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A formal description of typical compartmental epidemic models obtained is presented by splitting the state into an infective
substate, or infective compartment, and a noninfective substate, or noninfective compartment. A general formal study to obtain the
reproduction number and discuss the positivity and stability properties of equilibrium points is proposed and formally discussed.
Such a study unifies previous related research and it is based on linear algebraic tools to investigate the positivity and the stability
of the linearized dynamics around the disease-free and endemic equilibrium points. To this end, the complete state vector is split
into the dynamically coupled infective and noninfective compartments each one containing the corresponding state components.
The study is then extended to the case of commensurate internal delays when all the delays are integer multiples of a base delay.
Two auxiliary delay-free systems are defined related to the linearization processes around the equilibrium points which correspond
to the zero delay, i.e., delay-free, and infinity delay cases. Those auxiliary systems are used to formulate stability and positivity
properties independently of the delay sizes. Some examples are discussed to the light of the developed formal study.

1. Introduction

Epidemicmodels have beenwidely studied in the last decades
involving several inter-actuating subpopulations withmutual
coupled dynamics. Important properties which have to be
required to the epidemic models for their well-posedness are
their solution positivity under any given nonnegative initial
conditions as well as their stability conditions around one of
the equilibrium points. Thus, relevant background literature
has dealt with the study of these issues for different types
of epidemic models, in both continuous and discrete-time
[1–5]. A general result is that the disease-free equilibrium
point is locally asymptotically stable when the endemic one
is not reachable and if this last one is reachable (i.e., allocated
within the closed first orthant of the real space including any
trajectory solution) then it is locally stable while the disease-
free equilibrium one is unstable. The reachability of the

endemic equilibrium point, as well as the stability properties
of the equilibrium points, is definitely linked with the value
of the so-called reproduction number (sometimes referred to
as “basic reproduction number” or “basic reproduction ratio”
in the literature [4, 5]). If such a reproduction number is less
than unity then the disease-free equilibrium point is locally
asymptotically stable and the endemic one is unattainable
(or unreachable) since it has some negative component for
some infective subpopulation. This fact implies the global
asymptotic stability to the disease-free equilibrium point
provided that all the infective subpopulations are asymptot-
ically stable. However, if the reproduction number exceeds
unity, then the disease-free equilibrium point is unstable and
the endemic equilibrium point is reachable (or attainable)
so that the disease becomes permanent through time. The
frontier between both situations typically occurs when the
reproduction number is unity. See, for instance, [6–12] and
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some references therein. In those studies, the first orthant of
the space state is an invariant subspace as a result of the non-
negativity properties of the state trajectory solutions which is
also an invoked property of other biological problems related
to species evolution dynamics. See, for instance, [13] and
some references therein. Since the reproduction number is a
very important tool to have a biological insight about if the
disease is either permanent (more than one contagion per
infectious individual, in average) or it extinguishes (less than
one contagion per infectious individual, in average) many
efforts have been done to calculate it for different epidemic
models, [4, 5]. The calculation is usually performed in a
case-by-case fashion providing the value of the reproduction
number for each particular considered model. It turns out
that there are no general analysis tools available in the
background literature to discuss those properties based on
general reasonable and generic assumptions independent of
the particular epidemic model. Although these kinds of results
are known from the background literature in a variety of epi-
demicmodels, they are revisited and presented here in a general
framework as a fruitful combination of algebraic results based
on positivity and stability of the linearized systems around the
equilibrium points. Thus, a general technique to obtain the
reproduction number and discuss the stability properties of
equilibrium points for any type of compartmental epidemic
models is proposed and discussed. The formal study is based
on linear algebraic tools to investigate the positivity and the
stability of the linearized dynamics around the disease-free
and endemic equilibrium points. Consequently, our results
unify previous research in this respect. To this end, the origi-
nal state vector is split into the dynamically coupled infective
and noninfective compartments each one containing the
corresponding state components.The infective compartment
includes the dynamics of all the infective subpopulations
in the model, typically, the exposed, asymptomatic and
symptomatic infectious and dead-infective, if considered in
the model. The noninfective compartment is composed of
the subpopulations being free of the disease and typically
contains the dynamics of the susceptible and the recovered.
For the subsequent study development, the characteristics
of the state transition matrices of the linearized infective
compartments around the equilibriumpoints of the epidemic
models, which are Metzler matrices, [14, 15], as well as
their stability properties and the relations of their properties
to those of their opposite 𝑀 – matrices, are seen to be
crucial mathematical tools. The main reason is that the
linearized epidemic system versions around the equilibrium
points have also to possess nonnegative solution trajectories
since the whole epidemic model has nonnegative solution
trajectories under any given nonnegative initial conditions. In
particular, such state transition matrices define the so-called
next generation matrix [4] of the infective compartment.The
maximummodulus of such amatrix is the relevant parameter
to characterize the stability of the infective compartment
and it often determines the disease reproduction number.
It is also a crucial fact in the analysis the property that the
transmissions matrices 𝐹 of such linearized systems around
the equilibrium points are nonnegative. If the Perron root
of the auxiliary matrix (next generation matrix) 𝐹𝑉−1, with

(−𝑉) being the disease transition matrix, i.e., its maximum
real positive eigenvalue, [2, 3, 16], is less than unity then the
linearized system around the disease-free equilibrium point
is proved to be locally asymptotically stable and conversely. It
is also proved that the reproduction number is linked to the
Perron root of the above auxiliary matrix, which coincides
with its spectral radius in typical examples of epidemic
models.The presence of delays is an important modeling tool
in epidemiology [11, 17] in cases when there are successive
outbreaks and regrowths of the disease intensity caused by
increase of the transmission vector numbers or external
immigration to the environment under study in the model.
Therefore, once the above general algebraic framework is set
for delay-free models, the above study is extended to epidemic
models under, in general, incommensurate (in the sense that
they are not all integer multiple of the smaller, or base, delay)
state point delays, [18]. The case of commensurate delays is
a particular case of the above one when all the delays are
integer multiples of the base delay [19–23]. Two auxiliary
delay-free systems are defined related to the linearization
processes around the equilibrium points which correspond
to the zero delay, i.e., delay-free, and infinity delay cases.
Those auxiliary systems are used to formulate stability and
positivity properties, independent of the delay sizes, for the
whole epidemic model. As a result of the developed formal
treatment, the reproduction number in the delayed case is
not directly given by the spectral radii of certain matrices
related to the delay-auxiliary free and infinity delay linearized
systems around the equilibrium points. Those spectral radii
are, in general, lower bounds of the reproduction number.
In particular, they give a guaranteed worst-case measure of
guaranteed stability of the disease-free equilibrium point.

The remaining main body is organized in two more
sections referred to the model analysis in the delay-free case
and under the presence of delays. The positivity and stability
of the solutions in both cases are formally discussed in a
general context, rather than for specific models, based on
the linearization analysis on the infective compartment for
the disease-free and endemic equilibrium points. Illustrative
examples referred to the formal links of the presented
mathematical framework to particular epidemic models are
discussed. Two given appendices are given which contain
auxiliary technical results on stability of Metzler and 𝑀-
matrices and on the uniqueness of the equilibrium points.

1.1. Notation

𝑝 = {1, 2, . . . , 𝑝},
R0+ = R+∪{0} = {𝑟 ∈ R : 𝑟 ≥ 0};R+ = {𝑟 ∈ R : 𝑟 > 0},
R0− = R−∪{0} = {𝑟 ∈ R : 𝑟 ≤ 0};R− = {𝑟 ∈ R : 𝑟 < 0},
C0+ = C+ ∪ {i𝜔 : 𝜔 ∈ R} = {𝑧 ∈ C : Re 𝑧 ≥ 0};
C+ = {𝑧 ∈ C : Re 𝑧 > 0}; i = √−1 is the complex
unity; 𝐶(0, 1) is the closed circle in C centred at 0
and radius one of boundary 𝜕𝐶(0, 1) (that is, the unit
circumference),
C0− = C− ∪ {i𝜔 : 𝜔 ∈ R} = {𝑧 ∈ C : Re 𝑧 ≤ 0};
C− = {𝑧 ∈ C : Re 𝑧 < 0};
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If 𝐴 = (𝐴 𝑖𝑗) ∈ R𝑝×𝑞 then (1) 𝐴 ⪰ 0 (in words: 𝐴 is a
nonnegative matrix) means that 𝐴 𝑖𝑗 ≥ 0; ∀𝑖 ∈ 𝑝, ∀𝑗 ∈ 𝑞.
An equivalent notation is 𝐴 ∈ R𝑝×𝑞

0+ . Similarly, if 𝐴, 𝐵 ∈ R𝑝×𝑞

then 𝐴 ⪰ 𝐵 means that 𝐴 − 𝐵 ⪰ 0 and 𝐴 ⪯ 0 means that−(𝐴) ⪰ 0.
(2) 𝐴 ≻ 0 (in words: 𝐴 is a positive matrix) means that𝐴( ̸= 0) ⪰ 0, that is, 𝐴 ⪰ 0 with at least one positive entry.

Similarly, if 𝐴, 𝐵 ∈ R𝑝×𝑞 then 𝐴 ≻ 𝐵 means that 𝐴 − 𝐵 ≻ 0
and 𝐴 ≺ 0means that −(𝐴) ≻ 0.

(3) 𝐴 ≻≻ 0 (in words: 𝐴 is a strictly positive matrix)
means that 𝐴 𝑖𝑗 > 0; ∀𝑖 ∈ 𝑝, ∀𝑗 ∈ 𝑞. An equivalent notation is𝐴 ∈ R𝑝×𝑞

+ . Similarly, if 𝐴, 𝐵 ∈ R𝑝×𝑞 then 𝐴 ≻≻ 𝐵 means that𝐴 − 𝐵 ≻≻ 0 and 𝐴 ≺≺ 0means that −(𝐴) ≻≻ 0,
It turns out that 𝐴 ≻≻ 0 󳨐⇒ 𝐴 ≻ 0 󳨐⇒ 𝐴 ⪰ 0.
The logic conjunction (“And”) and logic disjunction

(“Or”) of propositions are defined by the symbols “∧” and
“∨,” respectively. The logic negation (“No”) is defined by the
symbol “¬”. For instance, if 𝐴 ∈ R𝑝×𝑞 then ¬𝐴 = (𝐴 𝑖𝑗) ≻ 0
means that 𝐴 𝑖𝑗 < 0 for some (𝑖, 𝑗) ∈ 𝑝 × 𝑞.

For vectors V ∈ R𝑛, similar nonnegativity, positivity, and
strictly positivity notations are used, namely, V ⪰ 0, V ≻ 0,
V ≻≻ 0 and the corresponding nonpositivity, negativity, and
strict negativity counterpart notations.𝐼𝑛 is the identity 𝑛-matrix, and superscript 𝑇 denotes a
matrix transposition,𝜌(𝐴) = |𝜆max(𝐴)| is the spectral radius of 𝐴 ∈ R𝑝×𝑝,𝐴 ∈ R𝑝×𝑝 is a Metzler matrix, denoted by 𝐴 ∈ 𝑀𝑝×𝑝

𝐸 , if𝐴 𝑖𝑗 ≥ 0; ∀𝑖, 𝑗( ̸= 𝑖) ∈ 𝑝,𝐴 ∈ R𝑝×𝑝 is an 𝑀-matrix if 𝐴 𝑖𝑖 ≥ 0 and 𝐴 𝑖𝑗 ≤ 0; ∀𝑖, 𝑗( ̸=𝑖) ∈ 𝑝,‖𝐹(𝑠)‖∞ is the 𝐻∞ - norm of complex rational matrices𝐹 : C 󳨀→ 𝐶𝑝×𝑞 which are analytic in Re 𝑠 > 0; 𝑠 ∈ C. The
argument “s” stands for the Laplace transform argument.

