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Abstract 

It is well documented that humans can extract patterns from continuous input 

through Statistical Learning (SL) mechanisms. The exact computations underlying this 

ability, however, remain unclear. One outstanding controversy is whether learners 

extract global clusters from the continuous input, or whether they are tuned to local co-

occurrences of pairs of elements. Here we adopt a novel framework to address this 

issue, applying a generative latent-mixture Bayesian model to data tracking SL as it 

unfolds online using a self-paced learning paradigm. This framework not only speaks 

to whether SL proceeds through computations of global patterns versus local co-

occurrences, but also reveals the extent to which specific individuals employ these 

computations. Our results provide evidence for inter-individual mixture, with different 

reliance on the two types of computations across individuals. We discuss the 

implications of these findings for understanding the nature of SL and individual-

differences in this ability. 

  

Keywords: Statistical learning; Bayesian modeling; Online measures; Individual 

differences. 
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It is well documented that humans are highly sensitive to the statistical structure 

of their surrounding input. Since the seminal investigation by Saffran and her 

colleagues (Saffran, Aslin, & Newport, 1996), a large number of studies demonstrated 

learners' ability to detect patterns in continuous streams of sensory input, across 

modalities and materials, in different stages of development, and under a range of 

learning conditions (see, Frost, Armstrong, Siegelman, & Christiansen, 2015 for 

review). This has led to vast interest in this ability – commonly labelled "Statistical 

Learning" (SL) – and its relation to other cognitive functions.  

Yet despite the presumed role of SL across cognition and its numerous 

experimental demonstrations, key questions regarding its underlying computations are 

still mostly unanswered. One major controversy is whether learners extract global 

clusters from the continuous stream, or whether they are primarily tuned to local co-

occurrences of pairs of elements. To exemplify, consider a stream consisting of the 

patterns A-B-C and D-E-F. According to the global view, successful learning means 

creating representations of the full patterns "A-B-C" and "D-E-F". Learning such 

patterns could occur through transitional probabilities (TPs) tracking, in which low TP 

between adjacent elements signal the pattern boundaries. This is a common 

interpretation of the seminal findings of Saffran et al. (1996), showing that infants 

recognize “words” in a continuous speech stream. Alternatively, full pattern extraction 

could also occur without tracking TPs. Such an account assumes that the continuous 

stream is parsed into repeatedly encountered “global clusters”, or chunks, where 

representations of chunk candidates are reinforced or decayed given consistent 

repetitions of the chunks in the stream (e.g., the PARSER model; Perruchet & Vinter, 

1998; and see Perruchet & Pacton, 2006; Saffran & Kirkham, 2018; Thiessen, 2017 for 

discussion).  

Yet another possible account of the computation underlying learning in a 

continuous stream of elements is to assume that learners simply register co-occurrences 

of local adjacent elements, akin to Hebbian learning. These “atomic” units of learning 

may eventually cluster into larger more complex chunks with lengthy exposures, 

however, the local co-occurrences are the primary object of learning, rather than the 

full global clusters (see, e.g., Frank, Goldwater, Griffiths, & Tenenbaum, 2010; 

Swingley, 2005, for discussion). Thus, in the simple example above, learning the stream 

consisting A-B-C and D-E-F entails the independent learning that element B follows 

A, that C follows B, E follows D, and F follows E. One major attempt at delineating 
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between these different accounts was undertaken using the Phantom-word paradigm 

developed by Endress and Mehler (2009). In this study the familiarization stream 

included the following 6 patterns, all with TPs=0.5 (each letter stands for one element): 

A-B-C, D-B-E, A-F-G, H-F-J, H-I-E, D-I-J. Based on the structure of these patterns, 

the sequence A-B-E constitutes a “phantom-word”: it maintains a local-TP structure 

similar to the original six patterns (i.e., TP=0.5), but it never appeared in the 

familiarization stream as a full chunk. The rationale behind this design is that it can 

potentially differentiate between learning via local co-occurrences versus full global 

patterns: If SL relies on the assimilation of the local co-occurrences between elements, 

phantom sequences like A-B-E would be treated similar to “word” patterns, since they 

consist of two local elements A-B, and B-E, with identical TP structure. If, however, 

SL is based on the extraction of larger global patterns from the stream, “words” should 

be preferred over phantom-words, since the three elements of phantom-words never 

fully appeared together during familiarization.  

 This debate has attracted significant attention since it touches upon a 

fundamental issue in SL theory: understanding the computations involved in learning 

the regularities embedded in a continuous input stream. Yet, almost ten years since the 

original report by Endress and Mehler, there are no clear conclusions regarding the 

nature of SL computations, because studies using this paradigm have provided mixed 

evidence. For example, from three large-scale multi-experiment investigations one 

supported local computations (Endress & Mehler, 2009), another supported learning of 

full patterns (Perruchet & Poulin-Charronnat, 2012), and the third presented mixed 

evidence across experiments (Endress & Langus, 2017). Notably, these contrasting 

results were observed despite the use of the same procedure, and in some cases, the 

exact same stimuli (see Experiment 1 in Perruchet & Poulin-Charronnat, 2012, vs. 

Endress & Mehler, 2009).  

 Why similar manipulations with identical stimuli lead to such mixed findings? 

