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Abstract

Rationale In Parkinson’s disease (PD), spatial covariance analysis of '*F-FDG PET data has consistently revealed a characteristic
PD-related brain pattern (PDRP). By quantifying PDRP expression on a scan-by-scan basis, this technique allows objective
assessment of disease activity in individual subjects. We provide a further validation of the PDRP by applying spatial covariance
analysis to PD cohorts from the Netherlands (NL), Italy (IT), and Spain (SP).

Methods The PDRPy; was previously identified (17 controls, 19 PD) and its expression was determined in 19 healthy controls and 20
PD patients from the Netherlands. The PDRP; was identified in 20 controls and 20 “de-novo” PD patients from an Italian cohort. A
further 24 controls and 18 “de-novo” Italian patients were used for validation. The PDRPgp was identified in 19 controls and 19 PD
patients from a Spanish cohort with late-stage PD. Thirty Spanish PD patients were used for validation. Patterns of the three centers were
visually compared and then cross-validated. Furthermore, PDRP expression was determined in 8 patients with multiple system atrophy.
Results A PDRP could be identified in each cohort. Each PDRP was characterized by relative hypermetabolism in the thalamus,
putamen/pallidum, pons, cerebellum, and motor cortex. These changes co-varied with variable degrees of hypometabolism in
posterior parietal, occipital, and frontal cortices. Frontal hypometabolism was less pronounced in “de-novo” PD subjects (Italian
cohort). Occipital hypometabolism was more pronounced in late-stage PD subjects (Spanish cohort). PDRP;; PDRPy;, and
PDRPgp were significantly expressed in PD patients compared with controls in validation cohorts from the same center (P <
0.0001), and maintained significance on cross-validation (P < 0.005). PDRP expression was absent in MSA.
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Conclusion The PDRP is a reproducible disease characteristic across PD populations and scanning platforms globally. Further
study is needed to identify the topography of specific PD subtypes, and to identify and correct for center-specific effects.

Keywords '®F-FDG PET - Parkinson’s disease - Metabolic pattern - Networks

Introduction

Parkinson’s disease (PD) is a common neurodegenerative dis-
order, for which only symptomatic therapies are available.
Efforts to develop neuroprotective or preventive treatments
will benefit from a reliable biomarker. Ideally, such a biomark-
er can identify PD in its early stages, differentiate between PD
and other neurodegenerative parkinsonian disorders, track dis-
ease progression, and quantify treatment effects.

In PD, abnormal accumulation of x-synuclein in neurons
impairs synaptic signaling, causing disintegration of specific
neural networks [1]. Neuro-imaging with ['®F]-
fluorodeoxyglucose positron emission tomography ('*F-
FDG PET) can capture synaptic dysfunction in vivo. The ra-
diotracer '®F-FDG provides an index for the cerebral metabol-
ic rate of glucose, which is strongly associated with neuronal
activity and synaptic integrity [2].

Brain regions with altered '®F-FDG uptake in PD have
been identified with univariate group comparisons using
Statistical Parametric Mapping (SPM) [3—7]. However, be-
cause metabolic activity is correlated in functionally intercon-
nected brain regions, analysis of covariance is more suitable to
assess whole-brain networks. Multivariate disease-related pat-
terns can be identified with the Scaled Subprofile Model and
Principal Component Analysis (SSM PCA). Subsequently, a
disease-related pattern can be used to quantify the '*F-FDG
PET scans of new subjects [8§—10]. In this procedure, an indi-
vidual’s scan is projected onto the pattern, resulting in a sub-
ject score. This is a single numeric value which reflects the
degree of pattern expression in that individual’s scan.

The PD-related pattern (PDRP) was initially identified by
Eidelberg et al. with SSM PCA in 33 healthy controls and 33
PD patients from the USA [11]. This PDRP (PDRPyg,) has
served as a reference in many consecutive studies [12]. The
PDRPyg4 is characterized by relatively increased metabolism
of the thalamus, globus pallidus/putamen, cerebellum and
pons, and by relative hypometabolism of the occipital, tempo-
ral, parietal, and frontal cortices. PDRPyga subject scores
were significantly correlated with motor symptoms and pre-
synaptic dopaminergic deficits in the posterior striatum [13],
increased with disease progression [14], and were shown to
decrease after effective treatment [15, 16]. PDRPyg was sig-
nificantly expressed in patients with idiopathic REM sleep
behavior disorder (iRBD), a well-known prodromal disease
stage of PD [17], and could discriminate between healthy
controls, PD, and patients with multiple system atrophy
(MSA) [18, 19].
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Because of these properties, PDRPys4 is considered a
neuro-imaging biomarker for PD [12]. It is essential that the
PDRP is thoroughly validated. In collaboration with Eidelberg
et al., PDRPs were identified in independent American,
Indian, Chinese, and Slovenian populations [11, 15, 20, 21].
Independently from these authors, the PDRP was recently
derived in an Israeli population [22]. These PDRPs were high-
ly similar to the PDRPyg,, although minor deviations in
PDRP regional topography were observed in several of these
studies, which may be caused by differences in demographics
or clinical characteristics of the cohorts.

