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Abstract

Prediction has been proposed to be a fundamental cognitive mechanism. However,
empirical data regarding the neural correlates of the predictions themselves are still
scarce. One outstanding question, especially debated within the language processing
literature, is what degree of perceptual detail is carried by predictive representations.
Despite the ubiquitous data showing the role of meaning-based expectations, their
translation into word-form sensory predictions is contended. Most prior studies
compared highly predictable words to non-predictable counterparts, imposing
di�erent attentional demands that could confound the results. Furthermore, studies
o�en focused on post-target-word e�ects, thus examining the consequences, rather
than the generation, of the prediction. In the present thesis, we investigated the
presence of sensory wordform pre-activation by comparing activity before two highly
predictable words di�ering only along a sensory dimension. Several versions of the
same paradigm were conducted with written or spoken words to examine the role
of sensory modality, and with either �xed or variable delays to explore the role of
temporal predictability. We used time-frequency analysis of MEG signals, to relate
our �ndings to prior work describing the implementation of predictive processing
through neural oscillations.

Our results showed that pre-word activity was modulated as a function of expected
word-form features both in the auditory and visual domains. Congruent with prior
literature, e�ects arose over superior temporal areas in the theta band for auditorily
presented words, and over ventro-occipital cortex in the beta band for written ones.
Predictability of the temporal onset had a determining in�uence in the auditory,
but not the visual domain. Di�erences across modalities may re�ect preferential
oscillatory signatures of di�erent brain areas as well as speci�c characteristics of
the speech and written texts, with time being a de�ning dimension in phonological
categorization, but not in orthographic processing. These results contribute to the
understanding of the role of predictive processing in general and in the linguistic
domain speci�cally, showing that word-form pre-activations may be generated when
context clearly biases towards a speci�c word candidate. By identifying the oscillatory
frequencies that characterize such pre-activation, we hope these results will help
interpret pre-target word brain activity in other more naturalistic set-ups.
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Chapter 1

Theoretical background

In the present chapter we provide the theoretical background to the main question
addressed by our studies: can predictive sensory-level representations be generated
before word onset. In the �rst section we introduce the concept of predictive
processing, explaining some prominent models. We then frame the question of
sensory pre-activation and the possible role of neural oscillations in this context.
In the second section we shi� our attention to neural oscillations, giving some
general background on their cognitive interpretation, and in language speci�cally.
Finally, in section 3 we hone in on prediction in language. We outline the main
neuro-cognitive models of language processing and word recognition, examining
the role for prediction in each of them. We review studies providing evidence for
wordform pre-activation, and identify the limitations that we aim to address with the
present work.

1.1 The proactive brain

Our senses provide us with vast amounts of data regarding our environment
in a continuous manner. This data stream is complex and o�en ambiguous, so
that interpreting it into meaningful precepts is no trivial task. Nevertheless, our
environment is also highly structured, with important regularities. Dogs bark, objects
fall downwards, in the English language, articles are followed by nouns. Predictive
processing theories thus argue that perception must rely on internal world models
representing such regularities in order to respond in real time to the complex and
o�en incomplete information provided by the senses. In this way, perception is
not just a passive mechanism for information gathering, but a constructive process
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4 Chapter 1

in which prior world knowledge is used to interpret incoming stimulation. The
integration of current knowledge and incoming stimulation would be achieved
through a process of probabilistic inference, where hypotheses about the likely
causes of sensory stimulation are formulated and checked against actual sensory
input. This comparison serves to prove or disprove the hypothesis, which can be
revised in a recurrent fashion aimed at minimizing the prediction error.

The idea of perception as reverse inference was originally proposed by Helmholtz
(1860), at least partly inspired by the 18th century philosopher Immanuel Kant
(Swanson, 2016), but it is currently receiving increased attention. Converging
evidence from the cognitive neuroscience of perception (e.g. Kveraga et al., 2007)
and motor control (e.g. Flanagan et al., 2003) have shown the prevalence of predictive
processing, with generative models being at the heart of both perception and action.
This has fueled theoretical work that places prediction as a fundamental cognitive
mechanism, able to provide the basic principle of brain function (Friston, 2005; Bar,
2007; Clark, 2013), with alterations in its function being able to explain a wide range
of cognitive disorders, such as depression (Bar, 2009), schizophrenia (Brown et al.,
2013), functional movement disorders (Edwards et al., 2012), hallucinations (Kumar
et al., 2014), aphasia (Cope et al., 2017), etc.

In parallel, proposals for possible computational and neural (Rao and Ballard,
1999; Lochmann and Deneve, 2011) implementations of such active inference
mechanisms have grounded predictive processing at the brain level. One of the
leading models attempting to describe the neural and computational architecture
of prediction is predictive coding. This account is based on two main ideas: that
predictions develop over a hierarchically organized system, and that there is a
segregation in the �ow of predictions and prediction-errors across the hierarchy.
Each hierarchical level would generate internal predictions that would be transmitted
to the level below, trying to explain incoming information at that lower level. Any
discrepancy between such predictions and the incoming information, the prediction
error, would be transmitted back up to the higher level where the prediction could
be revised with the new evidence. In this way, the only information that would be fed
forward in the system would be the prediction error. At the neural level, super�cial
pyramidal cells, with their feed-forward connections would act as error units,
propagating prediction error in a bottom-up fashion. On the other hand, pyramidal
cells within deep cortical layers, with their feedback projections would carry
predicted representations. The asymmetry in connectivity would be accompanied by
asymmetric synchronization patterns, with gamma-range frequencies predominating
in super�cial cortical layers, and alpha or beta frequencies predominating in deep
layers.
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Pre-activation of sensory representations

Figure 1.1: Prediction in the visual domain (Bar, 2007).
Early low spatial frequency information (LSF) triggers the
generation of predictions. OTC, orbito-frontal cortex;
IT, inferior temporal cortex.

However, little is still known
about the neural correlates of
the predictions themselves. One
outstanding question, that is
the main focus of the present
thesis, is to what degree of
perceptual detail predictions may
be generated before any sensory
evidence is available. In stronger
predictive processing accounts,
prior expectations could lead to
the pre-activation of expected
precept representations, down to
the earliest sensory processing areas

(Kok et al., 2017). On the other hand, perceptual pre-activations may only be
generated a�er initial sensory stimulation is available (Bar, 2007; Zylberberg et al.,
2009), with the response to a stimulus taking place in two distinct steps: an initial
bottom-up sweep would lead to the generation of top-down hypothesis that would
guide subsequent processing (see Figure 1.1 for an example).

Figure 1.2: Example
of grating stimuli with
di�erent orientations.

There is extensive evidence that valid prior expectations
facilitate stimulus processing, and some studies have traced
this facilitation back to primary sensory cortices. For
example, Kok et al. (2012) showed that onset of an
expected visual stimulus led to an attenuated but sharpened
response in primary visual cortex. Participants were
presented with grating stimuli of di�erent orientations
(see Figure 1.2) which elicit di�erential responses from
orientation-selective neurons in primary visual cortex. Predictability of the
orientation was manipulated using auditory tones as cues presented before the
gratings. The overall neural response to expected gratings was reduced with
respect to unexpected counterparts, but multivariate pattern analysis revealed
better classi�cation of orientation in the former, suggesting an enhanced
orientation-selectivity in primary visual cortex for predicted stimuli. Stimulus
omission studies go a step further, by examining response of primary sensory areas
to omissions of highly expected stimuli. For example, in the auditory domain,
SanMiguel et al. (2013) carried out an experiment where participants pressed a
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button to trigger a sound. Under the predictive condition the sound triggered by
the button press was always the same, whilst in the random condition the tone of
the sound varied randomly. Rare omissions were included in both conditions, and
an auditory response to omissions was found in the predictive, but not the random
conditions. This suggests that the observed response was a feature-speci�c surprise,
only generated when prior knowledge could predict the identity of the upcoming
sound, licensing a sensory detailed expectation.

However, few studies have attempted to identify these representations in the
interval before stimulus delivery. One exception to this trend is a study by Kok et al.
(2017), that trained classi�ers on stimulus grating orientations with MEG data whilst
participants were actually seeing the grating, and then tested the same classi�ers
before presentation of a grating where there was a high expectation of seeing a
particular orientation. They showed above average decoding before stimulus onset,
but this was only signi�cant when subtracting the decoding performance when the
expectation corresponded to the trained orientation from trials when the expectation
contradicted the presented (and trained) orientation.

Another exception is a study by Stokes et al. (2009), who found selective
activation of shape-speci�c neural subpopulations within visual cortex (lateral
occipital complex) before onset of the actual targets. However, in this case, the
detected activity was the result of an attentional-selection mechanism, rather than a
predictive pre-activation: participant’s task was to detect the presence of a certain
target (letter ’X’ vs letter ’O’) in near threshold stimuli. However, conditional
probability of the two possible stimuli was the same (25% each, with 50% of
trials showing no letters). In this case, the detected activity could be attributed
to feature-based attention (only one target was relevant) rather than feature-based
expectation (both targets were equally probable). Summer�eld and Egner (2016)
highlight the importance of distinguishing between these two cognitive processes:
feature-based attention, where one sensory feature is of special relevance for a given
task, and feature-based expectation, where on feature is deemed highly probable
given prior knowledge and context.

Summing up, although there is extensive evidence for the presence of predictive
processes in perception, little is still known about the extent and neural correlates
of these mechanisms. The present thesis aims to contribute to the evidence
for predictive pre-activation by addressing the identi�ed gaps in the literature:
we focused on the study of neural activity before expected stimuli, and we kept
conditional probability of targets at 100%.
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1.2 Neural oscillations

The presence of on-going rhythmic electric activity in the brain has been known
ever since electroencephalography was invented by Hans Berger in the 1930s, with
his description of the alpha rhythm. It later became apparent that power at di�erent
frequencies correlated with cognitive and memory performance (Klimesch, 1999).
Since then, evidence has been mounting for the close relationship between neural
oscillations and the dynamic processes of cognition (Ward, 2003). In particular, they
may be particularly relevant for predictive processes, with oscillations at di�erent
frequencies indexing top-down and bottom-up information �ow (Bastos et al., 2012).
These oscillations re�ect rhythmic �uctuations in neuronal excitability, capable of
modulating both output spike timing and sensitivity to synaptic input (Canolty et al.,
2006). Neural population communication would be mediated through alignment of
excitability states (Fries, 2005), which would be achieved through synchronization of
their oscillating frequencies. Oscillations may thus play a key role in the functional
linking and segregation of neural populations supporting a wide range of cognitive
processes. Neural oscillations are characterized by their frequency and cortical
origin, and are typically divided into discrete bands: delta (1-4 Hz), theta (4-8 Hz),
beta (13-30 Hz) and gamma (>30 Hz). Local synchrony across neurons can be
observed at the scalp with electrophysiological techniques as a power increase in
certain frequency bands.

Synchronization in the gamma range was initially proposed to solve the perceptual
binding problem. Given that di�erent object properties would be encoded by neural
populations in di�erent brain areas, some binding mechanism would be necessary
to generate a coherent, uni�ed precept. The binding-by-synchrony hypothesis
was thus proposed, with gamma band oscillations providing temporal synchrony
for encoding of relations in the visual domain (Singer et al., 1997; Tallon-Baudry,
1999). However the importance of slower oscillations was soon also recognized
(Başar et al., 2001). Whilst fast oscillations could synchronize cells within local neural
populations, integration over larger spatial scales would require longer integration
times, and thus slower frequencies such as theta and alpha (von Stein and Sarnthein,
2000). Both of these rhythms are readily observed, and have been associated with
di�erent cognitive processes.

Theta oscillations are a prominent rhythm in the hippocampus and the limbic
system in general (Buzsáki, 2002), and have been linked to spatial navigation and
memory encoding and retrieval. Alpha oscillations, originating in occipital cortex (but
also motor and auditory regions) have been linked to working memory and attentional
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processes (Klimesch, 1999). Initially attributed to an ”idling” state, increases in
alpha power are currently associated with selective attention mechanisms (Jensen
and Mazaheri, 2010). Power increases in this band would reduce excitability of
task irrelevant areas, routing information �ow through attended networks. In
addition, alpha oscillations have been shown to modulate excitability changes in time,
impacting the detection of near-visibility stimuli in a rhythmic fashion (Mathewson
et al., 2012). Moreover, these oscillations could be modulated as a function of task
requirements, achieving top-down control of excitability also along the temporal
dimension (Wöstmann et al., 2016). Finally, alpha power also correlates positively
with working memory load, which has been taken to re�ect the inhibition of incoming
stimulation in order to maintain in memory the relevant representations.

In a somewhat similar way, beta power modulations have been implicated in
the balance between maintenance of an internal state and response to external
stimuli (Engel and Fries, 2010). In the motor system, beta power decreases have
been observed during planning and execution of movements, but beta increases are
apparent during holding periods following movement and during sustained, repetitive
actions. Under a di�erent perspective, beta and alpha power decreases have also
been proposed to be functionally responsible for memory encoding and retrieval
(Hanslmayr et al., 2012): Power desynchronization in these bands following a stimulus
would allow maximal information processing abilities, a requirement for successful
encoding.

Neural oscillations may play a specially prominent role in the process of prediction
(Arnal and Giraud, 2012). Given their periodic nature, they are ideally suited to
implement temporal prediction, and the processing of rhythmic or quasi-rhythmic
signals, by aligning excitability of sensory neural populations with the external
stimulation (Schroeder and Lakatos, 2009). In addition, the bidirectional �ow of
information proposed by predictive coding theories could have distinct oscillatory
correlates. The functional unit of neocortex, the canonical microcircuit, has been
proposed to implement predictive coding computations (Bastos et al., 2012), with
super�cial cell populations calculating predictive errors, and deep cell populations
encoding predictions. Importantly, these layers display speci�c oscillatory patterns,
with gamma-band characterizing super�cial layers and alpha/beta bands deep layers
(Spaak et al., 2012; Wang, 2010). Indeed, a correspondence between top-down
predictions with lower frequency oscillations and bottom-up predictions with gamma
oscillations has been reported both for the visual and auditory domains (Kerkoerle
et al., 2014; Bastos et al., 2015; Fontolan et al., 2014; Sedley et al., 2016).
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Neural oscillations in language processing

Neural oscillations have also been found to have special relevance in language
processing, in two distinct ways. Firstly, speech is a quasi-rhythmic signal, where
linguistic information is embedded within the speech stream at di�erent time-scales.
Cortical oscillations have been shown to play a key role in speech comprehension
through entrainment of ongoing neural oscillations to these stream regularities
(Giraud and Poeppel, 2012). Synchronization has been observed to follow the pace
of phonemes, syllables, and phrases (Meyer, 2018), through gamma, theta, and
delta frequencies respectively. Importantly, this entrainment is not just a passive
consequence of the input stream regularities, but is under top-down control and can
be modulated according to task demands to enhance comprehension (Peelle et al.,
2013; Park et al., 2015).

Secondly, the aforementioned domain-general roles for di�erent frequency
bands have also been reported in the language processing literature. Theta band
power increases have been related to lexical retrieval (Bastiaansen et al., 2005),
congruent with their general role in long term memory encoding. Alpha band power
increases have been linked to verbal working memory, and to the maintenance
of syntactic dependencies (Meyer, 2018), in line with its general role in inhibition
and memory maintenance. Beta power decreases have been reported in response
to unexpected words in word-processing odd-ball paradigms and a�er syntactic
violations in a sentence (Weiss and Mueller, 2012). This e�ect could be related to
the role of beta oscillations in the balance between external and internally-driven
cognitive states, where the unexpected word signals the need for a change in
the current cognitive state. From a di�erent perspective, Scho�elen et al. (2017)
report frequency-speci�c directed interactions for di�erent brain areas during
language processing: connections originating from temporal regions peaked at alpha
frequencies, and those originating from fronto-parietal regions doing so at a beta
range.

Finally, gamma oscillations present a somewhat puzzling picture. Whilst a
domain-general role of gamma in the representation of prediction errors would
predict a negative relationship between gamma and predictability, studies of sentence
processing using MEG and EEG have found positive correlations between gamma and
predictability of a word given its prior context (Wang et al., 2012; Monsalve et al.,
2014). This positive relationship has been interpreted a coupling of near-by neuronal
populations arising from successful predictive processing, where representations
generated through top-down mechanisms are found to match those generated
through bottom-up analysis of the stimulus (Lewis et al., 2015). On the other
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hand, a link between gamma and prediction error has been reported for speech
sensory processing, but only using depth-electrodes (Fontolan et al., 2014). To
solve this incongruency, Lewis and colleagues (2015) propose that gamma band
oscillations may be subdivided into two ranges with distinct functions. Low and high
gamma bands would re�ect synchronization within- and across-hierarchical levels
respectively, the former indexing the matching of expected and encountered stimuli,
and the latter indexing the transmission of prediction errors. The positive relationship
between gamma and predictability seen with non-invasive techniques would This has
been interpreted

1.3 Language comprehension and prediction

That context and prior knowledge play a fundamental part in language processing
is uncontroversial, with decades of neuro- and psycho-linguistic research having
shown contextual facilitation of sentence comprehension and word recognition.
Language comprehension is dynamic and incremental: we interpret language as it
unfolds, without waiting for the end of a sentence (or word) in order to understand
it. Parsing such incomplete and potentially ambiguous fragments must involve
predictions about possible completions at least at some representational level. The
presence of such predictive processes has been acknowledged in di�erent areas of
psycholinguistic research, which we review in the following sections.

Theoretical work: Prediction in word recognition models

Phonemes

Sounds

Words

Meaning

/�s/ /æ/

sandal

?

?

Figure 1.3: Feedforward and
feedback connections within the
language processing hierarchy.

Most psycholinguistic models of word recognition
acknowledge the presence of top-down in�uences
along a hierarchically organized system, given the
wealth of empirical evidence supporting the presence
of predictive processes. From the �rst shadowing
experiments, where participants instructed to repeat
words did not wait to hear the complete word to initiate
repetitions (e.g. Marslen-Wilson and Welsh, 1978),
numerous priming studies, showing faster recognition
of words a�er prior facilitating context, to low level
perceptual e�ects, such as phoneme restoration,
where participants actually report hearing an absent
phoneme within a word (Warren, 1970).
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Typically, these models describe several
hierarchical levels of analysis, including phonological
(linguistically-meaningful sound representations),
lexical (abstract word representations), and semantic (meaning representation),
but they di�er on the extent of feedback connections within this hierarchy (see
Figure 1.3). For example, the Cohort model (Marslen-Wilson and Welsh, 1978) limits
the reach of top-down in�uences to the lexical level. The TRACE model (McClelland
and Elman, 1986), a computational model using distributed representations,
placed great importance to feedback connections from higher to lower levels of
representation. However, under certain versions of this model, a �rst sound-feature
analysis level is proposed that would not receive any top-down in�uences from the
phonological level above. Currently, although these models have been re�ned and
new models have been proposed, the question of whether predictive processes can
percolate down to sub-lexical processing levels is still debated (Carreiras et al., 2014).

Brain networks for language processing

Figure 1.4: Examples of dual stream speech processing models. Le�: model proposed by Rauschecker
and Scott (2009); Right: model proposed by Hickok and Poeppel (2007). Images adapted from original
papers. AC, auditory cortex; IFG, inferior frontal gyrus, PMC, pre-motor cortex; IPL, inferior parietal
lobule; STG, superior temporal gyrus; STS, superior temporal sulcus; MTG, middle temporal gyrus;
ITS, inferior temporal sulcus.