One possible factor is methodological. The phantom-word paradigm (as well as related 

experimental procedures) measure success in a recognition test administered only at the 

end of familiarization (e.g., Giroux & Rey, 2009; Orbán et al., 2008; Perruchet et al., 

2014; but see Rey, Minier, Malassis, Bogaerts, & Fagot, 2018 for an exception). Such 

“offline” tests examine the post-hoc outcomes of SL, which may differ from the 

representations that are available to learners as they actually learn the statistical 

structure of the input. Importantly, the testing procedure consists of repeated 
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presentations of “words”, “phantom-words”, and “part words” which merge with the 

learned representations, contaminating the assessment of learning (see Siegelman, 

Bogaerts, Christiansen, & Frost, 2017; Siegelman, Bogaerts, Kronenfeld, & Frost, 

2018, for extended discussion). This would inevitably introduce variability in the 

experimental outcomes. In addition, offline measures are often characterized by 

mediocre reliability, potentially also contributing to inconsistent findings across studies 

(and see Siegelman, Bogaerts, & Frost, 2016, for discussion).  

However, an alternative and more intriguing account is deeply theoretical. One 

hypothesis to consider is that the previously mixed results actually reflect a true mix of 

learning strategies. Specifically, it is possible that not all participants in the experiment 

employ identical computations for learning, but that different individuals employ 

different computations, reflecting individual sensitivity to local co-occurrences of 

elements vs. larger patterns. This may contribute to overall different learning scores 

across different samples of participants. Importantly, examining only group-level mean 

performance, as was typically the case in previous studies, by-definition cannot reveal 

such an inter-individual mix.  

 The goal of the current study is to simultaneously address these methodological 

concerns and theoretical hypothesis. First, our study refrains from using only an offline 

test of SL performance. Instead, we focus on an online measure of learning, which 

monitors response latencies to predictable versus unpredictable stimuli throughout the 

familiarization phase. Second, we employ an alternative analytical approach – Bayesian 

Latent Mixture Modeling, that speaks to the issue of whether learning proceeds through 

local co-occurrences versus global patterns on the average, but critically, examines also 

the extent to which specific individuals employ these computations. To preview our 

findings, we demonstrate that our novel approach, applied to online SL data, leads to 

new important insights regarding SL computations. Specifically, we show that indeed 

SL computations cannot be described as based only on local co-occurrences or full 

patterns, since different individuals display behavior consistent with different 

computations while processing a continuous stream of visual elements. 

 

Methods 

General analytical approach: Bayesian modeling and latent-mixture models. 

The central analysis in this paper uses a hierarchical Bayesian approach to account for 

response latencies during a self-paced visual statistical learning task. In this task, 



6 

 

participants are presented with a continuous stream of shapes (which consists of regular 

patterns) and are required to advance the shapes at their own pace. Learning of 

regularities is reflected by faster responses to predictable vs. unpredictable stimuli. 

Importantly to our investigation, the data from this task were fit to a Bayesian model 

that examined whether an individual's pattern of responses reflects reliance on full 

patterns versus local co-occurrences (see details below).  

In general, Bayesian models are based on the specification of a generative 

model that presumably gives rise to the observed data. To do so, one specifies the 

relevant latent parameters, prior distributions regarding these parameters (reflecting 

researchers' a-priori knowledge), and relations between the various parameters as well 

as between parameters and observed data. Then, the data are used to update the priors 

and estimate the latent parameters. The output of such a model is therefore a posterior 

distribution for each latent parameter, reflecting researchers' belief regarding each 

parameter, given priors and data.  

To illustrate, consider an IQ test, conducted to estimate a given person's latent 

score (θ). In a case where we do not have a-priori expectations regarding this person's 

true score, we may assign a prior that follows the IQ's distribution in the general 

population: a normal distribution with an expected value of 100 and SD of 15 (i.e., 

𝜃~𝑁(100,15)). Different a-priori expectations would be reflected in different prior 

distributions. For example, if a more specific a-priori expectation regarding this 

person's IQ exists (e.g., IQ of a person who was sampled from a group of gifted 

individuals), a more restrictive prior with higher expected value can be chosen to reflect 

that knowledge (e.g., 𝜃~N(130, 15)). If, however, we do not have any knowledge 

regarding the population from which an observation is sampled, we may want to use a 

uniform prior distribution, assigning an equal a-priori probability for each value in some 

wide range (referred to as an 'uninformative prior').  

After specifying the priors, the observed data are used to compute a likelihood 

function (i.e., p(D | θ)) for each value of 𝜃. Bayes theorem is then applied to update the 

priors given the likelihood values in light of the observed data. This process results in 

a posterior distribution (p(θ | D), reflecting researchers' updated beliefs regarding the 

latent parameter, given the priors and after having seen the data. The output of this 

analysis is a full distribution (as opposed to a single point estimate) for each parameter. 

Various measures can then be extracted from this distribution, such as its mode, median, 
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or mean (reflecting a central tendency for the estimated parameter), SD (reflecting the 

uncertainty in the estimation), or different interval measures (e.g., 95% credible 

interval, e.g., Chen & Shao, 1999).  

Practically, since in most cases there is no simple analytical solutions for 

computing posterior distributions, Monte Carlo Markov Chains (MCMC) sampling 

procedures are used to estimate them (see, e.g., Lee & Wagenmakers, 2013, for details). 