We previously identified a PDRP in a retrospective cohort
of PD patients scanned on dopaminergic medication [23], and
subsequently in an independent cohort of prospectively in-
cluded PD patients who were in the off-state (PDRPy) [24].
We used code written in-house, and obtained similar results
compared with other PDRP studies. Recently, we demonstrat-
ed significant expression of the PDRPy in idiopathic REM
sleep behavior disorder (a prodromal stage of PD), PD, and
dementia with Lewy bodies [25]. However, the PDRPy has
not been validated in a larger cohort, and correlations with
PDRPyga were not explored.

The aim of the current study was to validate the PDRPy; in
several independent cohorts. We were able to test the PDRPyp
in 19 controls and 20 PD patients from our own clinic in the
Netherlands, in 44 healthy controls and 38 “de-novo” PD
patients from Italy, and 19 healthy controls and 49 late-stage
PD patients from Spain. In addition, we newly identified a
PDRP in Italian and Spanish datasets and performed a cross-
validation between these populations. We compared the three
PDRPs to the reference pattern (PDRPyga).

Methods
18E_EDG PET data from the Netherlands

The PDRPy; was previously identified in '*F-FDG PET scans
from 17 healthy controls and 19 PD patients (NL1; Table 1)
[24]. In these subjects, antiparkinsonian medication was with-
held for at least 12 h before PET scanning.

In a previous study, we demonstrated that the PDRPy; was
significantly expressed in an independent dataset of 20 PD
patients compared with 19 controls (NL2; Table 1) [25]. For
the current study, we added scans of 8 patients with the par-
kinsonian variant of MSA (MSA-P). Patients were diagnosed
with probable PD or MSA-P by a movement disorder
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Table 1  Dutch (NL) data
PDRPy derivation (NL1) data from [24] PDRPy validation (NL2) data from: [25] MSA patients
HC PD HC PD
N 17 19 19 20 8
Age 61.1+74 63.7+7.5 624+7.5 67.5+8.6 65+9
Gender; n male % 12 (71%) 13 (68%) 9 (47%) 16 (80%) 6 (75%)
H&Y stage 1 (n) 10 8
H&Y stage 2 (n) 9 11
H&Y stage 3 (n) 0 0
H&Y stage 4 (n) 0 1
Disease duration (years) 4.4 +3.2 (range 1.5 to 11.5 years) 44+53 38+23
UPDRS-III (off) 184+74 NA NA
MMSE (NL1) or MoCA (NL2) 29.4+0.9 285+ 1.1 283+1.6 NA NA

Acquisition protocol

Camera Siemens Biograph mCT-64
Reconstruction OSEM 3D, 3i24s

Matrix 400 x 400

Voxel size 2.00 x 2.03 x2.03
Smoothing

Medication Off

30 min after injection of 200 MBq of '*F-FDG, scan acquisition time of 6 min. Eyes closed

uHD (PSF + TOF), 3i21s
256 x 256
2.00 x 3.18 x 3.18

5 mm FWHM; and 1 0 mm after intensity normalization 8§ mm FWHM

8 off, 12 on medication

Values are mean and standard deviation, unless otherwise specified

Disease duration, approximate time from first motor symptoms until scanning; H&Y, Hoehn and Yahr stage; MMSE, mini-mental state examination;
MoCA, Montreal Cognitive Assessment; UPDRS-III, part three of the Unified Parkinson’s Disease Rating Scale (2003 version); NA, not available

specialist [26]. '*F-FDG-PET was performed in our clinic as
part of routine diagnostic workup. These patients were
scanned with the same camera as NL1. However, since the
PDRPy derivation study [24], reconstruction algorithms
were updated (Table 1). Antiparkinsonian medication was
not routinely withheld in NL2 PD patients.