Psycholinguistic theory of hierarchical language processing has found grounding
in neurobiological studies, that also describe language brain networks as a hierarchy
progressing from sensory representations in superior temporal areas to more abstract
representations and operations in frontal areas (Hickok, 2012; Friederici, 2011;
Hagoort, 2016). Most current models propose a dual organization of these networks
(Hickok and Poeppel, 2004; Scott and Johnsrude, 2003), whereby two streams
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emanate from bilateral primary auditory cortex in the posterior temporal banks of
the Sylvian �ssure. A ventral stream would spread anteriorly along the superior
temporal lobe, and a posterior stream would spread along superior temporal lobe
and parietal areas, both streams converging in frontal structures. Gradual abstraction
would take place along both streams, with a bilateral ventral stream connecting
sound to meaning representations directly, and a mostly le�-lateralized dorsal
stream providing sensory-motor integration by the connection of sounds to their
articulatory representations. In sum, these models assign semantic representations to
brain-wide networks (sometimes proposing a temporal pole hub), lexico-semantics to
middle-temporal-areas, and phonology to superior-temporal areas on the one hand,
and to dorsal articulatory representations including parietal and frontal structures.
Other frontal areas, namely the IFG, would be involved in abstract decision processes
(see Figure 1.4 for examples of dual stream processing models).

In reading, these language processing networks are expanded to include visual
processing areas, with a region in ventro-occipital cortex acting as a gateway
between purely visual and linguistic processing. The connection between lexical
and orthographic representation could be mediated by phonological representations,
through a dorsal pathway linking occipital visual areas to temporal phonological
processing sites, or directly through a ventral le�-lateralized pathway linking visual
cortex to frontal areas and to a brain-wide semantic network (Coltheart, 2006; Jobard
et al., 2003).

Empirical work: Prediction in sentence processing

In the sentence processing literature it is well established that semantic and
syntactic predictions can facilitate processing of upcoming words (Kuperberg and
Jaeger, 2016). Words that are predictable under a given sentential context are
read faster or skipped more o�en (Ehrlich and Rayner, 1981; Staub, 2015), and
elicit a reduced neural response as measured by a the event related potential (ERP)
technique about 400 ms a�er word presentation (Kutas and Hillyard, 1984). This
e�ect, known as the N400 e�ect, is a negative de�ection observed a�er averaging
over trials scalp-recorded electrophysiological signals in response to a word. It
has been extensively studied to the present date, and �rmly linked to predictive
processes (Kuperberg and Jaeger, 2016). However, given that lexical selection
happens within 200 ms of word onset (e.g. Marslen-Wilson, 1987; Rayner, 1998)
the timing of the N400 e�ect suggests it involves post-lexical semantic analysis,
and cannot provide evidence regarding facilitation at lower representational levels
(although see Pylkkänen and Marantz, 2003).
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Although less numerous than the literature on the N400 component, e�ects
of contextual constraint have indeed been reported on earlier ERP components,
100-200 ms a�er word onset (Sereno et al., 2003; Penolazzi et al., 2007; Dambacher
et al., 2009; Kim and Lai, 2012; Molinaro et al., 2013). The modulation of these
components, associated with sensory processing, shows that prior context can indeed
lead to facilitated processing at sub-lexical stages. The fact that these early context
e�ects are not nearly as ubiquitous as the N400 could signal that these modulations,
although possible, are rare. On the other hand, their scarceness in the literature has
also been attributed to methodological constraints (Penolazzi et al., 2007): variance
on physical characteristics of the words, such as length, would heavily a�ect early
ERP responses but not later ones, thus obscuring prediction e�ects only in the former.

Finally, a group of studies have cleverly used the N400 component to evidence
the presence of phonological pre-activation. These studies have focused on the
article preceding a highly expected noun, whose form (e.g. ’a’ vs. ’an’) depends on
the phonological features of the upcoming noun (DeLong et al., 2005; Van Berkum
et al., 2005). The N400 response to the article was found to be larger when it did
not agree with the expected noun, showing that the phonological representation of
the latter must had been pre-activated. Although the robustness of these e�ects is
under some debate (Nieuwland et al., 2018), successful conceptual replications have
been carried out using article-noun gender agreement properties (Wicha et al., 2004).
These studies thus show that phonological pre-activation is possible, although the
neural evidence they provide is the consequence of an unmet prediction, rather than
the prediction generation itself.

The question of word-form pre-activation

In sum, neuroanatomical models of language processing have provided a
biological basis for �ndings from the literature on sentence processing and word
recognition, that acknowledge the presence of predictive e�ects in language.
Furthermore empirical evidence has shown that prior knowledge may modulate
sensory processing (e.g. phoneme restoration e�ects, contextual modulation of
early ERP components). However, both interpretation of these e�ects, and their
empirical relevance, are still questioned (e.g. Carreiras et al., 2014; Huettig and Mani,
2015). Firstly, sensory e�ects a�er word onset could be attributed to an attentional
process whereby a prediction at the lexical level licenses a less exhaustive bottom-up
processing. Alternatively, as was discussed in the �rst section of the current chapter,
even if top-down connections may modulate sensory processing, an initial sweep
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of bottom-up information may still be required. Lastly, even if possible, sensory
pre-activation in language might be so rare that it is empirically irrelevant.

Answering these questions is hindered by the fact that most of the linguistic
prediction literature focuses on post-target word e�ects, so that the neural
mechanisms supporting the predictive process itself are largely unknown. A few
studies in the language domain present exceptions to this general trend, having
compared preparatory activity before a word rendered highly predictable by its
context to a less predictable counterpart. In a picture-word matching paradigm,
Dikker and Pylkkänen (2013) found increased magnetoencephalography (MEG)
activity in the theta band before word onset in the le� mid-temporal and visual cortex
successively, when the previous picture represented a single object as compared
to a picture of a group of objects. This �nding was interpreted as evidence of
lexical retrieval (given the role of the mid-temporal gyrus in lexical access: Friederici,
2011; Hickok and Poeppel, 2007) and visual feature pre-activation when the identity
of the upcoming word could be predicted. Molinaro et al. (2013) compared
EEG activity before target words embedded in multi-word �xed expressions, or
in low-constraining sentences, �nding increased functional connectivity in the
theta band between frontal and occipital electrodes for the former, suggesting
top-down modulation of sensory cortices prior to word onset when the target could
unequivocally be anticipated. Fruchter et al. (2015) used adjective-noun pairs where
the adjective provided the context for the following noun, in an MEG study. They
focused their analysis in a middle temporal gyrus area, �nding an increased response
in evoked activity to highly predictive adjectives, and a subsequent decreased
response to the highly predicted noun. They interpret this �nding as a lexical
pre-activation of the expected noun, but whether this led to an orthographic (visual)
pre-activation was not examined.

Although the studies reviewed in the previous paragraph present suggestive
evidence of sensory pre-activation, they also present certain limitations. Firstly,
in some studies the paradigms included violations of expectations in 50% of the
trials (e.g. Dikker and Pylkkänen, 2013), raising the attention vs prediction confound
(Summer�eld and Egner, 2016) that was discussed in the �rst section of the present
chapter. Secondly, most of the studies used contrasts where high expectancy
conditions were compared to low expectancy counterparts. The enhanced activity in
sensory cortices found before a highly expected word as compared to a less expected
one could be explained in terms of di�erent allocation of processing resources
when semantic information can guide subsequent visual analysis, without involving
wordform preactivation per-se.
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Figure 1.5: Questions addressed in the present thesis. Can prior knowledge lead to sensory
pre-activation of wordforms? What are the oscillatory and anatomical correlates of these processes?

The main aim of the present thesis is to address the gaps identi�ed both in
the domain-general- and language-speci�c literatures, by focusing on the pre-target
word interval by maintaining 100% validity of the cue, and by contrasting two high
expectancy conditions that di�er only on their sensory features (see Chapter 3 for
more details on the experimental paradigm). Furthermore, by using MEG as the
imaging technique, we aim to characterize the oscillatory and anatomical correlates
of the prediction process. Speci�cally, we aim to answer the following questions (see
Figure 1.5):

1. Can prior knowledge lead to sensory pre-activation of upcoming words?

2. If so, what are the oscillatory mechanisms and anatomical networks supporting
the predictive process?
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Methods

2.1 Introduction to magnetoencephalography (MEG)

The MEG technique measures the magnetic �elds generated by neural electrical
activity, being part of the electro-physiological family of brain imaging techniques.
Together with EEG and electrocorticography (ECoG), these methods have two main
strengths: they provide a direct measurement of neural activity, and a temporal
resolution in the order of milliseconds (Hämäläinen et al., 1993). In contrast,
other techniques such as functional magnetic resonance imaging (fMRI) or positron
emission tomography (PET), have good or excellent spatial resolution, but provide
indirect measures of neural activity (mediated by the hemodynamic response), with
a temporal resolution that is well-below the brain’s speed of processing.

Within the electrophysiological techniques, EEG and MEG use sensors placed
outside the skull, whereas in ECoG, electrodes are placed directly on the surface of
the brain. The former two methods have the great advantage of being non-invasive,
but as a result of the distance to the generating sources, they can only detect activity
of populations of tens of thousands of neurons acting in synchrony (Hämäläinen and
Hari, 2002). Although the insights they can give into neural dynamics are at a coarser
grain than those provided by ECoG, they are specially well-suited for the cognitive
neuroscience �eld, providing an intermediate level of explanation crucial for bridging
the gap between mind and brain.

EEG is a versatile and cheap technique, sensitive to currents �owing in any
direction. MEG, on the other hand, can only measure sources that are tangential to
the scalp due to a compete shadowing of primary currents by volume conduction
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currents for radial sources. However, EEG has one important disadvantage: its
limited spatial resolution.

The topographical distribution of electrical currents at the scalp can be used to
infer their generating sources inside the head (in engineering terms, �nding a solution
to the inverse problem). However the skull is a poor conductor of electricity, smearing
the electrical currents that can be measured at the scalp. This poses an important
obstacle to solving the inverse problem with EEG, given the large number of possible
source con�gurations that could give rise to a given pattern at the scalp. Although
the multiplicity of solutions to the inverse problem is also present in MEG, it is of
signi�cantly smaller magnitude. The distortion of magnetic �elds by the skull or other
tissues in the scalp is minimal, making source reconstruction of MEG data possible
with a spatial resolution of a few millimeters for focal sources (Hämäläinen et al.,
1993).

2.2 Neural activity measured by MEG

The nervous system’s main function is the transmission of signals for the
coordination of bodily function and behaviour. Neurons, the cells making up the
nervous system, are responsible for the generation and transmission of such signals, in
the form of electrochemical waves (Ramón y Cajal, 1904). Neurons have long slender
projections, named axons, that transmit these waves along the cell in the form of an
action potential or spike. Action potentials are an all-or-none discrete electrical event
generated by rapid falls and rises of the membrane potential. Once this wave reaches
the cell body, chemical neurotransmitters are released into the synapse, binding to
receptors in the so-called post-synaptic neuron. These transmitters generate slow,
gradual �uctuations (depolarization) in the membrane of the receiving neuron, known
as post-synaptic potentials. Hundreds of other neurons may provide such input to the
post-synaptic neuron, contributing in a linear way to its depolarization. Once (if) the
depolarization reaches a threshold, that neuron will in turn �re.

Electrical activity generated by a single neuron cannot be measured at the scalp.
Given their transient nature (∼1 ms), action potentials from di�erent neurons will
not coincide in time to generate a large-enough summed signal. In contrast, this
may happen with the slower, gradual changes of post-synaptic potentials. However,
temporal alignment alone is not enough: the spatial orientation of neurons must
also be similar, in order for the currents not to cancel each other out. Luckily, a
common neural type in the cortex, pyramidal neurons, have the required spatial
con�guration. This electrical activity in turn generates magnetic �elds around it,
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that when originating in pyramidal neuron populations tangential to the skull, can
be measured at the scalp with MEG.

2.3 Instrumentation

The magnetic �elds to be measured at the scalp are extremely small, orders
of magnitude smaller than other environmental sources of electromagnetism, and
a billion times smaller than the Earth’s magnetic �eld. This poses two main
challenges for MEG instrumentation: detecting the �elds, and isolating them from
environmental magnetic noise.

Most current MEG set-ups rely on sensors made of super-conductive material
(SQUIDs: Super conducting interference devices). In order to maintain their
super-conducting properties they must be kept at low temperatures, below 20 degrees
Kelvin (-250°C). To achieve this, sensors are contained in a vacuum �ask (dewar) �lled
with liquid Helium. The magnetic �eld decays rapidly as a function of source-sensor
distance. The dewar is shaped to partially surround the participant’s head, and the
sensors are placed close to the internal surface of the dewar.

Di�erent strategies are used to minimize the impact of environmental noise on
the recorded signal. In the �rst place, the MEG system must be contained in a
magnetically-shielded room. Secondly, the con�guration of the sensors themselves
can �lter out noise. Two main types of sensors are commonly used in current MEG
systems: magnetometers and gradiometers. Magnetometers are made a of a simple
loop. When a magnetic �eld crosses it a small current proportional to the magnetic
�eld is generated and recorded. Gradiometers are made of two contiguous loops,
both measuring magnetic �elds, but only the di�erence between the two is recorded.
This e�ectively reduces the impact of far away sources (which will be “seen” similarly
by both loops), leaving only magnetic �elds generated by sources closest to the coils.
As a drawback, their ability to detect deep brain sources is also reduced.

The MEG used in the current thesis is a Vectorview (Elekta/Neuromag) system,
equipped with 306 sensors arranged in triplets comprised of one magnetometer and
two orthogonal planar gradiometers. Each gradiometer thus records one orthogonal
component of sources located right beneath the sensor.
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2.4 Analysis of MEG data

Pre-processing

A�er data collection, further steps for noise reduction are implemented. Firstly,
The Elekta/Neuromag system provides its own so�ware for this purpose, Max�lter.
This so�ware implements a mathematical method for the separation of magnetic
signals coming from a sphere inside the sensors from other sources (Signal Space
Separation, SSS; Taulu et al., 2005). Furthermore, this method can be used to
compensate for head movements. However, there may be sources of noise close to
the sensors, for example, dental work in the participant. Using temporal information
in addition to spatial patterns allows the identi�cation and separation of such sources
of noise. This method is referred to as tSSS, or temporal extension of SSS (Taulu and
Simola, 2006).

One last source of noise must be rejected before data analysis. Participant blinks
and heart-beats produce large magnetic perturbations that remain in the signal a�er
cleaning with Max�lter. Trials contaminated with artifacts may be rejected manually.
Another alternative, used in the present thesis, is to use Independent Component
Analysis (ICA), a computational method for separating a mixed signal into its additive
sub-components. These components can be examined manually to identify those
whose time-course and topography are consistent with ocular or heart activity.
Alternatively, this can be done automatically, by correlating the ICA components with
EOG and EKG activity that can be simultaneously recorded during the experimental
session. The MEG signal can then be reconstructed a�er removing the components
re�ecting eye- and heart- related activity.

Sensor level

Evoked activity: time domain

A common analysis pipeline for electrophysiological data then proceeds by
averaging over single trials for each participant and experimental condition, and
expressing the data of interest relative to a pre-stimulus baseline. This averaging
step works as “brain-noise” cancellation operation, that will �lter out ongoing brain
activity not directly related to the presented stimulus. This procedure results in a
series of smooth positive and negative de�ections in voltage or magnetic �eld. These
de�ections, or components, have been extensively explored in the �eld of EEG, and
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their modulation by experimental conditions has led to important insights into the
timing of perceptual and cognitive processes.

Originally, these components were interpreted as a sequence of discrete
responses evoked by the stimulus a�er an otherwise �at baseline. However, this
interpretation has proved problematic. No one-to-one correspondence between
components and generating sources has been found, and the assumption that the
components are present in single trials (but obscured by noise) has been challenged
(Makeig et al., 2004). This makes linking the observed brain response to a speci�c
cognitive process problematic.

Induced activity: time-frequency domain

An alternative view would explain the response to a stimulus as a modulation
of ongoing brain dynamics. These dynamics would be implemented as neural
oscillations at di�erent frequencies, and their modulation could involve amplitude-,
phase-, or frequency- changes. From these responses, only those at lower
frequencies, and tightly time- and phase-locked to the stimulus would be apparent
a�er ERP averaging (Tallon-Baudry, 1999). Other modulations of brain activity, o�en
referred to as “induced”, can be studied by transforming the pre-processed data
into its frequency components. Such decomposition is possible using mathematical
methods based on Fourier analysis. To obtain time-varying power spectra, Fourier
analysis is performed over a sliding window, multiplying data by a Hanning taper in
order to control spectral leakage and the amount of frequency smoothing. The length
of the time window will determine the time and frequency resolution of the resulting
representations. A longer time window will allow a higher frequency resolution at the
expense of temporal resolution. In the present thesis, a 500 ms window window was
employed, giving rise to a 2 Hz frequency resolution.

Analysis in the time- and time-frequency-domains can thus o�er complementary
insights into the underlying neural dynamics, highlighting the bottom-up response to
a stimulus or the ongoing top-down processes respectively. In the present thesis, we
will use averaging in the time domain to examine the early response to the stimulus,
but in the time-frequency domain to study the predictive processes prior to it. From
an empirical point of view, these processes might not be strictly time-locked to
presentation of a stimulus, arising only a�er high-level processing of the cue. From
a theoretical stance, the predictive mechanisms themselves could be implemented
through neural oscillations.
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However, at the sensor level both approaches have one important drawback:
the mixing of the signal. Many di�erent sources may be contributing to a given
observation at the scalp, making interpretation of cognitive processes di�cult. MEG
in this respect o�ers an important advantage: source reconstruction will allow the
un-mixing of the signal, and will provide a link to the underlying anatomy. Both
aspects may be crucial in order to provide cognitive interpretations of the observed
neural dynamics and to link results of individual MEG experiments to the literature
from other imaging techniques.

Source reconstruction

Source reconstruction of MEG data requires �nding a solution to the inverse
problem: given a set of magnetic observations at the scalp, O, we want to obtain the
brain sources I that generated them (see equations 2.1 and 2.2). We can model the
brain sources themselves (populations of pyramidal neurons) as electric dipoles, i.e.
currents with a position, orientation, and magnitude, but no spatial extent. These
sources can be placed in a 3-D grid within the brain, obtaining one source per
voxel. The next required step is to estimate the forward model G. We can model
the observations at each sensor as a linear combination of contributions from all
sources, since magnetic �eld varies linearly with current amplitude, and magnetic
�elds generated by several dipoles combine in an additive fashion. Therefore, given
NO number of sensors and NI number of sources, the forward model, or lead�eld L,
will be an NO×NI matrix which can be right-multiplied by the 1×NI vector of source
dipoles to give the NO×1 vector of observations (see equations 2.3). We can add an
NO×1 noise term, ε to account for any residual variance not accounted for by the
forward model.

O = G(I) (2.1)

I = G−1(O) (2.2)

O = LI + ε (2.3)

Forward model

The simplest way to estimate how a magnetic �eld at a given location would
propagate across the head is to model it as a sphere. Within this sphere, di�erent
shells may be used to re�ect the di�erent conductivity or magnetostatic properties
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of brain tissues. However, unlike electrical conductivity, the magnetostatic
properties of the head are homogeneous across tissues, and only one shell is
typically needed. Alternatively, head geometry can be modeled realistically, using
a T1-weighted MRI image of the participant’s head. There are di�erent approaches
to mathematically implement both sphere-based- realistic-geometry models, such
as boundary element method (BEM) or �nite di�erence method (FEM). BEM more
suited for modeling magnetic propagation, and FEM for electric propagation. Finally,
image co-registration in needed. MRI and MEG techniques localize the head of the
participant using di�erent coordinate systems. These must be aligned in a common
reference frame. In the present thesis, forward models were constructed following
the BEM approach, with realistic head models.

