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ABSTRACT

Tissue engineering is considered one of the most important therapeutic strategies of
regenerative medicine. The main objective of these new technologies is the development of
substitutes made with biomaterials that are able to heal, repair or regenerate injured or diseased
tissues and organs. These constructs seek to unlock the limited ability of human tissues and
organs to regenerate. In this review, we highlight the convenient intrinsic properties of gela-
tin for the design and development of advanced systems for tissue engineering. Gelatin is
a natural origin protein derived from collagen hydrolysis. We outline herein a state of the
art of gelatin-based composites in order to overcome limitations of this polymeric material
and modulate the properties of the formulations. Control release of bioactive molecules,
formulations with conductive properties or systems with improved mechanical properties
can be obtained using gelatin composites. Many studies have found that the use of calcium
phosphate ceramics and diverse synthetic polymers in combination with gelatin improve the
mechanical properties of the structures. On the other hand, polyaniline and carbon-based
nanosubstrates are interesting molecules to provide gelatin-based systems with conductive
properties, especially for cardiac and nerve tissue engineering. Finally, this review provides
an overview of the different types of gelatin-based structures including nanoparticles, mi-
croparticles, 3D scaffolds, electrospun nanofibers and in situ gelling formulations. Thanks to
the significant progress that it has already been made, along with others that will be achieved
in a near future, the safe and effective clinical implementation of gelatin-based products is
expected to accelerate and expand shortly.

Keywords: biomaterial, gelatin, 3D scaffolds, tissue engineering, regenerative medicine,

particles, bone.
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Introduction

1. INTRODUCTION

There is an increasing clinical need for fabrication of new technologies and
biomaterial-based approaches to heal, repair or regenerate injured or diseased tissues and
organs. This demand is enormous for all types of tissues but especially for those related to
chronic and acute musculoskeletal conditions, including bone, cartilage, tendon, ligament
trauma and other injuries, degenerative disc disease and osteoarthritis among others. The
treatment of these and other conditions involves 34 million surgical procedures per year only
in the USA [1].

The current shortage in tissue and organ donor supply together with the often severe
immune complications related to organ transplantation have fueled new scientific disciplines
such as tissue engineering [2] and regenerative medicine. The latter is an interdisciplinary
field that applies biological and engineering principles to the design and development of tech-
nologies that promote regeneration to restore diseased and injured tissues and whole organs
[3]. There are a number of strategies to address this issue. Of particular relevance is the fabri-
cation of biomaterial-based scaffolds that are used to substitute temporary the natural tissue
while promoting its regeneration. Scaffolds are considered temporary artificial extracellular
matrices, one of the three components comprising the tissue engineering triad, along with
the cells and the biological factors. These implantable porous structures act as cell delivery,
drug delivery or dual delivery carriers. Furthermore, an ideal scaffold should be designed to
have several characteristics. For example, these constructs must be biocompatible causing
minimal immunological and inflammatory responses, biodegradable in a controllable rate
that approaches the tissue regeneration process and highly porous. In the case of cell delivery
scaffolds, the pores are necessary to allow cell attachment, penetration, proliferation and
extracellular matrix (ECM) deposition. The function of the scaffolds is to guide the growth
of cells that have been seeded on the structure or cells that have migrated from surroundings
tissues. Besides, the interconnectivity between pores is essential to achieve high cell seeding
density and to make easier the exchange of nutrients and waste products. Regarding the me-
chanical properties, these should be similar to native tissue and provide protection to cells
from tensile forces. Surface chemistry and topography features play a key role in fostering
cellular interactions and tissue development [4].

It is widely known that biomaterials and biomaterial-based scaffolds play key roles
in modern regenerative medicine approaches as optimized milieus that drive cellular fate
and function [5]. The recent years have marked a substantial paradigm shift in the design
and fabrication criteria for modern biomaterials, fully integrating principles from biology,
biomedical engineering and pharmaceutical technology.
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Gelatin is a natural biopolymer that is widely used in pharmaceutical, cosmetic and medi-
cal fields because of its unique biological and technological properties. In the pharmaceutical
and medical applications, gelatin has been used as a matrix for implants, in injectable drug
delivery systems, as a stabilizer in diverse vaccines, in the manufacturing of soft and hard
capsules, as plasma expanders, sealants, wound care and hemostats [6-8]. Nevertheless, in the
last years, a great advance has been made in the efforts carried out in order to integrate gelatin
as a useful biomaterial in the design of structures for tissue engineering.

In this review, we highlight herein the central role of gelatin as a biomaterial in tissue
engineering for tissue repair and regeneration. This review provides a state-of-the art
overview of gelatin and gelatin composites for their use in regenerative medicine strategies.
We discussed the potential clinical application of gelatin-based formulations including
micro and nanoparticles, scaffolds and in situ gelling products. For a more comprehensive
understanding of the field as well as its successful application in biomedicine we refer to
several outstanding recent reviews.

2. PROPERTIES OF GELATIN

Gelatin is a natural origin protein derived from chemical, physical or enzymatic hydrolysis
of collagen type I, the main protein component of the skin, bones and connective tissue of
animals, including fish and poultry. Collagen is composed of interconnected protein chains.
In the hydrolytic process, the collagen characteristic triple helix structure is broken and
single-stranded macromolecules are obtained.

2.1 Structure of gelatin

The primary structure of gelatin is formed by over twenty different amino acids in variable
proportions (Figure 1). The amino acid composition and the corresponding sequence vary
depending on its origin, and this, in turn, influences the final properties of gelatin. From
the structural point of view, gelatin is composed of Glycine-X-Y peptide triplets repetitions,
where, theoretically, X and Y can be any amino acid, but proline for X and hydroxyproline
for Y positions are the most common. Gelatin might be considered as a mixture of ami-
no acid moieties joined by peptide bonds forming polymers ranging in molecular weight
between 15,000 and 400,000 Daltons. Importantly, the length of the polypeptide chains de-
pends on the processing parameters (temperature, time and pH), the pretreatment method
and the properties of the raw material [9]. In fact, during the hydrolytic process, the three
polypeptide chains forming the triple helix of collagen are broken and one polymer chain
(a-chains), two a-chains covalently crosslinked (B-chains) and three covalently crosslinked
a-chains (y-chains) are obtained. The proportion of each type of chains obtained is differ-
ent depending on the above mentioned variables, and this makes for differences in molecu-
lar weight of amino acid chains. There are strong non-covalent interactions between gelatin
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molecules, such as hydrogen bonds, van der Waal forces and electrostatic and hydrophobic
interactions [10]. Therefore, there are several types of gelatin with different composition de-
pending on the source of collagen used and the hydrolytic treatment employed. The entire
process for obtaining gelatin has three general phases: Pretreatment of the raw material and
collagen isolation, extraction of the gelatin and purification and drying [11].

0 0 OH

0 ' ! H
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WAN=CH=C—N—CH-C—N

| ; CHy CH, ﬁ—N-CH‘ﬁ—N
CHy H #’% é=0
0-

Figure 1. Chemical structure of gelatin. Reproduced, with permission, from [141].

2.2 Gelatin sources

Regarding the source, there are also different types of gelatin. Mammalian derived
gelatins have been the most popular and widely used for regenerative purposes and,
predominantly, these gelatins are obtained from pig and bovine, especially from skin and
bones [12]. Nevertheless, these materials are not the ideal prototype of biomaterial in the field
of tissue engineering, especially because of socio-cultural and health related concerns. The
risk of disease vectors transmission must be taken into account, such as prions and bovine
spongiform encephalopathy. Although there are studies carried out by different authorities
in order to demonstrate that the process of obtaining gelatin from mammalian collagen is
an effective method to eliminate the presence of possible prions in the raw material [11]. In
the past decade other sources of gelatin, including fish, poultry and vertebrates have been
introduced with the main objective of providing alternatives to mammalian derived gelatins.
However, due to law concerns, poultry derived gelatins commercial production is still limited
nowadays. Therefore, fish derived gelatin may be a better alternative to mammalian gela-
tins. Gelatins from warm and even cold water fish skins, bones and fins have been produced
since 1960 using a number of different methods [13-17]. Even though gelatins derived from
fish have related features to porcine gelatins, the amino acid sequence and proportions are
different. In fact, fish derived gelatin has lower content of amino acids (proline and hydroxy-
proline) that are responsible for fixing the ordered structure when forming a gel network. This
makes differences in some properties such as the melting temperature, gelling temperature,
gel modulus, thermal stability and viscosity. Fish derived gelatin has a significantly lower
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melting temperature, lower thermal stability and higher viscosity. One important challenge
for gelatin material is the potential development of allergic reactions [18].

In order to overcome the disadvantages and improve properties of tissue-derived materi-
als, recombinant gelatins have been developed. With this technology, it is possible to produce
gelatins with defined molecular weight and isoelectric point, with the advantage of increasing
the reproducibility between batches. For the production of human recombinant gelatin, two
different techniques have been developed. In one of the approaches, there is the possibility of
expressing recombinant collagen, purified and denatured (with or without chain fragmenta-
tion) to obtain recombinant gelatin as a final product. On the other hand, specific a-chains
can be produced directly. There have been various expression systems used for the production
of recombinant gelatin such as Pichia pastoris or Hansenula polymorpha yeast, Escherichia coli
or even transgenic systems like tobacco plant or mice [19].

2.3 Biological properties

In relation to the properties of gelatin, some of them are common to all gelatins, while
many others depend on the source and the method used to obtain them. In this regard, it has
been found that gelatin is a biocompatible material, not cytotoxic and with low immunoge-
nicity compared to collagen. This material is generally recognized as safe (GRAS) by the Food
and Drug Administration (FDA) [20]. Gelatin contains in its structure biological functional
moieties of arginine-glycine-aspartic acid (RGD) sequences that improve the adhesion,
differentiation and proliferation of cells [21]. In addition, it is a biodegradable material be-
cause it has sensitive sites for enzymatic degradation by matrix metalloproteinases (MMP).
Finally, the products obtained through the enzymatic degradation are themselves biocompat-
ible [22]. As for the physicochemical properties of the gelatin, it is a water soluble polypeptide
having an amphoteric behavior, because of the presence of alkaline amino acids and acid
functional groups [23]. However, its electrostatic charge depends on the treatment used for its
extraction, which gives gelatins with different isoelectric points, as mentioned above.

2.4 Physicochemical properties

2.4.1 Isoelectric point

Depending on the method used for collagen pretreatment prior to the extraction process,
two types of gelatin are predominantly produced: Type A and Type B. Gelatin Type A, with
an isoelectric point of 9.0, is derived from collagen acidic hydrolysis, using sulfuric or even
hydrochloric acid. Gelatin derived from an alkaline treatment, with an isoelectric point of 5.0,
is known as Type B. In this case, asparagine and glutamine amide groups are hydrolyzed into
carboxyl groups resulting on aspartate and glutamate residues [24].

10
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2.4.2 Thermoreversible property

One of the most significant properties of gelatin is the ability to form thermoreversible
gels in water, due to the conformational transition that presents after cooling the solution.
Gelatin granules form swollen particles when they are hydrated in cold water, and then by
heating, these swollen particles dissolve forming a solution. During the gelation process,
locally ordered regions are formed, which are subsequently joined by non-specific bonds
[25]. These intermolecular interactions are usually hydrophobic, hydrogen and electrostatic
bonds. Thermoreversible polymer gel can be defined as gel formed due to the entanglement
of polymer chains whose viscosity changes at a characteristic temperature of gelation [26].
Because of the bonding energy in gelatin gels is relatively weak, the physical gels are thermally
reversible [25]. The behavior of the gelatin solution depends on different factors: temperature,
pH, method of production, thermal history and concentration. Gel strength and viscosity of
gelatin are reduced by heating the solution above 40 "C. However, the rigidity of the gel does
not depend only on temperature, since its concentration, intrinsic strength (bloom strength),
pH and the presence of any additive can also modify it [27]. The bloom strength is the mea-
surement of the strength of the physical gel that is formed upon cooling [28]. Gelatin struc-
ture together with the molecular mass defines this value.

2.4.3 Crosslinking of gelatin

The lack of thermal stability at physiological temperature is the main drawback of gelatin
for its use in medical applications, such as in tissue engineering. Therefore, a crosslinking
agent is needed when using gelatin as a biomaterial. Gelatin crosslinking improves thermal
and mechanical stability of this material under physiological conditions and decrease the ratio
of in vivo degradation [29]. Depending on the type of crosslinking agent used to reticulate
gelatin, physical, mechanical and cytotoxic properties of the hydrogel will be different. The
methods employed for crosslinking gelatin can be classified into two general groups: physical
and chemical crosslinking. In the physical crosslinking technique there is no need for making
any modification or using any chemical agent that can be toxic, but it is difficult to control the
crosslinking density and, often, the procedure is less efficient [30]. Microwave energy [31],
dehydrothermal treatment [32-34] and ultraviolet radiation [35] have been used to achieve
physical crosslinking. By contrast, in the chemical crosslinking strategy, chemical agents are
used in order to crosslink gelatin strands. Some agents, that can be bifunctional or poly-
functional, are incorporated between gelatin molecules forming chemical bonds with the free
amino groups of lysine and hydroxylysine or carboxyl groups of glutamate and aspartate [30].
During the degradation of the crosslinked gelatin, reactive and toxic reagents can be released
into the body and may cause damage [36]. Examples of crosslinking agents that follow this
process are aldehydes (glutaraldehyde [37] or glyceraldehydes [38]), polyepoxides and isocy-
anates [39]. These agents are known as non-zero lengths crosslinkers. However, other agents

11
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activate the carboxyl groups of the gelatin molecules to react with the amino groups of adja-
cent protein chains forming intramolecular amide bonds. In this case, the molecules of the
agents, known as zero-length crosslinkers, are not introduced into the final structure [30].

Traditionally, aldehydes have been the agents most frequently used for crosslinking gelatin.
However, they are not suitable for encapsulating cells due to the cytotoxicity, immunogenicity
and inflammatory effects associated with products obtained by its degradation. Therefore,
increasing interest has been devoted to natural agents with less cytotoxic effects to crosslink
gelatin hydrogels. For example, genipin is a natural crosslinker isolated from the fruits of
Gardenia jasmoides plant that has been widely used to crosslink several materials for biomed-
ical applications. Interestingly, it has low cytotoxicity, high crosslinking efficiency and good
biocompatibility [40,41].

On the other hand, enzymatically crosslinked hydrogels are emerging for tissue engi-
neering, since these reactions are carried out under physiological conditions and substrate
specificity is achieved. Most enzymatic reactions are catalyzed at neutral pH, in an aqueous
medium and at moderate temperature [42]. Hydrogels have been prepared by using enzyme
systems such as tyrosinases, transferases and peroxidases [43]. In the case of gelatin, cross-
linking using microbial transglutaminase [44,45] and mushroom tyrosinase [46,47] have
been effectively applied for the development of formulations.

To date, the most common approach to crosslink gelatin has been done without any
prior modification. Nevertheless, there is the possibility of including previous modifica-
tions on the gelatin molecules to improve the control over the crosslinking process. In this
case, functional groups are added to side groups of gelatin and a better degree of control
over the design and properties of the final hydrogel is achieved. Different functional groups
have been used for gelatin modification such as acrylamide, norborene, methacryloyl or
even ferulic acid [28]. In this regard, gelatin methacryloyl seems to be the most investigated
approach for various biomedical applications as this modification does not affect the RGD
and MMP-sensitive motifs [36,48].

3. GELATIN-BASED COMPOSITES

As already described above, gelatin shows many suitable properties that make it an
interesting biomaterial to be used in tissue engineering for different purposes. However,
recently, great efforts have been made to develop gelatin-based composite systems, in order
to fill some gaps that this biomaterial might have. The aim has been to seek synergies be-
tween materials with different properties, in order to achieve composite formulations with
improved properties that address the particular tissue engineering requirements. Therefore,
over the past few years more advanced formulations with two or more materials have been

12
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developed [20]. In this regard, the objectives to be achieved with the development of compos-
ite formulations have been, among others, the improvement of the mechanical properties of
gelatin formulations, the development of new formulations with conductive properties and
the ability to control the release of bioactive molecules (Table 1).