Here we used JAGS (Depaoli, Clifton, & Cobb, 2016), and the rjags package in R 

(Plummer, 2016), to run MCMC samples. In all estimations we used three separate 

MCMC chains with random starting points. Each chain included 3000 iterations (after 

1000 burn-in iterations). To check whether the 3 chains converged to a similar 

distribution we used the Gelman-Rubin diagnostic measure (Gelman & Rubin, 1992). 

Values under 1.1 are generally interpreted as high agreement across chains and good 

model convergence.  

For the purposes of our main research question, we use a sub-type of Bayesian 

modeling: Latent-mixture modeling (e.g., Ortega, Wagenmakers, Lee, Markowitsch, & 

Piefke, 2012). In this approach, two competing models are first specified. In our case, 

we thus first define two latent models – model A that depicts a local learning process, 

and model B that reflects SL based on full patterns (see Results section below). We 

then pit these two models against each other, by defining a larger model that includes 

the two competing models and a classification parameter. This classification parameter 

examines, for each individual, whether his/her data are more likely given model A 

compared to model B. We get as output for each individual i a posterior distribution for 

the classification parameter. This distribution reflects the certainty in classification of 

subject i as following model A (in comparison to model B). Importantly, such models 

allow for individual differences or mixture in the data (hence their name): that is, a 

situation in which some individuals in the sample are classified as following model A, 

whereas others as B.  

Participants Seventy-six students of the Hebrew University (24 males) 

participated in the study for payment or course credit. Participants had a mean age of 

23.5 (range: 18-36), and had no reported history of reading disabilities, ADD or ADHD. 

One subject was removed from further analysis since he did not follow the instructions 

and did not advance the stream of shapes. Data from two additional subjects were 

discarded due to abnormally slow mean RTs in the self-paced portion of the task: more 
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than 2 SDs from the sample mean. Analyses below are therefore based on the remaining 

73 participants.  

Design, Materials, and Procedure Our design is closely similar to the self-paced 

visual SL task, a paradigm that was shown to produce a reliable and valid online 

measure of visual SL performance (Siegelman et al., 2018; see also Karuza, Farmer, 

Fine, Smith, & Jaeger, 2014). The only major change from this previous study was that 

the regular patterns here were quadruplets rather than triplets. As in a typical SL task, 

this task consisted of a familiarization phase, followed by a test phase. Materials 

included 24 complex visual shapes (identical to Siegelman et al., 2018). For each 

participant shapes were randomly organized to create six quadruplets, with a TP of 1 

between shapes within patterns. As explained below, the rationale for these larger units 

was to allow for better differentiation between the two types of underlying 

computations. The familiarization stream consisted of 24 blocks, where all six 

quadruplets appearing once (in a random order) in each block.  

Before familiarization, participants were told that they would be shown a 

sequence of shapes, appearing on the screen one after the other. Participants were 

instructed that some of the shapes tend to follow each other and that their task is to try 

to notice these co-occurrences. Following Siegelman et al. (2018), and in contrast to 

standard SL tasks, stimuli did not appear at a fixed presentation rate. Rather, 

participants were asked to advance the stream of shapes at their own pace, by pressing 

the space bar each time they wanted to advance to the next shape. RTs for each press 

were recorded and served as a basis for computing an online measure of SL: the 

difference in log-transformed RTs between unpredictable and predictable shapes (i.e., 

between shapes in position 1 within quadruplets vs. the mean RT of shapes in position 

2, 3 and 4). Note that importantly, the self-paced data also served as input to the 

Bayesian models. 

Following familiarization, participants completed a two-alternative forced 

choice (2-AFC) offline test, consisting of 36 trials. In each trial, participants were 

sequentially presented with two four-item sequences of shapes: (1) a target: four shapes 

that formed a quadruplet during familiarization (TP=1), and (2) a foil: four shapes that 

appeared in the familiarization, but never together (TP=0). Foils were constructed 

without violating the position of the shapes within the original quadruplets (e.g., from 

the four quadruplets ABCD, EFGH and IJKL, MNOP, a possible foil could be AFKP, 

but not BGLM). During the offline test, shapes appeared in a fixed presentation rate of 
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800ms, with an ISI of 200ms between shapes within targets/foils, and a blank of 

1000ms between the two sequences. Each of the six targets appeared six times 

throughout the test, against all six foils (and thus each foil also appeared six times 

throughout the test, against all quadruplets). 2-AFC test trials were presented in a 

random order. At the start of the test, participants were instructed that in each trial they 

would see two groups of shapes and that their task was to choose the group that they 

were more familiar with as a whole. The offline test score ranged from 0 to 36, 

according to the number of correct identifications of targets over foils. Given the 2-

AFC format, chance performance corresponds to a score of 18/36. 

 

Results 

 Outlier removal Prior to all analyses we removed RTs outside the range of 2 SD 

from the participant’s mean (4.8% of all trials)1. Note also that, to account for variance 

in baseline RTs, all analyses were conducted on log-transformed RTs (rather than raw 

RTs). The use of a log-scale allows us to better compare differences in response 

latencies across individuals with different baselines (see Siegelman et al., 2018, for 

details). 

 Basic Findings Before turning to the main research question, we first review 

some basic findings from the self-paced SL task, following Siegelman et al. (2018). 