Inverse model

Even a�er developing an accurate forward model, inverting it is non-trivial. The
number of sources far exceeds the number of observations (sensors), and there are
in�nite numbers of source con�gurations that would give rise to a given set of sensor
observations. In engineering terms, the inverse problem is ill-posed. In order to
select one solution, additional a-priori assumptions must be imposed. In the present
thesis, two methods are used: minimum-norm methods (MNE) (Hämäläinen and
Ilmoniemi, 1994) and linearly constrained minimum variance beamformer (Van Veen
et al., 1997). Both of these methods linearly project sensor responses onto sources
for which parametric source maps can be built. Their main advantage is that the
subsequent source maps can be normalized to a common template, and averaged
over multiple subjects. The MNE method assumes that sources are distributed, and
that the brain functions in an energy-optimal way. The contribution from all sources
are evaluated simultaneously, but the solution with the minimal energy con�guration
is selected. In practice, a regularization parameter adjusts the compromise between
model �t, and energy minimization.

Beamforming methods take a di�erent approach to �nding a solution to the
inverse problem. They circumvent it by estimating the contribution of each source to
the scalp activity one at a time. The underlying assumption that licenses treating
each source separately is that they are uncorrelated, ie. that no two brain areas
display the same electrical activity. This is achieved by applying a spatial �lter for
each source, to pass brain activity from that location whilst attenuating activity from
the rest of the brain. In the present thesis the MNE approach is employed for
source localizing evoked activity and beamforming for oscillatory data. Although
theoretically there are no reasons to prefer one model for each type of data, from
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a practical perspective beamforming may work better for sustained brain responses
(such as induced modulations of ongoing oscillations) and MNE for shorter-lived
responses as evoked by a stimulus (Jensen and Hesse, 2010).

Statistical analysis

As we have seen in this chapter, the MEG technique provides extremely rich
data to characterize brain function in time, space, and frequency. However, this
poses important challenges for statistical appraisal. The number of dimensions across
which experimental conditions can be compared leads to the multiple comparisons
problem: the probability of incorrectly rejecting the null hypothesis increases with
the number of tests. This can be addressed by implementing techniques to correct for
multiple comparisons, or by limiting the statistical tests based on a-priori hypotheses.
The former approach typically leads to loss of sensitivity (ability to detect true
positives), whereas the latter may be di�cult to implement given the individual
and task-related variability in electro-physiological responses, and would miss any
unexpected patterns in the data.

Furthermore, in MEG, the question arises of whether to perform statistics on
sensor or source-localized data. Statistics on source-level data can be more sensitive,
given the mixing present in the scalp signal. However, this will only be the case if the
assumptions taken to solve the inverse problem are correct. In practice, the amount
of data processing and potential sources of error involved in source localization
make sensor-level statistical appraisal a more robust and preferable approach in most
circumstances (Gross et al., 2013). In the present thesis, our planned analysis included
(largely) unrestricted statistics on sensor level data, followed by source localization to
explore the likely origin of the e�ects identi�ed at the scalp.

Sensor-level inference

Statistical inference was carried out using cluster based permutation tests
(Maris and Oostenveld, 2007). This technique controls for multiple comparisons
whilst maintaining sensitivity by taking into account the temporal and spatial (also
frequency if applicable) dependency of neighbouring samples. First, the data
is clustered by performing pairwise comparisons (t-tests) between each sample
(time-frequency-sensor or time-sensor point) in two conditions. Contiguous values
exceeding a pre-de�ned threshold (p = 0.05 in our case) are grouped in clusters, and
a cluster-based statistic is derived by adding the t-values within each cluster. Then, a
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null distribution assuming full exchangeability (i.e. no di�erence between conditions)
is approximated by drawing random permutations of the observed data (3000 in the
present thesis) and calculating the cluster-level statistics for each randomization.
Finally, the cluster-level statistics observed in the actual data are evaluated under
this null distribution. Importantly, these tests only provide weak control of the false
alarm rate (Maris and Oostenveld, 2007): they can provide evidence to reject the null
hypothesis that two conditions are interchangeable, but not about where or when
signi�cant di�erences start or �nish. However, the spatio-temporal (and frequency)
characteristics of the clusters supporting the decision will be used to interpret the
di�erences between conditions, both at the sensor and source levels.

Di�erent restrictions on the windows for statistical analysis and
source-localization windows were implemented in the present thesis:

Evoked by actual words. Statistical analysis was performed on a 500 ms second
window centered around word onset, in order to include early responses to
the word, and activity just prior to it. For source localization, the window was
divided in windows of pre- and post-word activity of 250 ms each.

Induced by image-cue. Statistical analysis was performed over a time-frequency
window ranging from image o�set (250 ms) to the minimum trial length in
Experiment 1 (1500 ms), and a low frequency range (1-30 Hz). Source
localization windows were not set a-priori. They were based on the extent of
the clusters identi�ed in the sensor analysis.

Localization of sources of di�erences

In order to identify the anatomical regions displaying a di�erent response to two
conditions, it is common practice in the neuroimaging �eld to contrast parametric
maps between conditions. However, this approach presents two problems. Firstly,
such contrast maps mix di�erences due to amplitude and to location. Secondly,
they may peak away from the sources that actually generated them, to an extent that
scales with the smoothness of the maps (Bourguignon et al., 2018). This problem
is especially worrying for the MEG technique, given the spatial leakage inherent to
MEG source reconstruction.

Instead, we located regions of peak activity with respect to baseline, and restricted
between-condition comparisons to those sites. Non-parametric permutation tests
(Nichols and Holmes, 2002) were used to identify regions of signi�cant change with
respect to baseline, using both conditions pooled together. Within these regions, we
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identi�ed the coordinates of local maxima. We then calculated the mean di�erence
between conditions at each maxima, in order to assess which sources were the main
contributors to the e�ect observed at the scalp.



Part II

Experimental section
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Chapter 3

Experimental design and common
analysis methods

The main aim of the present work was to explore the presence of sensory
predictions in language comprehension. To meet this aim, a collection of studies
was performed using highly predictive contexts, where picture cues indicated the
identity of the word that would be presented a�er a delay. The same basic paradigm
was used in all experiments, varying modality of word presentation to explore e�ects
in written and spoken language, and the delay between cues and targets to examine
the in�uence of temporal predictability. This chapter presents an overview of said
experimental paradigm, and of the main analysis approach. Chapters 4 and 5 then
present each study with its speci�c variations, reporting the experimental results and
conclusions: Chapter 4 presents data for the auditory domain, and Chapter 5 for the
visual domain.

3.1 Experimental paradigm

Object pictures served as predictive cues to a word presented a�er a delay.
The pictures were always congruent with the following word, generating a 100%
conditional probability for the upcoming words. For example, a picture of a
shoe would always precede the word “shoe”. Crucially, the words were chosen
to di�er along one sensory dimension relevant to the modality employed: initial
phoneme in the auditory experiments, and word length in the visual ones. This
manipulation generated two experimental conditions, namely expect-fricative- and
expect-plosive, where fricatives and plosives are two distinct consonant categories,

29



30 Chapter 3

Figure 3.1: Experimental paradigm employed in auditory experiments. In the �gure, words in English
are included for clarity, but actual stimuli were in Spanish

or expect-long and expect-short words, where word length refers to the number
of letters. The pictures that served as cues were carefully counterbalanced across
conditions, so that any di�erences detected before word onset could only be
attributed to sensory activation of the expected wordforms. In order to keep
participants engaged in the task whilst maintaining predictive validity of the cue,
the following words could contain a one letter replacement which participants had
to detect (See Figure 3.1 for an example with spoken words). This paradigm was
presented in two di�erent experiments, one where the interval between the picture
and the target word was �xed (Experiment 1), and another where it was variable
(Experiment 2). Each experiment consisted of two experimental blocks, where the
words were presented either visually (written words) or auditorily (spoken words, see
Table 3.1).

Table 3.1: Summary of the Experiments reported in the present thesis

No. of participants Block

Experiment 1: variable timing 22 Auditory
Visual

Experiment 2: �xed timing 26 Auditory
Visual
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Rationale

This experimental paradigm was designed to �ll the gaps identi�ed in the existing
literature (see Chapter 1), and to maximize our ability to detect sensory prediction
e�ects. To achieve these aims, the following design principles were followed:

Analysis of the pre-word interval. There is abundant data characterizing the
consequences of prediction in language, using the response to target words.
In the present studies we aim to characterize the predictive process before
target onset, contributing to the understanding of preparatory mechanisms
themselves.

Focus on wordform rather than semantic predictions, by comparing words that
di�er only along a sensory dimension. Although there is extensive literature
regarding the presence of semantic, or meaning-based, predictions in language
processing, there are still few studies focusing only on orthographic or
phonological predictions.

Use of a “predictive vs. predictive” paradigm. Most studies so far have
compared predictive to non-predictive conditions. Such di�erences in the
conditional probability of the target word can generate concurrent di�erences
in the attentional demands of the two conditions, leading to potential confounds
(Molinaro and Monsalve, 2018).

Maximize predictive nature of the context. Pictures of objects served as 100%
predictive cues to upcoming words. Our paradigm was designed to maximize
the experimental ability to detect sensory predictions in the most favourable
scenario, by using 100% valid cues. Furthermore, the presence of prediction
violations could foster an additional top-down selective attention mechanism
(Summer�eld and Egner, 2009) which we wanted to avoid.

Explore the role of temporal predictability. Given the importance of temporal
information for the oscillatory mechanisms supporting speech comprehension,
temporal predictability might be required to observe phonological-feature
pre-activation. On the other hand, it has been suggested that uncertainty
regarding the bottom-up input could enhance reliance on top-down predictive
mechanisms (Kuperberg and Jaeger, 2016) in language processing. In order to
maximize the chances of detecting predictive e�ects, and disentangle between
these two alternative hypothesis regarding the e�ects of timing on prediction,
we performed two versions of each experiment: with �xed- or variable-delay
between cues and targets.
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Explore sensory predictions in the visual and auditory domains. Although we
expect the same domain-general predictive processes to play a part in
written and spoken word expectations, their possible instantiation as sensory
pre-activations must necessarily di�er, at least in the cortical regions involved.
These di�erences might also include the corresponding oscillatory signatures,
which might be characteristic of di�erent cortical areas (Scho�elen et al., 2017),
and/or re�ect intrinsic di�erences in information coding in each modality (see
for example, di�erent coding preferences in spoken and signed languages:
MacSweeney et al., 2008).

3.2 Experimental design

Data analysis was grouped according to presentation modality (see Table 3.2). This
allowed us to assess the presence of sensory activation in each modality using the
subjects of both Experiments pooled together, and to later evaluate whether temporal
predictability modulated such pre-activation. The main contrasts performed are thus:

• Main e�ect of sensory feature: e.g. Fricatives vs P losives

• Interaction between sensory feature and timing: e.g.
(Fricatives− Plosives)V ariableT iming vs (Fricatives− Plosives)FixedT iming

The results of the auditory data (auditory blocks of Experiment 1 and Experiment
2) will be presented in Chapter 4, and the results of the visual data (visual blocks of
Experiment 1 and Experiment 2) will be presented in Chapter 5.

Table 3.2: Summary of the modality-speci�c analysis

Analysis Manipulation Conditions Design

Auditory stimuli
(Chapter 5)

Sensory feature Fricative vs Plosive Within subject

Timing Fixed vs Variable Between subject

Visual stimuli
(Chapter 6)

Sensory feature Long vs Short Within subject

Timing Fixed vs Variable Between subject

As was discussed in Chapter 2, these contrasts were evaluated on the
time-frequency (TFR) decomposed MEG data before word onset. In addition,
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Figure 3.2: Analysis pipeline followed with the auditory data. Analysis of visual data proceeded in an
analogous way, with word-length replacing initial-phoneme as the sensory contrast.

these contrasts were also applied to the event related �elds (ERF) in response
to the actual word, serving as a proof of concept that the sensory manipulation
was indeed capable of eliciting a statistically di�erent response over sensory areas.
Statistical inference was carried out using cluster based permutations on sensor-level
data, and any identi�ed e�ects were subsequently anatomically characterized using
source-localization techniques. Figure 3.2 shows a diagram of the main contrasts
performed and the data analysis pipeline followed in these experiments, using the
auditory studies as an example (for more information regarding the pipeline and
choice of analysis techniques please refer back to Chapter 2). We also collected
behavioural reaction time data, summarized in Appendix A.

3.3 Common Materials and Methods

Participants

Twenty-two participants took part in Experiment 1, and 26 in Experiment 2
(aged between 19 and 40, mean 24; and 20 to 39, mean 25, respectively). All
participants provided informed consent in accord with the Declaration of Helsinki
before starting the experiment, and received e10 in exchange for their collaboration.
The present studies were approved by the BCBL Ethics Committee. Participants were
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all right-handed native-Spanish speakers, with normal or corrected to normal vision
and no history of neurological disease.

Stimuli and procedure

Each trial started with a blank screen presented for a variable interval from 700
to 1200 ms, followed by a picture depicting an object for 250 ms. A�er a variable
(1250 to 2250 s: Experiment 1) or �xed (1750 ms: Experiment 2) interval, the
word corresponding to the object was presented. The word was always congruent
with the picture, but in 50% of the trials it contained a one letter or phoneme
replacement. The resulting incorrect words were always phonotactically correct
in Spanish. Various incorrect versions were generated for each actual word (see
Chapters 4 and 5 for more details on the word stimuli). Participants were instructed
to respond whether the word was correct or not, and were made aware that the
non-correct words were identical to real ones but with one phoneme/letter replaced.
They were encouraged to pay attention to the preceding images, explaining that these
would always give valid cues as to the upcoming words. Participants had a maximum
of 500 ms to give a response with a le�/right index button press, and visual feedback
was provided a�er incorrect trials (red cross in the center of the screen for 100 ms).
Yes/no response side was counterbalanced across participants.

An additional non-predictive condition, not analyzed in the present thesis, was
included in the experiments. Non-predictive trials were created using uninformative
images as cues. These were created by trimming previous object images to the
smallest possible bounding box and scrambling them using an in-house Matlab script
employing the ImageProcessing library. We thus obtained a set of 20 images where
no discernible object could be identi�ed.

In total, 360 response trials were generated, including 120 in each of the two
predictive conditions and a further 120 in the non-predictive. In addition to the
response trials, 40 “no-go” catch trials were added to make sure that participants were
attending to the image-cue, and not just waiting for the word. These were identical to
the experimental trials, but the image presented was the original color-version instead
of grayscale, and participants were instructed not to respond to the word in these
cases. Trial order was pseudo-randomized, avoiding more than three repetitions in a
row of the same image cue.

Ten pictures depicting words in Spanish were selected from the Bank of
Standardized Stimuli (BOSS Brodeur et al., 2014) for each experimental condition.
Di�erent items were chosen for the visual and auditory blocks, making up a total
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of 40 pictures. The color pictures obtained from the database were transformed
to grayscale, trimmed, resized to a target diagonal of 500 pixels, and placed on a
550 by 550 pixel square with a medium-gray background using the imageMagick
so�ware package. Although this manipulation yielded object images of similar size, it
made the smaller real-world objects harder to recognise, rendering them larger than
their real-world size (for example, cherry). To ameliorate this problem we ranked
real-world size of the objects in a 1-3 scale, and reduced diagonal size by 30% for
rank 1 objects.

The pictures were balanced across conditions with respect to several ratings
from the BOSS database (name- , object- , and viewpoint-agreement, familiarity,
subjective complexity and manipulability), as well as several lower level image
properties (contour complexity, number of pixels, and brightness). These properties
were evaluated with Matlab 2012b and imageMagick so�ware packages. The words
were balanced across conditions within each block on frequency (obtained from the
esPal database: Duchon et al., 2013), and semantic category (natural vs artifact).

The pictures created were presented within a black-background on a
back-projection screen situated 150 cm away from the participant. Overall,
the experimental session lasted approximately two hours, including participant
preparation, MEG-recording, and debrie�ng. This session included two di�erent
experimental blocks, where the words following the pictures were presented
either written on the screen or auditorily through ear-tubes. Each block lasted
approximately 30 minutes, block order was counterbalanced across participants.
Participant-controlled pauses were provided every 10 trials, in addition to two
experimenter-controlled ones per block. An additional 10 minutes of resting state
were recorded between blocks.

MEG data acquisition

Brain activity was recorded in a magnetically shielded room using a whole
head MEG system (Vectorview, Elekta/Neuromag) with 306 sensors arranged in
triplets comprised of one magnetometer and two orthogonal planar gradiometers.
Participants were screened for magnetic interference prior to data collection, and
instructed to limit head and face movements as much as possible, and to �xate in the
center of the screen. Data was acquired with a 1000 Hz sampling rate and �ltered
during recording with a high-pass cuto� at 0.1 Hz and a low-pass cuto� at 330 Hz via
the Elekta acquisition so�ware. Head movements were monitored continuously using
�ve head position indicator coils attached to the participant’s head. Their location
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relative to �ducials (nasion and le� and right pre-auricular points) was recorded
at the beginning of the session using an Isotrak 3-D digitizer (Fastrak Polhemus,
USA). In addition, head shape was digitized to allow for alignment to each subject’s
structural MRI for subsequent source localization. Eye movements and heartbeats
were monitored using vertical and horizontal bipolar electro-oculograms (EOG) and
electrocardiogram (ECG).

MEG data preprocessing

MEG data were initially preprocessed using Elekta’s MaxFilter 2.2 so�ware,
including head movement compensation, down-sampling to 250 Hz, and noise
reduction using signal space separation method (Taulu et al., 2005) and its
temporal extension (tSSS) for removing nearby artifacts (Taulu and Simola, 2006).
Manually-tagged bad channels were substituted by interpolated values.

Subsequent data analysis was carried out in Matlab 2012b, using the FieldTrip
toolbox (Oostenveld et al., 2010). The recordings were segmented from -1000 ms to
4000 ms (Experiment 1) or 3500 ms (Experiment 2) relative to the presentation of the
picture, and low-pass �ltered at 100 Hz. Since in Experiment 1 the delay between the
cue and the target was variable, trials were then trimmed to exclude the response to
the actual word. This allowed the generation of an image-locked average containing
only preparatory activity. In addition, trials for this Experiment were re-segmented
time-locked to word presentation, in order to allow examination of the event-related
response to the actual word in subsequent analyses.

Eye movement, blink and electrocardiographic artifacts were reduced using
independent component analysis (Jung et al., 2000), with subsequent visual
inspection to remove any epochs with remaining artifacts. In the auditory analysis,
��een percent of the trials were rejected in Experiment 1, and 9% in Experiment
2. There were signi�cant di�erences in trial rejection between experiments
(F (1,39) = 11.0, p = 0.002) but not between phonemes or their interaction with
Experiment(F (1,39) = 1.2, p = 0.3; F (1,39) = 0.9, p = 0.3). In the visual analysis,
there were no signi�cant di�erences in trial rejection between Experiments or its
interaction with word length (F (1,42) = 2.1, p = 0.2; F (1,42) = 0.1, p = 0.7 respectively),
but there were signi�cant di�erences between the trial rejection in the short and
long conditions (9% and 10% rejections for short and long conditions respectively;
F (1,42) = 4.4, p = 0.04). This di�erence is probably the result of an increase in eye
movement artifacts in the long word condition compared to the short word condition.
However, given the reduced size of this e�ect (1%), we do not foresee any important
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problems for subsequent analysis. Further sensor-data analysis was performed using
gradiometer data only, but both magnetometer and gradiometer data were used for
source-localization.
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Auditory experiments

4.1 Introduction

Existing evidence for pre-target word activation in language is not only scarce,
but comes mostly from studies with visually presented words. Although top-down
in�uences on sensory areas have been well documented in the auditory domain,
previous studies have either used non-linguistic stimuli and omission paradigms (e.g.
SanMiguel et al., 2013; Yokosawa et al., 2013) or have focused on response to the
actual word (e.g. Sohoglu et al., 2012; Arnal et al., 2011). To the best of our
knowledge, no study has yet explored the presence of sensory pre-activation of words
in the auditory domain by looking at the pre-target word interval. In the following
paragraphs we will review the publications with more relevance to our paradigm.