2. Results for Delay-Free Epidemic Models

A general compartmental disease model of dimension (𝑚 +𝑛)can be written as [1]

𝑥̇ (𝑡) = 𝐹 (𝑥 (𝑡) , 𝑦 (𝑡)) − 𝑉 (𝑥 (𝑡) , 𝑦 (𝑡))
= (𝐹 − 𝑉) 𝑥 (𝑡) − 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡)) (1)

̇𝑦 (𝑡) = 𝑔 (𝑥 (𝑡) , 𝑦 (𝑡)) (2)

for any given 𝑧(0) = (𝑥𝑇(0), 𝑦(0)𝑇)𝑇, where 𝑛 and 𝑚 are
the respective dimensions of the disease and nondisease
compartments of respective state vectors 𝑥(𝑡) and 𝑦(𝑡),𝐹 ∈ R𝑛×𝑛 and (−𝑉) ∈ R𝑛×𝑛 are, respectively, the disease
transmission and state transition matrices of the linearized
system around the disease-free equilibrium point, and

𝑓 (𝑥 (𝑡) , 𝑦 (𝑡)) = (𝐹 − 𝑉) 𝑥 (𝑡) − 𝐹 (𝑥 (𝑡) , 𝑦 (𝑡))
+ 𝑉 (𝑥 (𝑡) , 𝑦 (𝑡)) = 𝜃 (𝑧 (𝑡)) 𝐺 (𝑧 (𝑡)) (3)

describes the higher-order contributions to the infective
compartment dynamics, where 𝑧(𝑡) = (𝑥𝑇(𝑡), 𝑦𝑇(𝑡))𝑇 is
the whole model state vector, 𝜃(𝑧(𝑡)) is the scalar positive

bounded incidence rate, and 𝐺(𝑧(𝑡)) = 𝐹(𝑧(𝑡))𝑧(𝑡), where𝐺(𝑧(𝑡)) ∈ R𝑛×(𝑛+𝑚) is a partitioned block matrix function
of the form 𝐺(𝑧(𝑡)) = [𝐺𝑥𝑥(𝑦(𝑡)) 𝐺𝑥𝑦(𝑦(𝑡))]. We can also
rename, by obvious reasons, the state vectors 𝑥(𝑡) and 𝑦(𝑡)
of the disease and nondisease compartments as the infective
and noninfective compartment (or substates) of the epidemic
model, respectively. The following assumptions are made.

Assumptions 1. 𝐹𝑖(0, 𝑦(𝑡)) = 𝑉𝑖(0, 𝑦(𝑡)) = 0; ∀𝑖 ∈ 𝑛 ={1, 2, . . . , 𝑛}, 𝐹𝑖(𝑥(𝑡), 𝑦(𝑡)) ≥ 0, 𝑉𝑖(𝑥(𝑡), 𝑦(𝑡)) ≤ 0 when 𝑥𝑖 = 0,
and ∑𝑛

𝑖=1 𝑉𝑖(𝑥(𝑡), 𝑦(𝑡)) ≥ 0 for all 𝑥(𝑡), 𝑦(𝑡) ⪰ 0.
The conditions of Assumptions 1 are invoked for the

nonnegativity of the state trajectory solution for initial con-
ditions in the first orthant and for the local stability of the
disease-free equilibrium point in the absence of infection,
i.e., under a zero reproduction number. See [1–3] for more
specific details. In [1–3], the matrices 𝐹 and 𝑉 are real square𝑛-matrices defined as the following Jacobianmatrices around
the disease-free equilibrium point 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇𝑑𝑓)𝑇:

𝐹 = [𝜕𝐹𝑖 (0, 𝑦𝑑𝑓)𝜕𝑥𝑗 ] ;

𝑉 = [𝜕𝑉𝑖 (0, 𝑦𝑑𝑓)𝜕𝑥𝑗 ]
(4)

The following assumptions on the above Jacobian matrices
are reasonable in the context of epidemic models [1]. The
notations 𝐹,𝑉 stand through the manuscript for the Jacobian
matrices around the disease-free equilibrium point. The
notations 𝐹𝑒, 𝑉𝑒 stand for their counterparts around the
endemic equilibrium point 𝑥𝑒𝑛𝑑 while the notations 𝐹0, 𝑉0
stand for any generic equilibrium point 𝑧0. It is well-known
in many typical existing epidemic models that 𝑧𝑒𝑛𝑑 and 𝑧𝑑𝑓
are coincident when the reproduction number is unity.

Assumptions 2. (a) The disease-free equilibrium point 𝑧𝑑𝑓 =(0𝑇, 𝑦𝑇𝑑𝑓)𝑇 is unique and the noninfective substate dynamicṡ𝑦(𝑡) = 𝑔(0, 𝑦(𝑡)) is locally asymptotically stable.
(b) The minus transition matrix 𝑉 of the infective states

of the linearized infective subsystem around the disease-free
equilibrium point is a nonsingular 𝑀-matrix with 𝑉−1 ≻ 0
while the corresponding transmission matrix fulfills 𝐹 ⪰ 0.

The above assumptions are very relevant from a physical
point of viewhaving inmind that (−𝑉) and𝐹 are, respectively,
the transition and transmission matrices of the linearized
system around the disease-free equilibrium point while (𝐹 −𝑉) is the matrix of the dynamics of such a system. It turns
out, in practice, that 𝐹 = 0 if and only if the coefficient
transmission rate 𝛽 is zero, that is, there is no disease
contagion in practice. Some conditions for the uniqueness of
the disease-free equilibrium point are given in Theorem B.1
of Appendix B based on the implicit function theorem. Some
conditions are also given for the uniqueness of the endemic
equilibrium point in Theorem B.2 of Appendix B based on
the Rouché-Frobenius test for compatibility of solutions in
algebraic systems. This alternative way of proof is taken on
the basis that distinct endemic equilibrium points can have
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distinct disease and nondisease endemic steady-state equi-
librium compartments while the disease-free equilibrium
has always zero infective substates. Both theorems are also
valid for the case of presence of internal delays. Note that
Assumption 2(b) can be stated in the following equivalent
form (see Theorem A.1 of Appendix A):

Assumption 3(b). The transition matrix (−𝑉) of the infec-
tive state of the linearized system around the disease-free
equilibrium point is a stability Metzler matrix while the
corresponding transmission matrix fulfills 𝐹 ⪰ 0.

Note that Assumption 3(b) is of a clear interpretation for
the linearization around the disease-free equilibrium point
while its equivalent form of Assumption 2 is easy to test since
it is not needed to calculate the allocation of the eigenvalues of
the matrix (−𝑉). Note also that 𝐹 = 𝐹(𝑅0, 𝑦𝑑𝑓) ⪰ 0 depends
on the disease-free equilibrium substate of the noninfective
components and on the reproduction number 𝑅0 associated
with the disease propagation. If 𝑅0 = 0 then 𝐹 = 𝐹(0, 𝑦𝑑𝑓) =0. Also, it usually occurs that if the epidemic model has only
a single constant transmission coefficient rate 𝛽, then 𝑅0 = 0
and 𝐹 = 0 if 𝛽 = 0.This section gives some elementary results
on positivity of the solutions and stability for the linearized
system around the disease-free equilibrium point in the case
of absence of modelling delays. The results are relevant since
if the linearized system around the disease- free equilibrium
point fails to be either positive or, respectively, stable then the
whole system cannot be either positive or, respectively, stable.
Two basic auxiliary results to be invoked concerning certain
technical relations betweenM-matrices andMetzler matrices
and their stability properties are given in Appendix A. The
following result on stability and positivity of the linearized
infective substate is derived under some of the conditions of
Assumptions 1-2:
Theorem 1. 	e following properties hold.

(i) 	e linearization of the epidemic model (1)-(2) around
the disease-free equilibrium point has a nonnegative infective
substate trajectory solution for any initial conditions 𝑥(0) ⪰ 0
and 𝑦(0) ⪰ 0 (i.e., the infective substate is nonnegative for all
time) if and only if (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 . A sufficient condition is
that (−𝑉) ∈ 𝑀𝑛×𝑛

𝐸 and 𝐹 ⪰ 0.
(ii) A necessary condition for an epidemic model (1)-(2) to

have a nonnegative solution trajectory, irrespective of the given
particular initial conditions 𝑥(0) ⪰ 0, 𝑦(0) ⪰ 0, is that (𝐹 −𝑉) ∈ 𝑀𝑛×𝑛

𝐸 .
(iii) 	e linearized infective substate around the disease-

free equilibrium point has a nonnegative solution which is
uniformly bounded for all time with 𝑥𝐿(𝑡) ⪰ 0; ∀𝑡 ∈ R0+ and𝑥𝐿(𝑡) 󳨀→ 0 exponentially as 𝑡 󳨀→ ∞ for any given initial
conditions 𝑥𝐿(0) = 𝑥(0) ⪰ 0, 𝑦𝐿(0) = 𝑦(0) ⪰ 0 if and only if
any of the two equivalent conditions given below holds:

(1) (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛
𝐸 is a stability matrix.

(2) (𝐹−𝑉) ∈ 𝑀𝑛×𝑛
𝐸 is nonsingular (or, equivalently, (𝑉−𝐹)

is a nonsingular𝑀-matrix) and (𝑉 − 𝐹)−1 ≻ 0.
A joint sufficiency-type condition for any of the above

Conditions (1)-(2) to hold is that (−𝑉) ∈ 𝑀𝑛×𝑛
𝐸 is nonsingular

(or, equivalently,𝑉 is a nonsingular𝑀-matrix),𝑉−1 ≻ 0,𝐹 ⪰ 0
and 𝜌(𝐹𝑉−1) < 1.

(iv)	e linearized infective substate around the disease-free
equilibriumpoint is nonnegative for any given initial conditions𝑥𝐿(0) = 𝑥(0) ⪰ 0, 𝑦𝐿(0) = 𝑦(0) ⪰ 0 and unstable if some of
the conditions given below hold:

(1) (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛
𝐸 is not a stability matrix.

(2) (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛
𝐸 and (𝑉 − 𝐹)−1 either does not exist or

if it exists is not positive.
(3) (−𝑉) ∈ 𝑀𝑛×𝑛

𝐸 and it exists as 𝑉−1 which is not positive,𝐹 ⪰ 0 and 𝜌(𝐹𝑉−1) > 1.
Proof. Thesolution of the linearized infective substate around
the disease-free equilibrium point is

𝑥𝐿 (𝑡) = 𝑒(𝐹−𝑉)𝑡𝑥𝐿 (0)
= 𝑒−𝑉𝑡 (𝑥𝐿 (0) + ∫𝑡

0
𝑒𝑉𝜏𝐹𝑥𝐿 (𝜏) 𝑑𝜏) (5)

It turns out that, for any 𝑥𝐿(0) ⪰ 0, 𝑥𝐿(𝑡) ⪰ 0 since𝑒(𝐹−𝑉)(𝑡−𝜏) ≻ 0 for any 𝜏(≤ 𝑡), 𝑡 ∈ R0+ and (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛
𝐸

[14], then, 𝑥𝐿(𝑡) ⪰ 0; ∀𝑡 ∈ R0+ for any given 𝑥𝐿(0) ⪰ 0
if (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 (first term of the solution 𝑥𝐿(𝑡)) or if(−𝑉) ∈ 𝑀𝑛×𝑛
𝐸 and 𝐹 ⪰ 0 (second term of the solution 𝑥𝐿(𝑡)).

Then (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛
𝐸 and (−𝑉) ∈ 𝑀𝑛×𝑛

𝐸 and 𝐹 ⪰ 0 are
both sufficient conditions for 𝑥𝐿(0) ⪰ 0 󳨐⇒ 𝑥𝐿(𝑡) ⪰ 0;∀𝑡 ∈ R0+. The necessity of (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 follows by
contradiction. If (𝐹 − 𝑉) ∉ 𝑀𝑛×𝑛

𝐸 then there exists at least
one entry 𝑖, 𝑗 ∈ 𝑛 such that (𝑒(𝐹−𝑉)𝑡)𝑖𝑗 < 0 for some 𝑡 > 0.
Then, it suffices to take 𝑥𝐿𝑗(0) > 0 and 𝑥𝐿𝑘(0) = 0; ∀𝑘( ̸=
𝑗) ∈ 𝑛 to conclude that 𝑥𝐿 𝑖(𝑡) = −|(𝑒(𝐹−𝑉)𝑡)𝑖𝑗|𝑥𝐿𝑗(0) < 0 so
that the infective substate is not positive. Thus, (𝐹 − 𝑉) ∈𝑀𝑛×𝑛

𝐸 is a necessary and sufficient condition of nonnegativity
of the solution of the infective linearized substate around
the disease-free equilibrium point for all time and any
nonnegative initial condition. Property (i) has been proved.
Property (ii) is obvious from the fact that a necessary
condition for nonnegativity of any solution under arbitrary
nonnegative initial conditions is that the property holds for its
linearized counterpart system. Property (iii) follows since, on
one hand, the given conditions of Metzler matrices guarantee
the nonnegativity of the linearized solution of the infective
substates for any nonnegative initial conditions and all time.
And, on the other hand, the convergence to the disease-free
equilibrium of such a linearized subsystem follows from the
stability of the Metzler matrices under the nonsingularity
and positivity of their negative 𝑀-matrices counterparts
according to Theorem A.1 [(i) to (iii)] and Theorem A.2 (ii)
of Appendix A. Property (iv) is a dual version for instability
of the sufficiency parts of Property (iii).