Table 1 presents mean response latencies to shapes in position 1, 2, 3, and 4 within 

quadruplets. As predicted, there was a significant effect of position on log-transformed 

RTs (repeated measures ANOVA: F(3, 216)=11.93, p<.001). Subsequent paired t-tests 

revealed a difference between shapes in the first versus second position (t(72)=3.41, 

p=.001), first versus third position (t(72)=3.99, p<.001), and first versus fourth 

(t(72)=4.38, p<.001). In contrast, there was no evidence for an RT difference between 

shapes in second versus third positions (t(72)=0.52, p=.60) and third versus fourth 

(t(72)=-0.1, p=.99)2. Figure 1 presents the log-transformed RTs to shapes in positions 

1, 2, 3, and 4 over the course of the familiarization phase.  

                                                           
1  This outlier removal criterion was a-priori selected to match that of Siegelman et al. (2018). It is 
important to emphasize, however, that our results are not limited to this approach and generalize to a 
more conservative procedure of outlier removal. In the Supplementary Material we thus repeat the 
main analyses below, only removing trials with RTs shorter than 100ms or longer than 5000ms, showing 
qualitatively similar results. 
2 All p-values here are two-tailed, and are reported without correction for multiple comparisons. It is 
worth noting however that applying a Bonferroni correction does not change the overall pattern of 
results, as all significant tests remain significant also under a stricter threshold.  
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Figure 1. Response latencies to shapes in first, second, third, and fourth position within a quadruplet 

over familiarization blocks. 

 

Next, we examined the time-course of SL during familiarization, as reflected by 

the change in the online measure (log-RT difference between unpredictable and 

predictable shapes) across the 24 blocks in the familiarization stream (Figure 2). 

Replicating Siegelman et al. (2018), this trajectory followed a logarithmic function. 

One-sample t-tests revealed significant learning (log-RT difference larger than zero, 

p<0.05) in all blocks from block 9 until the end of familiarization, showing stable 

group-level learning already after 9 repetitions (cf. significant learning from block 7 

onwards in Siegelman et al., 2018). We also calculated the reliability of the online 

measure of learning using a split-half procedure (i.e. the correlation of log-RT 

difference between odd and even quadruplets) finding a very high estimate of r=0.9.  

Lastly, we examined the individual-level correlation between the online SL 

measure and the 2-AFC offline test. As in Siegelman et al., (2018), a positive significant 

correlation was found: r=0.33, p=0.004. Overall, these basic findings replicate 

Siegelman et al.’s previous findings and re-validate the self-paced SL paradigm using 

patterns with four as opposed to three elements.  
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Table 1. Means and SEs for RTs and log-transformed RTs for shapes in first, second, third and fourth 

positions within quadruplets. 

 1st position 2nd position 3rd position 4th position 

Raw RT (SD) 960.5 (60.6) 884.3 (47.8) 880.5 (46.9) 878.1 (47.4) 

Log-transformed RT (SD) 6.62 (0.062) 6.55 (0.056) 6.54 (0.054) 6.54 (0.055) 

 

 

 

Figure 2. Learning trajectory as reflected by the change in the online measure (i.e., difference between 

log-RT to predictable vs. unpredictable shapes) throughout familiarization blocks. Error bars represent 

standard errors. The dashed line represents the best logarithmic fit. 

 

 Bayesian mixture-model. As described above, the first step in latent-mixture 

modeling is to specify two competing models, depicted in Figure 3. The full-pattern 

model assumes that RTs to predictable shapes within a pattern are uniformly faster than 

RTs to the first (unpredictable) shape. The local co-occurrence model assumes that RTs 

within a pattern may be faster or slower given the independent learning of co-

occurrences of shapes. We follow a graphical notation (based on Lee & Wagenmakers, 

2013) that represents latent parameters using white nodes, and observed data using grey 

nodes. Priors for latent parameters are listed to the right of each model. 

 The top panel depicts a local co-occurrence model. The input for this model is 

the log-transformed RTs for shapes in position 1, 2, 3, and 4, in each quadruplet j, for 

each participant i (averaged across blocks). RTs for each position are assumed to be 

drawn from a normal distribution, with some expected value for each position: thus, the 

parameter 𝜇𝑖,𝑗
1  reflects the expected log-RT for the shape in position 1 for participant i 

and for the quadruplet j, 𝜇𝑖,𝑗
2  reflects the expected log-RT for the shape in position 2 for 
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participant i for quadruplet j, and so on. For simplicity, standard deviations are assumed 

to be equal in all positions within a participant. Importantly, the expected values are 

determined through another set of latent variables: 𝑍𝑖,𝑗
1 , 𝑍𝑖,𝑗

2 , 𝑍𝑖,𝑗
3 . These are Bernoulli 

trials that reflect whether a given participant i learned some local co-occurrence in 

quadruplet j: Z=1 stands for successful learning of this co-occurrence and Z=0 reflects 

no learning. Importantly, there are three such Bernoulli trials for each quadruplet: 𝑍𝑖,𝑗
1  

reflects learning of the co-occurrence between the first and the second elements within 

a quadruplet, 𝑍𝑖,𝑗
2  reflects the co-occurrence between the second and the third elements; 

and 𝑍𝑖,𝑗
3  reflects the co-occurrence between the third and the fourth elements. The 

probability of these Bernoulli trials is determined via another parameter ki, which 

reflects the percent of co-occurrences learned by a participant i (out of the full array of 

local co-occurrences in the stream). The parameter Δi reflects the speed-up in log-RTs 

given a learned co-occurrence – that is, given that a participant i learned some local co-

occurrence A-B, Δi is the speed-up in log-RT for the shape B, compared to the shape 

A. The expected value of the shape in position 1 (i.e., an unpredictable shape) is always 

set to some baseline RT, 𝜇𝑖
𝑏𝑎𝑠𝑒, estimated for each participant. Then, the parameters Z's 

and Δ are used to determine the expected values of RTs in positions 2, 3, and 4. 

