prohibitions must merely exclude contradictions and must allow all worthwhile results to remain
and, further, that the freedom to construct new concepts must not be restricted beyond what is
necessary (1920, 20).

Hilbert praised Zermelo’s axiomatization of set theory as “the most brilliant example of a
complete working out of the axiomatic method” (1920, 33). In this course Hilbert gave his first,
and perhaps only, detailed treatment of Zermelo’s axiomatization, handling it within a formal
language that appeared to be first-order logic.11 After remarking that the consistency of Zermelo’s
axioms was not yet proved, Hilbert asked whether, and to what extent, these axioms could be
reduced to logic (1920, 22-28). He emphasized that the goal of reducing set theory, especially the
methods of analysis, to logic had not been attained and perhaps could never be attained, but that
the importance of the axiomatic method was independent of the question of how far
mathematical axiom systems can be reduced to pure logic. Thus at this time Hilbert was an
agnostic toward logicism, whereas in 1917-18 he had accepted logicism, at least insofar as it
concerned analysis (1920, 33-34). This shift is reflected in his increasing doubts about the axiom
of reducibility.

The final section of the 1920 course was devoted to Hilbert’s first version of his new
Beweistheorie, which he was developing in an attempt to demonstrate the consistency of number
theory (1920, 39). This appears to be the first time that he publicly used the term Beweistheorie.
As part of that version, he gave his definition of a formalized proof within number theory. Since his
only rule of inference was Modus Ponens, he presented his definition of formal proof as follows: A
proof is a figure or diagram (“Figur”) consisting of inferences

A
A—>B
B
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where each of the formulas A and A — B is either an axiom or is the end-formula of a previous
inference (1920, 37). His axioms for number theory were essentially the Peano postulates
without quantifiers and with the principle of induction omitted, and his proof of consistency was
purely syntactic, depending on his demonstration that any provable formula had at most two
implication signs — (1920, 41). His proof for the consistency of this weak system of number
theory was carried over to his (1922) article, as was his emphasis on his numerals as meaningless
signs.

The second course on logic in 1920, given during the winter semester of 1920-21, was quite
different from the first. Whereas the first was largely concerned with questions in the philosophy
of mathematics, the second returned to his development of mathematical logic. This second
course was divided into three chapters, one on propositional logic, one on the functional calculus,
and one on his new approach to the foundations of number theory. The approach that he took
here to the propositional calculus later served as the basis for the first four sections of Hilbert and
Ackermann’s book (1928, 1-12). Except for one axiom (A implies A), this approach used rules for
the transformation of a propositional formula into a logically equivalent propositional formula.
These rules were chosen so that every formula could be transformed into a logically equivalent
formula in conjunctive normal form. To these rules he added what he called rules for correctness,
one of which stated that a correct formula was transformed into a correct formula by his
transformation rules (1920-21, 8-9). Here too there was some ambiguity as to whether
“correctness” meant provability in his system, or validity. Bernays had made clear in his 1918
Habilitationsschrift that it was important to remove this ambiguity, but Hilbert had still not done
S0.

Hilbert offered a proof of the completeness of this particular axiomatization for propositional
logic. As in 1917-18 for a different axiomatization, the proof was based on showing that the
provable formulas were precisely those whose conjunctive normal form had, for each conjunct,
some propositional letter and its negation (1920-21, 10).

Hilberts treatment of first-order logic in the second chapter was more informal, and not as
precise, as his 1917-18 version.12 This time he based his axiomatization of first-order logic on the
same kind of approach that he took in the first chapter for propositional logic, i.e. transformation
rules and rules of “correctness” (1920-21, 31-32). This approach to developing first-order logic, by
using somewhat complicated rules, did not survive into Hilbert and Ackermann’s book (1928),
although it can be regarded as a forerunner of Gentzen’s natural deduction.

The final chapter of the 1920-21 course was his second attempt at a new foundation for
number theory. This attempt, however, got even less far than the first, although it did use the
principle of induction as a rule of inference (1920-21, 51). At the conclusion of the course, he
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remarked that if one could establish the Post-completeness of number theory, then one would
have established as well the decidability of all number-theoretic questions (1920-21, 61). From
this, he added, one gains an understanding of Brouwer’s recent paradoxical assertion that the
principle of the excluded middle fails for infinite sets. It is surprising to see Hilbert putting a
positive light on Brouwer’s assertion, since Hilbert reacted negatively to Brouwer's foundational
views both earlier (1920) and later (1922).