Note that if (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛
𝐸 for any given 𝐹 ⪰ 0 then(−𝑉) ∈ 𝑀𝑛×𝑛

𝐸 (otherwise, (𝐹 − 𝑉) ∉ 𝑀𝑛×𝑛
𝐸 if 𝐹 = 0).

Therefore, [(𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛
𝐸 ; ∀𝐹 ⪰ 0] ⇐⇒ [(−𝑉) ∈𝑀𝑛×𝑛

𝐸 ∧ 𝐹 ⪰ 0]. This equivalence is reasonable, in practice,
since the nonnegativity of the linearized trajectory solution
around the disease-free equilibrium point of the infective
compartment is also needed for zero reproduction numbers
or zero coefficient transmission rates. The joint sufficiency-
type condition of Theorem 1 (iii) is also necessary and this
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condition is equivalent to the other two Conditions (1)-(2).
From Theorem 1 on the linearized infective substate and
some further conditions on the nonlinear contribution of the
dynamics in the model (1)-(3), we can obtain some further
results for the nonnegativity of the solution and the stability
of the whole nonlinear model as follows.

Theorem 2. 	e following properties hold.
(i) 	e state trajectory solution of (1)-(3) is nonnegative for

all time, i.e., 𝑧(𝑡) = (𝑥𝑇(𝑡), 𝑦𝑇(𝑡))𝑇 ⪰ 0; ∀𝑡 ∈ R0+ for any given
initial condition 𝑧(0) = (𝑥𝑇(0), 𝑦𝑇(0))𝑇 ⪰ 0 if and only if the
two subsequent constraints hold:

∫𝑡

0
𝑓 (𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏 ⪯ 𝑒(𝐹−𝑉)𝑡𝑥 (0) ; ∀𝑡 ∈ R0+;

∫𝑡

0
𝑔 (𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏 ⪰ −𝑦 (0) ; ∀𝑡 ∈ R0+.

(6)

Furthermore, one has that

lim sup
𝑡󳨀→∞

(∫𝑡

0
𝑓 (𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏 − 𝑒(𝐹−𝑉)𝑡𝑥 (0)) ⪯ 0;

lim inf
𝑡󳨀→∞

(𝑦 (0) + ∫𝑡

0
𝑔 (𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏) ⪰ 0.

(7)

(ii) Assume, furthermore, that (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛
𝐸 is a stability

matrix or that any of the two constraints (1) or (2) of	eorem 1
(iii) holds. 	en,

∫∞

0
𝑓 (𝑥 (𝜏) , 𝑦 (𝜏)) 𝑑𝜏 = 0,

𝑓 (𝑥 (𝑡) , 𝑦 (𝑡)) 󳨀→ 0 as 𝑡 󳨀→ ∞ (8)

provided that 𝑓 : (R𝑛
0+ × R0+) × (R𝑚

0+ × R0+) 󳨀→ R𝑛
0+is

everywhere uniformly continuous in its definition domain and𝑓(𝑥(𝑡), 𝑦(𝑡)) ⪰ 0; ∀𝑡 ∈ R0+; and 𝑓(𝑥(𝑡), 𝑦(𝑡)) 󳨀→ 0 as𝑡 󳨀→ ∞ (but nonnecessarily ∫∞
0

𝑓(𝑥(𝜏), 𝑦(𝜏))𝑑𝜏 = 0) if𝑓 : (R𝑛
0+ ×R0+)× (R𝑚

0+ ×R0+) 󳨀→ R𝑛
0+ is everywhere uniformly

continuous in its definition domain.

Proof. Property (i) follows directly from (1)-(3). On the other
hand, if (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 , and 𝑓(𝑥(𝑡), 𝑦(𝑡)) ⪰ 0; ∀𝑡 ∈
R0+ and it is everywhere uniformly continuous for all time
for its arguments in the first closed orthant of R𝑛+𝑚 for
all time; then it follows that ∫∞

0
𝑓(𝑥(𝜏), 𝑦(𝜏))𝑑𝜏 = 0, and𝑒(𝐹−𝑉)𝑡𝑥(0) 󳨀→ 0 and 𝑓(𝑥(𝑡), 𝑦(𝑡)) 󳨀→ 0 as 𝑡 󳨀→ ∞. Also,

if 𝑓(𝑥(𝑡), 𝑦(𝑡)) is everywhere continuous for all time in R𝑛+𝑚

and 0 = lim𝑡󳨀→∞𝑒(𝐹−𝑉)𝑡 ⪰ lim𝑡󳨀→∞|∫𝑡
0
𝑓(𝑥(𝜏), 𝑦(𝜏))𝑑𝜏| since(𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 and it is a stability matrix. Then, it follows
from Barbalat’s lemma [18, 24] that 𝑓(𝑥(𝑡), 𝑦(𝑡)) 󳨀→ 0 as𝑡 󳨀→ ∞. Property (ii) has been proved.

Generally speaking, Theorem 1 (iv.(3)) is also guaranteed
under sufficient conditions if the involved spectral radii [15,
25, 26] are replaced by matrix norms which are their upper-
bounds. Also, note that Theorem 2 (ii) has the assumption
that (𝐹−𝑉) ∈ 𝑀𝑛×𝑛

𝐸 is stablewhich is needed to guarantee that
no eigenvalue crosses the imaginary axis under perturbations

of 𝐹 resulting in (𝐹 − 𝑉) to lose the stability of (𝐹 − 𝑉) when𝐹 = 0, i.e., for 𝐹 − 𝑉 = −𝑉. In the following discussions (−𝑉)
is the transition matrix in-between state of the linearized
subsystem of the infected variables around the disease-free
equilibrium point while 𝐹 is the transmission matrix around
such an equilibrium point.

On the other hand, it turns out that the nonnegativity
condition ∫𝑡

0
𝑓(𝑥(𝜏), 𝑦(𝜏))𝑑𝜏 ⪯ 𝑒(𝐹−𝑉)𝑡𝑥(0); ∀𝑡 ∈ R0+ of

Theorem 2 for the whole trajectory solution, subject to non-
linear dynamics, of the infective substate does not require that(𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 is a stability matrix or any conditions on the
nonlinear term 𝑓(𝑥(𝑡), 𝑦(𝑡)). Note that the condition holds
directly if −𝑓(𝑥(𝑡), 𝑦(𝑡)) ⪰ 0 since then 0 ⪰ −𝑒(𝐹−𝑉)𝑡𝑥(0);∀𝑥(0) ∈ R𝑛

0+ so that −∫𝑡
0
𝑓(𝑥(𝜏), 𝑦(𝜏))𝑑𝜏 ⪰ 0 ⪰ −𝑒(𝐹−𝑉)𝑡𝑥(0).

The nonnegativity of the trajectory solution can be also easily
tested on the differential system (1)-(3) by ensuring that, for
any zero value of a state component, its corresponding time-
derivative is nonnegative. So, we have the subsequent result
which is alternative to the two first constraints of Theorem 2
(i).

Theorem 3. 	e following properties hold.
(i) 	e state trajectory solution of (1)-(3) is nonnegative for

all time, i.e., 𝑧(𝑡) = (𝑥𝑇(𝑡), 𝑦𝑇(𝑡))𝑇 ⪰ 0; ∀𝑡 ∈ R0+ for any given
initial condition 𝑧(0) = (𝑥𝑇(0), 𝑦𝑇(0))𝑇 ⪰ 0 if and only if, for
all 𝑖 ∈ 𝑛, 𝑗 ∈ 𝑚 and all 𝑡 ∈ R0+, the following conditions hold:

(𝑥𝑖 (𝑡) = 0) 󳨐⇒ (𝑓𝑖 (𝑥 (𝑡) , 𝑦 (𝑡))

≤ 𝑛∑
𝑗( ̸=𝑖)=1

(𝐹𝑖𝑗 − 𝑉𝑖𝑗) 𝑥𝑗 (𝑡) = 𝑛∑
𝑗=1

(𝐹𝑖𝑗 − 𝑉𝑖𝑗) 𝑥𝑗 (𝑡))
(𝑦𝑗 (𝑡) = 0) 󳨐⇒ (𝑔𝑗 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 0) .

(9)

(ii) Property (i) also implies that 𝑓𝑖(0, 𝑦𝑑𝑓) = 0; ∀𝑖 ∈ 𝑛,𝑔𝑗(0, 𝑦𝑑𝑓) = 0; ∀𝑗 ∈ 𝑚 if a disease-free equilibrium point𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇𝑑𝑓)𝑇 exists.

Proof. It is obvious that, for any given 𝑧(0) ⪰ 0, if 𝑧𝑖(𝑡) = 0
for some 𝑡 ≥ 0, then 𝑧̇𝑖(𝑡) ≥ 0 from the given conditions and
it cannot give 𝜀 ∈ R+ such that 𝑧𝑖(𝑡 + 𝜀) < 0 for some 𝑖 ∈ 𝑛.
As a result, 𝑧(𝑡) ⪰ 0; ∀𝑡 ∈ R0+. The first part of the result
has been proved.The second part is proved by contradiction.
First note from the nonnegativity condition of Property (i)
that −𝑓𝑖(0, 𝑦𝑑𝑓) ≥ −(∑𝑛

𝑗=1(𝐹𝑖𝑗 − 𝑉𝑖𝑗).0) = 0. If 𝑓𝑖(0, 𝑦𝑑𝑓) = 0;∀𝑖 ∈ 𝑛 then Property (ii) has been proved for the infective
substate. Now, assume that there exists some 𝑖 ∈ 𝑛 such that𝑓𝑖(0, 𝑦𝑑𝑓) < 0. Since 𝜗(𝑡) = ∑𝑛

𝑗=1(𝐹𝑖𝑗 − 𝑉𝑖𝑗)𝑥𝑗(𝑡)]𝑥(𝑡)=0 = 0,
it follows that 𝑥̇𝑖]𝑥𝑖=0 > 0 so that 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇𝑑𝑓)𝑇 is not
an equilibrium point; hence a contradiction follows. In the
same way, if 𝑔𝑗(0, 𝑦𝑑𝑓) > 0 for some 𝑗 ∈ 𝑚 then 𝑧𝑑𝑓 =(0𝑇, 𝑦𝑇𝑑𝑓)𝑇 is not an equilibrium point; hence we have again
a contradiction. Property (ii) has been proved.