Specifically, the expected RT for shape in position 2 in quadruplet j for participant i 

would be similar to the baseline RT in the quadruplet (reflecting an unpredictable 

shape) if the participant did not learn their co-occurrence (i.e., when 𝑍𝑖,𝑗
1 =0). In contrast, 

if the participant did learn this transition (𝑍𝑖,𝑗
1 =1), the expected RT for position 2 would 

be the expected RT for position 1 minus the speed-up parameter Δi. Similarly, the 

expected RT for position 3 would be equal to that the baseline RT if the participant did 

not learn the co-occurrence of 2 and 3 (𝑍𝑖,𝑗
2 =0). If, however, the participant did learn the 

transition between position 2 and 3 (𝑍𝑖,𝑗
2 =1), the expected RT for position 3 would be 

faster by Δ compared to that of position 2. The same holds for the transition between 

position 3 and 4.  

To emphasize, since this model simulates learning of local co-occurrences, 

𝑍𝑖,𝑗
1 , 𝑍𝑖,𝑗

2 , 𝑍𝑖,𝑗
3  are independently estimated for each subject in each quadruplet. This is 

because this model assumes that a participant can either learn, or not learn, each local 

co-occurrence within each pattern, regardless of other transitions. As a result, this 

model posits that RTs may be faster or slower even within a quadruplet based on the 
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specific learned co-occurrences. For example, in the pattern ABCD, if only the co-

occurrence BC was learned, there will be faster responses to shape C, but slower 

expected RTs to shapes in positions A, B, and D. Note also that perfect learning in this 

model (k=100%, learning of all possible co-occurrences) would result in graded RTs as 

a function of position, where position 4<position 3<position 2<position 1 (since 

learning all co-occurrences entails speed up to position 2 vs. 1, position 3 vs. 2, and 

position 4 vs. 3). 

 

 

Figure 3. Graphical depiction of the two competing models. The top panel depicts the local co-

occurrence model.  The bottom panel shows the full pattern model. Note that input to both models were 

log-transformed RTs.  

 

As a side note, even without the use of the latent-mixture model, which is the 

central aim of the current investigation, some interesting insights can be gained simply 
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by running this first model and examining the resulting posterior distributions. For 

example, the proportion of learned co-occurrences for each participant can be drawn 

from the model by examining the posterior distribution of ki. Figure 4, panel A, presents 

two illustrative posterior distributions of this parameter: an individual who learned a 

large proportion of the embedded co-occurrences (mean=74%), and an individual who 

learned a smaller portion (mean=35%). We can also estimate the full distribution of 

proportion of learned co-occurrences across individuals. To do so, we take the mean of 

the posterior distribution for ki for each subject, and then plot the distribution of these 

mean ki's across subjects. Figure 4, panel B, presents the resulted histogram, which 

shows that on average participants learn 48.2% of the co-occurrences embedded in the 

stream (SD=12.1%). 

 

 

Figure 4. Parameter estimation based on the separate models (local co-occurrences or full patterns). 

Panel A: examples of posterior distributions of k for two subjects under the local model. Panel B: mean 

of k across participants, under the local co-occurrence model. Panel C: mean of k across participants, 

under the full-pattern model.  

 

  

Returning to our central research question, the bottom panel of Figure 3 depicts 

a global full pattern SL model. The input for this model is identical to the local co-

occurrence model: namely, log-RT for each quadruplet for each participant, in positions 

1 to 4 (averaged across blocks), and so is its overall architecture. The critical difference 

between this and the local co-occurrence model is that it only has a single Z parameter 

per quadruplet for each participant. This reflects the fact that according to the global 
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full-pattern model, each quadruplet can be either learned, or not learned, as a whole. 

Consequently, the interpretation of the parameters ki and Δi changes in comparison to 

the previous model: ki now depicts, for each subject i, the percent of learned patterns 

(as opposed of local co-occurrences), and Δi depicts the speed-up given a learned 

pattern of all shapes in position 2, 3, and 4. The specification of the expected values of 

each position within-quadruplet is now different too. For each subject i, quadruplet j, 

the expected values of positions 2, 3, and 4 (𝜇𝑖,𝑗
2 , 𝜇𝑖,𝑗

3 , 𝜇𝑖,𝑗
4 ) would be identical to that of 

the baseline RT (which is identical to the expected RT of position 1) if the pattern was 

not learned (that is, if 𝑍𝑖,𝑗=0). In contrast, if this pattern was learned (𝑍𝑖,𝑗=1), the 

expected RTs for positions 2-4 in this quadruplet would be set to the first position RT 

minus the speed-up parameter Δi. Note that under this model, positions 2-4 within a 

quadruplet always have identical expected response latencies. This would also be the 

case under perfect learning of all patterns (i.e., k=100%) under this model. Again, as a 

side note, simply running this model on the RT data can already provide some insights. 

For example, Figure 4, Panel C, shows the histogram of mean ki, now reflecting the 

average percent of learned patterns, across participants (mean=47%, SD=14.2%). 