8F-FDG PET data from Italy

The IT dataset consisted of '*F-FDG PET scans from 44
healthy controls and 38 consecutive outpatients with “de-
novo,” drug-naive PD [27] (Table 2). '**I-FP-CIT Single
Photon Emission Computed Tomography (DAT SPECT)
was abnormal in all Italian PD patients. Disease-related pat-
terns are typically determined on approximately 20 patients
and 20 controls. Therefore, 20 controls and 20 patients were
randomly selected from the IT dataset for PDRP;r derivation.
The remaining 24 controls and 18 patients were used for
validation.

8E_FDG PET data from Spain

"F-FDG PET scans from 49 PD patients and 19 controls from
Spain (SP) were included from a previous study (Table 3)
[28]. Patients in this cohort had long disease durations and
were studied in the on state (i.e., antiparkinsonian medication

was continued). From this dataset, 19 PD patients were ran-
domly selected for PDRPgp identification. The remaining 30
patients were used for validation.

Identification of PDRPy,, PDRP,;, and PDRPsp

All images were spatially normalized onto an '*F-FDG PET
template in Montreal Neurological Institute brain space [29]
using SPM12 software (Wellcome Department of Imaging
Neuroscience, Institute of Neurology, London, UK).
Identification of the PDRPy was described previously
[24]. For identification of the PDRP;rand PDRPgp, we applied
an automated algorithm written in-house, based on the SSM
PCA method of Spetsieris and Eidelberg [10], implemented in
MATLAB (version 2017b; MathWorks, Natick, MA). Images
were masked to remove out-of-brain voxels, log-transformed,
and subject and group means were removed. Principal com-
ponent analysis (PCA) was applied to the residual profiles in
voxel space, and the components explaining the top 50% of
the total variance were selected for further analysis. For each
subject, a score was calculated on each selected principal com-
ponent (PC). These scores were entered into a forward step-
wise logistic regression analysis. The components that could
best discriminate between controls and patients [30] were lin-
early combined to form the PDRP. In this linear combination,
each component was weighted by the coefficient resulting
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Table 2  Italian (IT) data

Data from [27]

Total dataset PDRP;t derivation PDRP;t validation

HC PD HC PD HC PD
N 44 38 20 20 24 18
Age 68.8£9.7 71.5+6.9 68.8+9.7 70.5+7.3 68.8 +10.0 72.8 £ 6.4
Gender; n male % 32 (73%) 25 (65.8%) 14 (70%) 11 (55%) 18 (75%) 14 (78%)
H&Y stage 1 (n) 23 10 13
H&Y stage 2 (n) 15 10 5
Non-MCI (n) 18 9 9
MCI (n) 20 11 9
PD symptom duration (months)* 19.3+13.6 20.5+13.3 184+ 14.4
UPDRS-III (off) 152+6.9 15573 149+ 64
MMSE 29.1+£1.0 277+23 288+1.2 275+29 29.4+£0.6 279+1.1

Acquisition protocol

Acquisition 45 min after injection of 200 MBq of '®F-FDG, scan acquisition time of 15 min. Eyes closed.

Camera Siemens Biograph 16 PET/CT
Reconstruction OSEM 3D

Matrix 128 x 128

Voxel size 1.33 x 1.33 x 2.00 mm

Smoothing 8 mm FWHM after intensity-normalization
Medication Treatment naive

Values are mean and standard deviation, unless otherwise specified

Disease duration, approximate time from first motor symptoms until scanning (in months); H&Y, Hoehn and Yahr stage; MMSE, mini-mental state
examination; UPDRS-III, part three of the Unified Parkinson’s Disease Rating Scale (2003 version); MCI, Mild Cognitive Impairment

from the logistic regression model. All voxel weights in the
PDRP were overlaid on a T1 MRI template in Montreal
Neurological Institute (MNI) space for visualization. All
voxels in the PDRP are used for subject score calculation.
To investigate which regions in each PDRP were stable, a
bootstrap resampling was performed within each derivation
set (1000 repetitions) [31]. Voxels that survived a one-sided
confidence interval (CI) threshold of 90% (percentile method)
after bootstrapping were overlaid on a Tl MRI template. The
stable regions in the three PDRPs were visually compared.