Theorem 4. Let 𝑔 : R𝑛+𝑚 󳨀→ R𝑚 be everywhere continuously
differentiable with a Jacobian matrix:
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𝐽𝑔,𝑧(𝑧0) = [𝐽𝑔,𝑥(𝑧0) | 𝐽𝑔,𝑦(𝑧0)] at any 𝑧0 = (𝑥𝑇0 , 𝑦𝑇0 )𝑇 ∈
R𝑛+𝑚 with 𝑥0 ∈ R𝑛 and 𝑦0 ∈ R𝑚, where 𝑧 = (𝑥𝑇, 𝑦𝑇)𝑇 ∈ R𝑛+𝑚,𝑥 ∈ R𝑛, 𝑦 ∈ R𝑚. Assume that the 𝑚 × 𝑚 matrix 𝐽𝑔,𝑦(𝑧0) is
nonsingular at any equilibrium point 𝑧0 of (1)-(3). 	en, the
following properties hold

(i) 	ere exists an open set𝑈 of R𝑛 containing 𝑥0 such that
there exists a unique continuously differentiable function ℎ :𝑈 󳨀→ R𝑚 such that 𝑦0 = ℎ(𝑥0) and 𝑓(𝑥, ℎ(𝑥)) = 0; ∀𝑥 ∈𝑈. Furthermore, any equilibrium point 𝑧0 = (𝑥𝑇0 , 𝑦𝑇0 )𝑇 can be
expressed being dependent on the infective substate only, i.e.,𝑧0 = (𝑥𝑇0 , ℎ𝑇(𝑥0))𝑇, while satisfying

𝑦0 = ℎ (𝑥0) ;
𝑥0 = (𝐹0 (ℎ (𝑥0)) − 𝑉0 (𝑥0))−1 𝑓 (𝑥0, ℎ (𝑥0)) (10)

provided that (𝐹0(ℎ(𝑥0)) − 𝑉0(𝑥0)) is nonsingular at any
equilibrium point, where 𝐹0(ℎ(0)) = 𝐹 and 𝑉0(0) = 𝑉 if𝑧0 = 𝑧𝑑𝑓 = (0𝑇, ℎ𝑇(0))𝑇 is the disease-free equilibrium point
and 𝐹0(ℎ(𝑥𝑒𝑛𝑑)) = 𝐹𝑒 and 𝑉0(𝑥𝑒𝑛𝑑) = 𝑉𝑒 if 𝑧0 = 𝑧𝑒𝑛𝑑 =(𝑥𝑇𝑒𝑛𝑑, ℎ𝑇(𝑥𝑒𝑛𝑑))𝑇 is the endemic equilibrium point.

(ii) Assume, furthermore, that the transition and transmis-
sion matrices of the disease-free equilibrium point satisfy that(−𝑉) ∈ 𝑀𝑛×𝑛

𝐸 is a stability matrix and 𝐹 ⪰ 0. 	en, (a)
the disease-free equilibrium point exists and it is defined by𝑧𝑑𝑓 = (0𝑇, ℎ𝑇(0))𝑇 and it is unique and locally asymptotically
stable if 𝜌(𝐹𝑉−1) < 1. If 𝜌(𝐹𝑉−1) > 1 then it is unstable; and

(b) the endemic equilibrium point exists (while it is
unique under the sufficiency-type conditions of 	eorem B.2
of Appendix B) and it is defined by 𝑧𝑒𝑛𝑑 = (𝑥𝑇𝑒𝑛𝑑, 𝑦𝑇𝑒𝑛𝑑)𝑇 =(𝑥𝑇𝑒𝑛𝑑, ℎ𝑇(𝑥𝑒𝑛𝑑))𝑇 subject to

𝑦𝑒𝑛𝑑 = ℎ (𝑥𝑒𝑛𝑑) ;
𝑥𝑒𝑛𝑑 = (𝐹𝑒 − 𝑉𝑒)−1 𝑓 (𝑥𝑒𝑛𝑑, ℎ (𝑥𝑒𝑛𝑑)) (11)

If it exists then it is reachable if 𝜌(𝐹𝑉−1) ≥ 1 and 𝑓(𝑥𝑒𝑛𝑑,ℎ(𝑥𝑒𝑛𝑑)) ⪯ 𝑓(𝑥𝑑𝑓, ℎ(𝑥𝑑𝑓)) while it is unreachable, in the sense
that 𝑧𝑒𝑛𝑑 ∉ R𝑛+𝑚

0+ , if 𝜌(𝐹𝑉−1) < 1 supposing that 𝑓(𝑥𝑒𝑛𝑑,ℎ(𝑥𝑒𝑛𝑑)) ≻ 𝑓(𝑥𝑑𝑓, ℎ(𝑥𝑑𝑓)) if 𝑧𝑒𝑛𝑑 ̸= 𝑧𝑑𝑓.
Proof. Assume that 𝐽𝑔,𝑦(𝑥0, 𝑦0) ∈ R𝑚 × R𝑚 is nonsingular.
Then, there exits an open set 𝑈 of R𝑛 containing 𝑥0 such that
there exists a unique continuously differentiable function ℎ :𝑈 󳨀→ R𝑚 such that 𝑦0 = ℎ(𝑥0) and 𝑓(𝑥, ℎ(𝑥)) = 0; ∀𝑥 ∈ 𝑈.
Let 𝑧0 be either the disease-free equilibrium point 𝑧0 = 𝑧𝑑𝑓 =(0𝑇, 𝑦𝑇0 )𝑇 = (0𝑇, ℎ𝑇(0))𝑇 or the endemic one 𝑧0 = 𝑧𝑒𝑛𝑑 =(𝑥𝑇𝑒𝑛𝑑, 𝑦𝑇𝑒𝑛𝑑)𝑇 = (𝑥𝑇𝑒𝑛𝑑, ℎ𝑇(𝑥𝑒𝑛𝑑)). Both of them are unique in a
neighbourhood centred at the respective equilibrium point,
since ℎ(⋅) is unique, while they satisfy (10) and, respectively,
(11) if 𝐽𝑔,𝑧(𝑧𝑑𝑓) and, respectively, 𝐽𝑔,𝑧(𝑧𝑒𝑛𝑑) are nonsingular
since (𝐹0(𝑥0) − 𝑉0(𝑥0)) is a nonsingular matrix. Property (i)
has been proved. In order to prove Property (ii), first note that(−𝑉) ∈ 𝑀𝑛×𝑛

𝐸 is nonsingular with 𝑉−1 ≻ 0 (since (−𝑉) is
stable) with 𝐹 ⪰ 0. Then, the disease-free equilibrium point
exists being defined by 𝑧𝑑𝑓 = (0𝑇, ℎ𝑇(0))𝑇; it is unique sinceℎ(⋅) is unique and given by 𝑥𝑑𝑓 = (𝐹 − 𝑉)−1𝑓(0, ℎ(0)) = 0.

Furthermore, it is locally asymptotically stable if 𝜌(𝐹𝑉−1) < 1
since then (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 is a stability matrix, equivalently(𝑉 − 𝐹)−1 ≻ 0 so that the linearized system around the
disease-free equilibrium point is locally exponentially (then
asymptotically) stable. On the other hand, it is unstable if𝜌(𝐹𝑉−1) > 1 [Theorem 1 (iii)-(iv)]. The part (a) of Property
(ii) has been proved. Now let 𝑧0 = 𝑧𝑒𝑛𝑑 = (𝑥𝑇𝑒𝑛𝑑, 𝑦𝑇𝑒𝑛𝑑)𝑇 be the
endemic equilibrium point. The following cases can occur

(1) If 𝜌(𝐹𝑉−1) ≥ 1, then note that

𝑥𝑒𝑛𝑑 = (𝑉𝑒 − 𝐹𝑒)−1 (−𝑓 (𝑥𝑒𝑛𝑑, ℎ (𝑥𝑒𝑛𝑑)))
⪰ (𝑉 − 𝐹)−1 (−𝑓 (𝑥𝑑𝑓, ℎ (𝑥𝑑𝑓))) ⪰ 0 (12)

since𝑓(𝑥𝑒𝑛𝑑, ℎ(𝑥𝑒𝑛𝑑)) ⪯ 0 (being a strict inequality if and only
if 𝑥𝑒𝑛𝑑 ̸= 𝑥𝑑𝑓 = 0) and (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 is stable and then
nonsingular

(2) If𝑅0 = 𝜌(𝐹𝑉−1) < 1 then (𝑉−𝐹)−1 ≻ 0, since (𝐹−𝑉) ∈𝑀𝑛×𝑛
𝐸 , and 𝐹𝑒 ≻ 𝐹. Therefore, (𝐼𝑛 + (𝑉−𝐹)−1(𝐹𝑒 −𝐹)) ≻ 0 and𝜌[(𝑉−𝐹)−1(𝐹𝑒−𝐹)] > 0 then (𝐼𝑛+(𝐼𝑛−𝑉−1𝐹)−1𝑉−1(𝐹𝑒−𝐹))−1

exists, and

(𝑉𝑒 − 𝐹𝑒)−1 = (𝐼𝑛 + (𝑉 − 𝐹)−1 (𝐹𝑒 − 𝐹))−1 (𝑉 − 𝐹)−1
= (𝐼𝑛 + (𝐼𝑛 − 𝑉−1𝐹)−1 𝑉−1 (𝐹𝑒 − 𝐹))−1 (𝑉 − 𝐹)−1
≺ (𝑉 − 𝐹)−1

(13)

Note that 𝑥𝑒𝑛𝑑 is unreachable if 𝑥𝑒𝑛𝑑 ̸= 𝑥𝑑𝑓 = 0 since−𝑓(𝑥𝑒𝑛𝑑, ℎ(𝑥𝑒𝑛𝑑)) ≺ −𝑓(𝑥𝑑𝑓, ℎ(𝑥𝑑𝑓)) = 0, and
𝑥𝑒𝑛𝑑 = (𝑉𝑒 − 𝐹𝑒)−1 (−𝑓 (𝑥𝑒𝑛𝑑, ℎ (𝑥𝑒𝑛𝑑)))

≺ (𝐼𝑛 + (𝐼𝑛 − 𝑉−1𝐹)−1 𝑉−1 (𝐹𝑒 − 𝐹))−1
× (𝑉 − 𝐹)−1 (−𝑓 (𝑥𝑑𝑓, ℎ (𝑥𝑑𝑓)))

= (𝐼𝑛 + (𝐼𝑛 − 𝑉−1𝐹)−1 𝑉−1 (𝐹𝑒 − 𝐹))−1 𝑥𝑑𝑓 = 0.
(14)

Then, 𝑥𝑒𝑛𝑑 ⪯ 0. But, for the case, 𝑥𝑒𝑛𝑑 = 0, the endemic
equilibriumpoint is coincident with the disease-free one, that
is, 𝑥𝑒𝑛𝑑 = 𝑥𝑑𝑓 = 0 and 𝜌(𝐹𝑉−1) = 1, while, for 𝜌(𝐹𝑉−1) < 1,𝑥𝑒𝑛𝑑 ≺ 0,; hence a contradiction to its reachability follows
since the equilibrium point is never allocated in the open first
orthant of R𝑛. Property (ii) has been proved.

Remark 5. It has not been proved that the endemic equi-
librium point is necessarily unique, independently of the
concrete epidemic model, in the whole state space. A detailed
proof of the global uniqueness of the disease-free equilibrium
point is given in Theorem B.1 (i) of Appendix B under the
same conditions as those given in Theorem 4 (ii) since
the infective equilibrium substate is unique and identically
zero what guarantees also the uniqueness of the nondisease
compartment via the uniqueness of the function ℎ(⋅). On the
other hand, the endemic equilibrium point 𝑧𝑒𝑛𝑑 is unique
in the whole state space if 𝑥𝑒𝑛𝑑, i.e., its infective substate,
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is unique since from the uniqueness of ℎ(⋅), the uniqueness
of the nondisease compartment and then that of the whole
endemic equilibrium point are also guaranteed under some
algebraic conditions given inTheorem B.2 in Appendix B.

It is well-known from the background literature on epi-
demic models, subject to a unique disease-free equilibrium
point and a unique endemic equilibrium one, that, typically,
if the reproduction number 𝑅0 < 1 then the disease-free
equilibrium point is asymptotically stable while the endemic
one is not reachable since it has negative infective values
what is incompatible with the positivity of the state trajectory
solution. If 𝑅0 > 1 then the endemic equilibrium point is
stable and the disease-free one is unstable and, if 𝑅0 = 1,
then the infective variables of both equilibrium points are
coincident. Theorem 4 describes formally via algebraic tools
the reachability/unreachability of the endemic equilibrium
point depending on the value of the reproduction number.
This fact is illustrated by the subsequent example.