 Most central to the current investigation, after specifying these two models we 

combined them to a single latent-mixture model by adding a classification parameter 

si: A Bernoulli trial estimated as either 1 or 0 in each iteration of the model. This 

classification parameter reflects the group membership of each participant i: where s=1 

reflects a classification of the participant as a local co-occurrence learner; s=0 reflects 

a classification as full-pattern learner. Note that the classification parameter (si) is 

simply an additional parameter to be estimated in a larger Bayesian model that includes 

both the local and global models. Thus, the model estimates a posterior distribution for 

the group classification parameter from the specified prior and the likelihood function 

calculated given the data. As a result, the mean of this classification parameter across 

MCMC iterations reflects the model’s certainty in classifying participant i as a local 

learner (versus a full pattern learner). The a-priori distribution of si=1 was defined as a 

uniform distribution from 0 to 1, meaning that there was no a-priori assumption 

regarding the probability of a given subject to be classified as a local (or global) learner. 

Note also that the model was characterized by good convergence on the si parameter: 

in all subjects the point estimate of Gelman-Rubin diagnostic measure was smaller than 
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1.1, and in all but one participant the upper boundary of the 95% CI of the measure was 

also smaller than 1.1.  

Figure 5 presents examples of posterior distributions of the latent parameter si 

from three individuals. On the left panel of this figure, an example for a local co-

occurrence learner: reflected by classification as a local learner in 84% of the model 

iterations. In contrast, the middle panel shows an example for a global learner, which 

was classified as a full pattern learner in 93% of iterations. The right panel presents an 

additional interesting case: a participant that was classified either as a local or global 

learner in ~50% of the iterations, thus showing no clear tendency for neither model. 

Looking at this distribution alone, it is unclear whether this is because this subject used 

both two strategies interchangeably, or whether s/he just did not learn any of the 

statistical properties and therefore could not be classified successfully (but see General 

Discussion for an additional investigation, comparing group classification to offline 

performance). 

 

 

Figure 5. Examples of posterior distributions of group classification for three subjects. Left: example 

of a local co-occurrence learner; middle: example of a full-pattern learner; right: example of a subject 

that was classified in ~50% as each model.  

  

The critical question for our current investigation has to do with the distribution 

of group membership (si) across participants. We thus next extracted the mean value of 

si for each individual (reflecting the model’s overall tendency to classify subject i as a 

local vs. global learner). Figure 6 presents the distribution of mean si across individuals. 

On average, mean group classification was equal to 47.8%. This value is very close to 

50% suggesting that, overall, there is no clear group-level tendency to either local or 

full-pattern learning. Yet, a closer inspection of Figure 5 leads to two more important 

conclusions. First, the distribution of group classification was close to symmetrical: 

despite the fact that slightly more participants were classified as local learners (40/73 
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subjects with si>50%) as opposed to full-pattern learners (33/73 subjects with si<50%), 

this ratio was close to what is expected in a fully symmetrical distribution (36.5 subjects 

out of 73). Most importantly, whereas nearly symmetrical, the distribution was not 

normal around its mean, displaying substantial inter-individual differences (also 

apparent with the high SD of 28.1%). Namely, whereas some individuals were 

classified with a high certainty as local co-occurrence learners, others were clearly 

classified as full patterns learners. We wish to emphasize that many subjects clearly 

followed either the local or the global model: 42% of the subjects (31/73) are twice as 

likely to be local learners according to the model (mean of si>66.67%), and 34% (25/73) 

are twice as likely to be global learners according to the model (mean of si<33.33%). 

This suggests that the majority of subjects clearly exhibit an overall tendency to learn 

either locally or globally3. Together, the results thus point to inter-individual mixture 

in the reliance on local co-occurrences versus full patterns. We return to this point in 

the General Discussion, below. 

 

                                                           
3 It is worth noting that while the local and global models are mostly similar in their specification, the 
two models diverge slightly in their complexity: the local model has two more parameters compared to 
the global model. This raises a possible concern that the distribution of group classification might be 
slightly biased towards the more complex (i.e. flexible) model, if the larger number of parameters to be 
estimated leads to a higher chance of overfitting. To ensure that this is not the case, we ran a simulation 
in which we sampled hypothetical subjects under a null hypothesis of no learning (i.e. no difference 
between positions 1, 2, 3, and 4, other than random noise). Virtually all simulated subjects had a mean 
si around 0.5, as expected under no signal (no actual learning). This suggests that there is no bias in 
classification towards one model. The full details and results of this simulation are presented in the 
Supplementary Material. 
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Figure 6. Distribution of mean group classification across participants. Dashed line represents 0.5. 

Values closer to 1 reflects classification as local learning; values closer to 0 reflects full pattern 

learning.  