11. Logic in 1921-22

The last of the lecture courses that Hilbert mentioned as relevant to his book with Ackermann
was “Foundations of Mathematics”, given in the winter semester of 1921-22. Once more this
course was concerned with the axiomatic method, but this time the emphasis was entirely on
questions of consistency. Logic was to be studied within mathematics by the axiomatic method,
and was seen in principle as not essentially different from other branches of the mathematical
sciences, such as geometry or classical mechanics.

Hilbert opened this course by stating that the problem of consistency “is the most important
and the most difficult in the investigation of axiom systems” (1921-22, 4). He added that the
other axiomatic questions, such as completeness and independence, were very closely tied to
consistency. By the completeness of an axiom system he meant once again that no unprovable
sentence can be adjoined without making the system inconsistent, i.e. Post-completeness.

The first chapter dealt with two earlier methods for proving consistency, the method of
exhibition (“Aufweisung”) and the method of reduction (“Zuriickfiihrung”). What he called the
method of exhibition involved the construction of a “system of things” (a model) for which the
axioms held. The one example of this method that he mentioned gave a proof of the consistency
of propositional logic. Here, he referred back to the 1920-21 lectures for a treatment of
propositional logic. Yet the axiomatization whose consistency he proved here was different from
that in earlier lectures, and consisted of Bernays' treatment of propositional logic in his 1918
Habilitationsschrift. Hilbert's model of propositional logic consisted, as it had already in 1917, of
the numbers 0 and 1, with arithmetical operations on them for the connectives “or” and “not”.
Now, however, he was concerned to emphasize that this arithmetic interpretation did not depend
on the consistency of number theory, since it used “a finite, perfectly surveyable system of
definitions” (192122, 9). Thus, in this context, the model was required not to be infinite.

The method of reduction was illustrated by using analytic geometry to reduce the consistency
of Euclidean geometry to that of the real numbers. In effect, this was what is now called a relative
consistency proof. What is a little surprising is that he referred the reader to the 1917-18 course
(on logic and the axiomatic method) for a discussion of the axioms of geometry, rather than
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referring to one of his many courses on geometry (1921-22, 14). At the end of the chapter, after
giving several other relative consistency proofs for parts of mathematical physics (such as
thermodynamics), he stressed that all these proofs depended completely “on the assumption of
the consistency of analysis, i.e. arithmetic in the wider sense (in which set theory is also included)”
(1921-22, 50).

Hilbert then turned, in the second chapter, to earlier efforts to prove the ‘consistency of
analysis. Here he began by emphasizing the attempts by Dedekind, Frege, and especially Russell,
to reduce arithmetic and analysis to logic (1921-22, 70). He did not regard any of these attempts
as successful -the first two because of the paradoxes, and Russell's because of problems with the
axiom of reducibility (see Section 9 above).

At the same time Hilbert fully accepted the need to distinguish levels (first-order, second-
order, etc.) in logic and continued to base his logic on a version of the theory of types. In fact, he
remarked:

For us, the essential thing is that by distinguishing levels (“Stufen”) the extended functional

calculus (higher-order logic) is made precise in content and obtains the same degree of certainty as
the restricted functional calculus (first-order logic). (1921-22, 84)

This was a surprising statement, since at the time Hilbert had a finitistic proof for the consistency
of first-order logic but had no such proof for the consistency of second-order logic or the theory of
types.

In the final chapter Hilbert made his third attempt at a new foundation for number theory. It
used a new system of ten quantifier-free axioms, including six for propositional logic, two for
identity, and two for number theory itself: a+1 # 0 and the predecessor of a+1 is a. This was
exactly the system he later published in his 1923 article (1921-22, chap. 3, 3; 1923, 153). But
whereas the 1923 article immediately went on to assume his transfinite axiom as a way of defining
quantifiers, apparently he had not yet formulated that axiom when he gave the 1921-22 course. At
least he gave no hint of that axiom, or of any other way of handling quantifiers within a consistency
proof, in this final chapter.