Validation of PDRPy,, PDRP,;, and PDRPsp

For validation, subject scores for PDRPy, PDRP;1, and
PDRPgp were calculated in patients and controls from the
same population. First, images were log-transformed and the
subject mean and group mean (originating from the PDRP
identification cohort) were removed, resulting in a residual
profile for each subject. The subject score is calculated by
projecting the subject residual profile on the pattern. To ac-
count for differences in data-acquisition, subject scores were
always z-transformed to the subject scores of healthy controls
that were scanned on the same camera, with identical recon-
struction algorithms. If subject scores in validation PD
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subjects were significantly higher compared with subject
scores in controls, the pattern was considered valid.

In this manner, PDRPy subject scores were calculated
in the derivation cohort (NL1) and in the validation cohort
(NL2). However, data acquisition was not identical for
NL1 and NL2 data. This resulted in a significant differ-
ence in PDRPy subject scores between the NL1 and NL2
healthy control groups (supplementary Fig 1). To correct
for these differences, subject scores in NL1 were z-trans-
formed to NL1 healthy controls, such that NL1 control
mean was 0 with a standard deviation of 1. Similarly,
subject scores in NL2 were z-transformed to NL2
controls.

Subject scores for PDRP;t were calculated in the IT deri-
vation cohort (controls n = 20; PD n = 20) and the IT valida-
tion cohort (controls n = 24; PD n = 18). Because all IT scans
were acquired with identical protocols, subject scores could be
z-transformed to the IT healthy controls from the derivation
sample (n = 20).

Subject scores for the PDRPgp were calculated in the
SP derivation cohort (controls n = 19; PD n = 19) and the
SP validation cohort (PD n = 30). PDRPgp subject scores
were z-transformed to the SP controls from the derivation
sample (n = 19). As a second SP healthy control cohort
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Table 3 Spanish (SP) data
Data from [28]
Total PDRPgp derivation PDRPgp validation
PD HC PD PD
N 49 19 19 30
Age 69.6 5.9 68.1 £3.2 69.2 £ 6.1 69.8+5.9
Gender (n male) 29 (59%) 10 (53%) 13 (68%) 16 (53%)
H&Y' stage 1 (n) 4 0 4
H&Y stage 2 (n) 14 6 8
H&Y stage 3 (n) 24 10 14
H&Y stage 4 (n) 5 3 2
Non-MCI (n) 21 11 10
MCI (n) 28 8 20
Disease duration 13.4+£52 144+49 128 £5.3
UPDRS-III (on) 172 +83 17.5+6.8 169 +9.1
MMSE 27.6+23 28.5+1.8 27.1+24

Acquisition protocol

Acquisition 40 min after injection of 370 MBq of 18F-FDG, scan acquisition
time of 20 min. Eyes closed.

Camera

Siemens ECAT EXAT HR+

Reconstruction

Filtered back-projection

Matrix

Voxel size

128 x 128

2.06 x 2.06 x 2.06

Smoothing

Medication

10 mm FWHM after intensity normalization

On state

Values are mean and standard deviation, unless otherwise specified

Disease duration, approximate time from first motor symptoms until scanning; H&Y, Hoehn and Yahr stage;
MMSE, mini-mental state examination; UPDRS-III, part three of the Unified Parkinson’s Disease Rating Scale
(2003 version); MCI, Mild Cognitive Impairment

T For 2 patients in the SP dataset, H&Y stage was not available

was not available, PDRPgp subject scores in PD patients
were compared with the PDRPgp subject scores in the
derivation healthy controls.

Cross-validation of PDRPy,, PDRP;r, and PDRPgp

Subsequently, PDRPy. subject scores were determined in
the IT and SP datasets, PDRP;r subject scores were deter-
mined in the NL and SP datasets, and PDRPgp subject
scores were determined in the NL and IT datasets. In
addition, subject scores for the PDRPygs were calculated
in each dataset in the same manner. Each subject score
was then transformed into a z-score with respect to con-
trols from the same camera, such that control mean was 0

with a standard deviation of 1. To determine the perfor-
mance of each pattern in discriminating between controls
and patients, a receiver operating curve was plotted (for
each pattern in each dataset) and the area under the curve
(AUC) was obtained.

The similarity of the three PDRPs to each other and to
the PDRPyga was tested in two ways. First, in each
dataset, the z-scores for each PDRP were correlated with
Pearson’s 7 correlation coefficient. Second, the voxelwise
topographies of the different patterns were compared by
using volume-of-interest (VOI) correlations over the
whole brain. A set of 30 standardized VOIs were selected
from a previous study [21, 32], reflecting key nodes of the
reference PDRP. Within each VOI, region weights were
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calculated for each pattern. Subsequently, region weights
between any two of the patterns were correlated using
Pearson’s r correlation coefficient.