 

 Following up on this finding, we next examined the time-course of learning: 

that is, whether there is a trajectory towards reliance on local co-occurrences versus 

global patterns as learning proceeds (see, e.g., Rey et al., 2018). For example, one 

possibility is that learners start by attending to local co-occurrences, but begin to merge 

them and attend to larger units after extensive exposure (see Batterink & Paller, 2017 

for a related discussion). To examine this issue, we re-ran the latent-mixture analysis 

on data from each 6 consecutive repetition blocks (i.e., blocks 1-6, 7-12, 13-18, and 19-

24). Figure 7 presents the distribution of mean si across individuals in these four 

quarters of familiarization. As can be seen, in the first two quarters of the familiarization 

phase (blocks 1-6 and 7-12) there was no clear tendency to rely on either local co-

occurrences or global patterns, with the majority of subjects having a mean 

classification value around 0.5 (73% and 77% of subjects with a mean si between 1/3 

and 2/3 in the first and second quarter, respectively). Only in the third and fourth quarter 

of the familiarization phase a clear classification into group membership emerged, with 

the majority of subjects having a clear group distinction (62% and 70% of subjects with 
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mean si smaller than 1/3 or larger than 2/3 in the third and fourth quarters). Importantly, 

the distributions of group membership in blocks 13-18 and in blocks 19-24 were 

similar, and both resembled the group membership distribution based on the full 

familiarization phase (Figure 6 above). These results suggest that there is no clear shift 

from one strategy to another over the course of learning. Rather, participants 

increasingly lean towards one strategy or the other as learning proceeds. To further 

examine this issue, we also calculated the correlations between each individuals' group 

membership estimation (mean of si) between the four quarters. As shown in Table 2, 

there were no significant correlations between group classification in the first two 

quarters, or between the classification in the first and second quarter to that of later 

quarters (all r's < 0.2). In contrast, there was a strong positive correlation between 

classification in the third and fourth quarter (r=0.67). This again suggests that in the 

first two quarters subjects do not have a reliable and clear reliance on either strategy, 

and only in the later stages of learning they lean towards a global or local strategy, 

which remains consistent for the reminder of the learning phase. 

 

Table 2: Correlations between individuals' group classification in the four quarters of the familiarization 

phase. p-values are shown in parenthesis; significant correlations are in bold. 

 Blocks 1-6 Blocks 7-12 Blocks 13-18 Blocks 19-24 

Blocks 1-6 *** 0.01 (0.98) 0.04 (0.74) 0.09 (0.46) 

Blocks 7-12  *** 0.15 (0.21) 0.2 (0.1) 

Blocks 13-18   *** 0.67 (<0.001) 

Blocks 19-24    *** 
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Figure 7. Distribution of mean group classification over the four quarters of the familiarization phase 

(blocks 1-6, 7-12, 13-18, 19-24). Dashed line represents 0.5. Values closer to 1 reflects classification as 

local learning; values closer to 0 reflects full pattern learning.  

 

 

General Discussion 

What is learned in visual SL, the local co-occurrences between elements or 

global patterns? This critical question was the center of multiple previous studies as it 

represents a fundamental building block of a theory of how complex patterns, 

embedded in a continuous input stream, are learned. Most investigations so far have 

searched for a binary answer, in the form of either account A, or account B. The current 

investigation suggests, however, that the answer to this question is neither A nor B, 

rather it is both, differing between individuals. This is reflected in the results of a 

Bayesian model, providing strong evidence for an inter-individual mixture of local co-
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occurrences and full patterns in SL, showing different reliance on the two types of 

computations across different participants. This provides a novel perspective regarding 

the computations underlying SL, suggesting that multiple types of computations co-

exist (at least across different individuals). As such, the current results may go a long 

way in explaining the inconclusive and inconsistent results observed in previous studies 

probing this issue.  

Our local and global generative models are not meant to directly represent 

computational models previously proposed in the literature. However, they are 

undoubtedly conceptually related to some of them. Specifically, the simple recurrent 

network model (SRN; Elman, 1990; Mirman, Graf Estes, & Magnuson, 2010) is based 

on prediction of adjacent co-occurrences (at least in a network where there is only one 

memory layer). In contrast, chunking models, such as PARSER (Perruchet & Vinter, 

1998), propose that high frequency sequences are clustered together as chunks, and thus 

they priorities the larger units embedded in the stream (see also Giroux & Rey, 2009; 

Slone & Johnson, 2018). Our generative models provide an important insight regarding 

the contrast between these two broad types of learning architectures, suggesting that 

models with only one type of computations may be an over-simplification of SL 

behavior. Indeed, a recent model (TRACX(2), Mareschal & French, 2017) is based on 

a combination of local-TP learning and chunking, and is more compatible with the 

current findings (even though in this model there is no direct reference for inter-

individual mixture). More generally, our results call for caution when interpreting data 

on the group level as supportive of contrasting model predictions, and for a careful 

examination of individual-level behavior patterns. 

Of course, in formulating our Bayesian models, it was necessary to make 

multiple assumptions about the parameters that drive behavior. As researchers move 

towards being more computationally explicit about their specific theoretical accounts, 

the formal versions of their accounts will inevitably differ to some degree from the 

exact implementations that were tested here. Importantly, the current framework 

provides a clear way of incorporating and testing such modifications in a formal 

manner. Different assumptions regarding either the local or global model can be 

reflected by changes to the generative models, which can then be pitted against one 

another using a latent mixture model. We illustrate this capacity in the Supplementary 

Material, wherein we change the exact assumptions underlying how RTs decrease 

across successive correctly predicted elements in the local model. In this alternative 
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local model, a learned transition, regardless of whether it is in the first, second, or third 

position, always results in a speed-up relative to baseline (and not relative to the 

preceding shape).  In this case, the results were very similar, but non-identical to those 

reported above. This also demonstrates the robustness of our main conclusion – inter-

individual mixture of local and global learning - across a variation of our proposed local 

model.  