In the chapter he modified his 1920 definition of formal proof to allow each line of the proof to
be a substitution instance of an axiom or of a previous line of the proof or to be the final line of an
inference (by Modus Ponens) (1921-22, chap. 3, 5). This definition, which differed from the
earlier one in its use of substitution, was published essentially unchanged in his 1922 paper and
was the first precise definition of “provable formula” for first-order logic.

The final result of his course was a consistency proof for his ten quantifier-free axioms. This
proof, that the formula 0 0 could not be deduced in his system, depended on showing that any
proof in his system which ended with a variable-free formula could be replaced by a proof in which
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no variable occurred on any line of the proof (1921-22, chap. 3, 22). Then he showed that the
predecessor function could be eliminated from such a proof. Thus the only formulas left in a proof
were built up by propositional logic from equalities or inequalities of numerals. The equalities
were said to be correct when the numerals on both sides of = were the same, false when they
were different. Inequalities were defined to be correct or false in an analogous way. So the proof
reduced to showing that, by using propositional logic, every substitution instance of an axiom
without variables was correct and that Modus Ponens preserved correct formulas. This was done
by induction on formulas, together with the conjunctive normal form for propositional logic (1921-
22, chap. 3, 19-38). Apparently, this was the first time that he used induction on formulas to prove
a metatheorem, although the means for doing so were already present in his 1917-18 lectures.

12. Conclusion

The evolution of Hilbert’s views on metalogical questions is complex. Some of his views
remained relatively unchanged over several decades, such as his emphasis on the axiomatic
method as the appropriate tool in the foundations of mathematics. Even the scope of the
axiomatic method, however, underwent some change. Originally, in the early 1890s, he was
concerned with this method only in the context of geometry. But by (1900a) he wished the
method to be used to axiomatize parts of mathematical physics, including the kinetic theory of
gases. As well, by 1920 he was interested in proofs of the consistency of such theories, and not
only in the consistency of geometry or arithmetic.

Hilbert’s concern with metalogical questions -consistency, independence, completeness-
grew out of his work on the foundations of geometry (1899) and the reduction of its consistency
to that of the real numbers. Already in (1905), in his first attempt at a consistency proof for a
fragment of number theory, he used the idea of treating proofs as mathematical objects, an
essential feature of his Beweistheorie, which was only developed in the 1920s. Yet in his (1905a)
course, where he struggled unsuccessfully with the question of how to deal with quantifiers in
mathematical logic and so remained within propositional logic, he did not raise any metalogical
questions about that logic. In his next few courses on the foundations of mathematics, such as
those of 1908 and 1910, he did not get any further.

The turning point came in his course in the winter semester of 1917-18, Already in his Zurich
lecture in September 1917, Hilbert had praised Russell’s axiomatization of logic in PM as the
crowning achievement of the axiomatic method. In the 1917-18 course he adopted the theory of
types as his basic logical framework. But he did so in a way that was quite different from PM. In
particular, he separated off first-order logic as a distinct subsystem of logic, and he gave a precise
definition of first-order formula. Moreover, he raised metalogical questions about first-order logic,
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as well as for propositional logic -the first time that such metalogical questions were raised about
logic or about subsystems of logic. He used a finite arithmetic interpretation to prove the
consistency of propositional logic and of first-order logic. By means of such an interpretation, he
showed the independence of two of his axioms for propositional logic from the others. His
deepest result about propositional logic was to prove its Post completeness.

Hilbert did not publish any of his metalogical results at the time, and so the proof of the Post
completeness of propositional logic was later credited to Bernays (1918; 1926) and to Post
(1921). The completeness of propositional logic was closely related to its Post completeness. But,
at the time, Hilbert had not formulated the notion of completeness in the modern sense. It
remained for Bernays in 1918 to isolate the notion of completeness and to underline its
importance.

Bernays did so by first distinguishing carefully between “provable” formulas and “valid”
formulas in propositional logic. (Hilbert had blurred this distinction by speaking of “correct”
formulas, which in fact he sometimes intended to be the provable ones, sometimes the valid
ones.) Then Bernays introduced the concept of the soundness of propositional logic (every
provable formula is valid). After proving soundness in a thoroughly modern way (by showing that
every axiom was valid and that the two rules of inference preserved validity), he observed that the
soundness of his logic immediately yielded its consistency. He then introduced the modern notion
of completeness (every valid formula is provable). From the soundness and Post completeness of
his logic he deduced its completeness. It remained to establish the Post completeness of his logic,
and here Bernays essentially gave Hilbert’s argument for it as found in the 1917-18 lectures.
Although in 1918 he credited Hilbert with proving Post completeness, Bernays did not do so in
the (1926) paper where he published his results on propositional logic. What is more surprising is
that neither in 1918 nor in 1926 did he pose the problem of showing the completeness of first-
order logic. Nor did Hilbert do so until 1928.