In a series of studies, Sohoglu and colleagues investigated the e�ects of prior
knowledge and perceptual detail on auditory processing of single words. Participants
were presented with acoustically degraded words a�er a written word that acted as a
cue, and were asked to rate clarity of the spoken item. The acoustic degradation was
parametrically manipulated to explore the e�ect of perceptual detail on perceived
clarity, and the written cue, which could match or mismatch the auditory word,
was used to study the e�ects of prior knowledge. Both valid prior information and
increased acoustic detail correlated positively with perceived clarity (Sohoglu et al.,
2014), but had opposite e�ects on the neural response at the superior temporal gyrus
(STG) as measured with EEG and MEG (Sohoglu et al., 2012). Whilst perceptual
detail enhanced activity at the STG, a phonological processing area, prior knowledge
suppressed it. Furthermore, prior knowledge also modulated neural activity in the
inferior frontal gyrus (IFG), taken to represent the most abstract node within the

39
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speech processing network. Importantly, neural modulation at the IFG was observed
before the di�erential activity detected at the STG. This pattern of results is coherent
with predictive coding models, whereby prior expectations generated at an abstract
level percolate down to concrete levels, thus reducing the neural activity needed
to process the incoming stimulus once it arrives. Di�erential activity at the IFG as
a function of cue validity was observed at 90-130 ms a�er word onset, suggesting
very early engagement of top-down modulations. However, a lack of even earlier
e�ects could indicate that prior knowledge only modulates auditory processing a�er
an initial bottom-up sweep is processed. In contrast, in a further study using the
same paradigm, Cope and colleagues (2017) found evidence for pre-target word
preparatory activity in the beta band. They analyzed the oscillatory activity prior
to target presentation by contrasting it with a pre-cue baseline. They report a beta
power increase just before target word onset that correlated with precision of the
expectations as modelled using Bayesian inference simulations with each subject’s
behavioural results. However the neural sources underpinning these e�ects were not
analyzed, so that whether these e�ects are linked to sensory pre-activation, or to
more abstract representations cannot be determined.

Crucially, all these paradigms employed matching and mismatching cues to the
upcoming stimulus. As a result, the conditional probability of a given stimulus
was 50% or lower, decreasing the sensibility of these studies to detect and
describe sensory pre-activation. Furthermore, the presence of mismatching stimuli
could trigger feature-based attentional mechanisms (Summer�eld and Egner, 2016)
which might be qualitatively di�erent to purely predictive ones. An interesting
exception comes from a study by Roll and colleagues (2017), who contrasted
activity a�er word onset for word-beginnings with few possible completions to
those with many possible candidates. They used event-related potentials (ERP)
analysis, showing an increased negativity for the former as compared to the latter,
which they interpret as a pre-activation e�ect. Furthermore, they used fMRI to
characterize this e�ect anatomically, �nding that the ERP pattern was associated with
a blood-oxygen-level-dependent (BOLD) contrast increase in Broca’s area (le� IFG,
pars opercularis) and le� angular gyrus. This pattern was interpreted as a top-down
in�uence aimed at inhibiting irrelevant le� parietal activation during lexical selection.
These results would thus re�ect a pre-activation at the lexical level, but no evidence
is reported for a pre-activation at the perceptual level.
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The present study

/t/

/ta/ /sa/

/s/

Time

/p/
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/ka/

/

Plosives Fricatives

Figure 4.1: Sound waves generated by the di�erent
consonant categories. The examples shown were
extracted from the actual experimental stimuli.

With the present study we aimed
to overcome limitations of the
reviewed literature by focusing on
the pre-target word interval and
by maintaining 100% predictive
validity of the cue. Instead of using
a valid vs invalid cue comparison
to isolate predictive mechanisms,
we compared preparatory activity
before highly expected words that
di�ered only in their perceptual
features. This perceptual contrast
was achieved in the present
experiment by manipulating the
word’s initial phoneme: words
could either start with fricative
or a plosive. These two types of
phonemes di�er in their manner of
articulation: whilst in the former air�ow is partially occluded, generating turbulent
air�ow and a gradual onset, the latter are produced by total interruption of air�ow
followed by the vowel, generating a sudden and short burst of energy. These
di�erences in articulation generate speci�c sound pro�les (see Figure 4.1) that would
give rise to contrasting responses in auditory cortex and beyond (Toscano et al., 2010;
Correia et al., 2015).

Anatomical and oscillatory hypotheses

If prior expectations involve pre-activation of word-form representations, we
should be able to �nd di�erences between our two conditions before stimulus
onset, in cortical areas involved in auditory processing. Whilst we expect the
strongest e�ects around the STG, responsible for phonological processing (Hickok
and Poeppel, 2007; Scott and Johnsrude, 2003), the dorsal articulatory pathway could
also be involved in the passive representation of articulatory features (Correia et al.,
2015).

The main neural response we examine in the present thesis is oscillatory activity.
The beta band has been repeatedly implicated in predictive mechanisms in the
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visual domain (Arnal and Giraud, 2012), but with auditory stimuli a more complex
pattern has been observed. Whilst some studies report a prominent role of beta
oscillations in auditory predictions (Cope et al., 2017; Sedley et al., 2016) others
also show the role of lower frequencies (Arnal et al., 2011). Arnal and colleagues
(2011) observed that whilst a slow oscillation regime (in delta and theta bands)
developed over a high-order network when speech matched prior visual information,
a faster local regime of beta and gamma arose over the STG when the speech
violated prior expectations. The authors suggest that beta oscillations were involved
in the reconciliation between prior expectations and prediction error and in the
generation of new predictions, whereas delta and theta oscillations are involved in
the stabilization of representations of the con�rmed expectations. As a result, we
expect di�erences between conditions to arise in beta and/or theta ranges.

4.2 Material and Methods

Participants

Twenty-one right-handed native Spanish speakers took part in the �rst
experiment and 26 in the second (aged between 19 and 40, mean 24; and 20 to 39,
mean 25 respectively). From the �rst experiment one participant was excluded due
to excessive noise in the recordings, and from the second, one was excluded due to
lack of compliance with experimental instructions, two due to excessive noise and
artifacts, and two due to technical problems with the audio system detected a�er the
experiment. This le� 20 participants in the �rst experiment, and 21 in the second.

Stimuli

Table 4.1 shows the full stimuli used in the auditory blocks, classi�ed according to
the two initial-phoneme categories. The initial consonant was always followed by a
vowel, and the words were 5-6 letters long. They were balanced across conditions on
length in syllables, in addition to frequency and semantic category (natural vs artifact).
Three di�erent incorrect words were generated for each actual word when possible,
but in some cases only one pseudo-word could be generated. The words were
presented through plastic tubes and silicon earpieces to participants’ ears. For more
details regarding experimental stimuli, procedure and experimental design, please
refer back to Chapter 3.
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Table 4.1: Items in each phoneme condition. English translations within parenthesis.

Plosive-initial Fricative-initial
toldo (awning) sillón (armchair)

pelota (ball) silla (chair)
camión (truck) cereza (cherry)
cañón (cannon) secador (hairdryer)
conejo (rabbit) farola (streetlamp)
cometa (kite) zapato (shoe)
camisa (shirt) zorro (fox)

cohete (rocket) salero (saltshaker)
tomate (tomato) sierra (saw)

toalla (towel) zueco (wooden shoe)

4.3 Results

Response to stimulus: word-locked event-related �elds

Before examining our main contrast, involving the pre-target word oscillatory
activity, we analyzed the ERF response to the actual words. We assessed the
contrast between fricative- and plosive-conditions using cluster-based permutation
tests over a 500 ms interval centered around word onset, and with the 41 subjects
of both experiments pooled together. This contrast will be later referred to as
the phoneme contrast, or the phoneme e�ect when deemed signi�cant. We then
evaluated whether phoneme e�ects were modulated by temporal predictability (i.e.,
whether there is an interaction between temporal predictability and sensory feature),
by comparing the phoneme contrast between the two experiments. Finally, we
performed source reconstruction with minimum norm estimate to identify the brain
regions underpinning the e�ects found in the sensor-level analysis (see Chapter 2 for
more details regarding the choice of analysis methodology).

Word presentation elicited a marked amplitude increase over a bilateral mid
region and a le� anterior area, that was more pronounced for plosive- than fricative-
initial words. Cluster-based permutations comparing the brain response to fricatives
and plosives (all 41 subjects) con�rmed that these di�erences were signi�cant (see
Figure 4.2A), the largest cluster having a p-value = 0.003 (second largest: p = 0.2).
Interestingly, this phoneme expectation e�ect seemed to start before word onset (the
largest cluster spanned the whole analysis time window, and visual inspection of ERF
plots suggest it was present before).
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Figure 4.2: Peri-word ERF response. A — Phoneme e�ect with subjects of both experiments pooled
together. On the le�, ERFs for plosives and fricatives averaged over le� and right temporal sensors.
Shaded area indicates the analysis window, and black horizontal line indicates the temporal extent of
the clusters reported in the results section (’+’ indicates a p-value< 0.1, and ’*’< 0.05). On the right plots
a2 and a3 show the topography of the evoked response during the the pre- and post-word segments of
the analyzed window. B — Interaction between phoneme and temporal uncertainty. On the le�, plot
b1 shows the ERFs of the di�erence between phoneme conditions in each experiment over le�- and
right-temporal sensors. On the right, plots show the topography of the phoneme expectation e�ect
separately for each Experiment. Sensors that formed part of the clusters with p < 0.1 are marked in
black. The shaded areas around the ERF plots indicate the standard error (for visualization purposes).
The ERFs of Experiment 1 were constructed using image-locked data from the beginning of the interval
up to 1600 ms, and word-locked data from 500 ms prior to word onset. There is 100 ms of overlap,
marked as a discontinuity in the x-axis.
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The test for an interaction between phoneme expectation and temporal
predictability revealed a marginally signi�cant e�ect (largest cluster -250 to -160 ms,
p = 0.07; second largest cluster p = 0.09) that started before word onset and was largest
over anterior and mid-le� sensors (see Figure 4.2B). This marginal interaction seemed
to be driven by a pre-word phoneme expectation e�ect that was apparent only when
word onset was variable (i.e., in Experiment 1). Furthermore, this e�ect appears
present even before our analysis time window (see Figure 4.2B), carrying over till
a�er word presentation.

Figure 4.3: Source reconstruction of ERF e�ects. A — Regions of signi�cant power change with respect
to baseline (both conditions and experiments) at 125 ms windows just before and a�er word onset. The
peak activity locations within these areas are marked (a1 to b2) within these images. B — E�ect-size of
the phoneme-expectation e�ect (estimated as the standardized di�erence between conditions) at each
peak and time interval.

We performed source reconstruction in two separate 250 ms time-windows in
order to separate brain activity before and a�er word onset. Peaks of signi�cant
activity with respect to baseline in these intervals were identi�ed using permutation
statistics and both phoneme conditions pooled together. In the pre-word interval we
found extensive regions of signi�cant amplitude change spanning bilateral perisylvian
areas and frontal and temporal ventral regions (see Figure 4.3A top). Within these, a
large number of maxima were found (15), so only the four largest were selected for
further analysis: le� parietal on the banks of the Sylvian �ssure ([-50 -19 27]), le�
fronto-ventral ([-10 29 -19]), right temporo-ventral ([43 -31 -33]), and right superior
temporal ([50 0 1]). We then examined the phoneme expectation e�ect at these
sources separating subjects according to experiment, given that moderate evidence
for an interaction with temporal predictability was found in the sensor level data (see
Figure 4.3, panel B top). This revealed that the fricative < plosive pattern over
le�-lateralized sources was present in Experiment 1 (being maximal over the le�
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parietal and fronto-ventral sources), but minimal or absent in Experiment 2. This
is consistent with the topographies observed at the sensor level, where di�erences
between ERFs to both phoneme conditions in Experiment 1 peaked over mid-le�
and le� anterior areas (see Figure 4.2B).

In the post-word interval areas of signi�cant amplitude change with respect
to baseline spanned a more constrained bilateral peri-sylvian region surrounding
auditory cortices. Two cortical maxima were found within these regions, in a
le�-parietal area in close proximity to the one identi�ed previously, and a right
superior temporal area, more posterior than the one identi�ed in the pre-word
interval (see Table 4.2 for MNI coordinates of these locations and their spatial
relation to the ones identi�ed in the ERF analysis). Both of the identi�ed sources
showed a fricative < plosive pattern in both experiments. The e�ect appears to
be right-lateralized in Experiment 2 but not Experiment 1 (see Figure 4.3B bottom),
however this pattern could simply re�ect the carry-over of the e�ect generated in the
pre-target word interval in Experiment 1.

Figure 4.4: Source reconstruction of ERF e�ects for each experiment separately. Regions of signi�cant
power change with respect to baseline (both conditions) at 250 ms windows before and a�er word onset.

In sum, the ERF analysis showed that the phonological contrast was indeed
capable of eliciting signi�cant di�erences upon word presentation, and that these
e�ects localized to auditory processing areas: superior temporal gyrus in the right
hemisphere, and inferior parietal in the le�. Note that the le� source did not peak
in or near primary auditory areas as was expected. This could be the result of the
carry-over contribution from pre-existing prediction-related activity in Experiment
1. To con�rm this interpretation, we repeated the source localization pipeline
separately for both experiments. The qualitative pattern of activation with respect to
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baseline was similar across experiments, except for a bifocal activation in Experiment
1 over the le� hemisphere, with two clearly separable peaks over inferior parietal and
superior temporal cortex, present both before and a�er word onset (see �gure 4.4).
This suggests that the contrast did indeed elicit a response over le� auditory cortex,
but the analysis using the data of both experiments pooled together con�ated the
pattern, giving rise to a unique peak between the activations observed in each
Experiment separately.

Preparation for stimulus: image-locked time-frequency response

Time-frequency responses (TFR) were estimated in a pre-target word interval
(from image o�set to the minimum interval length: 250 ms to 1500 ms) and at
frequencies in the range 3-30 Hz, including theta, alpha and beta bands. As in the
ERF analysis, we assessed the phoneme expectation e�ect at the sensor level using
all subjects pooled together, and then evaluated the presence of an interaction with
temporal uncertainty over the same time-frequency window. Finally we performed
source reconstruction using a minimum variance beamformer to identify the brain
regions underpinning the e�ects detected in sensor data. Based on the literature and
on results obtained with ERFs, we expected these to include STG and parietal areas.

Figure 4.5: Image-locked time-frequency response. A — Power change with respect to baseline during
the analyzed pre-word interval. B — Phoneme e�ect (fricatives minus plosives) during the same interval.
Sensors that formed part of the cluster with p <0.05 are marked in black.

Figure 4.5A shows the evolution of relative power with respect to baseline as
function of time at theta, alpha and beta frequencies. Image o�set induced a posterior
power decrease at alpha and beta frequencies that turned to power increase at 700
ms. It also induced a bilateral anterior power increase at theta and alpha frequencies
that was sustained throughout the analysis interval at alpha frequencies, but gradually
diminished at theta frequencies. There was also a power decrease at beta frequencies
over le� anterior sensors that intensi�ed as a function of time.
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Figure 4.5B shows the evolution of power di�erences between fricative and
plosive conditions. Cluster based permutations revealed that these conditions
di�ered signi�cantly (largest cluster, p = 0.02; second largest cluster, p = 1).
Di�erences peaked 1 s a�er image onset and spanned mid-le� and right anterior
sensors, with fricatives displaying a smaller power increase than plosives. The largest
identi�ed cluster started 340 ms a�er image onset, was sustained throughout the
analysis interval, and encompassed frequencies from 6 to 20 Hz with a mean of 11
Hz. Cluster based permutations comparing the phoneme expectation e�ect between
experiments revealed no evidence for an interaction with temporal uncertainty
(largest cluster, p = 1).

Based on sensor-level results, we evaluated source power at 900—1100 ms, at
theta (4—8 Hz), alpha (8—14 Hz), and low-beta (14—20 Hz) frequencies using
the data pooled across conditions and experiments. Signi�cance was assessed in
comparison with baseline power, with permutation statistics. Figure 4.6 A presents
the three ensuing power maps, and Table 4.2 presents the coordinates of local
maxima. The map at alpha frequencies had four clear peaks in inferior parietal and
inferior occipital cortex, both bilaterally. In the beta band, there was a frontal peak
of power suppression and bilateral occipital peaks of power increase. In the theta
band we found bilateral parietal sources of power increase and a broadly distributed
pattern of activity over a perisylvian area in the right hemisphere. Amongst these, we
selected the two largest for further analysis (see Fig, 4.6 panel A), located in temporal
and frontal areas (superior temporal sulcus and rolandic operculum respectively).

Although a statistical evaluation of the main e�ect of temporal uncertainty was
outside the scope of this thesis, visual inspection of the sensor level data suggested
there may be di�erences in the topographical distribution of power between
experiments (see Figure 4.7). Therefore, as a �nal check we repeated the analysis
pipeline described above for each Experiment separately. Power spatial distribution
in both Experiments was very similar (see Figure 4.8) except for a theta source of
power increase in le� superior temporal cortex that was present in Experiment 1,
but clearly absent in Experiment 2 (with a slight power decrease in this case). Given
the theoretical relevance of such location, we decided to incorporate the coordinates
of this peak (based on Experiment 1 subjects) to subsequent analysis (with subjects
from both experiments together).
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Figure 4.6: Source reconstruction of TFR e�ects. A — Regions of signi�cant power change with
respect to baseline for theta, alpha and beta bands, at 900—1100 ms. The peak activity locations are
labelled within each map (θ1 to β3). B — E�ect-size of the phoneme-expectation e�ect estimated
as the standardized di�erence between conditions in power averaged across 500—1500 ms. C —
Time-courses along the whole trial for each phonological expectation condition, for the �ve sources
showing the largest phoneme expectation e�ect. For visualization purposes, the standard error of the
mean for each time-point is depicted as a shaded area around the main line. Vertical dashed lines within
these plots indicate a discontinuity in the data shown: to the le� the data re�ects the mean calculated
using both experiments, to the right only the data for Experiment 2 remains, given that word onset
latencies in Experiment 1 were variable.



Table 4.2: MNI coordinates of signi�cant maxima for post-word ERF and pre-word TFR sources maps. The last column provides the distance in mm of
each TFR location to the peak ERF to the actual word in the same hemisphere. The TFR sources closest to the post-word ERF ones are highlighted in
bold.