3.1 Improvement of the mechanical properties

Due to the high water content of hydrogels, their mechanical strength tends to be limited
and this might compromise their use in tissues presenting challenging mechanical conditions,
such as bone [49] and cartilage [50,51]. In the case of gelatin [52], although these proper-
ties improve with the use of crosslinking agents, the necessary requirements are not often
achieved [53]. In recent years, different approaches have been carried out to overcome these
limitations. One of them has been to integrate a second material in the scaffold design in or-
der to fabricate a hybrid material composite [54].

The bone itself can be considered a natural composite material which is formed by an
organic phase and a mineral one. The organic phase consists mainly on type I collagen and
the mineral phase is, essentially, calcium phosphate, especially hydroxyapatite (HA) [55].
Calcium phosphate is responsible for the bone compressive strength and collagen gives re-
silient properties, making the tissue tough and elastic [56]. Hence, combining compounds
that improve the mechanical properties that the gelatin lacks is especially interesting for the
development of formulations targeted to bone regeneration, because bone tissue mimetic
constructs are achieved. The mechanical properties (elastic modulus, tensile strength, frac-
ture toughness, fatigue and elongation percentage) of the scaffold depend on the materials
used to fabricate it and these properties should be similar to those of the bone that we want to
regenerate or replace. In fact, bone loss, osteopenia and stress shielding are injuries associated
with the use of bone grafts. With the similarity of the properties, the mechanical compatibility
will be achieved, but taking into account that bone mechanical properties might differ from
cortical bone to cancellous bone, it is not easy to design an ideal bone scaffold [57]. Recently,
diverse composite systems have been designed and fabricated combining gelatin with ceram-
ics, natural origin polymers or synthetic polymers, as well as mixtures of these materials [58].

3.1.1 Calcium phosphate ceramics

Calcium phosphate ceramics are bioactive materials composed of calcium ions and
orthophosphates, metaphosphates or pyrophosphates. These compounds are of great interest
in bone tissue engineering, not only because they increase the required mechanical proper-
ties of formulations providing strength to polymeric scaffolds, but also because most of them
have osteoconductive properties (supporting osteoblasts adhesion and proliferation) and
some of them have also shown osteoinductive properties (stimulating new bone formation
by recruiting progenitors or inducing differentiation towards osteoblastic lineage). Solubility
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properties, crystallinity and calcium to phosphate ratio make differences between these ce-
ramic compounds in relation to the capacity of promoting ossification [59-61]. Calcium
phosphate ceramics have been used in combination with gelatin to create a composite system
that meets all the necessary properties to get an appropriate construct to be used in bone
tissue engineering (Figure 2). Regarding the most important features that a substitute for
bone tissue engineering should ideally have, osteoinduction and osteoconduction ability and
similar modulus of elasticity, tensile strength, fatigue, and the percentage of elongation of
the bone to be replaced or regenerated seem to be the desirable properties [62]. HA [63-69],
tricalcium phosphate (TCP) [70-74], biphasic calcium phosphate (BCP) [75-78] and octacal-
cium phosphate (OCP) [79-81] are some of them. Also, there are several formulations where
calcium phosphates are combined in order to make better scaffolds [82].

HA is one of the most commonly used calcium phosphate ceramics for bone tissue engi-
neering, a crystalline calcium phosphate (Ca, (PO*),(OH),) derivative present in the inorganic
component of bone matrix. Besides, one of the most important composites studied for bone
tissue engineering is a blend of HA with gelatin [83]. In fact, there are lots of gelatin-based
formulations combined with HA. Some systems are composites only of two phases, but there
are some more advanced systems that include various types of polymers with HA [63].

As an example, in order to develop modularly engineering biomimetic osteon, HA and
gelatin have been combined in different proportions. A hydrogel with higher mechanical
rigidity and better biocompatibility has been successfully fabricated. Then, a structure with
two different rings mimicking osteons was manufactured. In the inner ring, Human Umbilical
Vascular Endothelial Cells (HUVECs) were grown to mimic blood vessels while the external
rings encapsulated osteoblast-like cells (MG63) [65].

On the other hand, BCP are ceramics with two phases that present a low solubility ap-
atite phase and a more soluble phase with osteoinductive properties [84]. One method for
combining these materials is the use of nanoparticles. In order to get nanofibrous scaffolds
with supportive mechanical strength for ideal bone regeneration, the inclusion of BCP
nanoparticles helped to get further stability. Importantly, this new combined formulation
showed improved not only mechanical but also enhanced biological properties, measured
as osteoblast adhesion and osteopontin osteogenic protein expression, compared to scaffolds
without ceramics. This improvement on the characteristics of the scaffold was evaluated not
only with in vitro studies, but also with in vivo studies using a rat calvaria model, where it was
observed an increase in bone formation on week 2 and 4 [75].

Finally, material biodegradation is an aspect that must be taken into account when using
calcium phosphate ceramics. In fact, different resorption mechanisms have been proposed
for ceramics used in bone regeneration [57]. Chiba S. et al. studied the resorption rate and
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osteoconductivity of calcium phosphate materials. Biodegradation rate and quality of regen-
erated bone were compared among four different materials. Complete resorption was ob-
served in the OCP-Gelatin composite, while commercially available TCP implants were not
completely resorbed [79].
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Figure 2. Electrospun gelatin/p-TCP composite nanofibers for osteogenic differentiation of bone
marrow mesenchymal stem cells (BM-MSCs) and for enhance in vivo bone formation. (A) SEM and
TEM image of electrospun gelatin/B-TCP composite nanofibers before crosslinking. (B) Cell spreading
areas and (C) ALP activity of BM-MSCs cultured on various scaffolds at 4, 7, and 14 days. (D) The
mRNA expression level of BMP-2 osteogenic gene in BM-MSCs cultured on electrospun nanofibrous
scaffolds. The quantitative analysis of the bone volume (E) and bone density (F) at 4 weeks and 12 weeks
after scaffolds were implanted on rat calvarial defects. (*p<0.05) Adapted from [71].

3.1.2 Synthetic polymers

Synthetic origin polymers have also been used over the last years in tissue engineering
for different purposes. It is a large group of materials with very different mechanical proper-
ties, but all of them can be synthesized under controlled conditions and their mechanical
and physical properties are predictable and reproducible. However, their bioactivity is limited
because their surface is usually hydrophobic [85]. Therefore, combination of synthetic poly-
mers with properties that will complement gelatin matrices is of great interest for designing
systems that meet the requirements of the tissue that we want to replace. The synthetic poly-
mers would provide structural functionalities and the gelatin, as a natural polymer, supplies
biological properties to the scaffold [86].

Polylactic acid (PLA) [86-90] and polycaprolactone (PCL) [35,91-93] are two of the most
widely used synthetic polymers to fabricate scaffolds in order to improve the mechanical
properties of gelatin-based matrices. Lactic acid is a chiral molecule that has two optically
active forms: L-lactide and D-lactide. Through the polymerization of these molecules, a
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semicrystalline polymer is formed. The mechanical properties of the polymer are influenced
by the molar mass and the degree of crystallinity. PLA is a biodegradable polymer with slow
degrading time that has been widely studied for several medical applications such as drug
delivery systems, absorbable sutures and implants [94]. On the other hand, PCL is a linear
and hydrophobic synthetic polymer with high mechanical strength and poor hydrophilicity
[92]. Both are biodegradable and biocompatible, they show good mechanical properties and
present the advantage of easy access and processability [95].

In recent years, electrospinning natural and synthetic polymer blends, such as gelatin with
PLA or PCL, have been extensively used to fabricate composite nanofibers [96]. Additionally,
as it was concluded in a work carried out with gelatin-PCL hybrid scaffolds, composite nano-
fibers must be morphologically uniform and compositionally homogeneous [97]. Another
aspect to be considered when fabricating hybrid nanofibers is the blend ratio used, since both
mechanical and biological performances of the nanofibrous scaffolds will depend on this
parameter. A correlation between the best mechanical properties and a better mesenchymal
stem cells (MSCs) behavior has been described. This effect might be due to the fact that the
mechanical property is an integral part of the physical microenvironment of cells and, there-
fore, it affects cellular functions [91].

Recently, tubular composite scaffolds with aligned fibers ranged from 100 to 500 nm of
poly (L-lactic acid)/gelatin were designed for vascular tissue engineering and fabricated using
the electrospinning technique. Different assays demonstrated the enhancement of viability
and proliferation of HUVECs and Smooth Muscle Cells (SMCs) proportionally to the gelatin
content. These results suggest that cellular organization improves with the alignment of the
fibers inside the scaffolds. Importantly, this formulation can be useful to get blood vessels with
essential mechanical properties and organization [89].

However, in order to achieve synergies between properties of hybrid composite materials,
interactions between substrates are necessary. The introduction of chemical bonds is suffi-
cient to improve the composite strength. In a recent study, photopolymerization technique
was used to bind covalently PCL and gelatin with the objective of enhancing the mechanic
properties of cartilage implants. With this purpose, PCL was functionalized with methacry-
lated groups and covalently linked to gelatin methacrylamide [54].

3.2 Composites with conductive properties

Scaffolds with conductive properties have been extensively used in various biomedical
fields such as nerve [98], cardiac [99] and bone [100] tissue engineering. In these tissues,
electrical signals perform critical function as physiological stimuli, controlling the adhe-
sion and differentiation of cells. For that reason, the use of conductive materials to pro-
duce scaffolds seems to be a promising strategy [101]. In fact, these materials could provide
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electrical impulses to cells and promote improvements in cell functions, including adhesion,
proliferation, migration and differentiation [102]. Actually, electrically conductive scaffolds
have been designed as a skeleton of stem cell niche to assist electro-active tissue recovery and
regeneration, serving as a pattern to guide and modulate stem cell-specific differentiation,
even without applying induction factors [103].

Traditionally, conductive materials have been generally classified into three main catego-
ries: conductive polymers, carbon-based materials and metals. In recent years, conductive
composites have been designed to overcome the limitation of single conductive material and
thus, improve the general performance of materials via the synergistic effect. Many of these
materials have been used in combination with natural polymers, such as gelatin, to obtain
scaffolds with excellent conductivity [104].

3.2.1 Polyaniline

Polyaniline (PANT), the oxidative polymeric product of aniline under acidic conditions, is
one of the most studied conductive polymers in regenerative medicine. It can be polymerized
from aniline chemically and electrochemically. This conductive polymer is easy to synthesize
and it has been demonstrated that it is compatible with specific cell types [98]. Nevertheless,
in order to enhance its biocompatibility and cellular adhesion, it has been combined with
different materials, such as with gelatin, in order to form conductive hydrogels [105-108].

As an example, in a study of gelatin/PANI nanofibers in order to investigate its potential
as a fibrous conductive scaffold for tissue engineering, it was seen that the proliferation and
morphology of cardiac myoblasts H9c2 were similar to those seeded onto control glass cover-
slips and tissue cultured-treated plastic surfaces [109]. These results opened the way to further
demonstrate its use as a fibrous matrix to support cell growth.

Recently, in another research work carried out with gelatin and PANI in combination, the
proliferation of Schwann cells and in vitro biodegradation behavior was analyzed. The designed
and developed formulation showed appropriate conductivity, mechanical properties and bio-
compatibility. In this novel porous conductive scaffold, the matrix was based on a combina-
tion of gelatin and chitosan, while nanoparticles with PANI and graphene were incorporated
to give conductive properties. The results concluded that it might be an interesting candidate
for potential application in peripheral nerve repair [110].

Promisingly, Yibo et al. have designed a novel bioactive scaffold improving its electrical
properties while maintaining the physical and biocompatible properties (swelling, compression
modules, cell adhesion and spreading responses) of pure gelatin methacrylate scaffolds. The
strategy followed to develop a conductive hybrid composite was to use interfacial polymeriza-
tion of aniline monomers within gelatin methacrylate. In addition, in this interesting research
work, the developed composite hydrogel was printed in defined complex geometries using
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digital stereolithography. This approach can be used with different photosensitive hydrogels,
thus, improving the development of new bioelectrical interfaces [111].

3.2.2 Carbon-based nanosubstrates

Carbon-based compounds are conductive materials that have been investigated for their
use in tissue engineering. Carbon nanotubes (CNT) and graphene oxide (GO) are two of
them [103].

These materials have unique physical, chemical and mechanical properties that make
them interesting compounds for use as platforms for stem cells therapies and tissue engi-
neering [112]. The combination of these substrates with biomaterials that improve the bio-
logical properties of the systems, such as gelatin, is an interesting strategy to optimize formu-
lations for tissue engineering, especially for cardiac and nerve tissue engineering [113,114].

3.2.2.1 Graphene oxide (GO)

Graphene is a macromolecular nanomaterial with high robustness and flexibility, com-
posed of carbon atoms in a single two-dimensional layer. This material has extraordinary
physicochemical properties, exceptional mechanical, electrical and optical properties and
it also has demonstrated biocompatibility [115]. GO is one of the chemical derivatives of
graphene that has been obtained by oxidation and exfoliation of graphite [116]. It has lots
of hydrophilic functional groups and, because of this, it disperses in aqueous media. Also, it
is possible to modify it chemically which makes it useful for biomedical applications [117].

Over the last years, various types of hybrid formulations have been developed combin-
ing gelatin and GO in order to obtain systems with conductive and regenerative properties
[118-123]. This combination of materials has been used as an hybrid system for non-viral
gene therapy in the myocardium. In order to promote vasculogenesis and cardiac repair, an
injectable hydrogel based on the combination of methacrylated gelatin and GO nanocom-
plexes has been investigated. This nanocomplex is a polyethyleneimine delivery system func-
tionalized with GO nanosheets that complexed with the gene encoding the pro-angiogenic
factor Vascular Endothelial Growth Factor (VEGF). Using this formulation, the application of
gene therapy in a controlled and localized way has been achieved. In vivo studies concluded
a significant increase in myocardial capillary density in the infarct region where the formula-
tions were injected. In addition, this observation was accompanied by a better performance in
echocardiography [121]. Taking into account that in this in vivo study the therapeutic efficacy
and biocompatibility of the formulations showed to be suitable, the development of these
composite systems can be considered as a promising advance in acute myocardial infarction
therapy. Besides, in several studies carried out with formulations combining gelatin and GO,
it has been found that the incorporation of GO not only adds electrical conductive properties
necessary for the regulation of heart cells behavior but also, it helps to improve the mechanical
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properties and creates useful additional pores for a better diffusion of nutrients and waste
products through the matrix [120].

This research work has not been the only one that has concluded that the addition of GO
to the gelatin matrix increases its mechanical strength. For instance, in another study, it has
been verified how the incorporation of GO affects the mechanical strength and the osteogenic
differentiation. The results confirmed a significant increase in the mechanical properties
(compressive and yield strength) of gelatin/HA matrices and osteogenic differentiation of
human adipose MSCs induced by the incorporation of GO. The level of differentiation was
the same that the one achieved with the use of supplements in the media [123].

Therefore, a combination of gelatin and GO is of great interest as it was concluded in the
study conducted by Shin et al. In this paper, hybrid hydrogel consisting of methacrylated
gelatin and reduced GO was developed in order to achieve myocardial tissue constructs.
Cardiomyocytes were seeded in that composite system and results showed improvement on
cell viability, proliferation and maturation, and stronger contractility comparing with those of
pure gelatin matrices [122].

With these results, it can be concluded that the addition of GO to gelatin-based matrices
adds, not only conductivity but also improves the mechanical properties of the scaffold and
the osteogenic differentiation of MSCs.

3.2.2.2 Carbon nanotubes (CNT)

CNT are another carbon-based substrates that have been incorporated into natural origin
polymers in order to achieve formulations with reinforced structure and novel properties,
including electrical conductivity. It seems that the cytotoxicity associated with CNT, depends
on the way it is employed, being toxic as a suspension in culture media, whereas immobi-
lization into matrices seems to be non-toxic. To reduce these adverse effects, the chemical
functionalization of their surface can be a useful strategy [124]. It has been described that
CNT improve cell adhesion, change cellular morphogenesis and signaling pathways, reduce
materials degradation rate and modulate mechanical properties [125].