PDRP expression in MSA-p subjects

Subject scores for each PDRP were calculated in 8 MSA-p
patients. Subject scores for each PDRP were z-transformed to
corresponding subject scores in NL2 controls.

Principal component 1

PDRPysa [11], as well as the PDRP determined in Chinese
[20] and Slovenian [21] populations, consisted of PC1 in iso-
lation. Combinations of components were not considered.
There are several methods to decide which components are
disease-related and should be included in the final disease-
related pattern [10]. In the current study, this decision was
based on a forward stepwise logistic regression model, using
the Akaike information criterion (AIC) as model selection
criterion [30], in order to combine the least possible number
of components to obtain the optimum discrimination between
controls and patients. It is possible that the optimal model
selects one component. If the PDRPs identified in the current
study were not based on PCI in isolation, we repeated all
analyses using PC1 alone for each cohort. In that case, we
additionally identified PDRPy;-PC1, PDP;1-PC1, and
PDRPgp-PC1, and repeated the cross-validation.

Statistical procedures

Between-group differences in PDRP z-scores were assessed
using a Student’s 7 test. Correlations between PDRP and age,
disease duration, and UPDRS were examined with Pearson’s »
correlation coefficient. Analyses were performed using SPSS
software version 20 (SPSS Inc., Chicago, IL) and considered
significant for P < 0.05 (uncorrected).

Results
PDRPy,

The first six principal components explained 50% of the total
variance. The PDRPy was formed by a weighted linear com-
bination of principal components 1 and 2 (variance explained
17% and 10%, respectively; Figs. la and 2a). PDRPy z-
scores were significantly different between healthy controls
and PD patients in both derivation (NL1) and validation
(NL2) cohorts (P < 0.0001; Fig. 3a).
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PDRP,;

The first six principal components explained 51% of the total
variance. A weighted linear combination of principal compo-
nents 1 and 2 (variance explained 19% and 8% respectively)
could best discriminate between controls and patients in the
logistic regression model, and was termed the PDRP;t (Figs.
1b and 2b). PDRP;t subject scores were significantly different
between healthy controls (n = 24) and patients (n = 18) in the
validation cohort (P < 0.0001; Fig. 3b).

PDRPsp

The first five principal components explained 51% of the total
variance. The PDRPgp was formed by a weighted linear com-
bination of principal components 1, 2, and 3 (variance ex-
plained 17%, 14%, and 5%, respectively; Figs. 1c and 2c).
PDRPgp was significantly expressed in PD patients from the
validation set (P < 0.0001, Fig. 3c).

Cross-validation

Each of the PDRPs (including the PDRPy54) was significant-
ly expressed in PD patients compared with controls, in each of
the datasets (Figs. 4a—c and 5). Corresponding ROC-AUCs
are reported in Table 4.

Correlations to UPDRS and disease duration were incon-
sistent (Table 5). Within each dataset, z-scores of any two
PDRPs were significantly correlated. Subject scores on all
three patterns were also significantly correlated to subject
scores on PDRPyga (Table 5). Especially, the PDRPy
showed consistent high correlations to PDRPg4. In addition,
a comparison between spatial topographies of the original
PDRPyg4 versus the PDRPyp, PDRPy;, and PDRPgp showed
significant correlations in region weights (Table 6).

PDRP subject scores in MSA-p patients

Subject scores for each PDRP were calculated in MSA pa-
tients. Subject z-scores on each PDRP were not significantly
different between controls and MSA patients (Fig. 6).

Principal component 1

As stated above, PDRPy; and PDRP;t were identified as
linear combinations of multiple PCs. All analyses were
repeated for PDRPy-PC1, PDP;~PC1, and PDRPgp-
PC1. The PDRPs that were based on combinations of
PCs yielded higher diagnostic accuracy (Table 4) com-
pared with patterns based on PC1 alone (Table 7).
However, subject scores on PDP-PC1, PDRPy -PC1,
and PDRPgp-PC1 did show much higher correlations to
subject scores on PDRPyga (all » > 0.98, P < 0.0001).
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A) PDRP,,

A) PDRP,

L/

X=-2

Fig. 1 Display of PDRPy (a), PDRP;t (b), and PDRPgp (¢). All voxel
values of each PDRP are overlaid on a T1 MRI template. Red indicates
positive voxel weights (relative hypermetabolism) and blue indicates

Discussion

In this study, we cross-validated the previously published
PDRPyy [24], and additionally identified a PDRP in an
Italian (PDRP;1) and Spanish (PDRPgp) sample. The three
patterns were akin to PDRPyg,, and also to the PDRP de-
scribed in other populations [20, 21]. Topographical similarity
to PDRPyg4 was confirmed for each of the three PDRPs by a
significant correlation of region weights, and a significant cor-
relation in subject scores. Furthermore, PDRPy, PDRP;, and
PDRPgp were significantly expressed in PD patients com-
pared with controls in both identification and validation co-
horts, but were not significantly expressed in MSA-p patients.