Example 6. A particular case of the SEIADR (susceptible-
exposed-symptomatic infectious-asymptomatic infectious-
infectious corpses-recovered) proposed in [6, 7] follows
below for the case when the vaccination and treatment
control parameters𝑉0,𝐾𝑉, and𝐾𝜉 are constant and there is no
impulsive control for the infectious corpses removal control
action:

̇𝑆 (𝑡) = 𝑏1 − (𝑏2 + 𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷 (𝑡)) 𝑆 (𝑡)
+ 𝜂𝑅 (𝑡) − 𝑉 (𝑡)

𝐸̇ (𝑡) = − (𝑏2 + 𝛾) 𝐸 (𝑡)
+ (𝛽𝐼 (𝑡) + 𝛽𝐴𝐴 (𝑡) + 𝛽𝐷𝐷(𝑡)) 𝑆 (𝑡)

̇𝐼 (𝑡) = − (𝑏2 + 𝛼 + 𝜏0 + 𝐾𝜉) 𝐼 (𝑡) + 𝛾𝑝𝐸 (𝑡)
𝐴̇ (𝑡) = − (𝑏2 + 𝜏0) 𝐴 (𝑡) + 𝛾 (1 − 𝑝) 𝐸 (𝑡)
𝐷̇ (𝑡) = −𝜇𝐷 (𝑡) + 𝑏2 (𝐼 (𝑡) + 𝐴 (𝑡)) + 𝛼𝐼 (𝑡)
𝑅̇ (𝑡) = − (𝑏2 + 𝜂) 𝑅 (𝑡) + 𝜏0 (𝐼 (𝑡) + 𝐴 (𝑡)) + 𝐾𝜉𝐼 (𝑡)

+ 𝑉 (𝑡)
𝑉 (𝑡) = 𝑉0 + 𝐾𝑉𝑆 (𝑡)

(15)

where 𝑉(𝑡) is a vaccination control of constant gain 𝑉0
plus a linear feedback term with gain 𝐾𝑉 with information
of the susceptible subpopulation. There is also an eventual
treatment control on the infectious subpopulation of gain𝐾𝜉.
The disease-free and endemic Jacobian matrices for the joint
noninfective infective dynamically coupled compartments
are, respectively,

A𝑑𝑓 =
[[[[[[[[[[[
[

− (𝑏2 + 𝐾𝑉) 0 −𝛽𝑆𝑑𝑓 −𝛽𝐴𝑆𝑑𝑓 −𝛽𝐷𝑆𝑑𝑓 𝜂
0 − (𝑏2 + 𝛾) 𝛽𝑆𝑑𝑓 𝛽𝐴𝑆𝑑𝑓 𝛽𝐷𝑆𝑑𝑓 0
0 𝛾𝑝 − (𝑏2 + 𝛼 + 𝜏0 + 𝐾𝜉) 0 0 0
0 𝛾 (1 − 𝑝) 0 − (𝑏2 + 𝜏0) 0 0
0 0 𝑏2 + 𝛼 𝑏2 −𝜇 0
𝐾𝑉 0 𝜏0 + 𝐾𝜉 𝜏0 0 − (𝑏2 + 𝜂)

]]]]]]]]]]]
]

(16)

where the infective compartment has a Jacobian matrix 𝐹−𝑉
uncoupled to the noninfective one with

𝑉 = [[[[[
[

𝑏2 + 𝛾 0 0 0
−𝛾𝑝 𝑏2 + 𝛼 + 𝜏0 + 𝐾𝜉 0 0

−𝛾 (1 − 𝑝) 0 𝑏2 + 𝜏0 0
0 − (𝑏2 + 𝛼) −𝑏2 𝜇

]]]]]
]
;

𝐹 = 𝛽[[[[[
[

0 𝑆𝑑𝑓 𝛽𝐴𝑟𝑆𝑑𝑓 𝛽𝐷𝑟𝑆𝑑𝑓0 0 0 0
0 0 0 0
0 0 0 0

]]]]]
]

(17)

and

𝐴𝑒𝑛𝑑 =
[[[[[[[[[[[
[

− (𝑏2 + 𝛽𝐼𝑒𝑛𝑑 + 𝛽𝐴𝐴𝑒𝑛𝑑 + 𝛽𝐷𝐷𝑒𝑛𝑑 + 𝐾𝑉) 0 −𝛽𝑆𝑒𝑛𝑑 −𝛽𝐴𝑆𝑒𝑛𝑑 −𝛽𝐷𝑆𝑒𝑛𝑑 𝜂
𝛽𝐼𝑒𝑛𝑑 + 𝛽𝐴𝐴𝑒𝑛𝑑 + 𝛽𝐷𝐷𝑒𝑛𝑑 − (𝑏2 + 𝛾) 𝛽𝑆𝑒𝑛𝑑 𝛽𝐴𝑆𝑒𝑛𝑑 𝛽𝐷𝑆𝑒𝑛𝑑 0

0 𝛾𝑝 − (𝑏2 + 𝛼 + 𝜏0 + 𝐾𝜉) 0 0 0
0 𝛾 (1 − 𝑝) 0 − (𝑏2 + 𝜏0) 0 0
0 0 𝑏2 + 𝛼 𝑏2 −𝜇 0
𝐾𝑉 0 𝜏0 + 𝐾𝜉 𝜏0 0 − (𝑏2 + 𝜂)

]]]]]]]]]]]
]

(18)
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where the infective compartment Jacobian matrix is 𝐹𝑒 − 𝑉𝑒
with

𝑉𝑒 = 𝑉 = [[[[[
[

𝑏2 + 𝛾 0 0 0
−𝛾𝑝 𝑏2 + 𝛼 + 𝜏0 + 𝐾𝜉 0 0

−𝛾 (1 − 𝑝) 0 𝑏2 + 𝜏0 0
0 − (𝑏2 + 𝛼) −𝑏2 𝜇

]]]]]
]

𝐹𝑒 = 𝛽[[[[[
[

0 𝑆𝑒𝑛𝑑 𝛽𝐴𝑟𝑆𝑒𝑛𝑑 𝛽𝐷𝑟𝑆𝑒𝑛𝑑0 0 0 0
0 0 0 0
0 0 0 0

]]]]]
]
= 𝐹

− 𝛽[[[[[
[

0 𝑆𝑑𝑓 − 𝑆𝑒𝑛𝑑 𝛽𝐴𝑟 (𝑆𝑑𝑓 − 𝑆𝑒𝑛𝑑) 𝛽𝐷𝑟 (𝑆𝑑𝑓 − 𝑆𝑒𝑛𝑑)0 0 0 0
0 0 0 0
0 0 0 0

]]]]]
]

= 𝐹 − 𝛽 (𝑅0 − 1) 𝑆𝑒𝑛𝑑
[[[[[
[

0 1 𝛽𝐴𝑟 𝛽𝐷𝑟0 0 0 0
0 0 0 0
0 0 0 0

]]]]]
]

(19)

with 𝑅0 = 𝜌(𝐹𝑉−1) = 𝑆𝑑𝑓/𝑆𝑒𝑛𝑑. Note that 𝐹𝑒 ⪰ 𝐹 if 𝑅0 ≤ 1;𝐹 ⪰ 𝐹𝑒 if 𝑅0 ≥ 1; and 𝐹 = 𝐹𝑒 if 𝑅0 = 1 (what implies 𝑥𝑒𝑛𝑑 =𝑥𝑑𝑓), and
𝑓 (0, 𝑦𝑑𝑓) = 0;
− 𝑓 (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑)

= [[[[[
[

(𝛽𝐼𝑒𝑛𝑑 + 𝛽𝐴𝐴𝑒𝑛𝑑 + 𝛽𝐷𝐷𝑒𝑛𝑑) 𝑆𝑒𝑛𝑑0
0
0

]]]]]
]
≥ 0

(20)

irrespective that the infective variables be positive or negative
since 𝐼𝑒𝑛𝑑,𝐴𝑒𝑛𝑑, and𝐷𝑒𝑛𝑑 have the same sign as 𝐸𝑒𝑛𝑑, if 𝐸𝑒𝑛𝑑 ̸=0, that is, if the endemic equilibrium point has not coincident
components with the disease-free one, that is, if𝑅0 ̸= 1, as it is
deduced from the epidemicmodel. Note from thematrixA𝑑𝑓

that if the linearized infective subsystem around the disease-
free equilibrium is identically zero, then the characteristic
equation of the linearized noninfective subsystem is given by

𝑝𝑛𝑖 (𝑠) = 𝑠2 + (2𝑏2 + 𝐾𝑉 + 𝜂) 𝑠 + 𝑏2 (𝑏2 + 𝜂 + 𝐾𝑉) = 0 (21)

whose roots are 𝑠1 = −𝑏2 < 0 and 𝑠2 = −(𝑏2 + 𝐾𝑉 + 𝜂) <0. So, such a subsystem is asymptotically stable satisfying
Assumption 2(a). As a result, the whole linearized subsystem
is asymptotically stable if 𝑅0 ≤ 1.

It has been proved in Theorem 4 that the disease-free
equilibrium point is stable if 𝜌(𝐹𝑉−1) ≤ 1, the endemic one is
unattainable if 𝜌(𝐹𝑉−1) < 1, and the disease-free equilibrium
point is unstable if 𝜌(𝐹𝑉−1) > 1 while the endemic one is
reachable if 𝜌(𝐹𝑉−1) ≥ 1. The next result establishes that the

endemic equilibriumpoint is unstable when unattainable and
asymptotically stable when attainable.

Proposition 7. Assume the following.
(1) 	e endemic and the disease-free transition matrices(−𝑉𝑒) and (−𝑉) are identical and independent of the reproduc-

tion number, and (−𝑉) ∈ 𝑀𝑛×𝑛
𝐸 is a stability matrix.

(2) 	e disease-free and endemic equilibrium points exist
and they are unique for any 𝑅0 ∈ [0, +∞].

(3)	e disease-free and the endemic transmission matrices
are nonnegative, i.e., 𝐹 = 𝐹(𝑅0) ⪰ 0, and 𝐹𝑒 = 𝐹𝑒(𝑅0) =𝜍(𝑅0)𝐹 ⪰ 0, where 𝑅0 = 𝑅0(𝐹) = 𝜌(𝐹𝑉−1) is the reproduction
number, and 𝜍(𝑅0) ≥ 0.

(4) 𝐹 − 𝐹𝑒 = (𝜆 − 1)𝐹 ⪰ 0 for some 𝜆 ∈ R.
(5) 𝐹 ≻ 𝐹𝑒 if 𝑅0 > 1, 𝐹 ≺ 𝐹𝑒 if 𝑅0 < 1, and 𝐹 = 𝐹𝑒 if 𝑅0 = 1.
	en, the endemic equilibrium point is locally asymptoti-

cally stable if 𝑅0 ≥ 1 and unstable if 𝑅0 < 1.
Proof. Note that

𝐹 − 𝑉 = (𝐼𝑛 − 𝐹𝑉−1) (−𝑉) (22)

Since (−𝑉) is a stability matrix, the disease-free equilibrium
point is locally asymptotically stable if 𝑅0 = 𝜌(𝐹𝑉−1) < 1 and
unstable if 𝑅0 = 𝜌(𝐹𝑉−1) > 1, the critical stability case being𝑅0 = 𝜌(𝐹𝑉−1) = 1. Note also that

𝐹𝑒 − 𝑉 = (𝐼𝑛 − 𝐹𝑒𝑉−1) (−𝑉)
= (𝐼𝑛 − 𝐹𝑉−1 + (𝐹 − 𝐹𝑒) 𝑉−1) (−𝑉) . (23)

Since 𝐹 − 𝐹𝑒 = (𝜆 − 1)𝐹 ⪰ 0 with 𝜆 = 𝜆(𝑅0) ≥ 1 for 𝑅0 ≤ 1
since 𝐹 ⪰ 𝐹𝑒, then 𝜌(𝐹 − 𝐹𝑒) = (𝜆 − 1)𝜌(𝐹) ⪰ 0 and both
of them are proportional matrices because of their structure,
it follows that the endemic equilibrium point is unstable for𝑅0 < 1 (when the disease-free is locally stable ) and locally
stable for 𝑅0 > 1 (when the disease-free one is unstable).

Note that for Example 6, 𝜆(𝑅0) = 2 − 1/𝑅0 in the proof
of Proposition 7. Note that assumption 4 of Proposition 7
is very reasonable if 𝐹 and 𝐹𝑒 are related by a scalar factor
which is the usual case in epidemic models. The subsequent
examples show that the endemic equilibrium is unstable in
the unattainable region.