Le� hemisphere Right hemisphere

Analysis Location Fig/label
MNI coords Distance

Location Fig/label
MNI coords Distance

[ x y z ] to ERF [ x y z ] to ERF

Post word
ERF Parietal 3. b1 [-49 -27 26] - Temporal 3. b2 ( 62 -24 9] -

Pre word

Theta
Parietal 5. θ1 [-43 -33 40] 16.4 Parietal 5. θ3 [ 55 -30 45] 14.9

Temporal 5. θ2 [-55 -31 15] 13.2 Frontal 5. θ4 [ 59 -17 16] 10.3
Temporal 5. θ5 [ 58 -21 -5] 37.2

Alpha
Parietal 5. α1 [-47 -30 50] 24.3 Occipital 5. α3 [ 31 -77 -18] 67.1

Occipital 5. α2 [-14 -82 -6] 72.6 Parietal 5. α4 [ 52 -30 50] 42.6

Beta
Frontal 5. β1 [-34 -13 66] 45.0 Occipital 5. β3 [ 27 -91 8] 75.6

Occipital 5. β2 [-14 -91 1] 77.1
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Figure 4.7: Image-locked TFR response for each experiment separately. Relative power change with
respect to baseline during the pre-word interval for Experiment 1 (le�) and Experiment 2 (right).

Figure 4.8: Source reconstruction of TFR e�ects for each experiment separately. Regions of signi�cant
power change with respect to baseline (both conditions) for theta, alpha and beta bands, at 900—1100
ms.

Considering all frequency bands together, twelve sources were identi�ed. In order
to compare the contribution of each source to the phoneme expectation e�ect, we
extracted the time-courses at each location, and compared the power di�erence
between conditions averaged over a time interval corresponding to the main cluster of
phoneme expectation e�ect identi�ed in the sensor analysis (0.34 to 1.5 s). Figure 4.6
B shows the standardized di�erence for each source, sorted according to z-score.
Power was higher in the fricative than in the plosive condition in all examined sources
(except for one). The largest contributors to the phoneme expectation e�ect were
the le�-parietal alpha and right-frontal theta sources. This is largely consistent with
the data at the sensor level, where di�erences between phonemes concentrated over
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mid-le� areas in the alpha band, but also included right anterior sensors in the alpha
and theta bands. Interestingly, the three subsequently-ranked peaks (all in the theta
band) were located close to the sources of the ERF to the actual word: the le�-parietal
and le�-temporal sources were 15 mm away from the le�-parietal post-word ERF
source, and the right temporal sources was less than 15 mm away from the superior
temporal post-word ERF source (see Table 4.2). We thus selected the �rst �ve sources
for further analysis.

Figure 4.6 C presents the power time-course for each phoneme expectation
condition at these �ve location-frequency pairs for the whole trial duration.
Congruently with the sensor-level data, di�erences between conditions were
maximal around 1 s post-image onset, but appeared to be sustained until word onset
in the right theta sources only. Upon word presentation, all sources except the le�
parietal alpha one displayed a marked power increase and an enhancement of the
phoneme e�ect. This provides further evidence of their involvement in sensory
processing of the word.

4.4 Discussion

In the present study we aimed to �nd evidence for predictive pre-activation
of auditory words and to explore the oscillatory mechanisms generating them.
We compared pre-stimulus activity between two high expectation conditions that
di�ered only in the phonological features of the expected precept (fricative-
vs plosive-initial words). Our results showed signi�cant di�erences between
expect-fricative and expect-plosive conditions before phoneme onset in a frequency
range spanning alpha and theta bands, suggesting that sensory feature-speci�c
preparatory activity was taking place. Sources of this e�ect were (amongst others)
localized to superior temporal cortices, generally associated with phonological
processing (Scott and Johnsrude, 2003). Furthermore, these locations were spatially
very close to those showing the largest event-related response to the actual word,
involving similar sources to those that show the largest modulation during processing
of the actual stimulus.

Although the localization of the e�ects of interest included superior temporal
cortices as we had hypothesized, multiple distant sources were found to contribute to
the phoneme-expectation e�ect, painting a complex picture. The largest contributor
was found to be a le� inferior parietal source in the alpha band, followed by several
perisylvian sources in the theta range over le� and right hemispheres. However, we
suggest that only the theta band sources re�ect pre-activation of expected phonemes:
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If the e�ects identi�ed re�ect a pre-activated representation we would expect an
enhancement of the di�erence between phoneme conditions, and of overall activity
with respect to baseline, once the actual phonological information was available at
word onset. Whilst this was true of the theta sources, it was not the case in the
alpha le� parietal location (compare time-course b1. with a1. to a4. in Figure 4.6).
The possible functional relevance of these sources will be discussed in the next
paragraphs.

Anatomical �ndings

Although multiple possible contributors to the sensor-level phoneme e�ect were
found, the largest of these were distributed following locations along the dorsal
speech processing stream, as described by dual route speech processing models
(e.g. Scott and Johnsrude, 2003). Along this stream, gradual abstraction from
acoustic properties would take place posteriorly from primary auditory cortex along
the superior temporal lobe to parietal areas. These sources are not limited to
the temporal areas we had hypothesized, but are thus nevertheless consistent
with the pre-activation of the expected phonological features at di�erent levels of
representation. Several features of this pattern of activation are worth discussing.
Firstly, within the theta band sources, the right frontal motor source displayed
the largest phoneme expectation e�ect. Its location, in the Rolandic operculum,
is related to tongue motor control and speech articulation (Brown et al., 2008).
Although controversial, the role of motor areas in passive speech perception is
a recurrent topic in speech processing research (Liberman and Mattingly, 1985;
Correia et al., 2015). Interestingly, the involvement of the motor system in perception
could be mediated by the prediction process itself, that under some accounts
would use motor simulations to generate full representations of their sensory e�ects
(Schubotz, 2007; Molinaro et al., 2016), or at least their temporal dynamics (Morillon
et al., 2015).

Secondly, it is interesting to note that only the sources distributed over the right
hemisphere displayed a sustained e�ect that lasted until word onset. If di�erences
between conditions indeed re�ect a predictive mechanism aimed at facilitating
perception, we would expect them to persist until word onset. Cope et al. (2017)
for example, suggest that preparatory mechanisms may occur just before expected
stimulation. An intriguing possibility would thus be that the right hemisphere would
play a more prominent role in the representation of sensory predictions. This
prominent role of the right hemisphere could be related to �ndings from studies
looking at cortical entrainment to speech and non-speech auditory streams, showing
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stronger theta coherence over right- than le�- superior temporal cortices (Molinaro
and Lizarazu, 2018).

Oscillatory �ndings

The involvement of the theta band in the pre-activation process is in agreement
with the study by Arnal et al. (2011), that found an oscillatory regime in lower
frequencies prevailed in the absence of expectation violations, and with studies
looking at the pre-target word interval in the visual domain (Dikker and Pylkkänen,
2013; Molinaro et al., 2013). While in these previous studies theta band activity could
also be linked to lexical retrieval, given the predictive vs non- (or less-) predictive
contrasts, in our case it can be more directly linked to a pre-activation at the
phonological level. We did not observe the involvement of beta-band frequencies
in the phoneme expectation e�ect, which may be surprising given its association
with predictive processing across modalities (e.g. Sedley et al., 2016). However,
our pattern of results may be reconciled with such literature if beta oscillations are
associated with the generation of predictions at an abstract level, but not with the
activation of predicted representations at lower levels in the hierarchy. Indeed, our
source-level analysis of activation peaks with respect to baseline identi�ed beta band
sources at the le� IFG, that did not contribute largely to the phoneme expectation
e�ect. This pattern is thus consistent with predictive activity at an abstract node
in the language processing hierarchy that would be equivalent for both expectation
conditions, since they only di�ered in sensory characteristics that would be realized
at more concrete levels of representation.

One remaining question is the role of the alpha source, located at a le� inferior
parietal area. Alpha oscillations have been extensively associated to attentional
selection (Jensen and Mazaheri, 2010; Wöstmann et al., 2017), both in the auditory
and in the visual domains. Alpha increases have been linked to the suppression
of task-irrelevant brain areas, acting as spatial or temporal �lters. In addition, the
le� inferior parietal area has been linked to attentional selection in time (Coull and
Nobre, 1998; Coull et al., 2016). Although timing of target onset should not di�er
between our phoneme conditions, fricatives and plosives do display distinct temporal
pro�les, gradually increasing in the former and sharp burst in the latter. These distinct
temporal pro�les could modulate attentional processes in le� inferior parietal cortex.
It is important to remember, on the other hand, that an inferior le� parietal source
was also identi�ed in the theta band, in close proximity to the alpha band peak.
The theta band temporal dynamics at this site, however, were very similiar to the
other theta band sources, with an enhancement of overall activity and of di�erences
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between phonemes once the target word was presented. In this way, activity in
the le� inferior parietal cortex could be functionally segregated in distinct frequency
bands: a time-based attentional �lter, implemented through alpha band activity, and
a linguistic pre-activation of the expected target implemented in the theta band.

In�uence of temporal uncertainty

In the present study we also assessed to what extent temporal uncertainty
regarding word onset modulated phoneme pre-activation mechanisms. Although
we found no evidence for the in�uence of word timing on the di�erence between
phoneme expectation conditions, the evoked response during the peri-word
interval suggests that such an interaction was indeed present. Therefore, even
if pre-activation occurs in both cases, the nature of the representations, or
the processes generating them may be modulated by the predictability of its
temporal onset. Source localization revealed that the phoneme expectation
e�ect in the ERFs found only in Experiment 1 (variable delay) originated in le�
inferior parietal cortex, near the alpha source that was found to be responsible
for di�erences between phoneme expectation conditions in both experiments.
Given our previous interpretation of an attentional e�ect at this site, we suggest
that additional feature-based attention processes (Summer�eld and Egner, 2016)
would be present in Experiment 1, on top of predictive pre-activation that would
be present in both experiments. Interestingly, our data suggest a hemispheric
dominance for each of these top-down mechanisms. Whilst the theta activity
associated with the prediction process localized mainly to the right hemisphere,
di�erences in the evoked activity prior to word onset exclusive to Experiment 1
localized to le� parietal areas. Hemispheric asymmetries in auditory processing
have been well documented (Zatorre et al., 2002; Boemio et al., 2005), with a
le�-hemisphere dominance for timing information (or fast integration windows), and
right-hemisphere dominance for frequency (or slower integration windows). This
is coherent with our interpretation, where predictive pre-activation of the what
(frequency pro�le) would be right-lateralized, but attentional �ltering based on timing
would lateralize to the le�.

Other considerations

It is important to acknowledge two main limitations in the present study. Firstly,
all our e�ects could be attributed to di�erences in predicted timing, rather than
phoneme identity. Indeed, subjects’ task was to identify spelling error in the vowel
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following the �rst phoneme. The crucial second phoneme arrived systematically
later, and with more variable onset, in the fricative than in the plosive condition.
Hence, in addition to the obvious di�erence in phoneme identity, our conditions
also di�ered in the temporal predictability of task-relevant vowel. Secondly, the
source contributing the most to the signi�cant phoneme expectation e�ect observed
at the sensors was the alpha parietal location, under our interpretation responsible for
implementing an attentional �lter rather than a predictive pre-activation. The theta
e�ects observed at the source level alone might have been insu�cient to generate a
statistically signi�cant e�ect at the sensors. The subtlety of these e�ects could be in
part responsible for the scarceness of pre-target word evidence in the literature, and
should be taken into account in future studies.

In sum, our results show that the sensory features of expected phonemes modulate
anticipatory activity over several di�erent anatomical locations and frequency bands.
This is in line with the view that predictive mechanisms involve brain-wide networks.
Crucially, temporal auditory areas were an important part of this network, suggesting
that phonological representations were activated before word onset. However, in
order to con�rm this interpretation, further studies are necessary to deal with the
aforementioned limitations.
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Visual experiments

5.1 Introduction

The question of how far can predictions modulate early stimulus processing has
a strong re�ection in the visual word recognition literature. Models that propose
purely feedforward processing have co-existed with fully interactive ones, where
representations at every hierarchical level could exert modulatory in�uence on lower
ones. Although there is currently extensive evidence con�rming that higher order
information can in�uence orthographic processing, whether these e�ects can be
explained by a fully or partially limited interactive model is still an open question
(Carreiras et al., 2014). This debate has also been tackled from the sentence
processing literature, where the possibility of orthographic pre-activation is still a
contended topic (as discussed in the general introduction to the present thesis),
and anatomically, where the debate has intensi�ed around the role of the so-called
visual wordform area, a portion of the le� fusiform gyrus (ventral occipito-temporal
cortex, vOTC) that responds selectively to words and pseudowords. Whilst some
accounts propose that the VWFA stores and computes abstract prelexical visual
representations using primarily feedforward information (Dehaene and Cohen,
2011), other accounts propose that higher order information, including semantics,
can modulate orthographic processing at this visual area (Price and Devlin, 2011).

Both in evolutionary and in developmental terms speech precedes reading.
Reading networks must build on previously-existing speech processing networks,
connecting these to visual processing areas. Models of visual word recognition
propose that whilst during reading acquisition the connection between the lexical
and the orthographic level of processing would be mediated by phonological
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Figure 5.1: Brain networks for language and reading.

representations, expert readers would also be able to map directly lexical
representations into visual codes (Coltheart, 2006; see Figure 5.1). These models
have been con�rmed by neuroimaging studies (Jobard et al., 2003), that describe a
dorsal pathway, linking visual areas to superior temporal phonological areas and to
frontal areas through parietal cortex, and a le� lateralized ventral pathway that would
link visual areas directly to frontal and a brain-wide semantic network through the
vOTC. These dorsal and ventral pathways previously described for reading in fact
piggyback upon well described routes of visual object recognition, with the ventral
route being typically associated with the ”WHAT” and the dorsal pathway with the
”WHERE” (or ”HOW”). As was the case for auditory cortex, a gradual abstraction of
visual features takes place along these pathways, with the le� fusiform gyrus acting
as the gateway from vision to language.

The present study

In the present study we aimed to determine if top-down in�uences can modulate
processing of words at a sensory level, by focusing on the pre-target word interval.
As was discussed in the general introduction to the present thesis, studies in
language have generally analyzed the interval a�er word onset, thus observing
the consequences rather than the prediction process itself. A few studies present
exceptions to this general trend, and have focused on the pre-target interval. Dikker
and Pylkkänen (2013) used a picture-word matching paradigm, �nding evidence of
visual feature pre-activation. However, they used a paradigm including mismatching
items, so that attention, rather than prediction could account for their �ndings.
Molinaro et al. (2013) compared EEG activity before target words embedded in
multi-word �xed expressions, or in low-constraining sentences, �nding evidence
for frontal to occipital directed interactions. However, given the predictive vs
less-predictive paradigm, observed e�ects could again be interpreted as attentional
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Figure 5.2: Experimental paradigm employed in visual experiments. In the �gure, words in English are
included for clarity, but actual stimuli were in Spanish

modulations. Finally, Fruchter et al. (2015) used adjective-noun pairs where the
adjective provided the context for the following noun, in an MEG study. They
provide evidence for lexical pre-activation, but did not analyze the presence of
sensory-speci�c preparatory activity. In the present study we aim to contribute to the
body of work examining pre-word activity, overcoming some of the aforementioned
limitations. As was the case in the Auditory Experiments presented in the previous
chapter, we compared preparatory activity before highly expected words that
di�ered only in their perceptual features, maintaining 100% cue validity (see
Figure 5.2). The perceptual contrast was achieved in the present experiment by
manipulating the word’s number of letters: words in the short expectation condition
were 3-4 letters long, and in the long expectation conditions were 7-8 letters
long. This yielded a di�erence of X°in the subtended visual angle, which given
the retinotopic organization of primary visual cortex is expected to elicit an early
di�erential neural response (Joukal, 2017). Any di�erences between the length
expectation conditions over occipital areas prior to word-presentation could thus be
attributed to stimulus-speci�c pre-activation.

Anatomical and oscillatory hypotheses

The visual-orthographic contrast employed modulates processing in early (≈100
ms) post-stimulus activity, and may thus have e�ects in primary visual cortex, also
known as the striate area. This early visual processing area, located around the
calcarine �ssure in the occipital lobe, contains a retinotopic map of the visual �eld,
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and approximately 50% of that area represents only the central 5°of the visual �eld
(Joukal, 2017). Studies focusing on word length contrasts have localized the peak
of these e�ects at secondary visual processing areas in the fusiform or lingual gyri.
For example, Schurz et al. (2010) found that a length contrast for words led to a
relatively small occipital cluster with activation maxima in the lingual gyri rather than
the VWFA. Interestingly, Lerma-Usabiaga et al. (2018) conducted a study to try and
re-concile di�ering accounts regarding the exact location of the VWFA within ventral
occipito-temporal cortex. They employed a word vs pseudoword contrast to isolate
areas responding to words as abstract linguistic units, and word vs checkerboard
contrast to additionally include word visual features. They found a more anterior
area was isolated with the former contrast, and a more posterior one with the latter.
We therefore expect di�erences between our word length expectation contrast to
peak at such a posterior portion of the le� fusiform or lingual gyri.

As was discussed in the general introductory chapters, beta band oscillations have
been typically linked to predictive processing in the visual domain. For example,
Bastos et al. (2015) report top-down directed in�uences within primate’s visual
system are carried by low-beta-band synchronization. As a result, we expected to
�nd evidence of prediction within this range. The few studies assessing pre-target
word oscillatory mechanisms with linguistic stimuli report e�ects in the beta band
(Molinaro and Monsalve, 2018), but also in theta ranges (Dikker and Pylkkänen, 2013;
Molinaro et al., 2013), so as was the case for the previous auditory study, we will
analyze oscillatory patterns in low frequencies including theta to beta ranges.

5.2 Material and Methods

Participants

Twenty-two right-handed native Spanish speakers took part in the �rst
experiment and 26 in the second (aged between 19 and 40, mean 24; and 20 to 39,
mean 25 respectively). From the �rst experiment two participants were excluded due
to excessive noise in the recordings, and from the second, one was excluded due to
lack of compliance with experimental instructions. This le� 19 participants in the
�rst experiment, and 25 in the second.



Visual experiments 61

Stimuli

The experimental manipulation in the visual block consisted of length of the word
in letters which could be either long (7-8 letters) or short (3-4 letters; see Table 5.1
for full stimuli list). The incorrect words were created by substituting consonants
or vowels by a same-category member, and formed phonotactically legal words in
Spanish. Up to four di�erent incorrect versions were generated for each word when
possible.

Table 5.1: Items in each length condition. English translations provided within parenthesis.

Long words Short words
rodilla (knee) oso (bear)
medalla (medal) pez (�sh)
hormiga (ant) ojo (eye)
ardilla (squirrel) ajo (garlic)
manzana (apple) pan (bread)
telefono (telephone) bota (boot)
calabaza (pumpkin) foca (seal)
elefante (elephant) pera (pear)
guitarra (guitar) cama (bed)
aguacate (avocado) pila (battery)

5.3 Results

As with the previously described auditory experiments, we �rst analyzed the
evoked response to our two main experimental conditions, as a validation that the
perceptual contrast employed did elicit a di�erential response in sensory cortices.
Then we analyzed the oscillatory response during the pre-target interval, to assess
the presence of length expectation e�ects.

Response to stimulus: word-locked ERFs

We performed statistical inference at the sensor-level using cluster-based
permutations over a 500 ms interval centered around word onset (from now on
referred to as the peri-word interval). We assessed the contrast between long- and
short-word conditions, using the 44 subjects of both experiments pooled together.
This contrast will be referred to from now on as the length contrast, or the length
e�ect. We then evaluated whether length e�ects are modulated by the degree
of temporal predictability, by comparing the di�erence between long and short
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words between the two experiments. Finally, we performed source reconstruction
with minimum norm estimate to identify the brain regions underpinning the e�ects
identi�ed in sensor data (see Chapter 2 for more details on the methods and choice
of analyses).