The typical PDRP topography is characterized by relative
hypermetabolism in the thalamus, putamen/pallidum, pons,
cerebellum, and motor cortex. These changes co-vary with
relatively decreased metabolism in the prefrontal, parietal,
temporal, and occipital cortices [11, 15, 20, 21, 23, 24]. This
topography is thought to reflect changes in cortico-
striatopallido-thalamocortical (CSPTC) loops and related
pathways in PD [33, 34]. In these circuits, a dopaminergic

z=2 Z=45

negative voxel weights (relative hypometabolism).L=left. Coordinates
in the axial (Z) and sagittal (X) planes are in Montreal Neurological
Institute (MNI) standard space.

deficit leads to abnormal basal ganglia output, mediated
by hyperactivity of the subthalamic nucleus (STN) and its
efferent projections. Several studies support a direct rela-
tionship between altered STN output and the PDRP to-
pography [16, 35-38].

The high degree of similarity in PDRP topography across
samples is striking considering differences in demographics,
clinical characteristics, scanning methods, and reconstruction
algorithms. Especially the PDRPy; was highly similar to the
reference pattern (PDRPyg4). These two patterns showed the
highest subject score correlation and region weight correla-
tion. Furthermore, the PDRPy;, achieved the highest AUC in
the other cohorts. Like PDRPyga, PDRPy;. was derived in a
cohort of off-state patients with a wide range of disease dura-
tions (duration 4.4 + 3.2 years; range 1.5-11.5 years) and
severities.

Deviations from the typical PDRP topography are worth
exploring further in relation to clinical characteristics. The
PDRPy is unique in that it is, to our knowledge, the first time
the PDRP has been derived in “de-novo,” treatment-naive PD
patients. It is likely that these very early-stage patients have a
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A) PDRP,,

X=-2 Z=-36

Fig. 2 Display of stable voxels of each PDRP, determined after bootstrap
resampling (90% confidence interval not straddling zero). Overlay on a
T1 MRI template. Positive voxel weights are color-coded red (relative
hypermetabolism), and negative voxel weights are color-coded blue

less severe nigrostriatal dopaminergic deficit compared with
the more advanced PD patients in PDRPyga, PDRPy, and
PDRPgp derivation cohorts. This may be reflected by less
severe involvement of the frontal cortex in PDRP;, as
nigrostriatal denervation is known to be positively correlated
with hypometabolism in the frontal cortex [13, 39].

The PDRPgp was derived in PD patients who were scanned
while being on dopaminergic medication. Levodopa is known
to decrease metabolism in the cerebellar vermis, putamen/
pallidum, and sensorimotor cortex. Levodopa therapy can re-
duce PDRP expression, but does not completely correct the
underlying network abnormalities [16]. It can be assumed that
the effect of dopaminergic therapy on PDRP expression is
modest in comparison with the effect of disease progression
[40]. Indeed, the typical PDRP topography could still be iden-
tified in these on-state patients. However, the PDRPgp did not
correlate as well to the other patterns, both in terms of subject
scores and region weights. It is not clear whether this is related
to the advanced disease stage or the effect of treatment. The
PDRPgp was characterized by more stable involvement of the
occipital cortex, possibly related to the presence of mild
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(relative hypometabolism). L, left. Coordinates in the axial (Z) and
sagittal (X) planes are in Montreal Neurological Institute (MNI)
standard space.

cognitive impairment and visual hallucinations, which often
occur in advanced PD [41].

Following from the above, it can be concluded that the typ-
ical PDRP topography is highly reproducible. Similar topogra-
phies have also been identified in studies comparing BE_FDG-
PET scans of healthy controls and PD patients with SPM [3—7].
Such analyses can be supportive in the visual assessment of an
"F_FDG-PET scan in clinical practice. Several studies have
evaluated the diagnostic value of observer-dependent visual
reads supported by SPM-based comparisons to healthy controls
[3, 4, 42-44]. A recent meta-analysis (PD versus “atypical”
parkinsonism) estimated a pooled sensitivity of 91.4% and
specificity of 94.7% for this semi-quantitative approach [45].