Whereas in 1917-18 Hilbert had accepted the ramified theory of types as the proper
foundation for mathematics, and with it had accepted the reduction of mathematics to logic (i.e.
logicism), by 1921-22 he no longer accepted the axiom of reducibility and had become doubtful
about the possibility of successfully reducing mathematics to logic. Already in 1920, when his
doubts about the axiom of reducibility first surfaced, he returned to his attempts (more or less
abandoned since 1905) to establish the consistency of number theory directly -without the logicist
reduction of numbers to classes or predicates- and added to them efforts to show the Post
completeness of number theory. These attempts were repeated in the 1920-21 and 1921-22
lectures, and in the (1922) paper. The first fruit of these attempts was his precise syntactic
definition of provable formula in a formal theory, and the beginnings of his Beweistheorie.
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Hilbert’s 1928 book with Ackermann did not include work on the consistency of number
theory, work that appeared instead in Hilbert’s articles during the 1920s and in his 1934 book with
Bernays. Yet the basic structure of the 1928 book was already present in the 1917-18 lectures. All
of the chapters, except the first on propositional logic, were heavily indebted to those lectures and
frequently borrowed verbatim from them. (One of the few exceptions was the emphasis in the
book, but not in the lectures, on the Entscheidungsproblem for first-order logic.)

As Church has pointed out (1956, 288), the first explicit formulation of first-order logic as a
separate logical system was published in Hilbert and Ackermann’s book (1928). But that explicit
formulation was already present a decade earlier in the 1917-18 lectures. The lectures gave a
precise definition of first-order formula, a precise axiomatization of first-order logic, and raised the
first metalogical questions about a formal system of logic. In the lectures Hilbert also answered
those questions by establishing the consistency and Post completeness of propositional logic,
together with the consistency and the lack of Post completeness of first-order logic.

With the 1917-18 lectures, the basic paradigm for metalogical research was established. It
remained for the future to develop it and bring it to maturity.
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Notes

1 We allow ourselves the liberty of referring to these ideas as “metalogical” or part of “metalogic”, even
though these terms date from a later period, namely the 1930s. Hilbert never used the term “metalogic”
and began to speak of “metamathematics” only around 1922. (Godel 1930a) and (Tarski 1930) both used
the term “metamathematics” rather than “metalogic”.

2 Post (1921) established the same result independently of Bernays, but Post had no influence on Hilbert or
Godel.

3 The one exception is Gédel’s axiom 6, which differs from the corresponding axiom in the Grundziige, and
is found as an axiom at ¥10.12 of PM.

41n fact, their book (1928, 80) refers to Skolem’s 1920 paper, which was in an obscure journal. Gédel may
well have been led to that paper by their book.

5 (Hilbert 1902, 25). In the second German edition of 1903, and in all later editions, he included a version of
the axiom of completeness.

6 This is part of a longer list in his Nachlass, SUB Géttingen Cod. Ms. D. Hilbert 520,
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7 For this particular course, we thank Dr. V. Peckhaus, who pointed out that it is found on p. 15 of the
official list of lectures given at Gottingen University during 1911-12. Unlike the other courses mentioned
above, this one is not on the list in Hilbert's Nachlass.

8 Although Hilbert did not mention these metalogical questions in the 1905 course, he did prove the
consistency of a very weak system of arithmetic there (1905a, 263-260), just as he had done in the 1905
paper.

9 For a discussion of the ways in which the logics of Frege, Peano, Peirce, Russell, and Schroder were higher-
order rather than first-order, see (Moore 1988).

10 (Hilbert 1920, 1). He first published those criticisms in his (1922) article.

11 This is the earliest treatment of set theory within first-order logic, but Hilbert does not make it clear that
Zermelo’s axiom of separation must, in first-order logic, become an axiom schema.

12 1In particular, he did not define what it meant to be an “expression”, or well-formed formula of first-order
logic, as he had done in 1917-18.
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