In a recent research work, it has been found that the development of hybrid gelatin nano-
fibers scaffolds with multi-walled CNT can be useful in the formation of myotubes, in order
to meet the functional requirements demanded in muscle tissue engineering. When the main
objective is to design a functional skeletal muscle tissue construct, it is very important that
myoblasts seeded on scaffolds mimicking the ECM are aligned. An interesting strategy to
align cells and improve their contractility is to use aligned nanofibers, such as in the formu-
lation used by Ostrovidov et. al., where gelatin and aligned multi-walled CNT electrospun
hybrid scaffolds were designed [126]. With this system, it was possible to enhance the forma-
tion of myotubes and activate mechanotransduction related genes. Also, it was found that the
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synergistic properties helped to align and differentiate C2C12 myoblasts and thus, generate
functional myofibers [127].

In another interesting study, a composite scaffold combining polymeric component,
a mixture of gelatin and glycerol derivative, with resistant and flexible CNT has been de-
veloped in order to serve as cardiac tissue engineering construct. Using the electrospinning
technique, hybrid nanofibers were produced and contractility of cardiomyocytes seeded on
those scaffolds significantly improved with the inclusion of CNT. This formulation can be
considered as a suitable platform, with correct mechanical and electrical properties, to use it
as a graft for cardiac tissue constructs [128].

3.3 Control release of bioactive molecules

Not only biomaterials and cells are important in order to obtain efficient tissue repair
or replacement, bioactive molecules that mimic the natural microenvironment and allow
communication between cells also play a crucial role. Combining materials with suitable
properties, cells and signaling biomolecules could be an effective strategy to achieve success-
ful results in the field of tissue engineering [129,130].

Signaling biomolecules are generally growth factors, cytokines, chemoattractants or
adhesion proteins that are released in their active forms locally with a sustained profile.
Hence, these molecules largely influence cell behavior. Growth factors are defined as poly-
peptides that bind to specific receptors found on the surface of cells and, thereby, modulate
cell proliferation, differentiation, migration, adhesion and gene expression due to activation
of complex intracellular cascades [9]. Therefore, the use of growth factors accelerates the pro-
liferation and differentiation of the implanted cells and helps to promote tissue regeneration.
However, their chemical or enzymatic degradation and deactivation under physiological con-
ditions occurs in a very short period of time. For that reason, to use these factors it is necessary
to design and develop dosage forms that prolong the biological activity of proteins and target
them to specific tissue. Certain spatiotemporal control allows both enhance the effectiveness
of the regeneration process and prevent unwanted and potentially harmful side effects [131].

Hydrogels based on natural polymers such as gelatin are particularly promising materials
in tissue engineering as they may have dual action, holding cells and, at the same time, en-
capsulating and releasing water-soluble compounds in a sustained mode. Thanks to the hy-
drophilic nature of gelatin, it can be used to coat the surface of drug delivery carriers, inhibit
opsonization and improve water solubility [132].

As it has already been described above, gelatin can exhibit different charges and this
makes it particularly interesting to complex with oppositely charged proteins. The kinetics
release of bioactive molecules from gelatin-based systems depends on its degradation and
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water uptake properties. This versatility allows choosing the best condition for achieving
the desired release profile. This profile can be optimized and adjusted by changing gelatin
source, molecular mass, crosslink degree and even developing composites with synthetic or
natural polymers [20]. Hyaluronan [133,134], chitosan [135] and silk [136] are naturally de-
rived polymers used to fabricate composite system with gelatin in order to enable biomimetic
strategies for drug delivery. Among synthetic polymers polylactic-co-glycolic acid (PLGA)
[137], oligopolyethylene glycol fumarate (OPF) [138] and polypropylene fumarate (PPF)
[139] have been used with gelatin to produce suitable platforms for the delivery of bioac-
tive molecules.

In recent years, multiple composite delivery systems have been designed to release different
growth factors simultaneously from a single formulation. In this regard, gelatin seems to be
an excellent candidate, since there are several dosage forms consisting of gelatin to deliver
bioactive molecules, such as insulin-like growth factor-1 (IGF-1) and bone morphogenetic
protein-2 (BMP-2) [12,140].

4. GELATIN-BASED SYSTEMS

Over the last decades, gelatin has been used in the biomedical and pharmaceutical
fields. Due to its versatility, this biomaterial has been used for the successful development
of attenuated viral vaccines, for immunization against diseases such as diphtheria or rubella
where gelatin acts as a stabilizer, for the production of hard and soft capsules or even as a
component of plasma expanders formulations [18]. Besides, gelatin has been considered as
an interesting candidate to elaborate formulations for advanced therapy, where cells and bio-
logically active factors gain prominence.

One of the biggest advantages of this material is the ability to serve as material for vari-
ous types of formulations with very different purposes in the field of tissue engineering. In
this regard, gelatin nano and microparticles have been successfully developed to release both
growth factors and cells. Gelatin-based three-dimensional (3D) scaffolds are widely used as
carriers of cells and bioactive molecules to guide tissue regeneration. As a variation of these
formulations, 3D formulations based on nanofibers fabricated by electrospinning are gaining
interest because of the great advantages that show these nanometric fibers. Finally, gelatin is
suitable for the development of in situ gelling hydrogels that can be administered by injection.

4.1 Particles

Gelatin particles have been used in recent years not only in the field of tissue engineering
but also as a carrier system for many applications. In this regard, gelatin particles have been
loaded with many types of drugs, such as anti-cancer drugs (methotrexate, cytarabine,
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doxorubicin...), didanosine, chloroquine, rifampicin, isoniazid or ibuprofen. In these cases,
gelatin particles have got different functions. In some formulations, the main aim is to provide
a sustained release of the drug, in some others, to reduce the toxic side effects, or to improve
the pharmacokinetic profile and pharmacological activity of the drugs. Gelatin nanoparticles
have also been used as a non-viral vector for gene therapy [141].

Besides, gelatin particles with different sizes, both micrometric and nanometric have been
incorporated into formulations for regenerative medicine, as an important part for tissue

engineering purposes.

4.1.1 Gelatin Nanoparticles

Nanotechnology is an area of great interest in various fields of science, with many potential
applications in the biomedical and pharmaceutical fields [142]. Different nanosystems that
can be administered by several routes have been designed, such as nanoparticles, nanofibers
or liposomes. They are biologically stable and biocompatible, and can incorporate a myriad
of bioactive molecules [143].

Polymeric nanoparticles are defined as colloidal solid carriers with a size in the range of
1 to 1000 nm from a natural or synthetic origin material. These particles can have an oily or
aqueous inner core that it is covered by the polymer. In this group, various systems can be
differentiated such as nanospheres or nanocapsules. Nanospheres are matrix system where
the drug is physically and uniformly dispersed, while nanocapsules are vesicular systems
[144]. Nanoparticles can serve as growth factors carriers system, where bioactive compounds
can be loaded inside, promoting the enhancement of the efficacy of tissue engineering. The
biological functions of encapsulated molecules can be improved by designing systems with
controlled organization at the nanometer scale. With the nano-scale particles, it is possible to
protect the bioactive molecule and increase their bioavailability due to the increased surface
to volume ratio [145]. Nanoparticles are easy to design and prepare. In fact, in the litera-
ture, several methods for preparation of gelatin nanoparticles are described. Two-step de-
solvation, simple coacervation, solvent evaporation, microemulsion, nanoprecipitation and
self-assembly are some of them. An extended report of all these techniques is described else-
where, including discussion about their advantages and drawbacks [146].

Gelatin nanoparticles have multiple options to design modifications that make more
advanced systems. In a work carried out recently, gelatin was modified with succinyl groups
to convert it into a soluble substance at room temperature and crosslinked with aldehyde
groups formed during the heparin oxidation process, avoiding the use of toxic crosslinkers
such as glutaraldehyde. In addition, these nanoparticles served as nucleation sites for com-
plexing calcium ions and thus, forming HA crystals, having as a result mineralized nanopar-
ticles for potential use in tissue engineering of bone [147].
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Poor biodegradability is one of the disadvantages that synthetic materials present for their
use in biomedical applications. The use of gelatin in combination with these materials seems
to reduce this drawback. In the case of gelatin nanoparticles incorporated into PCL nanofi-
bers scaffold developed for bone tissue engineering purposes, the time to degrade synthetic
PCL scaffolds was reduced. The degradation of nanoparticles increases the pore size of the
structure and this promotes cell infiltration into the scaffold [148]. Advanced formulations
containing gelatin nanoparticles have been increasingly exploited over the past few years, in
order to develop systems for specific regenerative purposes, such as bone regeneration [148],
cardiac repair [149] or even wound healing [150].

In a research work conducted recently, the aim was to stimulate endogenous cardiac repair
in myocardial infarcted rat models. For this study an hybrid hydrogel containing two factors
that have been shown to promote cardiomyocyte survival and proliferation was developed.
6-Bromoindirubin-3-oxime and IGF-1 were loaded in gelatin 180-255 nm nanoparticles to
achieve a sustained co-release and improve cardiac function, promoting cardiomyocytes pro-
liferation and revascularization of the infarcted area [149].

Achieving the control over the release profiles of the factors seems to be, precisely, the
essential element required for an eflicient regeneration. In this sense, multiple angiogenic
growth factors have been studied for their use in wound healing. However, in order to mimic
the physiological process followed in wound healing and skin reconstruction, the release
kinetics of these biomolecules used in conjunction must be in accordance with their physio-
logical functions. Some of them, for example, basic fibroblast growth factor, stimulate the
recruitment of endothelial cells and some others have a greater role in the stabilization of
new blood vessels. In order to approach these profiles, various methods to incorporate factors
into a single system have been used. Direct incorporation of factors into electrospun nano-
fibers makes the release faster at the beginning; however, if the factors are within the gelatin
nanoparticles, the liberation is slower and more sustained. This is what it was achieved with
the addition of multiple angiogenic growth factors into electrospun composite nanofibers for
chronic wound healing [150].

4.1.2 Microparticles

Until now, the most used method to fabricate gelatin microparticles has been the
water-in-oil emulsion technique, followed by a crosslink phase. However, great efforts are
being made to optimize the manufacturing process of these particles and, thus, get more
advanced formulations with different surface (Figure 3A, 3B, 3C) [151]. In this regard, re-
cently an innovative method to develop gelatin composite microspheres has been proposed.
Spherical porous microspheres between 124 and 136 pm in size with rugged surface and
nanofibrous structure were synthesized by emulsion coupled with thermally induced phase
separation technique [152].
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Gelatin microparticles have been developed to carry out cell therapy and, also, for de-
livering bioactive molecules in the tissue engineering field. In relation to the cell delivery
methodology, several strategies have been completed to carry cells using gelatin microparti-
cles, such as the attachment of cells on the surface of gelatin particles. In a study completed
with progenitor cells attached outside of gelatin microparticles, researchers succeeded in
increasing 10 times the number of attached cells in the ischemic myocardium compared
to the injection of cells alone. This strategy has the advantage of administering cells in the
cardiac tissue by the minimally invasive way using catheters and thus, avoiding open heart
surgeries [153].

On the other hand, multiple cell types have been encapsulated within gelatin micropar-
ticles. W. Leung et. al. have designed an advanced hydrogel scaffolding system suitable for
encapsulating non-anchorage-dependent cells that have propensity to form cell islets. This
system combines gelatin microspheres loaded with chondrocytes and an alginate hydrogel.
Microspheres are formed via the water-in-oil emulsion process but without any chemical
treatment for the crosslinking. By increasing the temperature to 37 °C, the microparticles are
dissolved and the cells are released from this particles remaining in the created pores. Gelatin
microspheres play two roles in this cell delivery system; on the one hand, they are removable
cell vehicles and, on the other hand, they act as porogens, creating cavities within the alginate
hydrogel for better nutrient and waste diffusion [154].

Another interesting approach to increase the effectiveness of cell therapy, it is the use of
empty gelatin microparticles embedded in a hydrogel containing cells. These microparticles
are enzymatically digestible porogens and they provide cellular attachment site within the
synthetic hydrogel. In fact, the long-term viability of MSCs is improved with the addition
of gelatin particles with size between 50-100 um, since these cells are anchorage-dependent.
Also, gelatin microparticle loading modulates osteogenic differentiation and hydrogel
mineralization in vitro [155,156].

In recent years, the use of gelatin microparticles on stem cells aggregates for the controlled
delivery of growth factors to guide differentiation has gained interest. Gelatin microparticle
incorporation within stem cell spheroids does not seem to essentially change cell organization.
Nevertheless, the cellular microenvironment becomes more rigid and this is an advantage
for promoting the stem cells differentiation toward lineages that are usually in stiffer tissues
in vivo, such as bone [157]. Mesenchymal morphogenesis and stem cells differentiation can
be promoted by incorporating degradable gelatin microparticles into embryonic stem cells
aggregates. These methacrylate gelatin microspheres increase the expression of MMP, which
facilitates the remodeling of the ECM and the control of cell differentiation [158].
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Another strategy to control the degree of differentiation of pluripotent stem cells into
the aggregates is to use gelatin microparticles loaded with specific factors in order to create a
morphogen gradient within the aggregate. Spatially controlled differentiation within embry-
onic pluripotent stem cells spheroids was achieved using gelatin microparticle loaded with
125ng Bone Morphogenetic Protein-4 (BMP-4) per mg of microparticle. In fact, this type of
signaling factors has difficulty to diffuse throughout the three-dimensional cellular aggre-
gates, making it difficult to control that the differentiation is homogeneous [159].

In addition, gelatin microspheres have been widely used for their ability to deliver growth
factors in different tissue engineering applications such as therapeutic angiogenesis, cartilage,
bone and nerve tissue engineering and post infarction myocardial therapy [36]. As an exam-
ple, microparticles loaded with glial cell-line derived neurotrophic factor were developed in
order to promote sciatic nerve growth [160]. This formulation is a complex system based on
gelatin, combined in various forms in a single construct. The system uses gelatin as material
to fabricate microparticles but also as an hydrogel where particles are distributed (Figure 3D).
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Figure 3. Microparticles of gelatin for tissue engineering. (A-C) SEM photomicrographs of micro-
particles of gelatin with different surface (bar=50 um). (A) Smooth gelatin microparticle; (B) Pitted
gelatin microparticle; (C) Multicavity gelatin microparticle. (D) Schematic picture of bilayer collagen
conduit coated with gelatin-methacrylamide hydrogels containing glial cell-line derived neurotrophic
factor (GDNF) loaded microspheres for promoting sciatic nerve growth in rats. A-C are adapted, with
permission, from [151] and D adapted from [160].
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Moreover, it has been found that by combining multiple growth factors in a single formu-
lation, their therapeutic efficacy is enhanced [161]. Thanks to numerous studies, it has been
shown that the combined use of IGF-1 and BMP-2 increases Alkaline Phosphatase (ALP)
activity, which is extremely interesting in early osteoblastic differentiation. Sequential delivery
of these two factors is achieved using gelatin microparticles loaded with IGF-1 encapsulated
into a BMP-2 containing chitosan gel. Controlled release of these molecules is regulated by
the crosslinking degree of the microparticles, the encapsulation of the particles into the gel
and the interactions between proteins and carriers [162].

Furthermore, the release of the therapeutic agents from the gelatin microparticles is given
by diffusion and also by the enzymatic biodegradation of the particles. It has been found
that these microparticles degrade more rapidly in the post-ischemic brain of rats, due to the
induction of gelatinase expression in that situation. Because of this, an increase in the neu-
roprotective effect of osteopontin was seen in cases where the protein was administered into
gelatin microparticles since, in such cases, the release was rapid and sustained [163].

4.2 Scaffolds

Scaffolds are defined as implantable preformed 3D porous structures which support the
regeneration process. Nowadays, it is a challenge to design and produce scaffolds that cover
all necessary requirements mentioned above. However, gelatin is an ideal candidate to achieve
these requirements, adding changes in its molecules and even designing hybrid matrices
with different materials as described in the previous section. The incorporation of cells to
3D matrices can be done in several ways. For instance, cells can be cultivated onto the pre-
formed structure. In a recent study, adipose-derived stem cells were distributed through the
gelatin methacryloyl nerve guidance conduits scaffolds. These 3D cellularized scaffolds have
been designed based on the general anatomical features of a rat sciatic nerve and fabricated
by and indirect 3D printing technique (Figure. 4) [164]. Nevertheless, it is not easy to get
uniformly cell-laden scaffolds because most of the cells remain on the surface. On the other
hand, some researchers have developed a number of protocols that avoid the use of toxic com-
pounds and severe conditions and thus, the incorporation of cells during the manufacturing
process can be obtained [165].