On a more concrete methodological level, the current work also joins recent 

studies in exemplifying the usefulness of online SL measures – that is, measures that 

track learning as it unfolds. It shows that using an online SL task, especially when 

combined with a generative model, offers new insights into SL computations. In the 

current case, this approach revealed new information regarding local versus global SL, 

an information that typical offline measures are generally blind to. This becomes very 

apparent when looking at the correlation between the individual-level classification as 

local/full-pattern learner (si), and offline test scores, presented in Figure 8. As can be 

seen, there was an overall negative correlation between group classification and offline 

test performance (r=-0.42, p<.001). Examining the scatter plot suggests that it stems 

from the fact that full-pattern learners (i.e., those for whom mean group classification 

approaches 0) show in the vast majority of cases perfect or near-perfect offline 

performance. Importantly, however, Figure 6 shows that individuals can achieve such 

perfect offline test accuracy either via learning the local co-occurrences or via 

assimilation of full patterns (in the 2-AFC test, a quadruplet can be preferred over the 

foil already given one learned co-occurrence). This is reflected by the fact that high 

offline test scores are present both for participants who exhibit global learning (si0) 

and those who show local co-occurrence learning (si1).  
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Figure 8. Correlation between group classification (x-axis) and offline test performance (y-axis). 

Dashed line reflects best linear fit. 

 

 

This last point also raises an important general implication for research on 

individual-differences in SL. Our results suggest that individuals differ in the 

underlying computations they use to learn a new set of statistical properties. This is a 

feature that was so far overlooked in studies of individual differences in SL, which 

focused only on differences in the overall success in assimilating the statistical 

properties from the input. Hence, our study provides an additional potential layer of 

individual-differences in SL: the tendency to learn via tracking of local co-occurrences 

versus reliance on larger chunks. Given recent claims regarding the importance of 

chunking in language acquisition and processing (Christiansen & Chater, 2016; Page 

& Norris, 2009), it would be interesting for future research to investigate whether a 

tendency to rely on larger chunks during SL has a unique predictive value in accounting 

for variance in linguistic abilities. That is, in contrast to the common experimental 

approach which estimates the correlation between some overall measure of SL 

performance and some linguistic outcome (see Siegelman et al., 2017), our findings 

raise the possibility that differences in the underlying computations through which each 

individual extracts regularities from the input carry unique explanatory power. To re-

iterate, previous works on individual differences in SL overlooked this possibility due 

to their reliance on coarse-grained measures of SL (either offline or online) that only 

examine the extent of sensitivity of an individual to a set of statistical regularities 

without considering the specific computations that yielded it.  
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Lastly, although our work shows strong promise for advancing the 

understanding of SL computations, some open questions should be underlined. The first 

question arises from the fact that a non-negligible number of individuals were not 

clearly classified to either the local or global model. Interestingly, some of these 

subjects still presented some successful SL computations: Figure 6 shows that a number 

of subjects without clear classification into local/global computations (si around 0.5) 

nevertheless exhibited high offline performance. How to classify such subjects remains 

an open question, and it is possible that more data would have led to a clearer 

classification of these subset of participants. Thus, future research should aim to 

develop more refined models and designs with a large enough number of patterns to 

allow an even higher detection rate of the different types of computations. Second, in 

contrast to many previous studies, we focused here on visual, rather than auditory SL. 

Future research should examine whether similar inter-individual mixture occurs also in 

the auditory modality. Such research will also have to deal with an outstanding 

methodological challenge, and come up with reliable online SL measures in the 

auditory domain (see Batterink, 2017; Batterink & Paller, 2017; Kuppuraj, Duta, 

Thompson, & Bishop, 2018, for possible avenues). Third, our design used larger 

embedded patterns: four-element long (i.e., quadruplets). This stands in contrast to 

typical SL studies using mostly triplets (or sometimes pairs) of elements. The rationale 

behind this design was to have better differentiation between the two models, by having 

a larger number of transitions within patterns. Future work is left with examining 

whether the current results generalize to other learning situations, either with another 

fixed length of patterns, or non-uniform distribution of pattern lengths (e.g., Hoch, 

Tyler, & Tillmann, 2013). Fourth, our models only account for the learning of adjacent 

contingencies, disregarding the assimilation of non-adjacent dependencies, despite 

recent evidence that the two types of computations can occur in parallel (Vuong, Meyer, 

& Christiansen, 2016). Future models can be used to account for such concurrent 

learning of different types of information.  

Taken together, our theoretical and methodological approach, as well as our 

insightful pattern of results, have shed important new light on debates surrounding the 

computations underlying SL.  It stresses the importance of assessing learning online, 

taking into account critical differences in the computations underlying learning across 

different individuals, and in developing formal models of a theory’s assumptions.  

Going forward, the computational framework used here can also serve as a foundation 



25 

 

for comparing the performance of alternative theoretical accounts in explicit, 

quantifiable terms, allowing for the assessment of how major qualitative differences 

and subtle quantitative differences across models could refine our understanding of SL 

computations. This approach should therefore prove valuable in moving beyond 

underspecified verbal accounts to a fully fleshed out account of SL phenomena. 

 

Supplementary material 

Code and raw data are available via Open Science Framework at: 

https://osf.io/enp6q/?view_only=d39b4988c58b476b8190729b0a3f5f8f 

[DOI 10.17605/OSF.IO/ENP6Q] 
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