The merit of SSM PCA over mass-univariate approaches
lies in its ability to objectively quantify '*F-FDG PET scans of
patients using the pre-defined patterns. Pattern expression
scores were shown useful in differential diagnosis, tracking
disease progression, and estimating treatment effects [46].
Although in the current study PDRP z-scores were significant-
ly higher in PD patients compared with healthy controls, there
was a considerable overlap in PDRP z-scores between patients
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and controls in almost every cohort. This overlap is not unique
to the current data, and is also apparent in other studies [12].

Some healthy controls appear to express the PDRP. Since we
found significant correlations between PDRP z-scores and age in
healthy controls, it could be suggested that ageing and PD share
certain metabolic features. Metabolic decreases have been report-
ed in the parietal cortex in normal aging [47, 48]. This may cause
some overlap with the PDRP. However, the correlation with age
in our study was not consistent across all datasets and patterns

Table 4  Cross-validation of patterns

NL dataset 1 NL dataset 2 IT dataset SP dataset
N HC/PD 17/19 19/20 44/38 19/49
PDRPy AUC 0.96 0.86 0.87
PDRP;r AUC 0.81 0.93 0.83" 0.83
PDRPsp AUC  0.82 0.92 0.80
PDRPygp AUC  0.85 0.95 0.79 0.76

Subject scores for each PDRP were obtained in each dataset and subse-
quently z-transformed (see Figs. 3 and 4). With these scores, a receiver
operating curve was plotted (for each pattern in each dataset) and the area
under the curve (AUC) was obtained

T Obtained from the IT validation cohort (HC=24;PD=18)

@ Springer

(Table 5). Furthermore, expression of an age-related spatial co-
variance pattern was shown to be independent from PDRP ex-
pression [49, 50]. Alternatively, a high PDRP z-score in a healthy
subject could signal a prodromal stage of neurodegeneration. For
instance, subjects with idiopathic REM sleep behavior disorder
(a prodromal stage of PD) were shown to express the PDRP
years before onset of clinical parkinsonism [17, 25].

Low PDRP z-scores in PD patients could indicate inaccu-
rate clinical diagnosis. A recent meta-analysis of clinicopath-
ologic studies suggests that the clinical diagnosis of PD by an
expert, after an adequate follow-up, has a sensitivity of 81.3%
and a specificity of 83.5% [51]. Thus, even under ideal cir-
cumstances, the diagnosis is inaccurate in a number of
patients.

Overlap in pattern expression scores is not only apparent
between controls and PD patients, but also between patients
with different parkinsonian disorders. For instance, the PDRP
may also be expressed in patients with progressive
supranuclear palsy (PSP) [52]. This means that the expression
score for a single disease-related pattern is inadequate to dif-
ferentiate between multiple disorders. However, this does not
hamper application in differential diagnosis. Previous studies
have shown that an algorithm combining multiple disease-
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Table 5 Correlations between PDRP subject scores and clinical data
NL data
Age (HC) Age (PD) Disease duration UPDRS (off) PDRPyL PDRP;r PDRPgp PDRPysa
NL1
PDRPyr -0.02 0.24 0.50% 0.38 .84 0.79%3*
PDRPgp 0.16 0.20 0.50%* 0.42 0.84sk3% 0.71%%*
PDRPysa 0.64%* 0.50%* 0.60%* 0.49" 0,79 0.7 1%
NL2
PDRPy. 0.20 0.590%* 0.087 NA 0.897Hs#s# 0.76%** 0.93%*
PDRP;t 0.07 0.387 0.229 NA 0.89: 087 0.75%%%
PDRPgp 0.13 0.459* 0.102 NA 0.76%%* 0877k 0.72%%*
PDRPysa 0.46* 0.698** 0.070 NA 0.93 %% 0.75%%% (.72
IT data
PDRPy 0.30 0.48%* 0.04 0.35* 0.7t (.73 0.92%
PDRP;; 0.347 0.23" -0.05" 0.44" 087+ 0.7 068+
PDRPgp 0.46%* 0.41%* -0.20 0.47%* 0.73 %% 0,78t 0.78%%
PDRPygs 0.43%* 0.48%* —-0.05 0.33* 0.92%: 0.9kt (.78
SP data
Age (HC) Age (PD) Disease duration UPDRS (on) PDRPyp PDRP;t PDRPgp PDRPyga
PDRPy 0.03 0.33* 0.26 -0.01 0.9 %% 0.8 5T 0.927%3*
PDRP; -0.02 0.21 0.25 -0.01 0.971 %= 0,773t 0.82%
PDRPg; 0.33" 0.43*TT 0.017F 0.81 5T 0,771 0.84#xTT
PDRPyga -0.11 0.34%* 0.21 —-0.09 0.92%# 0,827 084t