In the case of scaffolds designed for drug delivery purposes, homogeneous dispersion of
the biologically active agents throughout the structure is necessary in order to achieve sus-
tained release of the growth factors and to avoid an initial burst effect [166].

For several years many techniques have been used to produce these 3D structures. Solvent
casting/particle leaching, freeze-drying, phase separation, foam templating, fiber bonding,
melt processing, electrospinning and rapid prototyping are the main processing methods
employed to fabricate bioscaffolds [167]. Regarding the gelatin-based scaffolds, these are the
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methods that have been used until now. Nevertheless, researchers have succeeded in intro-
ducing modifications [168] and even combinations [169,170] of these technologies. In this
sense, scaffolds with discrete gradient in mechanical properties were developed in a recent
work, by stacking mixtures of gelatin and collagen with different HA concentrations [171].
Amadori S. et al. used a similar strategy for designing hybrid structures containing differenti-
ated layers for osteochondral replacement, by the method of overlap [172].
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Figure 4. Cellularized gelatin based nerve guidance conduits (NGC) for peripheral nerve
regeneration. (A) The measurement of diameters of the transected sciatic nerve for conduits design
and fabrication. (B) SEM micrographs of nerve guidance conduits. (C) Analysis of the proliferation
of adipose-derived stem cells (ASCs) on tissue culture polystyrene (TCP) and NGC after 1, 2, and 3
days of culture. (D) Gene expression of major neurotrophic factors of ASCs on the TCP and NGCs at
2 days post-seeding. Nerve growth factor (NGF), Brain-derived neurotrophic factor (BDNF) and Glial
cell-derived neurotrophic factor (GDNF). *p<0.05 for comparison with TCP. Adapted from [164].

In relation to the areas for applications of gelatin-based scaffolds, although great efforts
have been made to produce these 3D formulations directed to different scopes of tissue en-
gineering (wound healing [173], cartilage [174,175] and skin [176] among others), bone re-
generation is the top field where more significant advances have been attained (Figure 5) [177].
A myriad of 3D structures based on gelatin and different composites have been successfully
applied for bone tissue engineering.

This great effort includes in vitro and in vivo studies performed with different cell lines
that have demonstrated the ability to differentiate into osteoblasts in gelatinous matrices.
With reference to the cell types that have been seeded on gelatin structures for this aim,
mouse osteoblastic MC3T3-E1 cell line, human primary osteoblasts, rabbit adipose MSCs
and human dental pulp stem cells are some of them [178-182]. In vitro analyses include cell
adhesion and proliferation assays, ALP activity quantification, examination of bone specific
genes expression and immuno-histochemical staining.
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Once the potential for bone regeneration of these scaffolds is demonstrated in vitro, there
have been made many in vivo studies with different animal models in order to get evidence
before taking the step towards clinical translation. Rat critical size calvarial defect experi-
mental system is one of the most used in the evaluation of bone regeneration [76,183-185].
Nevertheless, the ability of gelatin-based matrices to promote ossification has also been tested
in other animal models, such as rabbit ulnar critical size model [186] or X-ray-irradiated
models. This last animal model wants to simulate the deterioration of the capacity of bone
healing caused by X-ray irradiation used for the treatment of cancer. BMP-2 releasing
gelatin-based scaffolds with autologous bone marrow got hold of structural regeneration at
irradiated segmental bone defects [187].

N
/

Figure 5. Chitosan/gelatin hydrogel scaffolds used as substitutes to mimic cartilage. (A) Gross mor-
phology; (B) Surface topography and pore structure of the hybrid hydrogel scaffold; (C) A typical hole
with a diameter which was measured at 73 um on the surface of hybrid hydrogel scaffold. Adapted, with
permission, from [175].

4.2.1 Electrospun gelatin-based scaffolds

Electrospun nanofibers structures are immensely versatile for an extended range of
applications in several areas, such as the biomedical field. In recent years, the production of
biomimetic architectures with nanoscale properties has gained interest to create 3D scaffolds
with interwoven fibers to mimic the natural fibrous structure of the ECM. These bioscaffolds
are highly porous structures with interconnected pores, fabricated usually by electrospinning
technique. Electrospinning is a method for production of nano and submicron ultra-fine fi-
bers from natural or synthetic origin polymers [188]. Electrospinning technique was intro-
duced in the early 1930"s and since then there have been achieved many advances in the
manufacturing process [189]. With this technology, fibers ranging from 50 nm to 10 um can
be fabricated [190]. The process can be performed with a wide variety of polymers, or even
with the combination of several different polymers.

Regarding the variables to be determined during the process, there are many factors that
can be classified into three groups: intrinsic polymer solutions properties, parameters related
to the process and environmental parameters. All these variables will define the quality and
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characteristics of the fibers and the resulting fibers network [191]. Producing morphologically
uniform and compositionally homogeneous nanofibers is extremely important since it has an
influence on cells adhesion and proliferation capacity [192].

In the case of gelatin, the conformation of the molecules in the polymer solution is of great
importance. Formation of nanofibers by electrospinning can be performed only if gelatin
adopts random coil conformation. There are two ways of creating gelatin nanofibers according
to the nature of the solvent. When water is used to create the dissolution of gelatin, this solu-
tion must be heated above the sol-gel transition point, since at room temperature spinning
of this formulation results impossible because of the high viscosity. In addition, the high sur-
face tension of water solutions difficult the process due to the destabilization of polymer jets
and the formation of droplets. Furthermore, the use of organic solvents to create the gelatin
reservoir is an effective method to destabilize triple helix structure and allow electrospinning.
Acidic solvent such as acetic acid [193] and formic acid, trifluoroethanol, dimethylsulfoxide,
ethylenglycol and formamide have been used to improve electrospinnability of gelatin solu-
tions [189]. The scaffolds of electrospun gelatin fibers have been used in applications such as
wound healing [194], nerve [195], cartilage [196,197], bone [198,199], skin [200], cardiovas-
cular [201] and ocular [202] tissue engineering.

In recent years, advanced nanofibrous scaffolds have been manufactured designing
multilayer mats [203], core/shell structures [204,205], biologically active compounds-loaded
nanofibers or structures with improved mechanical properties [191]. In a study performed
with hybrid PCL/gelatin fibrous scaffolds, the sustained release of VEGF was possible by
functionalizing gelatin fibers with heparin immobilization [206] (Figure 6). The development
of scaffolds with larger pore areas and with higher porosity was achieved by combining elec-
trospinning technique with gas foaming/salt leaching process. These scaffolds with a crater
like structure provide higher proliferation and infiltration of human MSCs throughout the
network [207].

4.3 In situ gelling formulations

In situ gelling systems can be considered as injectable grafts that have recently achieved
promising results in the field of tissue engineering. These systems have several significant
advantages over preformed scaffolds. On the one hand, they offer the possibility of minimally
invasive administration into a target tissue, avoiding complicated surgeries and patient
compliance would be better [208]. Moreover, because of the fluidity of these systems, they
have demonstrated the ability to fill and replace temporarily complex and irregular shaped
defects [209].
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Figure 6. SEM images of structure characteristics and in vitro growth factor release profile of
PCL/gelatin electrospun nanofibrous scaffolds. (A) PCL/gelatin nanofibers; (B) Heparinized
PCL/gelatin nanofibers; (C) Heparinized PCL/gelatin degraded in phosphate buffer saline for 14 days.
(D) In vitro release of VEGF from heparinized PCL/Gel scaffolds and PCL (n = 3). Adapted from [206].

In situ forming injectable hydrogels have been prepared using a variety of methodologies
to get gelation physiological conditions. In any case, chemical reactions must be selective and
fast to get effective designs. Injectable hydrogels can be prepared by chemical crosslinking,
electrostatic interactions, self-assembly strategies, as well as stimuli-response methods [210].

Mechanically robust gelatin injectable hydrogels were prepared by a novel advanced “Host
Guest Macromer” approach. Host Guest Macromer is the precursor for hydrogel fabrication,
which is formed by complexation between aromatic residues of gelatin and the free diffusing
photocrosslinkable acrylated p-cyclodextrins. Polymerization starts by UV irradiation and
gelatin polymer chains are physically crosslinked. This strategy permits the fabrication of
hydrogels with bioadhesive properties that have the ability to retain and release hydrophobic
drugs and to support stem cell differentiation [211].

Sandeep T. et. al succeeded in developing click-crosslinked injectable gelatin hydrogels
by introducing modifications on gelatin molecules. Hydrogels were formed within minutes
and no external energy input, catalysts or initiators was required. Tetrazine and norbornene
functional groups were attached to gelatin polymers in order to promote inverse electron
demand Diels-Alder click reaction. As a result, they fabricated bioorthogonally crosslinked
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gelatin-based hydrogels [212]. Recently, several researchers have used this methodology of
click-crosslink to design gelatin-based in situ gelling grafts [213].

In situ gelling gelatin-based hydrogels have also been produced for both the delivery of
cells [214] at the target tissue and the sustained release of growth factors, such as BMP-2
delivery in rat cranial defects [215]. Besides, injectable hydrogels offer a simple and effective
procedure to research cell functional responses in a 3D environment, adjusting the in vitro
assays to the reality that cells encounter in the tissues [216].

5. CONCLUSION

Full understanding of the tissue healing microenvironment that regulates tissue repair
would help to make the translational step between academia and clinics propitious. In
a certain part, the lack of success is due to the difficulty to recreate the complex signaling
network carried out with multiples biological molecules. This review provides comprehensive
overview of the potential of gelatin as biomaterial for its use in tissue repair and regeneration.
Although significant progress has made already, much work lies ahead to move this biomate-
rial forward to routine clinical practice.

Until now, the introduction of changes in the structure of gelatin and the combination with
various materials to create composite systems has proven to be a good strategy for formulating
carriers for tissue engineering. Nevertheless, further investigations need to enhance bioactiv-
ity for specific tissues such as bone, cardiac tissue or nerve and to achieve maximum cell
viability for long-term success. Future research direction that should be investigated about
gelatin as a tissue-engineered material should focus on improving techniques to crosslink
gelatin, with the aim of maintaining all the unique and ideal properties that this biomaterial
has, without losing the biocompatibility that characterizes it. One of the major challenges to
achieving translation is to scale up dimensions to clinically relevant sizes. Accordingly, future
directions with gelatin should focalize on developing technologies to create functional and
convenient size tissue substitutes.

Fortunately, there are reasons for optimism. Novel formulations and fabrication methods
are likely to help broaden the catalog of gelatin-based applications. Designing operator-free
technologies for fabrication together with the use of new technologies of additive manufac-
turing, or 3D bioprinting, may help to control the final properties of gelatin scaffolds and
formulations. Advances in regulatory concerns related to safety and reproducibility will also
be essential for future clinical applications in regenerative medicine. As a result of these and
other advances, the safe and effective clinical implementation of gelatin-based products is
expected to accelerate and expand.
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ABSTRACT

Introduction: Biomaterials have provided a wide range of exciting opportunities in tissue
engineering and regenerative medicine. Gelatin, a collagen-derived natural biopolymer,
has been extensively used in regenerative medicine applications over the years, due to its
cell-responsive properties and the capacity to deliver a wide range of biomolecules.

Areas covered: The most relevant properties of gelatin as biomaterial are presented
together with its main therapeutic applications. The latter include drug delivery systems,
tissue engineering approaches, potential uses as ink for 3D/4D Bioprinting and its relevance
in organ-on-a-chip platforms.

Expert Opinion: Advances in polymer chemistry, mechanobiology, imaging
technologies and 3D biofabrication techniques have expanded application of gelatin in multi-
ple biomedical research ranging from bone and cartilage tissue engineering, to wound healing
and anti-cancer therapy. Here, we highlight the latest advances in gelatin-based approaches
within the fields of biomaterial-based drug delivery and tissue engineering together with
some of the most relevant challenges and limitations.
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Introduction

1. INTRODUCTION

Biomaterials include a broad class of substances that interface with biological entities and
have over the decades provided a wide range of breakthrough opportunities in regenerative
medicine. Our steadily increasing knowledge in biology, pharmacy, chemistry and material
science, together with the interaction of these disciplines with one another, is rapidly ex-
panding the application of biomaterials in the areas of controlled drug delivery, prosthetics
and tissue engineering [1]. Among the many different types of biomaterials, bioactive poly-
mers have advantages over their classic counterparts (i.e., static and non-stimulatory) as they
are capable of playing an active role in drug delivery, control cell fate, regulate cell organoid
formation and function for various drug testing applications, and even drive tissue repair and
regeneration within the body [2,3].

The field of biomaterials has even more progressed due to a variety of prominent
advancements in chemistry, cutting-edge imaging technologies, novel cell sources, avant-garde
and optimized drug delivery platforms, increased knowledge on mechanobiology [4] (the
process by which physical forces are converted into biochemical signals) and advances
in various biofabrication processes such as three-dimensional (3D) bioprinting [5] and
self-assembly technologies.

Gelatin is one of these particularly fruitful biomaterials, holding enormous promise for
the above mentioned biomedical applications. This natural polymer derived from collagen,
contains enjoys integrin binding cell adhesion peptides [6] and matrix metalloproteinase
(MMP)-sensitive peptide sequences allowing cell-triggered degradation. Besides, one of the
main features of this water-soluble protein is its thermo-responsive character, undergoing a
reversible sol-gel transition when cooled upper its critical solution temperature (25-35 “C).
Since gelatin provides a biologically active 3D microenvironment for regulating cell vi-
ability, growth and differentiation, it has attracted a great deal of interest nowadays either
as scaffolds for tissue regeneration or carriers for controlled drug delivery. Currently there
are several gelatin-based medical devices marketed by companies worldwide. For exam-
ple, Gelita-SPON®, Cutanplast®, Gelfoam® and SurgiFoam® are absorbable gelatin sponges
indicated to be used as hemostats in surgical procedures such as neurosurgeries, thoracic
surgeries or ocular surgeries. More interestingly, gelatin containing allograft product has
been approved by Food and Drug Administration for bone tissue engineering purposes.
DBX® Strips is a flexible and bendable osteoinductive tape composed of demineralized bone
matrix, gelatin and sodium hyaluronate, and it is indicated as a bone void filler. Moreover, a
novel gelatin surgical implant, XEN® Gel Stent, has been developed to safely and effectively
reduce the high eye pressure in refractory glaucoma cases. Regarding the commercialization
of gelatin containing medicines, strict safety and quality requirements are demanded from
the manufacturers involved in the production of gelatin for human use. The main objective
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of this rigorous control is to completely avoid the risk of bovine spongiform encephalopathy
associated with the use of animal origin raw materials. The pharmaceutical grade gelatin must
comply not only with the current requirements for edible gelatin, but also with the provisions
for medical products. In this regard, the European Pharmacopoeia lists specific requisite nec-
essary for the manufacture of pharmaceutical grade gelatin.

In this review, we highlight the potential applications of gelatin in biomedicine and
describe the corresponding advances in drug delivery and tissue engineering.

2. GELATIN-BASED BIOMATERIALS

Due to its cell-stimulatory properties, gelatin has been widely used in regenerative
medicine and tissue engineering. Gelatin is a natural origin polymer, which holds several
advantages over its precursor collagen. The low water-solubility of collagen under neutral
conditions is one of the main limitations for biomedical purposes [7]. This drawback of
collagen is can be overcome with the extraction process of gelatin. Another notable property
of gelatin is its ability to create poly-ionic complexes with charged therapeutic compounds
such as proteins, growth factors, nucleotides and polysaccharides [8], which in turn makes
it ideal as a delivery vehicle for a broad range of biomolecules (Figure 1). In fact, gelatin
exhibits depending on its extraction conditions either a net positive (IEP= 9, Type A gelatin)
or net negative (IEP= 5, Type B gelatin) isoelectric point at pH 7.4, which allows sequestering
oppositely charged proteins while maintaining its bioactivity. As a consequence, gelatin is a
primary material in the fabrication of microcapsules and microspheres for drug delivery [9].
Furthermore, the source and the extraction conditions are key factors for obtaining gelatins
with diverse physicochemical properties (melting temperature, gel modulus or viscosity), due
to the differences in the amino acids proportions and the molecular weights of the resulting
materials [10]. On the other hand, gelatin is easily functionalized to fabricate materials with
tailor-made features, opening new therapeutic applications.