Word presentation elicited a strong power increase over posterior sensors around
0.07 s a�er word onset (see Figure 5.3). This increase was larger for long- than
short-words. Cluster-based permutations comparing both conditions revealed only
moderate evidence against the null hypothesis (largest cluster: p=0.08; second largest
cluster: p = 0.1). The largest cluster showed more power for long than short
words over posterior and mid-central sensors, from 0.09 to 0.12 s a�er word onset.
Interestingly, long words elicited more power than short words over posterior sensors
well before word-onset, with di�erences between the two conditions being sustained
until word presentation (see Figure 5.3 a1). However, our statistics provided no
evidence that this may be a true e�ect, being captured by three small clusters over
posterior sensors with p-values> 0.3 (spanning the following intervals: -0.18 to -0.19;
-0.02; -0.248 to -0.244). We found no evidence for an interaction between length and
temporal uncertainty, with cluster-based permutations comparing the length e�ect
between Experiments 1 and 2 in the peri-word interval identifying no clusters with
p <0.05 (largest cluster: p = 0.23).

Figure 5.3: Peri-word ERF response. A — Length e�ect with subjects of both experiments pooled
together. On the le�, ERFs for long and short words averaged over sensors showing the largest e�ects.
Shaded area indicates the analysis window, and black horizontal line indicates the temporal extent of
the clusters reported in the results section (’*’ < 0.05). The shaded areas around the ERF lines indicate
the standard error (for visualization purposes). On the right plots a2 and a3 show the topography of the
evoked response during the the pre- and post-word segments of the analyzed window.

We performed source reconstruction over a 0.07 s window corresponding to the
largest e�ect identi�ed in the sensor analysis (0.07 to 0.14 s). In addition, we also
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Table 5.2: MNI coordinates of the peri-word ERF activity peaks, during the three temporal windows
examined. The label column refers to location markers used in Figure 5.4

Window 1: -0.07 – 0 s Window 2: 0 – 1.07 s Window 3: 0.07 – 1.14 s
MNI coordinates Label MNI coordinates Label MNI coordinates Label

[ x y z ] [ x y z ] [ x y z ]
[-50 -18 26] a1 [-53 -17 27] b1 [ 1 -94 15] c1
[ -5 -62 3] a2 [ -6 -63 -6] b2
[ 56 -2 -24] a3 [ 32 -17 -38] b3
[ 48 4 -5] a4 [ 51 7 -8] b4
[ 28 32 31] a5 [ 28 31 30] b5

source localized activity in two windows of equal length just before and just a�er word
presentation (-0.07 to 0 s and 0 to 0.07 s), in order to perform exploratory analyses on
these intervals. To achieve this, we �rst localized regions of signi�cant change with
respect to baseline using permutation statistics with all conditions pooled together.
Then, we compared activity between long and short conditions at the peak sources
of activity.

The �rst two windows (-0.07 to 0 and 0 to 0.07) revealed very similar distribution
of activity, with extensive regions of signi�cant activation with respect to baseline
including bilateral perisylvian, bilateral occipital, and right frontal and ventral areas
(see Figure 5.4A). Of �ve di�erent maxima identi�ed in each window (see Table 5.2),
two were located within occipital cortex: le� lingual gyrus and right fusiform gyrus.
All the peaks examined except one (le� parietal) displayed the long > short pattern
to some extent, which was maximal over le� lingual and right temporal sources (see
Figure 5.4B). The distribution of the pattern is consistent with the data observed
at sensor level, and as in the sensor analysis, we found no strong evidence for the
signi�cance of the long > short pattern at any of the examined peaks. During the
third window (0.07 to 0.14) a focused pattern of activation over primary visual cortex
was found (see Figure 5.4A). The peak activation with respect to baseline was found
at the le� calcarine sulcus (see Table 5.2), with long words eliciting a considerable
larger increase than short ones (see Figure 5.4B).

Summing up, the statistics performed at sensor level showed that as expected, long
words elicited a stronger evoked response over posterior sensors than short ones.
Although this e�ect was not big enough to reach an α = 0.05 level of signi�cance,
both its topographical distribution and its direction (long > short) match our a priori
hypotheses. Source localization identi�ed primary visual cortex as the main source
of the di�erences between long and short words, providing further evidence that this
was a true e�ect: the length contrast at this peak had a t-value of ≈4. Sensor level
data showed that a posterior long > short trend was present well before word onset,
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Figure 5.4: Source reconstruction of ERF e�ects. A — Regions of signi�cant power change with respect
to baseline (both conditions and experiments) at 0.07 s windows just before and a�er word onset. The
peak activity locations within these areas are marked (a1 to c1) within these images. B — E�ect-size
of the length-expectation e�ect (estimated as the standardized di�erence between conditions) at each
peak and time interval.

and these di�erences were traced back le� secondary visual cortex (lingual gyrus).
However, the di�erence between long and short words at this point was small, and
not enough statistical evidence was found to interpret it as a true e�ect.

Preparation for stimulus: image-locked time-frequency response

As in the ERF analysis, we assessed di�erences between length conditions at the
sensor level using all subjects pooled together. We refer to this contrast from now
on as the length-expectation e�ect. In addition, we assessed the interaction between
length-expectation and temporal predictability (long minus short in Experiment 1
vs long minus short in Experiment 2). Given that in the ERF analysis the length
e�ect whilst viewing the word was not strong enough to reach signi�cance when
considering the whole scalp, analyses in the predictive period were topographically
restricted to posterior sensors. Time-frequency responses (TFR) were estimated in a
pre-target word interval (from image o�set to the minimum interval length: 250 ms
to 1500 ms) and at frequencies in the range 3-30 Hz. Finally we performed source
reconstruction using a minimum variance beamformer to localize the brain regions
underpinning the e�ects identi�ed in sensor data. Based on the literature and on
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results obtained with ERFs, we expected these to include visual cortices up to the
visual word form area.

Figure 5.5: Image-locked time-frequency response. A — Power change in all conditions with respect
to baseline during the analyzed pre-word interval. B — Length expectation e�ect during the same
interval. Sensors that formed part of the clusters with p <0.1 in the long vs short analysis are marked
in black. Plots on the right (a2, b2) display time-frequency pro�le for a representative posterior sensor,
and include an outline of the previously mentioned clusters.

Figure 5.5A shows the evolution of relative power with respect to baseline as
function of time at theta, alpha and beta frequencies. Image o�set (at 0.25 s) induced
a posterior power decrease at alpha and beta frequencies that turned to power
increase in the beta band at 0.6 ms. At beta frequencies there was also a power
increase over right anterior sensors over the whole interval, and a decrease that
intensi�ed as a function of time over le� anterior sensors. Image o�set also induced
a bilateral anterior power increase at theta and alpha frequencies that was sustained
throughout the analysis interval at alpha frequencies, but gradually diminished at
theta frequencies. Figure 5.5B shows the evolution of power di�erences between
long and short conditions. The largest di�erences were found in the beta band with
two spatially distinct distributions displaying opposite patterns: less power for long
than short words over le�-posterior sensors, and more power for long than short
words over right-anterior ones.
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The topographically restricted cluster-based permutations provided moderate
evidence in favour of rejecting the null hypothesis. The clustering algorithm
identi�ed two negative clusters capturing the previously described posterior
di�erences between long and short words. These clusters (p = 0.05, p = 0.07)
spanned contiguous time segments and similar frequency bins and sensors (0.34 -
0.58 and 0.58 - 1.14 s; 15 - 19 and 13 - 17 Hz; See Figures 5.5b1 and b2). The
�rst cluster included the period of post-image beta decrease, which was stronger
for the long- than the short-expectation condition (see Figure 5.5 a2). The second
cluster was located over the subsequent rebound in the same frequency band,
with long-expectation showing a weaker increase as compared to baseline than
the short-expectation condition. Cluster based permutations comparing the word
expectation e�ect (long minus short) between experiments revealed no evidence for
an interaction (largest cluster, p = 0.2).

Summing up, expecting a long vs. a short word led to early di�erences
over posterior sensors, that were not sustained over the whole analysis window.
These di�erences concentrated in a low beta range, spanning a period of power
decrease following image o�set, and a subsequent rebound, with less beta power
for the expectation of long- than short-words. We found moderate evidence that
these di�erences were signi�cant. This pattern appeared consistent in the two
Experiments, with no evidence for an interaction between length expectation and
temporal uncertainty. Di�erences between the length-expectation conditions were
apparent over right anterior sensors and a beta frequency range too, but these
had been excluded from the statistical analysis due to their topographical anterior
distribution.

In order to identify the cortical sources responsible for the e�ects observed at
source level we evaluated source power at at a low beta frequency range (8 - 14 Hz)
and four 0.2 s windows spanning a 0.3 - 1.1 s interval. The chosen interval includes
the period of maximal di�erences between expect-long and expect-short conditions,
and was broken up into four windows in order to examine separately the di�erent
beta dynamics within it: initial power decrease (�rst window), period of rapid power
increase (second window), rebound peak (third window), and subsequent decrease
(�nal window).

Figure 5.7A presents areas of signi�cant power change with respect to baseline
(assessed with permutation statistics, both conditions pooled together) for the �rst
three time windows, and Table 5.3 presents the coordinates of local maxima. The last
window, from 0.9—1.1 s, was omitted from further analysis since no occipital regions
presented signi�cant change with respect to baseline. The �rst two windows show
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Figure 5.6: Coordinates of le� hemisphere peak activations in our Experiments and their relationship
to VWFA according to Lerma-Usabiaga et al. (2018). Data labels refer to: lexVWFA, perVWFA: lexical
and perceptual VWFA respectively, as described by Lerma-Usabiaga et al. (2018). TFR w1, TFR w2,
TFR w3: peaks identi�ed in our TFR source localization of the pre-word interval, ERF: peak of
activation at calcarine sulcus in our ERF analysis of the post-word interval.

Table 5.3: MNI coordinates of the peri-word beta activity peaks, during the three temporal windows
examined. The label column refers to location markers used in Figure 5.7

Window 1: 0.3 – 0.5 s Window 2: 0.5 – 0.7 s Window 3: 0.7 – 0.9 s
MNI coordinates Label MNI coordinates Label MNI coordinates Label

[ x y z ] [ x y z ] [ x y z ]
[-33 -82 -6] a1 [-36 -82 -14] b1 [ -3 -83 -15] c1
[ 35 -88 2] a2 [ 34 -68 18] a2 [ 19 -86 16] c2

a general power decrease with respect to baseline over occipital cortex, whilst the
third shows power increase, concentrating around the calcarine �ssure. The second
and third windows show, in addition, frontal decrease with respect to baseline, and
a focus of power increase over right supramarginal gyrus (note that in the �gure,
these frontal and parietal activations are not visible in the third window, since a
medial lateral view is depicted to better represent the occipital activations and peak
locations).

In each of the three windows two local maxima were found at occiptal areas, one
per hemisphere. In the �rst window, the peaks were located in inferior occipital
areas, close to the fusiform gyrus on the le�. In the second window, the peaks at
each hemisphere are shi�ed ventrally, both locating at the fusiform gyrus. In the
third window, coinciding with the peak of the beta rebound, the peaks locate near the
calcarine sulcus in both hemispheres. We subsequently compared the long and short
conditions at each peak using t-tests, to check whether di�erences at these locations
could account for the patterns observed at sensor level (See Figure 5.7B). The largest
length-expectation e�ect was found in the second window (corresponding to the
period of rapid beta increase), over bilateral fusiform giri, although it was also of a
considerable magnitude (t-statistic ∼ −2) in the �rst window (beta trough) at the le�
fusiform/inferior occipital site.
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Figure 5.7: Source reconstruction of TFR e�ects. A — Regions of signi�cant power change with
respect to baseline for a low beta band at three di�erent time intervals. The peak activity locations
are labelled within each map (w1 to w3). B — E�ect-size of the length-expectation e�ect estimated as
the standardized di�erence between conditions in power averaged across window. C — Time-courses
along the whole trial for each length expectation condition at each peak location. For visualization
purposes, the standard error of the mean for each time-point is depicted as a shaded area around the
main line. Vertical dashed lines within these plots indicate a discontinuity in the data shown: to the le�
the data re�ects the mean calculated using both experiments, to the right only the data for Experiment
2 remains, given that word onset latencies in Experiment 1 were variable. Solid vertical lines indicate
time windows w1 to w3.
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Summing up, during the period of maximal long-short di�erences identi�ed at
sensor level, occipital beta-power undergoes important dynamic changes both in
power magnitude and location of peak activity. Di�erences between long- and
short-word expectation conditions were largest at bilateral fusiform giri in the second
window, during a period of rapid power increase. However, they seem to be present
to some extent over le� occipital cortex at the beta power trough. Later, during the
beta power rebound captured in the third window, t-values seem to drop as a result of
higher individual variability (see width of shaded error area around the timecourses
in Figures 5.7C). Interestingly, power peaks during this third window were located at
primary visual cortex.

Post-hoc analyses

In addition to the planned analyses reported above, one pattern in the data
merited further exploration. The plotted scalp topographies in Figure 5.5 show a
marked positive di�erence between long- and short-expectation conditions in a low
beta range, that being distributed over le� anterior sensors was not assessed in our
planned statistical analysis. Post-hoc cluster permutations statistics over the whole
scalp identi�ed a cluster with an un-corrected p-value of 0.03 capturing this pattern
(0.5—1.4 s; 11—19 Hz; mean frequency = 16 Hz). To explore this trend further, or
others that may be present in the data, we performed source localization for a low beta
band in 0.2 s intervals over the whole window. A right parietal peak emerged in the
windows examined from 0.6 s onwards. However, this synchronization peak did not
seem responsible for the length expectation e�ect: the contrast between expect-long
and expect short conditions at this site yielded t-values 6 1.7 in all the windows (See
Table 5.4a). In order to �nd the locus of this e�ect we re-examined the source maps
with respect to baseline for both expectation conditions pooled together with a more
liberal threshold with respect to baseline. This revealed a beta desynchronization
source over a fronto-parietal area (should �nd a better anatomical term here), that was
less intense for expect-long than expect-short conditions. The contrast at this site
yielded t-values ∼2 in all windows examined, thus being a more likely candidate for
the e�ects observed at the scalp (See Table 5.4b). Indeed, this is consistent with the
scalp topographies, where it could be observed that the expectation contrast peaked
over more anterior sensors than the synchronization with respect to baseline.



70 Chapter 5

Table 5.4: Peak coordinates identi�ed in the post-hoc analysis and t-values for the length expectation
contrast at those locations

(a) Beta increase peaks

Time MNI coordinates t-
window [x y z] value

0.5 – 0.7 s [57 -31 45] -1.0
0.7 – 0.9 s [59 -31 39] 0.2
0.9 – 1.1 s [57 -31 40] 1.4
1.1 – 1.3 s [58 -30 41] 1.7

(b) Beta decrease troughs

Time MNI coordinates t-
window [x y z value

0.5 – 0.7 s [17 -11 61] 1.9
0.7 – 0.9 s [28 -12 71] 2.5
0.9 – 1.1 s [21 -11 66] 2.0
1.1 – 1.3 s [16 -11 64] 2.1

5.4 Discussion

In the present study we aimed to �nd evidence for predictive pre-activation
of visual words and to explore the oscillatory mechanisms generating them. We
compared pre-stimulus activity between expect-long and expect-short conditions
in a paradigm that maintained maximal predictive validity as to word identity.
Indeed, we found signi�cant but subtle di�erences at the sensor level between
expect-long- and expect-short- conditions involving visual-processing areas in a low
beta range. Both the anatomical localization of the e�ect at ventro-occipital cortex
and the low beta frequency range it comprised are consistent with our pre-activation
hypotheses. However the e�ect was early and not sustained until word onset, so that
no clear relationship with actual word processing was apparent. Both the transient
nature of the e�ect and the moderate evidence for its statistical signi�cance hinder
making strong interpretations regarding the presence of pre-activation as a result of
perceptual prediction mechanisms, but the observed patterns reveal suggesting and
sometimes intriguing possibilities that will be discussed in the following paragraphs.

In addition to the contrast between expect-long and short words, we examined
the evoked response to the actual word and the in�uence of temporal predictability
on item-pre-activation. The evoked response to the word showed that the
length-contrast indeed elicited a di�erential response at occipital cortex, but this
di�erence was small and only marginally signi�cant. It is not surprising, therefore,
that the e�ect in the pre-target word interval was also a subtle one. Interestingly, the
long > short pattern in the evoked response seemed to be present before word onset,
but not enough statistical evidence was found to interpret it as a true e�ect. Finally,
no interaction was found between temporal predictability and length expectation,
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suggesting that predictive processes in the visual domain are not strongly modulated
by temporal uncertainty.

Oscillatory �ndings

Di�erences between long and short expectation conditions were found in a low
beta range, with power being lower for long- than short-word expectation condition.
The involvement of low beta oscillations is consistent with prior work in visual
prediction and with the predictive coding literature, that associate beta oscillations
with feedback information �ow. In addition, beta oscillations have been widely
implicated in top-down modulation of perception, with desynchronization in this
band being associated with the activation of representations (Hanslmayr et al., 2012).
This would be consistent with our pattern of results: larger neural populations would
be implicated in the representation of long- than short-words, given the retinotopic
organization of visual cortex, and the larger portion of the visual �eld occupied by
long words.

The observed beta e�ects spanned period of rapid overall beta power change
a�er image onset, including three main trends that were source-localized separately.
Initially, beta power decreased rapidly, reaching a trough at 0.3 s a�er image onset. At
this point the length expectation e�ect started, with long-word expectation condition
exhibiting a stronger decrease. This was followed by a period of rapid increase,
which reached its peak at 0.8 s, to decrease again progressively until word onset.
Interestingly, this tri-phasic pattern of beta modulations during a cue-target delay
are strikingly similar to what has been previously found over sensory-motor cortex in
tasks requiring a motor response. In a review of such motor response studies, Kilavik
et al. (2013) examine paradigms using a cue-delay-target structure, describing a
prominent post-cue decrease in beta power over sensory-motor cortex with relatively
�xed timing at approximately 0.3 s a�er the cue, but insensitive of delay duration.
This decrease is typically followed by a power increase, peaking around 0.8 s a�er
the cue, and a new decrease until �nal GO target. Interestingly, the initial power
trough is linked to movement preparation, being sensitive to the informativeness
of the cue regarding the required response. This pattern is thus strikingly similar
to our observations over visual cortex, whereby the initial post-cue power trough
would index a visual preparation ahead of the upcoming stimulus in response to
cue-information regarding the target.

The length expectation e�ect detected at the sensor level also included the
subsequent beta increase. It is unclear, however whether this is a carry-over e�ect,
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or it re�ects further computations on the sensory word representations. In any case,
di�erences between expectation conditions wear o� a�er that, with the �nal pre-GO
beta decrease being very similar for both conditions. This raises interesting questions
regarding the prediction process. Although it has been previously argued that
sensory predictions may be instantiated just in time ahead of expected stimulation,
our data and the motor studies reviewed by Kilavik et al. (2013) seem to suggest
that predictive sensory (or sensory-motor) representations may be activated as
soon as prior information licenses a precise expectation. Beta band decreases
would index this process, but maintenance of the expected representations, or
their re-activation just in time ahead of stimulation, would be instantiated through
di�erent neural mechanisms. One possibility is that these sensory predictions are
maintained as ”activity-silent” representations, where functional connectivity, rather
than population-level activity, would maintain precepts active in working memory
(Stokes, 2015).