Example 8. Consider the SEIADR epidemic model of
Example 6 with the following parameterization:

𝑏1 = 𝑏2 =1/25550 𝑑𝑎𝑦𝑠−1; 1/𝜏0 = 15.8 𝑑𝑎𝑦𝑠; 𝜂 = 2𝜇 =0.1 𝑑𝑎𝑦𝑠−1;𝑝 = 0.15; 1/𝛾 = 15.8 𝑑𝑎𝑦𝑠; 1/𝛼 = 13.3 𝑑𝑎𝑦𝑠;𝑉0 = 𝑏1; 𝐾𝑉 = 20𝑏1;𝐾𝜉 = 𝛼;
𝛽 = 0.11𝑑𝑎𝑦𝑠−1; 𝛽𝐴 = 0.05𝑑𝑎𝑦𝑠−1; 𝛽𝐷 = 0.15𝑑𝑎𝑦𝑠−1.

Figure 1 shows the maximum of the real parts of the eigen-
values of the Jacobian around the disease-free and endemic
equilibrium points versus the reproduction number. In the
proposed example, they coincide with the maximum eigen-
value since it is real. The reproduction number is displayed
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Figure 1: Maximum Eigenvalues of the Jacobians of the model of Example 6.
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Figure 2: Maximum real part of the eigenvalues versus the reproduction number.

in the real axis by keeping constant all the disease and
control model parameters except the coefficient transmission
rates which are modified from their given basic values
proportionally via the same common direct proportionality
constant. Note that the reproduction number is proportional
to the disease coefficient rate if all the remaining parameters
are kept constant. It is seen in Figure 1 that the value 𝑅0 = 1 is
the critical reproduction number giving the frontier between
the stability (instability) of the disease-free equilibrium point
together with the unattainability and instability (attainability
and stability) of the endemic one.

Example 9. Consider a true mass action (i.e., the nonlinear
infective terms of susceptible-infected products are normal-
ized with the total population) variant of the SEIADR epi-
demic model of Examples 6 and 8 with the parameterization
of Example 8. Figure 3 shows a zoom of Figure 2 centred in
the stability boundary examined on themaximum eigenvalue
evolution of the Jacobian of the endemic equilibrium point.
It is seen that the endemic equilibrium is unstable in its

unattainable region under nonnegativity conditions of the
solution while the disease-free one is the unique asymptot-
ically stable attractor if the reproduction number is less than
one. However, if such a reproduction number exceeds unity,
then the disease-free equilibrium point is unstable while the
endemic one is reachable and asymptotically stable.

A global stability theorem now follows by combining the
preceding results and the analysis of Poincaré indices and the
alternate stability characteristics of limit cycles surrounding
singular points in any hyperplanes of the state space. It is
proved, in particular, that the local asymptotic stability of the
disease-free equilibriumpoint for a reproductionnumber less
than one (implying also the unattainability of the endemic
equilibrium point) leads to the global asymptotic stability of
the whole state towards the disease-free equilibrium point.
Note that Proposition 7 concludes that only one of the
equilibrium points is locally stable for each given value of𝑅0. In particular the disease-free one is locally asymptotically
stable if 𝑅0 ≤ 1 and the endemic one is locally asymptotically
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Figure 3: Zoom of the maximum real part of the eigenvalues versus the reproduction number close to the stability region boundary.

stable if 𝑅0 ≥ 1. Note also that Proposition 7 agrees with the
conclusions of Examples 6–9.

Theorem 10. Under Assumptions 1-2, assume also that (−𝑉) ∈𝑀𝑛×𝑛
𝐸 , 𝑉−1 ≻ 0, 𝐹 ⪰ 0, and 𝜌(𝐹𝑉−1) < 1. Moreover, assume

that (1) 𝐽𝑔,𝑧(0 𝑦𝑇𝑑𝑓) is nonsingular,
(2) 𝑔𝑖(𝑧(𝑡)) ≥ 0 if 𝑦𝑖(𝑡) = 0 for any 𝑖 ∈ 𝑚 and 𝑡 ∈ R0+,
(3) 𝑓𝑖(𝑧(𝑡)) ≤ 𝑒𝑇𝑖 (𝐹 − 𝑉)𝑥(𝑡) if 𝑥𝑖(𝑡) = 0 for any 𝑖 ∈ 𝑛 and𝑡 ∈ R0+ (it suffices that 𝑓𝑖(𝑧(𝑡)) ≤ 0 if 𝑥𝑖(𝑡) = 0 for any 𝑖 ∈ 𝑛).
(i) 	en, the total population, i.e., the sum of all the sub-

populations, is uniformly bounded for all time. Furthermore,
any trajectory solution is nonnegative and uniformly bounded
for all time for any given finite initial condition 𝑥(0) ⪰ 0 and𝑦(0) ⪰ 0 while it is globally convergent at an exponential
rate to the disease-free equilibrium point which is the unique
reachable equilibrium point which is a globally asymptotically
stable attractor.

(ii) Assume that for 𝑅0 > 1 the total population, i.e., the
sum of all the subpopulations, is uniformly bounded for all
time. Assume also that 𝑓(𝑥(𝑡), 𝑦(𝑡)) and 𝑔(𝑥(𝑡), 𝑦(𝑡)) are
uniformly continuous in the first closed orthant of R𝑛+𝑚. 	en,
all the trajectory solutions are bounded for all time while they
converge asymptotically to the endemic equilibrium point at an
exponential rate which is also the unique asymptotically stable
attractor.

Proof. The nonnegativity of the solutions and the local
asymptotic stability of the disease-free equilibrium point,
which is unique, follow directly from Theorem 1 (iii) and
Theorem 4 (ii. (a)), since from Theorem 4 (ii. (b)), the
endemic equilibrium is not reachable if 𝜌(𝐹𝑉−1) < 1.
Since the unique disease-free equilibrium point is locally
asymptotically stable, its Poincaré index [17] is +1 in any
plane of the phase space containing the evolution of any
two components of the state trajectory solution. It is well-
known from the existence theorem of oscillations that any
such a solution, if it exists, should be bounded. This is a
consequence of the fact that the total population is bounded
for all time and that all the subpopulations are nonnegative
for all time what leads to the conclusion that any of them
is uniformly bounded for all time for any finite initial

conditions in the first closed orthant of R𝑛+𝑚. Also, any such
an oscillation, if it exists, should surround the equilibrium
point, since the net global Poincaré index of all the reachable
equilibrium points is still +1, while it should be unstable and
then asymptotically vanishing to the locally asymptotically
stable disease-free equilibrium point, since such a unique
equilibrium point within the region defined by such a curve,
is locally asymptotically stable. As a result, the disease-free
equilibrium point is globally asymptotically stable for any
initial condition in the first closed orthant of R𝑛+𝑚. Property
(i) has been proved. Now, assume that the total population is
bounded for𝑅0 > 1 so that the disease-free equilibrium point
is unstable and the endemic one is attainable. Two cases can
occur.

Case a. The endemic equilibrium point is globally asymptot-
ically stable. Property (ii) follows directly.

Case b. The endemic equilibrium point is not globally
asymptotically stable. Since the total population is bounded
by hypothesis and all the subpopulations are nonnegative
for all time, all the subpopulations are bounded for all time
and a bounded limit cycle, if it exists, should surround the
endemic point to attract any trajectories in the first orthant
of the state space. This consideration follows by examining
the admissible Poincaré-type combinations of allowed sta-
ble/instable combinations of configurations of singular points
and limit cycles. Rewrite compactly (1) to (3) in the form𝑧̇(𝑡) = 𝑓(𝑥(𝑡), 𝑦(𝑡)), where 𝑓(𝑥(𝑡), 𝑦(𝑡)) = [ 𝐹−𝑉 0

0 0 ] [ 𝑥(𝑡)𝑦(𝑡) ] +[ −𝑓(𝑥(𝑡),𝑦(𝑡))𝑔(𝑥(𝑡),𝑦(𝑡)) ]. Assume that ∫∞
0

𝑓(𝑥(𝜏), 𝑦(𝜏))𝑑𝜏 = ±∞. Then,𝑧(𝑡) 󳨀→ ±∞ as 𝑡 󳨀→ ∞ which is not compatible
with the nonnegativity of the solution trajectories within
the first orthant and their boundenness. Therefore, −∞ <∫∞
0

𝑓(𝑥(𝜏), 𝑦(𝜏))𝑑𝜏 < +∞. Since 𝑓(𝑥(⋅).𝑦(⋅)) is uniformly
continuous, it follows from Barbalat’s lemma, [24], that𝑧̇(𝑡) 󳨀→ 0 as 𝑡 󳨀→ ∞ so that 𝑧(𝑡) cannot have a limit
oscillation in any of its components. So, a stable limit cycle
cannot surround the endemic equilibrium point if unstable
or critically stable. Therefore, the endemic equilibrium point
is globally asymptotically stable so that 𝑧(𝑡) 󳨀→ 𝑧𝑒𝑛𝑑 as 𝑡 󳨀→∞. Property (ii) has been proved.
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A very important remark is that the mathematical
hypothesis of boundedness of the total population for
the cases of reproduction numbers exceeding unity of
Theorem 10 (ii) is not strong, then fully feasibly, in practice.
This consideration is based on the proved boundedness of
the total population in the case that the reproduction number
is less than unity implying the global asymptotic stability. In
fact, it can be conjectured from simple inspection that, for
any given initial conditions in the first orthant and any given
time instant, the total population cannot exceed its value for
the disease-free case at any time because thereof the disease
mortality rates. Even if there is no infection mortality both
values would be coincident.

3. Models with Multiple Incommensurate
Point Time-Delays

A compartmental disease model of dimension (𝑚 + 𝑛) with𝑟 constant, in general incommensurate, internal point delaysℎ𝑖 (𝑖 ∈ 𝑟) satisfying 0 = ℎ0 ≤ ℎ1 ≤ ℎ2 ≤ ⋅ ⋅ ⋅ ≤ ℎ𝑟 = ℎ ≤ ℎ ≤∞, what is assumed in the sequel, can be generalized from
(1)-(2) as follows:

𝑥̇ (𝑡) = 𝑟∑
𝑖=0

(𝐹𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖))
− 𝑉𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖))) = 𝑟∑

𝑖=0

(𝐹𝑖 − 𝑉𝑖) 𝑥 (𝑡
− ℎ𝑖) − 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑥 (𝑡 − ℎ1) , 𝑦 (𝑡 − ℎ1) , . . . , 𝑥 (𝑡
− ℎ𝑟) , 𝑦 (𝑡 − ℎ𝑟))

(24)

̇𝑦 (𝑡) ≡ 𝑔 (𝑥 (𝑡) , 𝑦 (𝑡)) = 𝑔 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑥 (𝑡 − ℎ1) , 𝑦 (𝑡
− ℎ1) , . . . , 𝑥 (𝑡 − ℎ𝑟) , 𝑦 (𝑡 − ℎ𝑟)) (25)

subject to any absolutely continuous function of initial con-
ditions 𝜑 : [−ℎ, 0] 󳨀→ R𝑛+𝑚 with eventual finite jumps on a
subset of [−ℎ, 0] of zeromeasure with 𝜑(0) = (𝑥𝑇(0), 𝑦𝑇(0))𝑇.
Any member of such a class of functions is referred to in
the sequel as an admissible function of initial conditions,
where 𝑛 and 𝑚 are the respective dimensions of the disease
and nondisease compartments of respective state vectors 𝑥(𝑡)
and 𝑦(𝑡), and the nonlinear effects of (3) are replaced by the
subsequent delayed counterpart dynamics:

𝑓 (𝑥 (𝑡) , 𝑦 (𝑡)) ≡ 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡) , 𝑥 (𝑡 − ℎ1) , 𝑦 (𝑡 − ℎ1) ,
. . . , 𝑥 (𝑡 − ℎ𝑟) , 𝑦 (𝑡 − ℎ𝑟)) = 𝑟∑

𝑖=0

(𝐹𝑖 − 𝑉𝑖) 𝑥 (𝑡 − ℎ𝑖)
− 𝑟∑

𝑖=0

(𝐹𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖))
− 𝑉𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖))) = 𝜃 (𝑧̂ (𝑡)) 𝐺 (𝑧̂ (𝑡))