As an example, gelatin-based 3D microgels can be used to stimulate cell proliferation
and differentiation of various encapsulated cells, such as stem cells, and can also improve the
regenerative impact of injected cell-laden microbeads in lesion sites [11]. Over and above,
these microgels can shield the cells from shear-force associated mortality during injection,
and provide them with a milieu that enhances cell retention within the targeted site.

Crosslinked gelatin scaffolds can be used for 3D cell culturing. However, thermal
gelation of gelatin typically results in frail and weak gels. To address this, conventional
chemical procedures are applied to develop covalently crosslinked gelatin-based hydrogels
[12]. One of the striking strategies proposed by several researchers has been the enzymatic
crosslinking of gelatin systems, using various enzymes such as horseradish peroxidase [13]
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or microbial transglutaminase [14]. These systems have been evaluated for different tissue
engineering purposes, since versatile hydrogels with tunable gelation rate and final me-
chanical strength have been successfully developed. As an example, injectable enzymatically
crosslinked gelatin-hydroxyphenylpropionic acid composite hydrogel have been evaluated
both for cartilage [15] and brain [16] tissue reparation. Furthermore, photocrosslinkable
gelatin methacrylate (GelMA) hydrogels have garnered great interest in various therapeutic
applications, ranging from corneal tissue engineering [17], to peripheral nerve regeneration
[18] and cartilage construct fabrication [19]. Furthermore, injectable covalently cross-
linked gelatin hydrogels have been recently developed with the aid of pendant tetrazine or
norbornene click chemistry pairs in modified polymers [20]. These gelatin polymers rap-
idly crosslink in combination and they start to degrade when injected in vivo. Moreover,
they promote high cell viability and have the capacity to drive encapsulated cells into 3D
elongated morphologies.

Organs-on-a-chip

ﬁw

Gelatin
extracted from animal tissues Drug delivery

e

Injectable
3D scaffolds

Gelatin-based
patch

Wound dressing

cell-laden scaffolds

Figure 1. Some of the most promising approaches, being developed with gelatin as a primary
biomaterial, including micro and nanoparticles for drug delivery, wound dressings, injectables,
3D scaffolds, bioinks and organs-on-a-chip technologies.
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The ongoing progression in 3D bioprinting enables unprecedented control over spatial dis-
tribution of materials, cells and biomolecules and ultimately facilitate the fabrication of more
native-like 3D tissue structures. In one noteworthy example, Jia W and colleagues designed
a direct 3D multilayered coaxial extrusion printing strategy to develop highly perfusable and
organized vessels. The blended bioink consisted of sodium alginate, gelatin methacrylate and
4-arm poly (ethylene glycol)-tetra-acrylate (PEGTA). This double crosslinked (covalently
and ionically) system allowed the proliferation and propagation of encapsulated endothelial
and mesenchymal stem cells inside the 3D printed scaffolds and ultimately facilitated the
formation of native-like perfusable vessels [21].

3. PROGRESS IN DRUG DELIVERY

Gelatin-based biomaterials are of great interest in the design and fabrication of drug
delivery systems, which provide controlled, sustained and/or targeted release of bioactive
molecules, while enhancing their bioavailability and improving their therapeutic effects. This
modern strategy is currently employed for several biomedical applications, ranging from tissue
regeneration and wound healing to anti-cancer treatments and medical imaging. Wound
healing is a highly complex dynamic process during which a damaged or injured tissue is re-
paired or replaced. Skin wounds are mostly due to trauma, surgery or burns; however, diseases
such as diabetes may give rise to a prolonged healing time [22]. Gelatin-based dressings pro-
vide high protection capacity against infections and can accelerate the wound healing process,
thanks to their tailorable mechanical and degradation properties. More than that, gelatin also
enjoys favorable biocompatibility and contributes to a balanced hydrophobicity/hydrophilicity
of the wound-dressing, resulting in a suitable release of biomolecules. As an interesting exam-
ple, gelatin was combined with poly(e-caprolactone) (PCL) to establish a scar-inhibiting
electrospun fibrous scaffold, loaded with transforming growth factor f1 (TGF-f1) inhibitor
(Figure 2) [23]. Through this approach, fibroblast over-proliferation was effectively inhibited
in vitro, and scarring was successfully prevented in vivo during a wound-healing process in
rabbit ear model. In another recent study, a conductive composite scaffold was fabricated
based on PCL/gelatin nanofibers and silicate-based bioceramic particles [24]. In this system
the nanofibrous microstructure of the scaffolds mimicked that of the extracellular matrix, and
in combination with the sustained release of silicon ions from the silicate-based ceramic, a
synergistic and beneficial effect in diabetic wound healing was obtained.

The release kinetics of bioactive molecules and drugs is highly dependent on degradation
rate and water uptake of the gelatin networks. These properties represent a great opportuni-
ty for preventing multidrug-resistant bacterial infections, by releasing antibiotics in a con-
trolled manner [25,26]. For instance, Lee and colleagues introduced gelatin-hydroxypropion-
ic acid hydrogels, formed in the presence of bactericidal H,O, as antimicrobial injectable or
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sprayable dressings [26]. Other potential application of gelatin-based drug delivery systems
is in cancer therapy, where improving drug bioavailability and targeted delivery have always
been a major practical concern. For instance, the combined administration of dendritic cells
(DCs) and oncolytic adenovirus in a tumor environment has a potent antineoplastic immune
effect. However, the rapid inactivation of the drugs within the tumor site could reduce
their effectiveness. To address this challenge, injectable and biodegradable scaffolds based
on gelatin have been developed, enabling an extended delivery of both DCs and oncolytic
adenovirus [27].
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Figure 2. Hypertrophic scarring treatment with gelatin-based electrospun fibrous scaffolds.
(A): Schematic illustration of the development of TGEF-(Bl-inhibitor-loaded PCL/gelatin fibrous
scaffolds. (B): Macroscopic evaluation of the wounds in different treatment groups (PGI: PCL/gelatin
scaffold; PGT5: PCL/gelatin/TGF-p1 inhibitor scaffold). Only PGT5 group showed a perfect restruc-
turation of the wound without irregularities. (C): The healed wound area of each group at different
observation time points. (D): Elevation index of scars in each group, harvested at 6 and 8 weeks. Two
asterisks represent a significant difference of p<0.01. Three asterisks represent a significant difference of
p<0.001. TGF-P1: Transforming growth factor - p1; PCL: Polycaprolactone. Adapted with permission
from Ref.[23] Copyright 2017 American Chemical Society.
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Last but not least, gelatin-based micro and nanoparticles are emerging as promising
flexible and powerful biomaterials for growth factor delivery. These characteristics are
opening up new paths toward therapeutic alternatives in various medical fields such as cancer
treatment, neuroprotection after post-ischemic brain injury [28] and immunization. As an
example, Sabet S. and colleagues reported gelatin nanoparticles as a non-viral vaccine and
gene delivery system for hepatitis C, which effectively transferred the nonstructural protein 2
gene into bacterial cells [29].

4. NEW ADVANCES IN TISSUE ENGINEERING

The overarching goal in tissue engineering is to develop artificial systems or structures that
can recapitulate some of the most important functions of native tissues. However, this goal is
challenging due to the extremely complex tissue architectures in the body, together with the
many synergistic biological components within native tissues. The latest efforts in the field are
currently directed towards combining different types of biomaterials to generate native-like
synergistic effects, as well as providing the much-needed native-like tissue microarchitectures.
Through this approach, several potential systems based on gelatin have been developed over
the past decade. For instance, the combination of gelatin with hyaluronic acid was introduced
as a biocomponent-based hydrogel to provide elasticity and promote vascularization of vari-
ous target tissues [30].

Non-union bone fractures cause long-term incapacity and pain. Indeed, only in the United
States around 8 million people suffers from bone injuries each year and conventional treat-
ments are not effective in atleast 10% of the cases. Several studies have recently emerged on new
alternatives and bioactive agents for bone tissue engineering. In an intriguing approach, plate-
let loaded chitosan-gelatin composite hydrogel was applied to increased bone regeneration in
bilateral critical-sized radial bone defect model in rats [31]. Furthermore, enhanced mRNA
levels of alkaline phosphatase, as well as osteogenic (collagen type 1, osteocalcin, CD31 and
run related transcription factor 2) and angiogenic (vascular endothelial growth factor) differ-
entiation markers were also observed.

Even though gelatin-based scaffolds have not yet been commercialized for bone regenera-
tion applications, the combination of gelatin with calcium phosphate ceramics and other syn-
thetic polymers stand as promising options for clinical applications [32]. One of the biggest
challenges here is to mold biomaterials into the similar complex architectures as those seen
in bone defects. To overcome this limitation, several strategies have been studied including
injectable systems [33] and 3D printed implantable structures [34], that facilitate fabrication
of customized engineered scaffolds, that can perfectly adapt into bone defects (Figure 3).

In addition, new avenues are provided by tissue engineering approaches to facilitate the
repair of the native cartilage tissue, which naturally presents limited capacity for spontaneous
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repair. Over the last few years, several biomaterials including gelatin have been investigated and
tested for cartilage tissue engineering applications. For example, the chondrogenesis of
stem cells has been induced by co-culturing bone marrow stromal cell and chondrocytes in
electrospun gelatin/PCL nanofibrous biomaterials [35]. In another approach, multipotent
articular cartilage-resident chondroprogenitor cells were embedded in gelatin hydrogels to
create cartilage-tissue regeneration [36]. These encapsulated cells presented a better profile
in terms of neo cartilage production compared to differentiated chondrocytes. In addition,
higher expression levels of the lubricating factor, PRG4, and lower expression levels of colla-
gen type X hypertrophy marker confirmed the regenerative potential of these cells.
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Figure 3. Bone tissue regeneration using a 3D printed microstructure incorporated with
photo-curable gelatin hydrogel, functionalized with bioactive gold nanoparticles. (A): Schematic
illustration of the therapeutic approach for personal bone tissue regeneration using 3D printing tech-
nology. (B): Gene expression levels of osteogenic differentiation markers of ADSCs cultured in the
gelatin hydrogel (Gel), gelatin hydrogel functionalized with gold nanoparticles (Gel-GNP), and gelatin
hydrogel functionalized with RGD-conjugated gold nanoparticles (Gel-RGNP). * indicates a significant
difference of p<0.05. ** indicates a significant difference of p<0.01. (C): Optical images of calcium depo-
sition staining from ADSCs culture in the three types of the hydrogel at 21 days. PLA: Polylactic acid;
RGD: arginine-glycine-aspartate; ADSCs: human adipose-derived stem cells. Adapted from Ref. [34]
with permission from The Royal Society of Chemistry.
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5. LOOKING INTO THE FUTURE

Gelatin holds great promise for regenerative medicine, thanks to its biocompatibility and
novel biomedical approaches such as cell-laden gelatin-based 3D tissue models are expected
to be developed in near future to assist better understanding of diseases or drug develop-
ment and screening. These 3D microphysiological structures could potentially complement
or even replace current in vivo studies. As an example, gelatin microparticles have been com-
bined with pancreatic cancer cells and fibroblasts to replicate the complexity of the pancreatic
tumor microenvironment and to clarify the complex stroma-cancer inter-relationship [37].
In another intriguing approach, human cardiac microtissues have been bioengineered using
cardiomyocytes derived from human induced pluripotent stem cells, encapsulated in gelatin
hydrogels with tunable stiffness and degradation rates [38]. As a proof-of-concept Agrawal
and colleagues designed a 3D skeletal muscle-on-a-chip platform with cell-laden gelatin hy-
drogel as a screening platform for drugs and toxics such as cardiotoxin [39], which can also
be applied for preclinical drug discovery and development.

6. EXPERT OPINION

Gelatin is well-known biomaterial with exciting properties for protein and drug delivery
and tissue repair and regeneration. Furthermore, it can be easily tailored to achieve different
grades of mechanical stability and stiffness, being also an excellent candidate for controlling
cell behavior, cell differentiation and even for cell transplantation. Gelatin can be used alone
or combined with other biomaterials as bioink for 3D/4D bioprinting, opening new fields
in the design and development of novel spatially customized anatomical structures in a
personalized manner.

The use of gelatin however may see new horizons in the next few years. We envision that
its properties may help to develop 2D and 3D nerve constructsbased on the mechanical prop-
erties and conductivity of novel gelatin-based composites. This progress may move forward
its use in other cell-platforms such as organ-on-a-chip devices, that is, multi-channel 3D mi-
crofluidic cell culture chips by which it is possible to understand tissue and organ functions as
well and test and screen a wide range of drugs. In addition, gelatin-based composites together
with differentiated human stem cells may bring new hopes to heal spinal cord injuries and to
limit the secondary damage.

Another interesting therapeutic window for gelatin relies on its potential use in transdermal
delivery of therapeutics. By using biocompatible, biodegradable and bioresponsive
gelatin-based microneedles, scientists are churning out new platforms for drug delivery
across the skin in a safe and cost-efficient way. Last but not least, gelatin has been successfully
combined and mixed with autologous growth factors derived from human plasma and plate-
lets. Due its ability to sequester oppositely charged proteins while maintaining its bioactivity,
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gelatin can provide additional properties to the naturally forming fibrin scaffold and thus be
an aid in the therapeutic use of platelet rich plasma, an approach that is being used in multiple
medical fields including dentistry, orthopedics, dermatology and ophthalmology.

Nevertheless, the use and applicability of this interesting material presents several
challenges. The weak mechanical properties of gelatin may limit certain applications,
especially those in which higher mechanical responses are demanding. To address this, both
composite systems and chemical modifications are being explored. For example, aminoacidic
structure of gelatin has been modified with the incorporation of diverse chemical motifs such
as methacryloyl, catechol, phenol or epigallactocachecin gallate groups to increase its me-
chanical properties and durability.

In summary, gelatin provides a wide range of uses and applications in many different
therapeutic fields. Progress in polymer chemistry, cell biology, mechanobiology, imaging
technologies and 3D biofabrication techniques are expanding its value and potential in drug
delivery and tissue repair and regeneration approaches.

7. CONCLUSION

Gelatin offers a broad spectrum of applications and possibilities ranging from
micro/nanoparticle-based drug delivery to tissue repair and regeneration by means of 3D
biomimetic scaffolds. We envision that the ongoing progression of research in this area will
promote the future translation of gelatin-based biomaterials into the clinics.
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ABSTRACT

The current shortage of tissue and organ donor supply together with the often severe
immune complications related to organ transplantation have fueled new scientific disciplines
such as tissue engineering and regenerative medicine. The latter is an interdisciplinary field
that applies biological and engineering principles to the design and development of technol-
ogies that promote regeneration to restore diseased and injured tissues, such as bone. There
are a number of strategies to address this issue. Of particular relevance is the fabrication
of biomaterial-based three-dimensional (3D) scaffolds, micro and nanoparticles as well as
in situ forming hydrogels that are used to design temporary substitutes of the natural tissue
that promotes its regeneration. This review article highlights the central role of gelatin for
the design and fabrication of these formulations for bone tissue repair and regeneration. This
review describes herein a state-of-the-art overview of gelatin formulations for their use in re-
generative medicine strategies. Present challenges and future perspectives of these approaches
are discussed in order to achieve safe and effective clinical implementation.

Keywords: gelatin, tissue engineering, regenerative medicine, bone, 3D scaffold,
drug-delivery, cell-therapy.
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1. INTRODUCTION

It is widely known that tissue and organ transplantation is limited by donor shortage.
The number of donors decreases every year whereas the number of the patients who die
waiting for the organ transplantation increases. As it was recently reported by U.S. Department
of Health & Human Services, more than 119,000 people entered on the national transplant
waiting list but only 10,482 donors were recovered from January to August 2016 [1]. Even
though transplantation is sometimes possible, the problem of graft rejection must be carefully
considered as it directly affects organ and tissue-transplanted patients. In fact, patients will
need to undergo immunosuppressive treatment, with related side effects, for all their life. In
addition, the field of medicine often involves the use of biomedical devices and prosthesis
that cannot replace the whole tissue alone with all its functions and that are unable to pre-
vent a progressive deterioration of the health of the patient. Assuming this scenario and data
indicating that percentage of patients >65 years old in developed countries will progressively
increase in the next few decades, new medical solutions are urgently needed.