Anatomical �ndings

The previously described temporal beta dynamics were found to originate in also
changing neural sources. The source analysis with respect to baseline showed that
the initial post-cue beta desynchronization encompassed occipital cortex as a whole,
but peaked over ventral occipital area in the �rst window analyzed. In the second
window, during the beta transition, the occipital peaks localized to a similar albeit
more ventral area. During this second window additional peaks were also found in le�
dorso-lateral cortex, including the IFG, commonly identi�ed as the top-node within
the language processing network. Finally, the third window examined, encompassing
the subsequent beta increase, localized to primary visual cortex. Beta activity thus
seemed to follow a trajectory from secondary to primary visual processing areas,
suggesting that predictive top-down information �ow is indeed capable of inducing
sensory pre-activation at the earliest sensory processing areas, including and beyond
the VWFA. Intriguingly, the expectation e�ect in secondary and primary visual
cortices occurred during two distinct beta dynamics: a post-cue trough in the latter,
and the subsequent increase in the former. If pre-activation is occurring in both cases,
it seems that the mechanisms involved may be qualitatively di�erent, even if they
encompass a similar frequency band.

The time-course of peak activity within IFG does not seem entirely congruent
with a top-down predictive information �ow. If the IFG is the most abstract node
within the language network, it should direct activity at lower hierarchical levels,
and therefore activate before visual cortices. On the contrary, our results show that
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IFG peaked in the second window, a�er the expectation e�ect was �rst observed
within a visual area. This raises the possibility that semantic information extracted
from object pictures could lead directly to visual wordform pre-activation, without
intervention of the IFG. In fact, the connectivity within ventral occipito-temporal
cortex (vOTC) lends plausibility to such an interpretation. Lerma-Usabiaga et al.
(2018) propose that the vOTC displays a functional subdivision, with medial areas
responding to the abstract properties of words as linguistic units, and more posterior
areas responding the perceptual features of those words. Crucially, they found
that the described functionally seggregated areas within vOTC were associated with
di�erent white-matter tracts: whilst the posterior portion was connected to the
inferior parietal sulcus via the vertical occipital fasciculus, the middle area was
associated with the posterior arcuate fasciculus, connecting it to the IFG. The
source of our length expectation contrast, localized to a posterior location, could
be structurally connected to the inferior parietal sulcus, which might be acting as the
higher heriarchical node for this area rather than the IFG.

Post-hoc �ndings and additional considerations

In addition to the hypothesized e�ects over occipital areas, we observed a marked
di�erence between expectation conditions over a right fronto-parietal source in
the beta band, from 0.5 s onwards. During this time there was a bilateral beta
decrease over fronto-parietal areas, that was more intense in the le� hemisphere.
However, di�erences between expectation conditions were only observed in the
right, with long words exhibiting a less intense decrease than short ones. This beta
decrease could be linked to motor preparation, maybe seccade planning that would
be dependent upon word length. Indeed Ikkai and Curtis (2008) suggest that similar
activity would ensue from gaze planning ahead of actual movement, or from covert
attentional selection towards a spatial location. Right lateralized e�ects could arise as
a di�erential spatial attention to the initial letters of the word, that would be further to
the le� for long than short words. However, the direction of the e�ect seems contrary
to this interpretation: long words exhibited less beta decrease than short words.

Summing up, our data showed di�erences between expectation conditions that
were apparent from 0.3 s onwards, in a low beta range over vOTC. Both the
frequency range and the anatomical localization are consistent with the the presence
of predictive wordform preactivation. Interestingly the timing of this e�ect suggests
that item pre-activation occurs as soon an prior information licences an expectation,
even if the expected item will only occur a�er a delay. A later e�ect was detected
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over right motor areas, from 0.5 s on-wards, possibly as a result of di�erential
spatial attention allocation for long than short words. Given its temporal pro�le, this
attentional mechanism could rely on the previous activation of the expected word
representations. The di�erences between long and short word expectation detected
at occipital cortex were not sustained until word onset, so that we cannot draw
conclusions regarding what predictive mechanism might facilitate perception once
the expected word apears. Interestingly, in the ERF data, we did observe a long >
short trend that started 0.5 s a�er cue onset, that did not reach signi�cance in the
interval analyzed. An intriguing possibility might thus be that low beta modulations
index the generation of the prediction, but maintenance of the representation may
only be apparent in the evoked response.
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Chapter 6

General discussion

The main goal of the present thesis was to �nd evidence for the pre-activation
of sensory representations of expected words, and to characterize the oscillatory
correlates of the prediction process supporting such pre-activation. The question
of whether top-down in�uences can modulate early sensory representations in the
absence of stimulation transverses di�erent �elds of neuroscienti�c research. It is a
specially contended topic within the language processing literature, including word
recognition models, sentence processing research, and functional characterization
of anatomical language networks. However, direct evidence for (or against) sensory
pre-activation in language is still scarce. Previous studies have o�en focused on
the interval a�er word onset, thus examining the consequences of prediction rather
than the preparatory process itself, and have used constraining vs non-constraining
contrasts, which may be too coarse to isolate sensory pre-activation processes.

We aimed to overcome the limitations of prior work by focusing on the pre-target
word interval, and by comparing two conditions where the upcoming words were
always highly expected, but di�ered in their sensory features. Word expectations
were induced by a picture cue, and these expectations were never violated.
Conditional probability of target words was therefore kept at 100%, boosting
our ability to detect probabilistic pre-activation. The use of MEG allowed us to
characterize the oscillatory and anatomical correlates of the prediction process, in
order to relate our �ndings to previous work regarding prediction in general, and
anatomical organization of the language network in particular. Finally, we explored
the generation of representations in the visual and auditory domains, and the role of
timing, by using spoken and written words as targets, and by conducting experiments
with �xed and variable delays between picture cues and word targets.
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6.1 Summary of results

Figure 6.1: Theta power modulations with respect
to baseline (le�) and timecourse as a function of
expected phoneme at marked peak location (right)

In Chapter 4 we explored auditory
pre-activation by manipulating expected
words’ initial phonemes, which could
either be fricatives or plosives. These
two consonant types di�er in their
manner of articulation, and generate
contrasting auditory waveforms. Our
results showed signi�cant di�erences
between these two conditions in the
pre-target word interval, spanning theta
and alpha ranges. Source reconstruction
showed a brain-wide network involving
several frequency bands, including bilateral superior temporal areas commonly
associated with phonological processing in a theta range (see Figure 6.1). The
event-related �elds analysis of the response to the word showed an interaction
between initial phoneme and temporal predictability. Only when the delay between
cue and target was variable did di�erences in the ERFs between the two phoneme
conditions emerged before word onset.

Figure 6.2: Beta power modulations with respect
to baseline (le�) and power time-course at marked
peak location as a function of expected word length
(right)

In Chapter 5 we explored written
word pre-activation by manipulating
expected words’ length. Expecting a
long vs. a short word led to early power
di�erences over posterior sensors, that
were not sustained over the whole
analysis window. These di�erences
concentrated on a low beta range,
spanning a period of power decrease
following image o�set, and a subsequent
rebound, with less beta power for the
expectation of long- than short-words
(see Figure 6.2). Source localization
showed that the e�ect originated near the lingual/fusifurm gyrus area, close to the
so-called visual wordform area. However, this e�ect had a transient nature, and
was not sustained till word onset. On the contrary, the event-related �elds on the
peri-word interval appeared to show that di�erences between long and short words
emerged before word onset, but not enough statistical evidence was found to deem
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this a true e�ect. Finally, no evidence was found for an interaction between temporal
uncertainty and word length.

6.2 Main questions addressed

Can prior knowledge lead to sensory pre-activation of upcoming
words?

Our results revealed a di�erential neural response to cues that generated
expectations for words di�ering only along a sensory dimension over the
corresponding sensory cortices, both in the visual and auditory domains. These
results thus con�rm the presence of wordform-related neural activity before
word onset, suggesting that predictive activation of expected precepts may be
instantiated at a sensory level. This pattern is congruent with stronger predictive
processing accounts, that argue for the presence of sensory templates even before
initial stimulation (Kok et al., 2017). Within the language processing domain,
our data support fully interactive word recognition models in the visual domain
(Price and Devlin, 2011; McClelland and Rumelhart, 1981), with di�erences
between conditions reaching primary visual areas (see Figure 6.3). In the auditory
domain di�erences were traced back to the STS, a phonological processing
area, but no evidence was found that pre-activation could encompass an earlier,
non-phonological auditory feature level. However, this di�erence in the “hierarchical
reach” of predictions between the visual and auditory domains can be attributed to
the experimental contrasts employed, rather than to qualitative di�erences between
the sensory systems themselves. Whilst the distinction between short and long words
is purely visual, with no linguistic meaning, phonemes are linguistic sound categories.
It might therefore be unsurprising that whilst the visual contrast elicited di�erences in
early visual areas, the auditory contrast did so at a higher level of abstraction, where
sounds are identi�ed under linguistic categories.

However, even in our paradigm, with 100% cue validity, the detected e�ects
were subtle. Firstly, in the auditory experiments, the source contributing most
to the e�ect observed at the sensors was an alpha parietal location, in our
interpretation responsible for implementing an attentional �lter, rather than a
predictive pre-activation. The theta e�ects observed at the superior temporal area
alone might have been insu�cient to generate a statistically signi�cant e�ect at the
sensors. Secondly, in the visual domain, the statistical evidence for the the initial
e�ect was not very strong, and no evidence was found of its maintenance until word
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Figure 6.3: Anatomical nodes and hierarchical system observed in our studies. Nodes in dark grey
indicate locations where a peak of activation was observed with respect to baseline, but did not exhibit
a sensory feature e�ect. Locations in light grey represent nodes in the language network that did not
come up in our analyses. Le� hemisphere is shown as an example, but the �gure should be interpreted
as “hemisphere-agnostic”.

onset. The subtlety of these e�ects could be in part responsible for the scarcity of
pre-target word evidence in the literature and should be taken into account in future
studies.

Finally, there could be alternative interpretations for the e�ects observed in our
studies. On the one hand, the transient e�ects observed in the visual data could
re�ect an automatic process of orthographic activation upon selection of a lexical
candidate not related to preparatory activity for future perception. On the other
hand, a strategic inner naming process related to our task could be responsible for
the e�ects observed in the auditory experiment, bearing no relation to automatic
predictive perception processes. In our view, these interpretations are not very
likely: Firstly, debrie�ng questionnaires conducted a�er the study did not reveal
any evidence to support the presence of strategic inner naming in the auditory
experiments; Secondly, as discussed in the previous chapter, the oscillatory patterns
observed in the visual data are suggestively similar to beta dynamics attributed to
predictive processes in non-linguistic studies (Kilavik et al., 2013). Nevertheless,
further work is needed to rule out alternative explanations to the e�ects observed,
and to directly link the early post-cue e�ects to subsequent perception of actual
words.

Does temporal predictability in�uence pre-activation of expected
words?

Our results revealed a di�erent answer to this question depending on presentation
modality of the expected words: predictability of the temporal onset had a
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determining in�uence in the auditory, but not the visual domain. An interaction
between time predictability and expected phoneme was detected in the ERF analysis
of the auditory experiments, with di�erences between phoneme conditions before
word onset observed when the delay between the cue and the target was variable,
but not when it was �xed. The di�erential modulation of pre-activation e�ects by
timing in our auditory and visual data may re�ect the di�erent characteristics of
the sensory modalities themselves (MacSweeney et al., 2008). Whilst information
coding in speech signals relies heavily on timing, temporal information is irrelevant
for orthographic coding, that instead relies on static spatial light/dark patterns. It is
therefore not surprising that timing-related e�ects could be found in the auditory
data, where temporal dynamics are inherent to phoneme-identi�cation, but not with
written targets.

Source localization of the ERF phoneme e�ect detected only under temporal
uncertainty revealed a le� inferior parietal source, near the alpha power peak
that was found to be responsible for di�erences between phoneme conditions in
both experiments. We previously suggested that this le� parietal source may be
implicated in attentional processes as a result of the di�erent temporal dynamics
of our manipulated consonants (fricatives vs plosives). The detected interaction
in the ERF at this source could thus re�ect the deployment of an additional
attentional mechanism in cases of higher uncertainty, when the temporal features
of the upcoming stimulus could not be reliably predicted. This would support
the dissociation between feature-based attention and feature-based expectation
proposed by Summer�eld and Egner (2016), whereby these would be two cognitively
distinct processes implemented through distinct neural mechanisms.

Characterization of the predictive process

Evidence for sensory pre-activation was found both in the auditory and visual
data, but the oscillatory correlates and temporal dynamics of the e�ects were
di�erent in each modality. The theta band was associated with pre-activation in
the auditory domain, with di�erences between expect-fricative and expect-plosive
conditions that started ∼ 0.3s a�er cue onset and that were sustained until
word presentation over right hemisphere locations. These di�erences were
source-localized to several peri-sylvian regions, including right STS and the rolandic
operculum, areas implicated in phonological representation and articulation. In
contrast, di�erential activity to long vs short words in the visual domain were
transient -they started ∼ 0.3s as well, but weaned o� ∼ 1s a�er cue onset- and
encompassed a low beta range. Furthermore, both the beta modulation and its
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sources changed dynamically, with an initial decrease localized to ventral visual areas
associated with perceptual wordform processing, and a subsequent increase peaking
at a striate area, corresponding to primary visual cortex.

These di�erences across modalities may re�ect preferential oscillatory signatures
of di�erent brain areas (Scho�elen et al., 2017), and are in fact congruent with
previous literature in each domain, with beta oscillations indexing predictions in
the visual domain, and lower frequencies predominating in the auditory modality
(Bastos et al., 2015; Fontolan et al., 2014). Furthermore, these di�erences may re�ect
contrasting characteristics of each sensory modality, such as their temporal-spatial
resolution, and the subsequent di�erential information encoding in spoken and
written language. Intriguingly, di�erences between modalities were not restricted to
their frequency correlates, but also their temporal dynamics and “hierarchical reach”.
Whether this re�ects inherent di�erences in the predictive processing of speech and
written texts, or is a trivial consequence of the speci�c contrasts employed in our
experiments is an open question in need of further research.

Finally, despite the di�erences discussed in the previous paragraphs, the
patterns observed in both experiments also present several similarities. Firstly,
feature-expectation e�ects started 0.3 s a�er cue onset in both modalities, suggesting
that pre-activation processes may be triggered as soon as prior information licences a
sensory-speci�ed prediction. Secondly, frontal beta activity with respect to baseline
was similar in both experiments: a signi�cant decrease was detected in both cases,
encompassing inferior frontal regions, that started 0.5 a�er image onset and was
intensi�ed until word onset. Intriguingly, this frontal region, o�en considered a
top node within the language processing hierarchy appeared to be activated a�er
wordform-related di�erences in sensory cortices became apparent. These data
seem to suggest that although the IFG seems to be playing an important part in the
preparation process, it does not modulate wordform access a�er the cue, given that its
activation follows the sensory e�ects detected in our study. This raises the possibility
that access to phonological or visual word representations could follow directly a�er
object identi�cation takes place in visual recognition areas.

6.3 Concluding remarks

Overall, our results suggest that sensory pre-activation may be observed when
prior information licenses a sensory-de�ned, precise, expectation. These results
contribute to the understanding of the role of predictive processing in the linguistic
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domain and beyond, showing that sensory pre-activations may be generated when
context clearly biases towards a speci�c precept. However, even in our 100%
predictability context, the sensory pre-activation e�ects were subtle, which may
account for the scarcity of data supporting their presence in the literature. By
identifying the oscillatory frequencies that characterize such pre-activation, we hope
these results may help interpret pre-target word brain activity in other experimental
set-ups, and contribute to the understanding of neural mechanisms supporting
predictive processing in general.
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Appendix A

Behavioural results

Participants in both experiments showed high accuracy in detection of wrong
words, with a mean of 95% hits the auditory blocks in both experiments (standard
deviation of 5 and 4% in Experiment 1 and 2 respectively) and 91% in the visual
blocks (standard deviation: 6% in both experiments). Mean response time across
experiments and conditions was 750 ms (with a standard deviation of 68 ms) in the
auditory blocks, and 548 ms (standard deviation of 52 ms) in the visual blocks.

We further analyzed the behavioral data using the free so�ware statistical package
R (R Core Team, 2013), and the lme4 library (Bates, 2010). Two di�erent models
were buildt one for the auditory blocks, and one for the visual blocks. Given
the controversy behind calculating degrees of freedom and corresponding p-values
in these types of models, we evaluated the signi�cance of predictors using the
normal approximation (|t > 2|). Trials with incorrect responses and reaction
times (RT) under 0.2 s were removed before model �tting. The resulting RTs
served as the dependent variable against mixed e�ects multiple regression models
were built. Our independent variables of interest included the following bivariate
categorical variables: Sensory feature (phoneme: fricative or plosive; or lenght: long
or short), Image cue (predictive or nonpredictive), wordStatus (correct or incorrect)
and Experiment (1 or 2). These variables were coded using treatment coding, making
plosive/long, predictive, correct, Experiment 1 trials as the reference level.
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Auditory blocks

We attempted to �t maximal mixed-e�ects models, using reaction times as the
dependent variable and our main experimental manipulations and their bivariate
interactions as �xed e�ects and as by-subject random slopes, in addition to
random by-subject and by-item intercepts. This maximal model did not converge.
We subsequently removed the by-random slopes for the interaction terms in an
intermediate model and built a �nal model in which only interactions with signi�cant
�xed e�ects (|t−value| > 2) were added as random slopes (see Table 1 for �nal model
speci�cation).

The �nal model showed clear modulations of reaction times by the predictive
value of the image cue and by initial phoneme condition, being slower for
non-predictive than predictive image-cues and for fricative- than plosive-initial
words (see Table A.1). There was a marginal e�ect of word status, with
incorrect words receiving slower responses than their correct counterparts, and an
interaction between predictiveness and word Status, with the wrong word e�ect
being considerably larger for trials with non-predictive than predictive image cues.
Temporal predictability of word onset did not in�uence reaction times, with no
signi�cant e�ect of experiment or its interactions with the other independent
variables.

Table A.1: Fixed e�ects for RT model. Highlighted rows indicate signi�cant (|t| > 2) and marginally
signi�cant predictors in �nal model. The predictors, all bivariate categorical variables were coded using
treatment coding, making plosive, predictive, correct, Experiment 1 trials as the reference level. Final
model speci�cation: RT Feature∗(Experiment+Cue+wordStatus)+Experiment∗(Cue+wordStatus)+
Cue∗wordStatus+(1+Feature+Experiment+Cue+wordStatus+Cue∗wordStatus|subject)+(1|Cue).

Fixed e�ect Estimate
(ms)

Standard
error (ms)

t-value

Intercept 722.0 18.6 38.9
Feature plosive −53.5 16.2 −3.3
Experiment 2 −3.8 22.7 −0.2
Cue non-predictive 141.9 19.9 7.5
wordStatus wrong 15.8 9.3 1.7
Feature plosive:Experiment 2 −3.7 5.2 −0.7
Feature plosive:Cue non-predictive 1.9 22.5 0.1
Feature plosive:wordStatus wrong 4.5 4.9 0.9
Experiment 2:Cue nonpredictive −3.1 13.5 −0.2
Experiment 2:wordStatus wrong 5.0 11.3 0.4
Cue non-predictive:wordStatus wrong 19.4 6.5 3.0
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Visual blocks

We attempted to �t maximal mixed-e�ects models, using reaction times as the
dependent variable and our main experimental manipulations and their bivariate
interactions as �xed e�ects and as by-subject random slopes, in addition to random
by-subject and by-item intercepts. This maximal model did not converge, neither did
a reduced one where by-subject random slopes for interaction terms were removed.
As a result, we report the full model with only random intercepts as by-subject and
by-item terms. The �nal model showed no clear in�uence on interval timing on
response times, but clear modulations by the predictive value of the image cue, with
reaction times being faster when the identity of the words could be predicted, by the
length of the word, with long words eliciting longer response times than short ones,
and by word status, with longer response times for incorrect than correct words.
However, these e�ects were modulated by several signi�cant interactions with
predictiveness of the cue. Under predictive conditions, the e�ects of timing, word
length, or wrong word status were all larger than under non-predictive conditions.
Finally, an additional interaction was detected between word length (feature) and
word status, with the wrong word e�ect being smaller for short words.