(26)

where 𝑓(𝑥(𝑡), 𝑦(𝑡)) describes the dynamics of higher-order
contributions to the dynamics, 𝑧̂(𝑡) = (𝑥𝑇(𝑡), 𝑦𝑇(𝑡)) =(𝑧𝑇(𝑡), 𝑧𝑇(𝑡−ℎ1), . . . , 𝑧𝑇(𝑡−ℎ𝑟)), where 𝑧(𝑡) = (𝑦𝑇(𝑡), 𝑥𝑇(𝑡))𝑇

and 𝜃(𝑧̂(𝑡)) is the scalar positive bounded incidence rate,
and 𝐺(𝑧̂(𝑡)) = ∑𝑟

𝑖=0 𝐹𝑖(𝑧(𝑡 − ℎ𝑖))𝑧(𝑡 − ℎ𝑖) where 𝐺(𝑧̂(𝑡)) is
a partitioned block matrix function of the form 𝐺(𝑧̂(𝑡)) =∑𝑟

𝑖=0[𝐺𝑥𝑥(𝑥(𝑡−ℎ𝑖)) 𝐺𝑥𝑦(𝑦(𝑡−ℎ𝑖))]. For commensurate point
delays, (24)-(26) remain valid under the additional constraintℎ𝑖 = 𝑖ℎ1 for 𝑖 ∈ 𝑟. It turns out that the solution is unique
on [−ℎ,∞) for any such initial conditions from the Cauchy-
Peano theorem. Note that, (24)- (26) can be rewritten as
follows:

𝑥̇ (𝑡) = 𝑟∑
𝑖=0

(𝐹𝑖 − 𝑉𝑖) 𝑥 (𝑡 − ℎ𝑖) − 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡))
= (𝐹0 − 𝑉0) 𝑥 (𝑡) + 𝑟∑

𝑖=1

(𝐹𝑖 − 𝑉𝑖) 𝑥 (𝑡 − ℎ𝑖)
− 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡))

= (𝐹 − 𝑉) 𝑥 (𝑡) + 𝑟∑
𝑖=1

(𝐹𝑖 − 𝑉𝑖) (𝑥 (𝑡 − ℎ𝑖) − 𝑥 (𝑡))
− 𝑓 (𝑥 (𝑡) , 𝑦 (𝑡))

(27)

̇𝑦 (𝑡) ≡ 𝑔 (𝑥 (𝑡) , 𝑦 (𝑡)) (28)

where

𝑓 (𝑥 (𝑡) , 𝑦 (𝑡)) = 𝑟∑
𝑖=0

(𝐹𝑖 − 𝑉𝑖) 𝑥 (𝑡 − ℎ𝑖)
− 𝑟∑

𝑖=0

(𝐹𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖))
− 𝑉𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖))) = (𝐹0 − 𝑉0) 𝑥 (𝑡)
+ 𝑟∑

𝑖=1

(𝐹𝑖 − 𝑉𝑖) 𝑥 (𝑡 − ℎ𝑖)
− 𝑟∑

𝑖=0

(𝐹𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖))
− 𝑉𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖))) = (𝐹0 − 𝑉0) 𝑥 (𝑡)
+ 𝑟∑

𝑖=1

(𝐹𝑖 − 𝑉𝑖) (𝑥 (𝑡 − ℎ𝑖) − 𝑥 (𝑡))
− 𝑟∑

𝑖=0

(𝐹𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖))
− 𝑉𝑖 (𝑥 (𝑡 − ℎ𝑖) , 𝑦 (𝑡 − ℎ𝑖)))

(29)

with

𝐹𝑗 = [𝜕𝐹𝑗𝑖 (0, 𝑦𝑑𝑓)𝜕𝑥𝑗 (𝑡 − ℎ𝑗) ] ;

𝑉𝑗 = [𝜕𝑉𝑗𝑖 (0, 𝑦𝑑𝑓)𝜕𝑥𝑗 (𝑡 − ℎ𝑗) ] ;
𝑗 ∈ 𝑟 ∪ {0}
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𝐹𝑒𝑗 = [𝜕𝐹𝑒𝑗𝑖 (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑)𝜕𝑥𝑗 (𝑡 − ℎ𝑗) ] ;

𝑉𝑒𝑗 = [𝜕𝑉𝑒𝑗𝑖 (𝑥𝑒𝑛𝑑, 𝑦𝑒𝑛𝑑)𝜕𝑥𝑗 (𝑡 − ℎ𝑗) ] ;
𝑗 ∈ 𝑟 ∪ {0} ,

(30)

respectively, at the disease-free equilibrium point 𝑧𝑑𝑓 =(0𝑇, 𝑦𝑇𝑑𝑓)𝑇 and at the endemic one 𝑧𝑒𝑛𝑑 = (𝑥𝑇𝑒𝑛𝑑, 𝑦𝑇𝑒𝑛𝑑)𝑇 and
the redefinitions:

𝐹 = 𝑟∑
𝑖=0

𝐹𝑖,
𝑉 = 𝑟∑

𝑖=0

𝑉𝑖
(31)

The extended versions of Assumptions 1 and 2 are kept for the
delayed epidemic models as follows.

Assumptions 4.∑𝑟
𝑗=0 𝐹𝑖𝑗(0, 𝑦(𝑡 − ℎ𝑗)) = ∑𝑟

𝑗=0 𝑉𝑖𝑗(0, 𝑦(𝑡 − ℎ𝑗)) =0; ∀𝑖 ∈ 𝑛 = {1, 2, . . . , 𝑛}, 𝐹𝑖𝑗(𝑥(𝑡 − ℎ𝑗), 𝑦(𝑡 − ℎ𝑗)) ≥ 0,𝑉𝑖𝑗(𝑥(𝑡 − ℎ𝑗), 𝑦(𝑡 − ℎ𝑗)) ≤ 0 when 𝑥𝑖(𝑡 − ℎ𝑗) = 0, and∑𝑛
𝑖=1∑𝑟

𝑗=0 𝑉𝑖𝑗(𝑥(𝑡), 𝑦(𝑡)) ≥ 0 for all 𝑥(𝑡), 𝑦(𝑡) ⪰ 0.
Assumptions 5. (a) (−𝑉0) ∈ 𝑀𝑛×𝑛

𝐸 , 𝑉−1
0 ≻ 0, 𝐹𝑖 ⪰ 𝑉𝑖; ∀𝑖 ∈ 𝑟.

(b) The disease-free equilibrium point 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇𝑑𝑓)𝑇 is
unique and the noninfective subsystem ̇𝑦(𝑡) = 𝑔(0, 𝑦(𝑡)) is
locally asymptotically stable.

Example 11. A simple motivation of the model (24)-(26)
subject to delays covers and generalizes classical models
in the literature which have a physical interpretation. A
well-known classical Kermack-McKendrick-based epidemic
model in integral form, revisited in [27], is the subsequent
one:

̇𝑆 (𝑡) = 𝑆 (𝑡) ∫∞

0
𝐴 (𝜏) ̇𝑆 (𝑡 − 𝜏) 𝑑𝜏 (32)

where 𝑆(𝑡) denotes the spatial density of susceptibles, i.e.,
the number of individuals per area at time 𝑡 where 𝐴(𝜏)
is the expected infectivity of an individual which become
infected 𝜏 unity of times ago. That model can be interpreted
in differential form as the SI- epidemic model:

̇𝑆 (𝑡) = −𝛽𝑆 (𝑡) 𝐼 (𝑡) ;
̇𝐼 (𝑡) = 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) (33)

by defining 𝐼(𝑡) = −𝛽−1 ∫𝑡
−∞

𝐴(𝑡 − 𝜏) ̇𝑆(𝜏)𝑑𝜏, subject to the
special infectivity 𝐴(𝜏) = 𝛽𝑒−𝛾𝜏, where 𝛽 and 𝛾 are the
coefficient transmission rate and the infection rate. A more

general differential epidemic model subject to time-delays
becomes:

̇𝑆 (𝑡) = −𝛽 𝑟∑
𝑖=0

𝑆 (𝑡 − ℎ𝑖) 𝐼 (𝑡 − ℎ𝑖) ;
̇𝐼 (𝑡) = 𝛽 𝑟∑

𝑖=0

𝑆 (𝑡 − ℎ𝑖) 𝐼 (𝑡 − ℎ𝑖) − 𝛾 𝑟∑
𝑖=0

𝐼 (𝑡 − ℎ𝑖)
(34)

which corresponds to that in the integral form:

̇𝑆 (𝑡) = 𝑟∑
𝑖=0

𝑆 (𝑡 − ℎ𝑖) ∫∞

0
𝐴 (𝜏) ̇𝑆 (𝑡 − ℎ𝑖 − 𝜏) 𝑑𝜏 (35)

The physical interpretation relies on the arrival of several
infectious groups at different time instants or to the combined
contributions of several infective strains at different time
instants both with the same coefficient rates.

Sufficient conditions for the stability of the linearized
system independent of the delay sizes around the disease-free
equilibrium point can be obtained for the cases when either𝑉0 or 𝑉 is a stability matrix. For this purpose, we first write
the equations of the linearized system in two ways depending
on the nonsingularity of 𝑉0 or that of 𝑉as follows.
Lemma 12. 	e following properties hold.

(i) 	e infective linearized subsystem obtained from (24)-
(25) around the disease-free equilibrium point is given by the
subsequent dynamics:

𝑥̇𝐿 (𝑡) = 𝑟∑
𝑖=0

(𝐹𝑖 − 𝑉𝑖) 𝑥𝐿 (𝑡 − ℎ𝑖) (36)

for given initial conditions 𝑥𝐿(𝑡) = 𝑥(𝑡) = 𝜑(𝑡); ∀𝑡 ∈ [−ℎ, 0],
where 𝜑 : [−ℎ, 0] 󳨀→ R𝑛+𝑚 is an absolutely continuous
functionwith eventual finite jumps on a subset of [−ℎ, 0] of zero
measure with 𝜑(0) = (𝑥𝑇(0), 𝑦𝑇(0))𝑇.

(ii) If 𝑉0 is nonsingular then (36) can be equivalently
expressed as

𝑥̇𝐿 (𝑡) = −𝑉0 (𝐼𝑛 − 𝑉−1
0 𝐹0) 𝑥𝐿 (𝑡)

+ 𝑟∑
𝑖=1

(𝐹𝑖 − 𝑉𝑖) 𝑥𝐿 (𝑡 − ℎ𝑖)
= 𝑟∑

𝑖=0

(𝐹𝑖 − 𝑉𝑖) 𝑥𝐿 (𝑡)
+ 𝑟∑

𝑖=1

(𝐹𝑖 − 𝑉𝑖) (𝑥𝐿 (𝑡 − ℎ𝑖) − 𝑥𝐿 (𝑡))

(37)

(iii) If𝑉 is nonsingular then (36) can be equivalently expressed
as 𝑥̇𝐿 (𝑡)

= −( 𝑟∑
𝑖=0

𝑉𝑖)(𝐼𝑛 − ( 𝑟∑
𝑖=0

𝑉𝑖)
−1( 𝑟∑

𝑖=0

(𝐹𝑖)))𝑥𝐿 (𝑡)
+ 𝑟∑

𝑖=1

(𝐹𝑖 − 𝑉𝑖) (𝑥𝐿 (𝑡 − ℎ𝑖) − 𝑥𝐿 (𝑡))
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= ( 𝑟∑
𝑖=0

(𝐹𝑖 − 𝑉𝑖))𝑥𝐿 (𝑡)
+ 𝑟∑

𝑖=1

(𝐹𝑖 − 𝑉𝑖) (𝑥𝐿 (𝑡 − ℎ𝑖) − 𝑥𝐿 (𝑡))
(38)

(iv) If 𝑉0 and 𝑉 are nonsingular then the linearized system
around the disease-free equilibrium point is described indis-
tinctly by both (37) and (38) and also by

𝑥̇𝐿 (𝑡) = −𝑉0(𝐼𝑛 + 𝑉−1
0 ( 𝑟∑

𝑖=1

𝑉𝑖))
⋅ (𝐼𝑛 − (𝑉0(𝐼𝑛 + 𝑉−1

0 ( 𝑟∑
𝑖=1

𝑉𝑖))
−1( 𝑟∑

𝑖=0

𝐹𝑖)))
⋅ 𝑥𝐿 (𝑡) + 𝑟∑

𝑖=1

(𝐹𝑖 − 𝑉𝑖) (𝑥𝐿 (𝑡 − ℎ𝑖) − 𝑥𝐿 (𝑡))
(39)

Proof. Eq. (36) is a linearized version of (24) around the
disease-free equilibrium point. Eqs. (37) and (38) are direct
from (36) if 𝑉0 and 𝑉 are, respectively, nonsingular. Further-
more, if both matrices are nonsingular then 𝑉−1 = (𝐼𝑛 +𝑉−1
0 (∑𝑟

𝑖=1 𝑉𝑖))−1𝑉−1
0 and (𝐼𝑛+𝑉−1

0 (∑𝑟
𝑖=1 𝑉𝑖))−1 exists what leads

to (39).
Some basic results, given in Theorem 1 on positivity and

stability for the delay-free linearized infective subsystem
around the disease-free equilibrium point, for the case of
multiple point delays follows.