The fields of regenerative medicine and tissue engineering are a new field of medicine
that aim to replace and restore injured and defective tissues or organs by using multifunc-
tional constructs that may include biological and biomaterial-type structures [2,3]. One
critical advance for these fields has been to combine the knowledge derived from different
fields including molecular biology, biochemistry, biomaterial science, bioengineering, chem-
istry, medicine and pharmaceutical technology to design and fabricate a biological substitute
designed ad hoc to replace or restore the damaged or lost tissue. Such a construct should in
theory, unlike the classic biomedical device or implant used in reconstructive surgery, inte-
grate itself with the surrounding tissues, restoring completely the damaged tissue function
without the need of future pharmacological treatments [4].

To address this ambitious objective, it is of paramount importance to correctly combine
3D biomaterial-based scaffolds, biologically active signaling molecules and sometimes cells.
In this particular review, we will pay attention to the fundamental role of the first of these three
key ingredients, that is, the 3D structures or scaffolds. It is fairly recognized that the main
function of 3D scaffolds is to provide a temporary support for the neotissue ingrowth from a
chemical, physical and mechanical point of view. To accomplish this mission, it needs to fulfill
highly specific criteria as it has been described elsewhere [5-7], including biocompatibility of
the primary materials and the 3D construct, mechanical properties, suitable surface proper-
ties optimized for the potential attachment, migration, proliferation and differentiation of cell
phenotypes, suitable 3D shape and architecture with an interconnected pore network, reten-
tion capacity for the biological cues and biodegradability with a controllable degradation rate
that matches the cell/tissue in- growth and maturation and last but not least easy and efficient
reproducibility. Some of these desirable properties are summarized in Table 1.
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Table 1: Desirable properties of biomaterials for bone tissue engineering.

Biocompatibility The material must perform with an appropriate host response in bone tissue regeneration. It is the
ability to be in harmony with tissues without causing harmful changes.

Biodegradability The material should ideally degrade without any non-native products remaining. The rate of
degradation must be adjusted to the process of tissue regeneration allowing regenerated tissues to
organize into the desired 3D structure.

Low toxicity and The material must not have toxic effects on osteoblasts or other cells of the bone tissue.

inflammatory response  Additionally, the material must not be toxic systemically and should not possess toxic degradation
residues.

Porosity and pore High and interconnected porosity is essential for 3D scaffolds designed for bone tissue engineering.

interconnection Pore size, pore volume, pore size distribution, pore shape and pore wall roughness will also define
the ability of cell ingrowth and uniform cell distribution. All these parameters will have
repercussion in the capacity of neovascularization of the matrix.

Biomechanical stability ~ The mechanical properties (elastic modulus, tensile strength, fracture toughness, fatigue and
elongation percentage) should be similar to those of the bone to be replaced or regenerated.
Bioactive compounds Ideally, the biomaterial should be capable of sustained and controlled release of potentially
protection and sustained  therapeutic agents, in order to achieve adequate concentrations locally of growth factors that
delivery promote bone regeneration.
Processability It is desirable that the material can be processed easily to design a variety of configurations and

formulations such as 3D scaffolds, nanometric and micrometric particles or injectable
formulations.

In the particular case of bone regeneration, although bone shows self-regeneration prop-
erties in some particular injuries, it is one of the most frequently transplanted tissues [8]. Bone
grafting represents the second most common tissue transplantation procedure with over 2.2
million procedures worldwide annually in just two medical fields: dentistry and orthopedic
surgery [9]. As discussed previously, the increase in the elderly population will lead to an
increasingly frail population at greater risk of bone fracture, especially due to diseases such as
osteoarthritis and osteoporosis, with a tremendous socio-economic burden on world health-
care systems [10].

A wide number of materials, technologies and approaches are being explored as novel
bone tissue regeneration alternatives. Nowadays, there are several collagens/gelatin based
products available in the market for bone tissue engineering purposes such as, DBX® or
RegenOss® [11]. In this review, we aim to discuss recent progress derived from the use of
gelatin as biomaterials and particularly gelatin-based 3D scaffolds as constructs. The most
relevant results obtained so far together with the limiting challenges will be reviewed.

2. GELATIN AS BIOMATERIAL

Gelatin is a natural origin water-soluble protein derived from the hydrolytic process of
collagen, where triple helix of collagen is broken up and single strand macromolecules are
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obtained. This biomaterial has an amphoteric behavior, because of the presence of alkaline
and acidic amino acids functional groups.

Several sources have been used for many years to extract gelatin. In this regard, gelatins of
mammalian origin have been the most frequently used materials for regenerative purposes.
These gelatins have been chiefly obtained using porcine and bovine skins and bones [12].
However, these materials do not meet the optimal characteristics that may require a material
to be employed in tissue engineering. In fact, with the use of these materials, there is a risk of
transmission of pathogenic vectors such as prions and the development of bovine spongiform
encephalopathy. For this reason, great efforts have been made to obtain gelatins of other alter-
native origins to avoid this type of risks. Gelatins from warm and cold water fish skins, bones
and fins have been produced using a number of disparate approaches. Fish derived gelatin
has a significantly higher viscosity and lower melting temperature and thermal stability. These
differences in properties are because of the differences in both the amino acids compositions
and the corresponding sequence [13].

Another novel strategy has been the development of recombinant gelatins to overcome the
disadvantages and improve the properties of materials derived from different animal tissues.
Gelatins with accurate molecular weight and the isoelectric point can be produced using
various expression systems such as Pichia pastoris or Hansenula polymorpha yeast, Escherichia
coli and transgenic mice or tobacco plant. With this technology, the reproducibility between
batches is significantly increased, thus improving control over the properties of the material.
There are two different techniques for producing recombinant gelatin. One is the synthesis
of recombinant collagen to later purify and denature with or without chain fragmentation.
The other is to directly produce specific chains of gelatin [14].

Gelatins are polymers of a mixture of amino acids moieties joined by peptide bonds
ranging in molecular weight between 15,000 and 400,000 Daltons. Regarding the structure of
this biomaterial, more than twenty amino acids in variable proportions comprise its primary
structure. Gelatin molecules are composed of repeating sequences of glycine-X-Y triplets,
where proline for X and hydroxyproline for Y positions are the most common amino acids
[15]. During the hydrolysis collagen tertiary structure triple helix is broken down into single
chains (a-chains), covalently crosslinked double a-chains (B-chains) and triple a chains
species (y-chains) [16]. The length of the polypeptide chains and the proportion of each type
of chains is different depending on which is the raw material, the pretreatment method used,
process duration and some processing parameter such as temperature or pH. There are three
phases in the process of producing gelatin from collagen. The first step is the pretreatment of
the selected raw material, the second one is the extraction itself, and finally the purification
and drying of the material obtained are necessary [17]. The method used for the pretreatment
of the material will determine the electrostatic charge of gelatin and thus, the type of gelatin
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to be obtained, which can be of two types. If the collagen hydrolytic process is exerted under
acidic conditions using sulfuric acid or hydrochloric acid, the gelatin produced will be Type
A and its isoelectric point is around 9.00. In contrast, if the pretreatment chose is alkaline,
the gelatin obtained will be Type B and will present the isoelectric point around 5.00. The
isoelectric point of a peptide is defined as pH value at which the net electric charge of the
molecule is zero. When the pH value of the solution is lower than the isoelectric point, the
peptides are positively charged, whereas in higher pH values conditions they present negative
net charge. This ability to produce gelatins of different isoelectric point modifying parameters
of the process is one of the greatest advantages that this biomaterial presents for its use in the
biomedical field [18]. Therefore, gelatin can be used as a carrier for therapeutic agents charged
both positively and negatively by polyion complexation. Acidic Type B gelatin is suitable for
the sustained release of basic molecules under physiological conditions, while basic Type A
gelatin should be used to carry acidic proteins in vivo.

Gelatin is natural origin biocompatible and non-cytotoxic material and it shows low
immunogenicity compared to the native collagen. This polymer is considered as generally
recognized as safe (GRAS) by the Food and Drug Administration (FDA) [19] and it is bio-
degradable because of the presence of sensitive sites for enzymatic degradation by matrix
metalloproteinases (MMP). In addition, it has been found that the byproducts resulted in the
enzymatic degradation are themselves biocompatible [20]. Furthermore, gelatin present in
its structure sequences of arginine-glycine-aspartic acid (RGD). This fragment is the specific
recognition site of integrins and it is involved in the regulation of interactions between cells
and between cells and extracellular matrix (ECM). It is considered as a biomimetic peptide
that promotes cell adhesion, with the ability to prevent the cell from apoptosis and accelerate
tissue regeneration [21,22].

Regarding physicochemical properties of gelatin, one of the most important properties
is the potential to form a thermally reversible network in water. It presents conformational
transition below sol-gel transition point at about 30 °C. In the gelation process, locally ordered
regions are formed which are joined by non-specific bonds, such as electrostatic, hydrophobic
or hydrogen bonds. When the gel is heated, these intermolecular interactions are broken,
therefore obtaining the thermo-reversibility, the unique property of gelatin [23].

It has been shown that there are different factors that define the properties of the gelatin
dispersion. The rigidity of the gel is determined on the one hand by the temperature, but on
the other hand, the concentration, bloom strength, pH and the presence of any additive in the
dispersion can modify its stiffness. The bloom strength is the intrinsic force of the physical gel
that it is formed upon cooling. This value is determined by the structure of the gelatin itself
together with the molecular weight. Temperature plays an important role in defining the gels
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final properties since the viscosity and gel strength values decrease with increasing tempera-
ture above 40 °C [24].

Crosslinking of the gelatin strands is necessary to improve the thermal and mechanical
stability under physiological conditions, in order to use these formulations in medical appli-
cations, especially in tissue engineering field [25]. Many studies have been carried out over
the past years to determine how the agent or method used to crosslink the gelatin network
influences the physical, mechanical and, in particular, cytotoxic properties of the hydrogel.

The introduction of previous modifications in the gelatin molecule allows improving the
control over the crosslinking process and therefore the final properties of the hydrogel. The
incorporation of functional groups such as norborene, feluric acid, succinyl, acrylamide or
even methacryloyl has allowed the design of formulations with unique features [26-29].

The crosslinking of gelatin hydrogels can be done by physical or chemical processes.
The crosslinking of gelatin strands by physical techniques can be achieved using microwave
energy [30], dehydrothermal treatment [31,32] and ultraviolet radiation [33]. These processes
do not employ any chemical agent that may be biologically toxic, but control over crosslink
density and process efficiency is often low [34]. In contrast, agents which are incorporated
into the gelatin molecules or agents which have the ability to activate functional groups of the
gelatin molecules are used to get chemical crosslinking. Aldehydes, polyepoxides and isocya-
nates form chemical bonds with gelatin molecules, which can be released as reactive and toxic
agents in the degradation process [35-37].

In this sense, aldehydes have traditionally been the most frequently used agents to cross-
link gelatin. Nevertheless, it has been shown that the products generated as a result of the
degradation process can have toxic effects on cells, exhibit immunogenicity and inflammatory
response. Therefore, in recent years the use of other alternative agents has been investigated,
in order to reduce the undesirable toxic effects.

One of the crosslinking agents that has gained more interest is genipin. Genipin is a
biocompatible agent extracted from the fruits of the Gardenia jasminoides plant that is be-
ing used to crosslink different materials in biomedical applications. This agent has been
shown to have high crosslink efficiency and 5000-10000 times lower cytotoxic effect than
glutaraldehyde [38,39]. Another potential strategy to achieve stability of gelatin under physio-
logical conditions is to crosslink its strands enzymatically. Enzymatic crosslinking with tyros-
inases, transferases and peroxidases is a strategy that is gaining interest for hydrogels in tissue
engineering. These reactions occur in aqueous media, neutral pH, moderate temperatures
and it is possible to achieve specificity towards the substrate [40,41]. Mushroom tyrosinase
[42] and microbial transglutaminase (mT'G) [43] are two of the enzymes that have been used
to crosslink gelatin formulations.
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3. GELATIN-BASED SCAFFOLDS

3D scaffolds are temporary artificial extracellular matrices that are used to deliver cells,
drugs and genes into the body. One of the principal functions of scaffolds is to guide cells
growth. In fact, these matrices play a crucial role in cell adhesion, differentiation, proliferation
and new tissue formation in three dimensions. Preformed scaffolds are substitutes that can be
implanted using surgical techniques and which are classified into typical 3D porous matrices
or nanofibrous matrices depending on the methodology used for their fabrication.

Over the past few years, many attempts have been made to develop gelatin based 3D
scaffolds for different purposes including skin regeneration [44], wound healing [45] or even
nerve and cardiac tissue engineering. However, bone tissue engineering is likely to be the field
in which more significant advances have been made so far. A myriad of 3D gelatin based pro-
totypes and diverse composites have been designed for osseous tissues regeneration.

3D scaffolds can be manufactured wusing different production techniques:
solvent casting/particle leaching, freeze-drying, phase separation, foam templating, fiber
bonding, melts processing, electrospinning or rapid prototyping [46]. Although gelatin
scaffolds have been produced largely following these protocols until now, current strategies
are focused on the development new protocols to improve and to optimize the final properties
of the prototypes [47-49]. For instance, Jelen C. et al. showed that stacking gelatin mixtures
with different hydroxyapatite (HA) concentrations, discrete functionally graded scaffolds
have been successfully prepared. With this new feature, they wanted to mimic the gradient
existing in the structure of the bone in terms of mechanical properties and porosity [50].

When designing prototypes intended to be used in tissues that present challenging me-
chanical conditions as in the case of bone, it is necessary to take into account the high water
content of the hydrogels. As a consequence, it is well established that the mechanical strength
of such formulations is usually limited. To overcome these drawbacks the gelatin can be com-
bined with diverse compounds to further improve the mechanical properties of gelatin-based
composite scaffolds [51]. For example, calcium phosphate ceramics are especially interesting
when designing formulations for bone tissue engineering not only to improve the necessary
mechanical properties but also because they provide convenient osteogenic characteristics.
Most of them have been shown to have osteoconductive properties (support of osteoblasts
adhesion and proliferation) whereas some of them have been attributed to osteoinductive
properties (capacity to stimulate the formation of new bone by recruiting progenitor cells
or inducing differentiation into osteoblastic lineages) [52,53]. There are currently many
examples of systems designed following this strategy. Gelatin composites with HA [54-57],
tricalcium phosphate [58-60], biphasic calcium phosphate [61,62] and octacalcium phosphate
[63] have been proposed as appropriate constructs to be used in bone tissue engineering.
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Complementarily and as an important part in the development of gelatinous matrices
with osteogenic features, the study of the interaction of different cell types both in vitro and
in vivo has opened the way to optimism. In many cases, 3D scaffolds made primarily with
gelatin have been shown to be able to differentiate different cell types into specific cells of the
bone tissue. The most characteristic in vitro studies for evaluation of these properties are cell
adhesion and proliferation, quantification of alkaline phosphatase (ALP) activity, evaluation
of the expression of specific bone genes and immunohistochemical staining. Mouse osteo-
blastic MC3T3-E1 cell line [64], human primary osteoblasts [65], human mesenchymal stem
cells (hMSCs) [66] and human dental pulp stem cells [67] are only some of the cell types that
have achieved satisfactory results.

However, undoubtedly, for the evaluation of the real ability of these scaffolds to pro-
mote bone regeneration, in vivo studies performed on different animal models are extremely
important. The rat critical size calvarial defect model is one of the most used methods so far
[68-70]. In this sense, gelatin scaffolds have been recently evaluated in rabbit ulnar critical size
model [71], X-ray irradiated models [72], rat distal femoral condyle defect model [73] and rat
tibial bone defect model [74].