Table A.2: Fixed e�ects for RT model. Highlighted rows indicate signi�cant (|t| > 2) and marginally
signi�cant predictors in �nal model. The predictors, all bivariate categorical variables were coded
using treatment coding, making plosive, predictive, correct, Experiment 1 trials as the reference level.
Final model speci�cation: RT Cuenonpredictive∗ (Experiment+Feature+wordStatus)+Experiment∗
Feature+ Experiment ∗ wordStatus+ Feature ∗ wordStatus(1|subject) + (1|Cueimage).

Fixed e�ect Estimate
(ms)

Standard
error (ms)

t-value

Intercept 515.5 12.1 42.6
Cue nonpredictive 104.2 5.2 19.9
Experiment 2 -16.6 15.8 -1.1
Feature short -40.4 4.6 -8.7
wordStatus wrong 70.2 2.5 28.0
Cue nonpredictive:Experiment 2 6.9 3.4 2.0
Cue nonpredictive:Feature short 22.5 6.5 3.5
Cue nonpredictive:wordStatus wrong -35.7 3.4 -10.5
Feature short:wordStatus wrong -16.9 3.1 -5.4
Experiment 2:Feature short 4.3 3.2 1.3
Experiment 2:wordStatus wrong -3.2 3.2 -1.0
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Appendix C

Resumen en Castellano

Introducción

Nuestros sentidos nos proporcionan una cantidad ingente de información sobre
el entorno de manera continua. Este �ujo de datos es complejo y a menudo
ambiguo, haciendo de su interpretación una tarea no trivial. Sin embargo, nuestro
entorno es también altamente estructurado, con notables regularidades. Los perros
ladran, los objetos caen hacia abajo, en la lengua española, los artı́culos preceden
a los sustantivos. Las teorı́as de procesamiento predictivo describen la percepción
no como un proceso pasivo de recogida de información, sino como un proceso
constructivo mediante el cual el conocimiento previo sobre las regularidades del
entorno se emplea para interpretar la estimulación entrante. Aunque la visión de
la percepción como un proceso de inferencia no es nuevo (inicialmente propuesto
por Helmholtz en 1860), está recibiendo especial atención en la actualidad, gracias a
evidencias convergentes sobre su relevancia del campo de la neurociencia cognitiva
(ej. Kveraga et al., 2007) y propuestas concretas de su implementación a nivel
computacional y neural (Rao and Ballard, 1999; Lochmann and Deneve, 2011),
destacando el papel de las oscilaciones neuronales en dichos mecanismos (Bastos
et al., 2012). De hecho, la predicción se ha postulado como el mecanismo
neural esencial, con la capacidad de proporcionar una explicación uni�cada de la
percepción, la cognición, y el comportamiento (Clark, 2013).

Sin embargo, la evidencia empı́rica mostrando los correlatos neurales de la
generación de predicciones es aún escasa. Una de las cuestiones pendientes es qué
nivel de detalle perceptual pueden acarrear dichas representaciones predicitivas.
Según propuestas más fuertes, las expectativas previas podrı́an desencadenar
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pre-activación de los preceptos esperados incluso en regiones sensoriales primarias
(Kok et al., 2017). Otras propuestas argumentan que dicha pre-activación sólo
podrı́a generarse en niveles sensoriales más abstractos, una vez se ha recibido
información externa inicial sobre dicho precepto (Bar, 2007). En el campo del
procesamiento del lenguaje, esta cuestión está especialmente candente (Huettig and
Mani, 2015). A pesar de la abundante evidencia de la relevancia de predicciones
a nivel del signi�cado en la comprensión del lenguaje, la extensión de dichas
predicciones a niveles sensoriales está en entredicho. La literatura existente presenta
ciertas limitaciones que di�cultan la resolución de este debate. En primer lugar,
la mayorı́a de los estudios de predicción en el lenguaje analizan la respuesta a
palabras predecibles, observando por lo tanto las consecuencias de la predicción,
en lugar de la generación de dicha predicción. Por otro lado, dichos estudios
suelen manipular la predictividad de las palabras, contrastando palabras altamente
y escasamente predictivas. Es probable que dicha comparación incluya procesos
mentales adicionales a la predicción, como por ejemplo diferencias en el nivel de
atención (Molinaro and Monsalve, 2018).

La presente tesis pretende contribuir al debate sobre la presencia de predicciones
sensoriales en el lenguaje, abordando las limitaciones detectadas en la literatura
existente. Los experimentos realizados se centran en el análisis del intervalo previo
a la palabra, para describir el proceso de predicción y no sus consecuencias, y
las condiciones experimentales incluyen siempre escenarios altamente predictivos,
di�riendo solamente en las propiedades sensoriales de las palabras esperada.
La técnica de imagen empleada fue la magnetoencefalografı́a (MEG), y la
medida independiente principal fue la actividad en tiempo-frecuencia, para poder
caracterizar el proceso de predicción en base a la actividad neural oscilatoria.
Además, para obtener una visión más completa del proceso de predicción se
realizaron experimentos con palabras habladas (experimentos auditivos) y palabras
escritas (experimentos visuales), y se exploró el rol de la predictibilidad temporal, a
través de experimentos en los que la palabra siempre aparecı́a tras un intervalo de
tiempo �jo, o tras un intervalo de tiempo variable.

Métodos y materiales

El paradigma experimental empleó fotos de objetos como indicación de la
identidad de la palabra que se presentarı́a a continuación, tras un intervalo �jo
o variable (ver �gura C.1). La palabra siempre era congruente con la imagen
previa, pero podı́a contener un error en una de sus letras. La tarea principal
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Figura C.1: Paradigma experimental.

para los participantes consistı́a en detectar palabras incorrectas. Esta tarea se
incluyó para mantener la atención de los participantes durante el experimento. Sin
embargo, la manipulación de interés en este paradigma consistı́a en diferencias en
las propiedades sensoriales de las palabras esperadas: en los experimentos auditivos
contrastamos palabras que comenzaban con fonemas fricativos (/f/, /s/, /c/) a palabras
que comenzaban con fonemas plosivos (/p/, /k/, /t/), mientras que en los visuales
comparamos palabras cortas (3-4 letras) con palabras largas (7-8) letras. Cualquier
diferencia detectada entre las condiciones en el intervalo previo a la palabra, en
áreas de procesamiento sensorial, puede ser atribuido a pre-activación de las palabras
esperadas.

Los experimentos se realizaron con dos grupos distintos de participantes,
siguiendo siempre el paradigma experimental descrito anteriormente. El primer
grupo realizó las tareas con un intervalo de tiempo variable entre la imagen y la
palabra, y el segundo un un intervalo de tiempo �jo. Ambos grupos realizaron
un bloque visual y un bloque auditivo, estando el orden de dichos bloques
contrabalanceado entre participantes. El análisis de datos se agrupó según modalidad
de presentación (ver Tabla C.1), lo que permitió evaluar la pre-activación usando los
participantes de las dos sesiones experimentales, y posteriormente su interacción con
la predictabilidad temporal. La inferencia estadı́stica se realizó con los datos a nivel
de sensor, usando permutaciones basadas en clústeres (Maris and Oostenveld, 2007)
sobre los registros transformados en tiempo-frecuencia. Estos tests sirvieron para
evaluar la presencia de dichos efectos y para delimitar ventanas de tiempo-frecuencia
para exploración posterior mediante localización de las fuentes neurales generadoras
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de dichos efectos. Dicha localización se realizó mediante técnicas de beamforming
(Van Veen et al., 1997), y se basó en la identi�cación de picos de actividad global
respecto a una baseline, con la posterior exploración de las diferencias entre
condiciones en los picos identi�cados (Bourguignon et al., 2018). Además, este
procedimiento también se siguió para evaluar la respuesta evocada por la palabra en
sı́, como prueba de que la manipulación sensorial empleada realmente induce una
respuesta diferencia en zonas sensoriales.

Análisis Manipulación Condiciones Diseño

Estı́mulos
auditivos

Propiedad sensorial Fricativas vs Plosivas Intra-sujetos

Intervalo temporal Fijo vs Variable Entre-sujetos

Estı́mulos
visuales

Propiedad sensorial Largas vs Cortas Intra-sujetos

Intervalo temporal Fijo vs Variable Entre sujetos

Tabla C.1: Resumen de diseño experimental

Resultados

Experimentos auditivos

Figura C.2: Modulaciones de potencia en theta
con respecto a la baseline (izquierda) y evolución
temporal para cada condición en la localización
cerebral marcada (derecha).

Las permutaciones basadas en
clústeres mostraron diferencias
signi�cativas entre las condiciones
de expectativa-plosiva y expectativa-fricativa
en el intervalo previo a la presentación
de la palabra. Las diferencias
emergieron 300 ms tras la presentación
de la imagen, y se mantuvieron durante
todo el intervalo analizado, incluyendo
un amplio rango de frecuencias (6-20
Hz). La reconstrucción de fuente reveló
una amplia red anatómica y diversas
bandas frecuenciales, destacando entre
éstas áreas temporales superiores, comúnmente asociadas al procesamiento
fonológico, en la banda de frecuencia theta. En estas fuentes se observó un aumento
de la actividad en dicha banda con respecto al baseline, que fue más pronunciado para
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las plosivas que para las fricativas (ver �gura C.2). Este patrón apareció con especial
intensidad en el hemisferio derecho, incluyendo áreas temporales y frontales. El
análisis de los campos evocados por la palabra reveló una interacción entre la
condición de fonema inicial y la predictabilidad temporal. Sólo cuando el intervalo
entre la imagen y la palabra era variable las diferencias entre fonemas emergı́an antes
de la presentación de la palabra.

Experimentos visuales

Figura C.3: Modulaciones de potencia en beta
con respecto a la baseline (izquierda) y evolución
temporal para cada condición en la localización
cerebral marcada (derecha).

Los experimentos con palabras
escritas mostraron diferencias
tempranas entre las condiciones de
expectativa-larga y expectativa-corta,
que no se mantuvieron en el tiempo.
Éstas diferencias a nivel de sensor
se re�ejaron en una banda beta
baja durante un periodo de rápidas
modulaciones de potencia, incluyendo
un periodo inicial de decremento tras
la presentación de la imagen, y un
periodo de incremento a continuación
(el “rebote” de beta), dónde la condición
de expectativa-larga presentó menos potencia que la de expectativa-corta. Las
permutaciones de clústeres mostraron evidencia moderada de la presencia de un
efecto en este intervalo, capturado en dos clústeres contiguos con p = 0.05 y
0.07, durante los intervalos 0.34 - 0.58 y 0.58 - 1.14 s. Este patrón apareció de
forma consistente en los dos experimentos, sin evidencias de una interacción entre
expectativa temporal y expectativa sensorial. La localización de fuente se realizó en
ventanas temporales de 0.2 s, para capturar por separado las tendencias de beta (valle,
incremento y pico). En las tres ventanas se encontraron picos occipitales, destacando
localizaciones próximas a la “visual wordform area” (Dehaene and Cohen, 2011),
entre el giro fusiforme y el giro lingual, y otras ubicadas en el córtex visual primario.

Discusión

Los resultados de los experimentos de la presenta tesis revelaron una respuesta
neural a imágenes contextuales diferenciada según las propiedades sensoriales de
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las palabras que iban a presentarse a continuación. Esta diferenciación se localizó
en los córtices sensoriales responsables del procesamiento de dichas palabras, tanto
para palabras escritas como para palabras habladas. Estos efectos sugieren que la
pre-activación de palabras por el contexto puede instanciarse a nivel sensorial, en
consonancia con teorı́as de procesamiento predictivo “fuertes”, que proponen la
presencia de esquemas sensoriales incluso anteriores a una estimulación inicial (Kok
et al., 2017).

Aunque nuestros resultados mostraron evidencia de la pre-activación en las
modalidades auditivas y visuales, los correlatos oscilatorios y la evolución temporal
de dichos efectos fueron marcadamente diferentes. En los experimentos auditivos las
diferencias emergieron 0.3 s tras la presentación de la imagen, abarcando un amplio
rango de frecuencias y de fuentes neurales. Las diferencias en los experimentos
visuales también emergieron 0.3 s segundos tras la presentación de la imagen, pero
no se sostuvieron en el tiempo, y se concentraron en una banda frecuencial más
estrecha (beta baja) y en fuentes próximas al córtex visual ventral. La caracterización
oscilatoria diferencial en cada modalidad es congruente con estudios previos en
cada campo, con oscilaciones en beta acompañando a predicciones en la modalidad
visual, y frecuencias más bajas predominando en la modalidad auditiva (Bastos et al.,
2015; Fontolan et al., 2014). Sin embargo, la caracterización temporal de dichos
efectos resulta más sorprendente. En primer lugar, las diferencias emergieron en
ambos casos poco tiempo después de la presentación de la imagen, sugiriendo
que la pre-activación ocurre tan pronto como la información previa permite la
formulación de una predicción detallada a nivel sensorial. Sin embargo, estas
diferencias no se mantuvieron en el caso visual, lo que podrı́a indicar la presencia de
representaciones ”silenciosas” (Stokes, 2015). En los bloques auditivos las diferencias
sı́ se mantuvieron, pero la implicación de una amplia red frecuencial y cortical
sugiere que nuestra manipulación incluyó procesos adicionales a los de predicción,
probablemente atencionales.

Asimismo, la in�uencia de la predictibilidad temporal en la pre-activación
sensorial resultó ser distinta para predicciones auditivas y predicciones visuales,
siendo determinante en los primeros pero no en los segundos. La interacción entre la
predictibilidad temporal y fonema esperado se encontró en el análisis de los campos
evocados por la palabra: diferencias entre los fonemas esperados aparecı́an antes
de la palabra solamente cuando el intervalo era variable. Éstas diferencias pueden
re�ejar sistemas de codi�cación de información especı́�cos en cada modalidad:
mientras que en el habla dicha codi�cación depende en gran medida de los aspectos
temporales, el tiempo es irrelevante en la codi�cación ortográ�ca, que se basa
únicamente en patrones lumı́nicos espaciales.
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Sin embargo, incluso en condiciones de alta predictabilidad, con una validez del
contexto previo del 100%, los efectos detectados fueron sutiles. En primer lugar, en
los experimentos auditivos, la fuente que más contribuı́a al efecto detectado a nivel de
sensor fue un pico en la zona parietal y en la banda frecuencial alfa, que interpretamos
como un �ltro atencional, más que como una fuente de pre-activación predictiva.
El efecto en theta en la zona temporal superior podrı́a haber sido insu�ciente para
generar un efecto en la super�cie por sı́ solo. En segundo lugar, en los experimentos
visuales, la evidencia estadı́stica no fue muy grande, y no encontramos indicios de que
las diferencias entre condiciones se mantuvieran hasta la presentación de la palabra.
La sutileza de dichos efectos podrı́an explicar la ausencia de evidencias en la literatura
previa, o podrı́an ser interpretados como falsos positivos. Además, podrı́a haber
interpretaciones alternativas. Por un lado, los efectos transitorios del bloque visual
podrı́an re�ejar un proceso de automático de selección léxica y activación ortográ�ca
tras la presentación de la palabra, no relacionada con actividad preparatoria para la
próxima percepción. Por otra parte, un procesamiento de nombramiento interno
estratégico para la realización de la tarea podrı́a explicar los resultados auditivos.
Desde nuestro punto de vista, estas explicaciones no son probables. En primer
lugar, cuestionarios post-experimento no mostraron ninguna evidencia de procesos
de nombramiento estratégico. Por otro lado, los datos oscilatorios observados en
los experimentos visuales tienen un marcado parecido con dinámicas atribuidas a
procesos predictivos en estudios no-lingüı́sticos (Kilavik et al., 2013). En cualquier
caso, más estudios son necesarios para descartar explicaciones alternativas, y para
ligar directamente los procesos preparatorios con el procesamiento posterior.

En general, nuestros resultados muestran que la pre-activación sensorial puede
observarse cuando la información previa permite la postulación de una hipótesis
precisa, bien de�nida a nivel sensorial. Estos datos contribuyen al entendimiento
del procesamiento predictivo en el campo del lenguaje y en la cognición en general,
mostrando que las predicciones sensoriales son posibles cuando el contexto permite
anticipar el precepto siguiente. Sin embargo, incluso en nuestro paradigma, con
validez predictiva del contexto al 100%, los efectos de pre-activación fueron sutiles
y difı́ciles de aislar, lo que puede explicar la ausencia de evidencias en la literatura.
Al identi�car las frecuencias oscilatorias que caracterizan dicha pre-activación,
esperamos que nuestros resultados contribuyan a interpretar actividad neural previa a
la palabra en otros experimentos, contribuyendo al entendimiento de los mecanismos
neurales responsables del procesamiento predictivo en general.
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Buzsáki G. (2002). Theta Oscillations in the Hippocampus. Neuron, 33(3):325–340.
doi: 10.1016/S0896-6273(02)00586-X.

Canolty R. T, Edwards E, Dalal S. S, Soltani M, Nagarajan S. S, Kirsch H. E, Berger
M. S, Barbaro N. M, and Knight R. T. (2006). High Gamma Power Is Phase-Locked
to Theta Oscillations in Human Neocortex. Science, 313(5793):1626–1628. doi:
10.1126/science.1128115.

Carreiras M, Armstrong B. C, Perea M, and Frost R. (2014). The what, when, where,
and how of visual word recognition. Trends in Cognitive Sciences, 18(2):90–98.
doi: 10.1016/j.tics.2013.11.005.

Clark A. (2013). Whatever next? Predictive brains, situated agents, and the future of
cognitive science. Behavioral and Brain Sciences, 36(3):181–204. doi: 10.1017/
S0140525X12000477.

Coltheart M. Dual route and connectionist models of reading: an overview,
(2006). URL http://www.ingentaconnect.com/content/ioep/clre/2006/00000004/

00000001/art00002.

Cope T. E, Sohoglu E, Sedley W, Patterson K, Jones P. S, Wiggins J, Dawson C,
Grube M, Carlyon R. P, Gri�ths T. D, Davis M. H, and Rowe J. B. (2017).
Evidence for causal top-down frontal contributions to predictive processes
in speech perception. Nature Communications, 8(1):2154. doi: 10.1038/
s41467-017-01958-7.

http://www.ingentaconnect.com/content/ioep/clre/2006/00000004/00000001/art00002
http://www.ingentaconnect.com/content/ioep/clre/2006/00000004/00000001/art00002


103

Correia J. M, Jansma B. M. B, and Bonte M. (2015). Decoding Articulatory Features
from fMRI Responses in Dorsal Speech Regions. Journal of Neuroscience, 35(45):
15015–15025. doi: 10.1523/JNEUROSCI.0977-15.2015.

Coull J. T and Nobre A. C. (1998). Where and when to pay attention: the neural
systems for directing attention to spatial locations and to time intervals as revealed
by both PET and fMRI. The Journal of Neuroscience: The O�cial Journal of the
Society for Neuroscience, 18(18):7426–7435.

Coull J. T, Cotti J, and Vidal F. (2016). Di�erential roles for parietal and frontal
cortices in �xed versus evolving temporal expectations: Dissociating prior from
posterior temporal probabilities with fMRI. NeuroImage, 141(Supplement C):
40–51. doi: 10.1016/j.neuroimage.2016.07.036.
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