*Significant at P < 0.05; **Significant at P < 0.01; ***Significant at P < 0.001

NA not available
T Obtained from the IT validation cohort (HC = 24; PD = 18)
T Obtained from the SP validation cohort (PD = 30)

related patterns (including the PDRP) with logistic regression
could accurately distinguish between parkinsonian disorders.
With this method, Tang et al. achieved accurate categorization
of patients (» = 167) with an uncertain diagnosis 3—4 years
before a final clinical diagnosis was made by an expert clini-
cian masked to the imaging findings [18]. Highly similar re-
sults were obtained in an independent sample (n = 129) [19].

In this study, we compared data from different centers. It is
well-known that variations in PET scanners and image recon-
struction algorithms influence disease-related pattern scores
[53-55] (supplementary Fig 1). In support of this, we recently
identified clear center-specific features in the current data

Table 6 Region-weight correlations

PDRPyga PDRP;; PDRPy;. PDRPg;p
PDRPyga 0,67 0.7+ 0481+
PDRP;p 0,675 0.6+ 0.304
PDRPy; 0,78+ 0,68+ 0.458*
PDRPgp 0.48%* 0.30 0.458*

*Significant at P < 0.05; **Significant at P < 0.01; ***Significant at P <
0.001

using machine-learning algorithms [56]. Therefore, PDRP
subject scores cannot be compared readily between subjects
from different centers. In all PDRP studies, this is solved with
a z-transformation using the mean and standard deviation of a
small healthy control group. This potentially introduces a bias,
depending on which controls are selected. However, this issue
is not relevant for within subject studies. Therefore, PDRP
subject scores may be especially useful in tracking disease
progression [14], or treatment effects [16, 35-38].

This study is methodologically different from previous
PDRP studies. The PDRPs identified in this study were
formed by a combination of principal components (PCs).
These combinations were determined based on a forward step-
wise logistic regression model [30]. There are different
methods to decide which components are included in the
disecase-related pattern [10]. Previous studies have always
identified the PDRP as PC1 in isolation [11, 20, 21]. The
process of component selection is not always described in
detail. Automatically choosing PC1 as the disease-related pat-
tern, and disregarding consecutive, smaller PCs, increases the
risk information loss. On the other hand, a pattern that com-
bines multiple PCs may give a better fit of the initial sample,
but may be limited in its relevance or generality across new

@ Springer
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datasets. Therefore, we re-evaluated the data and included
only PC1 for PDRP, PDRPy;, and PDRPgp. Indeed, the
PC1 patterns correlated better to the reference pattern
(PDRPysa). However, the patterns that included multiple
PCs yielded higher diagnostic accuracy . Apart from compo-
nent selection, several other decisions and cutoffs may influ-
ence pattern identification [10]. More advanced machine-
learning algorithms may be of use in determining optimal
patterns without the use of arbitrary thresholds and associated
loss of potentially useful information [55-58].

There is increasing interest to apply the PDRP in clinical
practice and in therapeutic trials [12]. However, rigorous val-
idation by independent research groups is necessary before
widespread application. The current study has contributed to
the finding that the PDRP is a universal feature of PD, and it is

Table 7 Receiver operating curve—AUCs using PC1

NL dataset 1 NL dataset 2 IT dataset SP dataset

HC/PD 17/19 19/20 44/38 19/49
PDRPy;_pc; AUC 0.92 0.77 0.78
PDRP;rpc; AUC  0.78 0.95 0817 0.72
PDRPgppc; AUC 0.84 0.96 0.77

T Obtained from the IT test cohort (HC = 24; PD = 18)

@ Springer

striking that such similar patterns could be identified in a lim-
ited number of '®F-FDG PET scans from three populations,
despite overt clinical and methodological heterogeneity.
However, our results also show considerable overlap in
PDRP subject scores between control and PD groups.
Further study is needed to overcome this issue, perhaps by
addressing potential center-specific effects in the data or by
employing more advanced machine-learning algorithms.
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