3.1 Bioprinting of gelatin-based scaffolds

Hopefully, the development of the 3D bioprinting technology has provided currently tools
for achieving greater precision in the structural and mechanical properties of artificial scaf-
folds. This technology presents potentials in reproducible fabrication of prototypes with high
accuracy for tissue engineering [75]. This technique consists of a computer-aided layer-by-layer
deposition approach where living cells and other biological agents are stacked and assembled
using biomaterials as a bioink vehicle for fabrication of living tissue and organ analogs for tis-
sue engineering and regenerative medicine [76]. Although it is in its early stages, bioprinting
strategies have become one of the most promising and advancing manufacturing methods.
The principal advantages of bioprinting include a high resolution on cell deposition, cell dis-
tribution accuracy, cost-effectiveness and scalability [77]. In recent researches, it has been
shown that the use of gelatin for the development of suitable bioinks provides interesting
characteristics to cover the necessary properties that a bioink should have: biocompatibili-
ty, biodegradability, printability, crosslinkability and mechanical properties. More and more
research groups work on studying the potential that this material could have for the develop-
ment of these types of formulations [78-82].

For instance, Figure 1 shows the diagram of the bioprinting process of cell-laden
scaffolds carried out with gelatin methacrylamide hydrogel dispersions. The equipment has
a temperature control system and the crosslinking process of the gelatin is made using a UV
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light source. The printer has the ability to tune the microstructure of the matrices in the
micrometer scale, thus adjusting the pore size [78].
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Figure 1. Fabrication of 3D scaffolds using customized 3D printer. (A) Schematic picture of the
printing and photo-crosslinking process. (B) 3D printer equipped with refrigeration. (C) Printing
nozzle. (D, E) Observation of printed methacrylamide gelatin scaffolds by SEM. (D) Scaffolds with a
pore size of 363 + 60 um and (E) 282 + 32 um, scale bar = 200 pm. Reprinted from [78].

3.2 Electrospun gelatin-based scaffolds

In the last years, the development of systems based on electrospun nanofibers is immensely
explored by researchers, due to the versatility that they show to be able to use in different bio-
medical fields, for example in the tissue engineering. Electrospinning technique is a produc-
tion method that is useful to generate fibers ranging in diameter from 50 nm to 10 pm from
both synthetic and natural origin materials. It is considered a simple technique where several
parameters define the morphology and size of the fibers obtained. Through this methodology,
biomimetic architectures with nanoscale characteristics and interwoven fibers that mimic the
natural structure of the ECM have been successfully developed [83]. A wide variety of poly-
mers and their simultaneous combinations have been used to make fibers. It is possible to ob-
tain fibers composed of several polymers by mixing the dispersions in the same syringe, doing
the process by two syringes placed side by side or even layering the dispersions in succession
[84]. There are several factors that affect the final properties of the fibers. These variations
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in the process allow manufacturing fiber mats with different properties, adapting to the de-
sired use. The factors can be classified into three general groups: First, the intrinsic polymer
dispersions properties (molecular weight, concentration, solvent type, viscosity...), second
parameters directly related to the process (applied voltage, nozzle-to-collector distance,
nozzle diameter...) and finally the environmental parameters (temperature, humidity...) [85].

In order to develop gelatin fibers by this technique, the state of the conformation of the
gelatin molecules in the solvent is very important. In fact, it is possible to create such fibers
only in cases where gelatin adopts random coil conformation. When the gelatin is dissolved in
water, it is necessary to heat the mixture above the sol-gel transition point to reduce viscosity
and be able to spinning. Alternatively, the use of organic solvents allows destabilizing the triple
helix of the gelatin structure and thus it is possible to form gelatin-based electrospun nanofi-
bers. In this regard, formamide, dimethylsulfoxide, acetic acid, formic acid, trifluoroethanol,
and ethyleneglycol have been used to improve the electrospinnability of gelatin [86].

In order to achieve specific bioactivity towards bone applications, the incorporation of
calcium phosphates and bioactive glasses seems to obtain satisfactory results [87-89]. As
can be seen in Figure 2, the incorporation of biphasic calcium phosphate nanoparticles into
polyvinyl alcohol and gelatin electrospun fibers forms a potentially advantageous material for
attaining bone repair abilities in vitro and in vivo. The inclusion of the nanoparticles in the
fibers increases the diameter of the fibers, the tensile strength, the adhesion and proliferation
of human osteoblast-like MG-63 cells derived from human osteosarcoma as well as the ex-
pression of proteins related to bone formation. In addition, in the in vivo studies carried out
on rat calvaria defects increased bone formation was observed at 2 and 4 weeks [90].

The use of biocompatible conductive polymers in order to deliver locally electrical
stimuli is another strategy employed in formulations designed for bone tissue engineering.
Piezoelectricity is one of the intrinsic electrical properties of the bone, which was discovered
in 1950 [91]. This property has an extensive effect on the control of proliferation of osteoblasts.
For this reason, in the research works carried out in recent years, it has been clearly stat-
ed that electrical and electromagnetic stimulation has a progressive influence on the treat-
ment of bone healing, modifying activities of the osteoblasts [92]. More and more gelatin
based matrices fabricated with electrospinning technique include in their designs conductive
specific polymers, such as aniline [93]. In fact, recent data suggest that this incorporation not
only improves the structural properties of the scaffolds but also increases bone healing by
electrical stimulation [94].
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Figure 2. Biodegradable functional nanofibers of polyvinyl alcohol/Gelatin (PVA/GE) containing
nanoparticles of biphasic calcium phosphate (BCP) for bone regeneration. (A) Morphology ob-
served by SEM of (al) PVA/GE fibers, (a2) 20%BCP-PVA/GE fibers, (a3) 40%BCP-PVA/GE fibers
and (a4) 50%BCP-PVA/GE fibers. (B) Human osteoblast-like MG-63 cells attachment on electrospun
membranes after 30 and 60 min seeding observed by SEM. (C) Confocal images of osteoblasts on
electrospun membranes 3 and 7 days after incubation. (D) Micro-CT images and 3D reconstructed
images of negative control and prototypes membranes implanted on a rat calvarial bone defect. Adapted,
with permission from [90].
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4. OTHER GELATIN APPROACHES

As mentioned above, one of the most interesting advantages of this material is the ability
to use it to set down disparate formulations types. The easy handling and processability make
it an ideal candidate to design diverse 3D efficient approaches for hard tissues regeneration
purposes. Gelatin has been used in recent years as a material to create particles of nanometric
and micrometric size as well as formulations that gel in situ, so that they can be injected di-
rectly into the site of interest without having to be implanted.

4.1 Particles (Nano and Microparticles)

Gelatin has been widely used as a particulate formulation material, providing different
characteristics suitable for the design of strategies to improve the regeneration of bone tissue.

Nanoparticles and microparticles differ in their diameter size. Polymeric nanoparticles are
considered colloidal solid carriers of size between 1 and 1000 nm, while the microparticles
have a diameter of several microns. In these systems, an inner core of oily or aqueous phase
is covered by a polymeric membrane. When the central nucleus is composed of a vesicular
system, they are called capsules (nanocapsules or microcapsules), whereas the spheres are
matrix systems where the bioactive molecules are usually dispersed uniformly [95]. One of
the most interesting characteristics of microparticles is their large surface area which makes
them suitable for the exchange of nutrients and waste products improving the viability of
enclosed cells. This property makes them useful as vehicles for cell therapy even for large
bioactive molecules to be released at the site of interest [96].

In recent years different methods have been optimized to design and manufacture gelatin
particles intended to use in the field of tissue engineering. The best-known methods of
preparing nanoparticles are two-step desolvation, simple coacervation, solvent evaporation,
microemulsion, nanoprecipitation and self-assembly technique [97]. As far as the pro-
duction of gelatin microparticles is concerned, the widest method used has been to date
water-in-oil-emulsion technique, followed by a crosslinking process. Nevertheless, a great
deal of effort is being made to optimize more advanced production processes, to create for-
mulations with improved surface properties [98].

In a work carried out with gelatin type A modified with succinyl groups, it was possi-
ble to synthesize nanoparticles mineralized with crystals of HA, thanks to complexation of
calcium ions produced on the surface of the gelatin [29]. In fact, the composite formed by
gelatin and HA has achieved satisfactory results in many studies carried out to analyze the
osteoregenerator capacity of this combination [99]. As shown in Figure 3, uniformly spherical
microparticles of gelatin-HA ranging in size from 5 to 10 um showed 90% of new bone formed
in bone defects caused in Sprague-Dawley rat calvaria model. In the cytotoxicity studies with
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human osteoblast-like cell line G-292, the results showed minimal cytotoxic effects, consider-
ing as non-toxic for tissue engineering [100].

Figure 3. Gelatin-hydroxyapatite (G-HA) composite microspheres for hard tissue repair. SEM
images of G-HA microspheres (AI and AII) and osteoblast-like cells on the surface of microspheres
(AIII-AVI) after 14 days of culturing. (B) Photography of calvarial defects after the implantation with
fibrin glue (F), G-HA and Osteoset® Bone Graft Substitute (OS) for 2 weeks, 4 weeks and 8 weeks.
Adapted, with permission, from [100].

Overall, it is fairly easy to introduce particular motifs into the structure of the gelatin. This
facilitates functionalizing the material to achieve selective targeting to specific tissues. Farbod
K. et al. conjugated successfully biocompatible gelatin nanoparticles with bone-targeting
alendronate to create formulations targeted to mineralized tissues. Biphosphonate groups of
alendronate present strong affinity to the mineral phase of bone tissue [101].

Another desirable application of gelatin particles when designing prototypes aimed at
using for bone regeneration is the combination of these 3D spherical structures with synthetic
polymers, with the aim of improving the biodegradation profile of these materials. The incor-
poration of gelatin nanoparticles into nanofibrous scaffolds composed of polycaprolactone
has been shown to result in more efficient degradation and reabsorption rates in simulated
body fluid, obtaining 7 um length nanofibers in less than 8 weeks. Furthermore, the presence
of these nanoparticles increases the pore size of the scaffold and the cellular infiltration of
hMSCs into the same is improved [102].

The use of gelatin microparticles in cell delivery systems turns out to be an interest-
ing strategy to improve the effectiveness of cell therapy. Incorporation of empty gelatin
microparticles into cell-containing hydrogels has been shown to serve as anchoring sites
after enzymatic degradation of them, acting as porogen and cell attachment sites [103].
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In recent years, some authors have focused on studying the advantages of gelatin micro-
particles in the osteogenic differentiation of hMSCs [103-106]. Promisingly, the incorpora-
tion of microparticles of gelatin in mesenchymal stem cell spheroids does not change the
organization of the cells, although significantly impacts spheroid mechanical properties. In
fact, the presence of these microparticles makes the cellular microenvironment more rigid
facilitating the differentiation to lineages present in stiffer tissues, such as bone [105].

Similarly, the effects on MMP activity and cell differentiation induced by incorporating
gelatin methacrylate microparticles into embryonic stem cell aggregates was investigated
in vitro. The expression level of MMP was increased, which facilitates the remodeling of the
ECM and the control of cell differentiation. These results suggest the possibility of modulating
mesenchymal morphogenesis and stem cell differentiation by incorporating degradable parti-
cles based on ECM materials by modifying the activity of proteases [106]. Another strategy to
control the degree of differentiation relies on the use of gelatin particles loaded with specific
growth factors with the objective of creating morphogenic gradients within the pluripotent
stem cell aggregates [107].

Gelatin particles have also been explored as a vehicle for therapeutic agents for tissue
engineering and regenerative medicine purposes. In fact, the electrostatic properties
and proteolytic degradation make gelatin quite unique to design formulations for sustained
release of biologically active factors. As an example, several works have studied the potential
impact of bone morphogenetic protein-2 (BMP-2) containing gelatin particles to promote
and accelerate bone regeneration.

When BMP-2 is loaded into the gelatin particles and prolonged in vitro release thereof is
achieved, the released protein remains bioactive, resulting in a significant increase in bone
formation [108]. The release profile has an initial minimal burst effect followed by a linear
release kinetics. There are several factors that affect the profile of this kinetics. The dose has
limited effect on the release pattern whereas the isoelectric character of the gelatin has a
fundamental role due to the ionic complexion that is created between them. The crosslinking
degree of the particles also affects the kinetics since the controlled release is based on the
enzymatic degradation of the gelatin [109]. One of the efficient strategies to achieve extended
sustained release of this osteogenic protein is the possibility to combine gelatin with heparin,
as it provides binding sites and stabilizes the growth factor, allowing greater protection against
denaturation and proteolytic degradation [110]. Another possibility for improving control
over the release is to form microparticles with gelatin modified with methacryloyl groups
since potent platform for the controlled release of electrostatically bound growth factors for
emerging tissue engineering approaches will be achieved [111].
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Designing multiple growth factors delivery systems could be a potentially interest-
ing therapeutic tool for enhancing the efficacy of agents involved in the regeneration process.
The incorporation of microparticles loaded with different growth factors into hydrogels is an
effective approach to achieve this objective. These systems have the ability to release bioactive
factors in a multimodal mode [112]. For example, in a study performed with periodontal
ligament fibroblasts the incorporation of gelatin microparticles loaded with either BMP-2,
insulin-like growth factor 1 (IGF-1), or a mixture of both microparticles into macroporous
scaffolds resulted in greater effects of ALP activity, more calcium deposition and higher
osteocalcin and osteopontin production. This scaffolds containing dual microparticles can be
useful as a drug delivery vehicle to improve cells attachment, proliferation and osteoblastic
differentiation of periodontal ligament fibroblasts in a synergistic manner [113]. In a similar
study, it was concluded that the initial release of BMP-2 from a chitosan gel followed by the
release of IGF-1 from gelatin microparticles may result in an effective strategy to achieve
increased bone cell osteoblastic activity [114]. A very important aspect to take into account
when designing dual synergetic systems with several growth factors is the dosing and release
timing. As an example, depending on the dose ratios used for the combination of BMP-2 with
basic fibroblast growth factor (bFGF), an increase in osteogenesis or block bone formation
was achieved in rats with distal femoral condyle bone defect [73].

4.2 In situ forming gels

In situ gelling formulations are injectable substitutes that can be administered with
minimally invasive surgical procedures. This property has contributed to join forces in
developing efficient systems for tissue engineering, since giving the step to the clinic seems
more feasible. Regarding the advantages of these formulations in comparison to preformed
3D scaffolds, the ability to treat irregular shaped osseous defects may be one of the most
important characteristics, since they are injected directly into the injury sites thanks to their
fluidity. The formulations must be able to replicate a spatially organized platform with fea-
tures of bone tissue to use as bone filler for orthopedic and craniofacial reconstructions in
regenerative medicine [115,116].

It is well established that in situ formation of the gel must be produced under physiologi-
cal, fast and selective conditions. Regarding the methodologies developed to design this type
of prototypes chemical crosslinking, electrostatic interactions, self-assembly strategies, as well
as stimuli-response methods have achieved hopeful results [117]. Significant efforts are now
being made to develop gelatin-based formulations having the optimal properties to be injected
[118]. In this respect, an advanced “Host-Guest Macromer” approach has shown satisfactory
results in the production of hydrogels with bioadhesive properties and the ability to retain
and release hydrophobic agents. This macromer consists on the complexation between aro-
matic residues of gelatin and the free diffusing photocrosslinkable acrylated -cyclodextrins.
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UV irradiation is necessary for the initiation of the physical polymerization of the gelatin
strands [119].
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Figure 4. Effect of BMP-2 and matrix stiffness on osteogenesis. In vitro and in vivo osteogenesis
analysis with gelatin-mTG (TG-Gel) in situ gelling formulations. (A) Evaluation of osteogenic
differentiation of C2C12 cells encapsulated in TG-Gel in medium with or without BMP-2 supplemen-
tation by osteogenic transcript levels: osteoblast, ALP activity, osteocalcin, osteopontin and collagen 1
(Coll). The mRNA expression of TG-Gel in the medium supplied with BMP-2 is normalized with respect
to those in the medium without BMP-2 supplementation. Data are mean + standard deviation, statisti-
cal differences (* p<0.05; ** p<0.01; *** p<0.001). (B) Comparison of bone formation in cranial overlay
model after 28 days of subcutaneous injection of TG-Gel formulations with or without supplementation
of BMP-2. -: no bone, +: 1-25% bone, ++: 25-50%, +++: 50-75%. ++++: 75-100% bone. Adapted, with
permission, from [123].
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Promisingly, Sandeep T. et al. have developed another gelatin-based hydrogel that
does not require any external energy input, catalyst or polymerization initiator, while the
crosslinking occurs in non-toxic conditions. In this case, the polymerization arises from the
inverse electron demand Diels-Alder click reaction occurred between the functional groups
tetrazine and norborene attached to the gelatin strands [120]. Importantly, the mechanical
properties of these hydrogels can be tuned for even soft and stiff tissues regeneration [121].

As mentioned above, the use of enzymes is especially interesting to achieve specificity
when crosslinking the gelatins strands. Injectable gelatin hydrogels crosslinked with mTG
enzyme may have adequate mechanical properties to be used in bone regenerative medicine
as temporary substrates. In addition, synergic effects arise with the incorporation of specific
growth factors (Figure 4). Osteoconductive formulations capable of forming new bone in
cranial defect sites are fabricated using this enzyme as the crosslinking agent [122,123].

Another interesting strategy that seems to be interesting to facilitate defect closure and
formation of new bone, it is the addition of calcium components in the gelatin based injectable
formulations [74]. For example, calcium phosphate powder can provide the hydrogel with
capacity for the osteogenic differentiation of stem cells and improve the mechanical proper-
ties of the system. Recently, an advanced hydrogel-ceramic composite has been successfully
designed combining fish scale-derived calcium phosphate with gelatin-3-(4-hydroxyphenyl)
propionic acid and carboxymethyl cellulose-tyramine hydrogel system [124].

5. CONCLUDING REMARKS AND FUTURE PERSPECTIVES

This review offers an extensive overview of the potential of gelatin as a biomaterial for its
use in bone tissue repair and regeneration. Regarding the possible formulations that can be
prepared with gelatin as the main material, 3D porous scaffolds and nanofibrous implantable
systems are more appropriate for large bone defects. On the other hand, for the reconstruc-
tion of irregular defects, it seems that the injectable materials can provide better results. These
formulations are based on semi-liquid materials that are polymerized in situ in physiologi-
cal conditions. Despite the significant progress has been made already, efforts must continue
to move this biomaterial forward to routine clinical practice. Promisingly, advances in the
successful development of 3D bio-printing systems can yield satisfactory results in the design
of irregular prototypes based on the results obtained from the imaging techniques of the de-
fect. Further progressions in regulatory concerns related to safety and reproducibility, as well
as improvement in fabrication methods, for example by designing operator-free technologies,
will help to translate novel advanced gelatin-based formulations into the clinic. Operator-free
technologies are fabrication processes developed with the aim of minimizing the manipula-
tion by the operator and thus reduce experimental errors and improve reproducibility.

76



Introduction

6. ACKNOWLEDGEMENTS

Authors wish to thank project SAF2016-76150-R from the Spanish Ministry of Science
and intellectual and technical assistance from the ICTS “NANBIOSIS”, more specifically
by the Drug Formulation Unit (U10) of the CIBER in Bioengineering, Biomaterials &
Nanomedicine (CIBER-BBN) at the University of the Basque Country (UPV/EHU). We
also appreciate the support to research on cell microencapsulation from the University of
the Basque Country UPV/EHU (UFI 11/32), the Basque Country Government (Grupos
Consolidados, N° ref: IT428-10). MCE also thanks to the Basque Country Government
(Departamento de Educacién, Universidades e Investigacion) for the granted fellowship.

7. REFERENCES

[1] US. Government Information on Organ Donation and Transplantation 2017. Available via http://www.
organdonor.gov/statistics-stories/statistics.html. Accessed January 2017

[2] Y. Tabata, Recent progress in tissue engineering, Drug Discov. Today. 2001;6:483-487.
[3] R. Langer, J.P. Vacanti, Tissue engineering, Science. 1993;260:920-926.

[4] LI. Tabata, The importance of drug delivery systems in tissue engineering, Pharm. Sci. Technolo Today.
2000;3:80-89.

[5] . Henkel, M.A. Woodruff, D.R. Epari, R. Steck, V. Glatt, I.C. Dickinson, P.E. Choong, M.A. Schuetz, D.W.
Hutmacher, Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective, Bone Res.
2013;1:216-248.

[6] D.W. Hutmacher, Scaffolds in tissue engineering bone and cartilage, Biomaterials. 2000;21:2529-2543.

[7] H. Cheung, K. Lau, T. Lu, D. Hui, A critical review on polymer-based bio-engineered materials for scaffold
development, Composites Part B: Engineering. 2007;38:291-300.

[8] H. Shegarfi, O. Reikeras, Review article: bone transplantation and immune response, J. Orthop. Surg.
2009;17:206-211.

[9] M.A. Fernandez-Yague, S.A. Abbah, L. McNamara, D.I. Zeugolis, A. Pandit, M.]. Biggs, Biomimetic ap-
proaches in bone tissue engineering: Integrating biological and physicomechanical strategies, Adv. Drug Deliv. Rev.
2015;84:1-29.

[10] D. Hoy, J.A. Geere, E Davatchi, B. Meggitt, L.H. Barrero, A time for action: Opportunities for preventing
the growing burden and disability from musculoskeletal conditions in low- and middle-income countries, Best
Pract. Res. Clin. Rheumatol. 2014;28:377-393.

[11] S. Kuttappan, D. Mathew, M.B. Nair, Biomimetic composite scaffolds containing bioceramics and collagen/
gelatin for bone tissue engineering - A mini review, Int. J. Biol. Macromol. 2016;93:1390-1401.

[12] M. Foox, M. Zilberman, Drug delivery from gelatin-based systems, Expert Opin. Drug Deliv.
2015;12:1547-1563.

[13] A.A. Karim, R. Bhat, Fish gelatin: properties, challenges, and prospects as an alternative to mammalian
gelatins, Food Hydrocolloids. 2009;23:563-576.

[14] D. Olsen, C. Yang, M. Bodo, R. Chang, S. Leigh, J. Baez, D. Carmichael, M. Perala, E.R. Hamalainen, M.
Jarvinen, J. Polarek, Recombinant collagen and gelatin for drug delivery, Adv. Drug Deliv. Rev. 2003;55:1547-1567.

[15] K. Su, C. Wang, Recent advances in the use of gelatin in biomedical research, Biotechnol. Lett.
2015;37:2139-2145.

77



Introduction

[16] J. Xu, Y. Xia, C.D. Qiao, W. Zhu, Y. Wang, T.D. Li, Solid-state structure of gelatin-mono epoxy terminated
polydimethylsiloxane polymer: effect of electrostatic and hydrophobic interactions, Colloids Surf. B Biointerfaces
2014;123:945-950.

[17] EA. de Wolf, Chapter V Collagen and gelatin, Prog. Biotechnol. 2002;23:133-218.

[18] M. Yamamoto, Y. Ikada, Y. Tabata, Controlled release of growth factors based on biodegradation of gelatin
hydrogel, J. Biomater. Sci. Polym. Ed. 2001;12:77-88.

[19] M. Santoro, A.M. Tatara, A.G. Mikos, Gelatin carriers for drug and cell delivery in tissue engineering, J.
Control. Release. 2014;190:210-218.

[20] J. Vandooren, PE. Van Den Steen, G. Opdenakker, Biochemistry and molecular biology of gelatinase B or
matrix metalloproteinase-9 (MMP-9): The next decade, Crit. Rev. Biochem. Mol. Biol. 2013;43:222-272.

[21] T.T. Hoang Thi, J.S. Lee, Y. Lee, K.M. Park, K.D. Park, Enhanced Cellular Activity in Gelatin-Poly(Ethylene
Glycol) Hydrogels without Compromising Gel Stiffness, Macromol. Biosci. 2016;16:334-340.

[22] E Wang, Y. Li, Y. Shen, A. Wang, S. Wang, T. Xie, The functions and applications of RGD in tumor therapy
and tissue engineering, Int. J. Mol. Sci. 2013;14:13447-13462.

[23] H. Babin, E. Dickinson, Influence of transglutaminase treatment on the thermoreversible gelation of gelatin,
Food Hydrocolloids. 2001;15:271-276.

[24] R. Schrieber, H. Gareis, From Collagen to Gelatine, in: From Collagen to GelatineGelatine Hanbook, Wiley-
VCH Verlag GmbH & Co. KGaA, 2007, pp. 45-117.

[25] Z. Yang, Y. Hemar, L. Hilliou, E.P. Gilbert, D.]. McGillivray, M.A. Williams, S. Chaieb, Nonlinear Behavior
of Gelatin Networks Reveals a Hierarchical Structure, Biomacromolecules 2016;17:590-600.

[26] B.J. Klotz, D. Gawlitta, A.]. Rosenberg, J. Malda, EP. Melchels, Gelatin-Methacryloyl Hydrogels: Towards
Biofabrication-Based Tissue Repair, Trends Biotechnol. 2016;34:394-407.

[27] A.H. Nguyen, ]. McKinney, T. Miller, T. Bongiorno, T.C. McDevitt, Gelatin methacrylate microspheres for
controlled growth factor release, Acta Biomater. 2015;13:101-110.

[28] K. Yue, G. Trujillo-de Santiago, M.M. Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, Synthesis, prop-
erties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels, Biomaterials. 2015;73:254-271.

[29] Y. Yang, H. Tang, A. Kowitsch, K. Mader, G. Hause, J. Ulrich, T. Groth, Novel mineralized heparin-gelatin
nanoparticles for potential application in tissue engineering of bone, J. Mater. Sci. Mater. Med. 2014;25:669-680.

[30] M.A. Vandelli, M. Romagnoli, A. Monti, M. Gozzi, P. Guerra, F. Rivasi, E. Forni, Microwave-treated gelatin
microspheres as drug delivery system, J. Control. Release. 2004;96:67-84.

[31] M. Watanabe, H. Li, A.G. Kim, A. Weilerstein, A. Radu, M. Davey, S. Loukogeorgakis, M.D. Sanchez, K.
Sumita, N. Morimoto, M. Yamamoto, Y. Tabata, A.W. Flake, Complete tissue coverage achieved by scaffold-based
tissue engineering in the fetal sheep model of Myelomeningocele, Biomaterials. 2016;76:133-143.

[32] T. Saito, Y. Tabata, Preparation of gelatin hydrogels incorporating low-molecular-weight heparin for anti-fi-
brotic therapy, Acta Biomater. 2012;8:646-652.

[33] T.R. Correia, P. Ferreira, R. Vaz, P. Alves, M.M. Figueiredo, L.]. Correia, P. Coimbra, Development of UV
cross-linked gelatin coated electrospun poly(caprolactone) fibrous scaffolds for tissue engineering, Int. J. Biol.
Macromol. 2016;93:1539-1548.

[34] A.J. Kuijpers, G.H. Engbers, J. Krijgsveld, S.A. Zaat, J. Dankert, J. Feijen, Cross-linking and characterisation
of gelatin matrices for biomedical applications, J. Biomater. Sci. Polym. Ed. 2000;11:225-243.

[35] K. Maji, S. Dasgupta, K. Pramanik, A. Bissoyi, Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass
3D Porous Scaffold for Bone Tissue Engineering, Int. J. Biomater. 2016:9825659.

[36] K. Sisson, C. Zhang, M.C. Farach-Carson, D.B. Chase, ].F. Rabolt, Evaluation of cross-linking methods for
electrospun gelatin on cell growth and viability, Biomacromolecules 2009;10:1675-1680.

78



Introduction

[37] S.A. Poursamar, A.N. Lehner, M. Azami, S. Ebrahimi-Barough, A. Samadikuchaksaraei, A.P. Antunes, The
effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas
foaming method as a tissue engineering scaffold, Mater. Sci. Eng. C. Mater. Biol. Appl. 2016;63:1-9.

[38] K. De Clercq, C. Schelthout, M. Bracke, O. De Wever, M. Van Bockstal, W. Ceelen, J.P. Remon, C. Vervaet,
Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: In vitro and in
vivo characterization, Biomaterials 2016;96:33-46.

[39] Y. Zhang, Q.S. Wang, K. Yan, Y. Qi, G.E Wang, Y.L. Cui, Preparation, characterization, and evaluation of
genipin crosslinked chitosan/gelatin three-dimensional scaffolds for liver tissue engineering applications, J. Biomed.
Mater. Res. A. 2016;104:1863-1870.

[40] L.S. Teixeira, J. Feijen, C.A. van Blitterswijk, P.J. Dijkstra, M. Karperien, Enzyme-catalyzed crosslinkable
hydrogels: emerging strategies for tissue engineering, Biomaterials. 2012;33:1281-1290.

[41] T. Heck, G. Faccio, M. Richter, L. Thony-Meyer, Enzyme-catalyzed protein crosslinking, Appl. Microbiol.
Biotechnol. 2013;97:461-475.

[42] P. Taddei, V. Chiono, A. Anghileri, G. Vozzi, G. Freddi, G. Ciardelli, Silk fibroin/gelatin blend films cross-
linked with enzymes for biomedical applications, Macromol. Biosci. 2013;13:1492-1510.

[43] E Bertoni, N. Barbani, P. Giusti, G. Ciardelli, Transglutaminase reactivity with gelatine: perspective applica-
tions in tissue engineering, Biotechnol. Lett. 2006;28:697-702.

[44] M. Norouzi, I. Shabani, H.H. Ahvaz, M. Soleimani, PLGA/gelatin hybrid nanofibrous scaffolds encapsulat-
ing EGF for skin regeneration, J. Biomed. Mater. Res. A. 2015;106:2225-2235.

[45] S. Singaravelu, G. Ramanathan, M.D. Raja, N. Nagiah, P. Padmapriya, K. Kaveri, U.T. Sivagnanam,
Biomimetic interconnected porous keratin-fibrin-gelatin 3D sponge for tissue engineering application, Int. J. Biol.
Macromol. 2016;86:810-819.

[46] J.E. Mano, G.A. Silva, H.S. Azevedo, PB. Malafaya, R.A. Sousa, S.S. Silva, L.E. Boesel, ].M. Oliveira, T.C.
Santos, A.P. Marques, N.M. Neves, R.L. Reis, Natural origin biodegradable systems in tissue engineering and regen-
erative medicine: present status and some moving trends, J. R. Soc. Interface. 2007;4:999-1030.

[47] D. Nadeem, M. Kiamehr, X. Yang, B. Su, Fabrication and in vitro evaluation of a sponge-like bioactive-glass/
gelatin composite scaffold for bone tissue engineering, Mater. Sci. Eng. C. Mater. Biol. Appl. 2013;33:2669-2678.

[48] A. Samadikuchaksaraei, M. Gholipourmalekabadi, E. Erfani Ezadyar, M. Azami, M. Mozafari, B. Johari,
S. Kargozar, S.B. Jameie, A. Korourian, A.M. Seifalian, Fabrication and in vivo evaluation of an osteoblast-condi-
tioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration, J. Biomed. Mater. Res. A.
2016;104:2001-2010.

[49] S. Tavakol, M. Azami, A. Khoshzaban, I. Ragerdi Kashani, B. Tavakol, E. Hoveizi, S.M. Rezayat Sorkhabadi,
Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted so-
matic stem cells in rat, Cell Biol. Int. 2013;37:1181-1189.

[50] C. Jelen, G. Mattei, E. Montemurro, C. De Maria, M. Mattioli-Belmonte, G. Vozzi, Bone scaffolds with ho-
mogeneous and discrete gradient mechanical properties, Mater. Sci. Eng. C. Mater. Biol. Appl. 2013;33:28-36.

[51] M.A. Velasco, C.A. Narvaez-Tovar, D.A. Garzon-Alvarado, Design, materials, and mechanobiology of bio-
degradable scaffolds for bone tissue engineering, Biomed. Res. Int. 2015:729076.

[52] S. Samavedi, A.R. Whittington, A.S. Goldstein, Calcium phosphate ceramics in bone tissue engineering: a
review of properties and their influence on cell behavior, Acta Biomater. 2013;9:8037-8045.

[53] L. Cheng, Y. Shi, E. Ye, H. Bu, Osteoinduction of calcium phosphate biomaterials in small animals, Mater.
Sci. Eng. C. Mater. Biol. Appl. 2013;33:1254-1260.

[54] C. Sharma, A.K. Dinda, PD. Potdar, C.E. Chou, N.C. Mishra, Fabrication and characterization of novel
nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering, Mater. Sci. Eng.
C. Mater. Biol. Appl. 2016;64:416-427.

[55] Y. Zuo, X. Liu, D. Wei, J. Sun, W. Xiao, H. Zhao, L. Guo, Q