Theorem 13. 	e following properties hold under Assump-
tions 4-5.

(i) 	e linearized epidemic model (24)-(25) around the
disease-free equilibrium point has a nonnegative solution of the
infective substate independent of the delays for any bounded
admissible function of initial conditions 𝜑(𝑡) ⪰ 0; ∀𝑡 ∈ [−ℎ, 0]
if and only if (𝐹0−𝑉0) ∈ 𝑀𝑛×𝑛

𝐸 (equivalently, (−𝑉0) ∈ 𝑀𝑛×𝑛
𝐸 and𝐹0 ⪰ 0) and 𝐹𝑖 ⪰ 𝑉𝑖; ∀𝑖 ∈ 𝑟. 	ese conditions are also jointly

necessary for the epidemic model (24)-(25) to have a non-
negative solution trajectory independent of the delays for any
admissible function of initial conditions 𝜑(𝑡) ⪰ 0; ∀𝑡 ∈ [−ℎ, 0].

(ii) 	e linearized infective substate around the disease-
free equilibrium point has a nonnegative solution trajectory
and it is globally exponentially stable independent of the
delays for any admissible function of initial conditions𝜑(𝑡) ⪰ 0; ∀𝑡 ∈ [−ℎ, 0] if the following conditions jointly hold:(𝐹0 − 𝑉0) ∈ 𝑀𝑛×𝑛

𝐸 is a stability matrix (equivalently, it exists(𝑉0 − 𝐹0)−1 ≻ 0; equivalently (−𝑉0) ∈ 𝑀𝑛×𝑛
𝐸 , it exists 𝑉−1

0 ≻ 0,𝐹0 ⪰ 0, and 𝜌0∞ = 𝜌(𝐹0𝑉−1
0 ) < 1), 𝐹𝑖 ⪰ 𝑉𝑖; ∀𝑖 ∈ 𝑟, and

𝜌0∞ = 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(𝑠𝐼𝑛 + 𝑉0 − 𝐹0)−1( 𝑟∑
𝑖=1

(𝐹𝑖 − 𝑉𝑖) 𝑒−𝑠ℎ𝑖)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

= sup
𝜔∈R0+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(i𝜔𝐼𝑛 + 𝑉0 − 𝐹0)−1( 𝑟∑
𝑖=1

(𝐹𝑖 − 𝑉𝑖))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

< 1
(40)

(iii) 	e linearized infective substate around the disease-free
equilibrium point is positive and globally exponentially stable
independent of the delays for any admissible function of initial
conditions 𝜑(𝑡) ⪰ 0; ∀𝑡 ∈ [−ℎ, 0] if and only if the following
conditions jointly hold: ∑𝑟

𝑖=0(𝐹𝑖 − 𝑉𝑖) is a stability matrix,(𝐹0 − 𝑉0) ∈ 𝑀𝑛×𝑛
𝐸 (equivalently, (−𝑉0) ∈ 𝑀𝑛×𝑛

𝐸 and 𝐹0 ⪰ 0),𝐹𝑖 ⪰ 𝑉𝑖; ∀𝑖 ∈ 𝑟, and the matrix (∑𝑟
𝑖=0(𝐹𝑖 − 𝑉𝑖)𝑒−𝑠ℎ𝑖) has no

nonzero imaginary eigenvalues.
(iv) 	e whole linearized model around the unique

disease-free equilibrium point has a nonnegative state
trajectory solution for any given admissible nonnegative
function of initial conditions which converges asymptotically
to the unique disease-free equilibrium point.

Proof. Note that the solution of the linearized infective
substate around the disease-free equilibrium point is

𝑥𝐿 (𝑡) = 𝑒(𝐹0−𝑉0)𝑡𝑥𝐿 (0)
+ 𝑟∑

𝑖=1

∫𝑡

0
𝑒(𝐹0−𝑉0)(𝑡−𝜏) (𝐹𝑖 − 𝑉𝑖) 𝑥𝐿 (𝜏 − ℎ𝑖) 𝑑𝜏

= 𝑒(𝐹0−𝑉0)𝑡𝑥𝐿 (0)
+ 𝑟∑

𝑖=1

∫𝑡−ℎ𝑖

−ℎ𝑖

𝑒(𝐹0−𝑉0)(𝑡−ℎ𝑖−𝜏) (𝐹𝑖 − 𝑉𝑖) 𝑥𝐿 (𝜏) 𝑑𝜏
= 𝑒(𝐹0−𝑉0)𝑡𝑥𝐿 (0)

+ 𝑟∑
𝑖=1

∫0

−ℎ𝑖

𝑒(𝐹0−𝑉0)(𝑡−ℎ𝑖−𝜏) (𝐹𝑖 − 𝑉𝑖) 𝜑 (𝜏) 𝑑𝜏
+ 𝑟∑

𝑖=1

∫𝑡−ℎ𝑖

0
𝑒(𝐹0−𝑉0)(𝑡−ℎ𝑖−𝜏) (𝐹𝑖 − 𝑉𝑖) 𝑥𝐿 (𝜏) 𝑑𝜏

(41)

The sufficiency part is direct from (41) since if (𝐹0 − 𝑉0) ∈𝑀𝑛×𝑛
𝐸 and 𝐹𝑖 ⪰ 𝑉𝑖; ∀𝑖 ∈ 𝑟 then 𝑥𝐿(𝑡) ⪰ 0 for any 𝑡 > 0

and any given 𝜑(𝑡) ⪰ 0; ∀𝑡 ∈ [−ℎ, 0]. The necessity is
proved by contradiction in two separate steps. Assume that𝐴0 = (𝐴0𝑖𝑗

) = (𝐹0 − 𝑉0) ∉ 𝑀𝑛×𝑛
𝐸 . Then, there is some pair(𝑖, 𝑘( ̸= 𝑖)) ∈ 𝑛 × 𝑛 such that 𝐴0𝑖𝑘
< 0. Now, take a function of

initial conditions satisfying 𝜑𝑘(0) > 0, 𝜑𝑖(0) = 0; ∀𝑖( ̸= 𝑘) ∈ 𝑛,
and 𝜑(𝑡) = 0 for 𝑡 ∈ [−ℎ, 0). Thus, 𝑥̇𝐿 𝑖(0) = −|𝐴0𝑖𝑘

|𝜑𝑘(0) < 0
and 𝑥𝐿 𝑖(0) = 0 so that 𝑥𝐿 𝑖(0+) < 0 and the system is not
positive. On the other hand, assume that there is some 𝑖 ∈ 𝑟
such that 𝑉𝑖 ≻ 𝐹𝑖 so that there is some pair (𝑗, 𝑘) ∈ 𝑛 × 𝑛 such
that 𝑉𝑖𝑗𝑘 > 𝐹𝑖𝑗𝑘 . Take initial conditions as follows: 𝜑(𝑡) = 0
for 𝑡 ∈ [−ℎ, −ℎ𝑖) ∪ (−ℎ𝑖, 0], 𝜑ℓ(−ℎ𝑖) = 0; ∀𝑘, ℓ( ̸= 𝑘) ∈ 𝑛
and 𝜑𝑘(−ℎ𝑖) > 0. Then, 𝑥̇𝐿𝑗(0) = −|𝐹𝑖𝑗𝑘 − 𝑉𝑖𝑗𝑘 |𝜑𝑘(−ℎ𝑖) < 0
and 𝑥𝐿𝑗(0) = 0 so that 𝑥𝐿𝑗(0+) < 0 and the system is not
positive. Therefore, 𝐹𝑖 ⪰ 𝑉𝑖; ∀𝑖 ∈ 𝑟 and (𝐹0 − 𝑉0) ∈ 𝑀𝑛×𝑛

𝐸
are necessary for positivity. The first part of Property (i) for
the linearized system around the disease-free equilibrium
point has been proved. The fact that the conditions are also
necessary for the positivity of the whole nonlinear model
are obvious in the guidelines of Theorem 1 (i) for the delay-
free case since the positivity of the whole model requires that
of its linearized version around the disease-free equilibrium
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point. This proves the second part of Property (i). Property
(ii) contains conditions to guarantee the positivity (borrowed
from Property (i)) and, furthermore, the global asymptotic
stability is guaranteed as follows. Since the transfer matrix(𝑠𝐼𝑛 + 𝑉0 − 𝐹0)−1 is stable, since (𝐹0 − 𝑉0) is a stability matrix,
that is det(𝑠𝐼𝑛 +𝑉0 −𝐹0) ̸= 0 for Re 𝑠 ≥ 0, then condition (40)
is equivalent to

det(𝜄𝜔𝐼𝑛 + 𝑟∑
𝑖=0

(𝑉𝑖 − 𝐹𝑖) 𝑒−𝜄𝜔ℎ𝑖) = det (𝜄𝜔𝐼𝑛 + 𝑉0
− 𝐹0) det(𝐼𝑛
− (𝜄𝜔𝐼𝑛 + (𝑉0 − 𝐹0)−1)( 𝑟∑

𝑖=0

(𝑉𝑖 − 𝐹𝑖) 𝑒−𝜄𝜔ℎ𝑖))
̸= 0; ∀𝜔 ∈ R0+.

(42)

Thus, constraint (42) is a sufficient condition for global
asymptotic stability. Since the linearized system is time-
invariant and globally asymptotically stable and since time-
invariant time-delay systems with constant point delays can
also have a finite number of characteristic zeros to the right of
any vertical line in the complex plane of abscissa greater than−∞, then the solution is a function of time of exponential
negative order so that one concludes that the proved global
asymptotic stability is also exponential. Property (ii) has been
proved. On the other hand, note that if the jointly condition
that∑𝑟

𝑖=0(𝐹𝑖−𝑉𝑖) is a stabilitymatrix and thematrix (∑𝑟
𝑖=0(𝐹𝑖−𝑉𝑖)𝑒−𝑠ℎ𝑖)has no nonzero imaginary eigenvalues holds then the

global asymptotic stability at exponential rate is also guaran-
teed since (∑𝑟

𝑖=0(𝐹𝑖 − 𝑉𝑖)𝑒−𝑠ℎ𝑖) has no imaginary eigenvalues
and it is a stability matrix in the delay-free case. Such a jointly
condition is also necessary [28] for global asymptotic stability
from the continuity of the characteristic zeros with respect to
the parameters. Since the linearized system is time-invariant
and globally asymptotically stable and since time-invariant
time-delay systems with constant point delays can also have
a finite number of characteristic zeros to the right of any
vertical line in the complex plane of abscissa greater than−∞, then the solution is a function of time of exponential
negative order so that one concludes that the proved global
asymptotic stability is also exponential. Property (iii) has
been proved. Since Assumptions 4-5 hold, then both the
linearized infective substate and the noninfective one around
the unique disease-free equilibrium point have a nonnegative
state trajectory solution which converges exponentially to
the disease-free equilibrium point for any given admissible
nonnegative function of initial conditions. Hence, Property
(iv) is proved.

Taking into account (42) in the proof of Theorem 13, one
gets the subsequent result.

Corollary 14. 	e linearized infective substate around the
disease-free equilibrium point is positive and exponentially
stable independent of the set of 𝑟 commensurate delays ℎ𝑖 = 𝑖ℎ1;

∀𝑖 ∈ 𝑟 for any bounded admissible function of initial conditions𝜑(𝑡) ⪰ 0; ∀𝑡 ∈ [−ℎ, 0] if and only if ∑𝑟
𝑖=0(𝐹𝑖 − 𝑉𝑖) is a stability

matrix, (𝐹0 − 𝑉0) ∈ 𝑀𝑛×𝑛
𝐸 , 𝐹𝑖 ⪰ 𝑉𝑖; ∀𝑖 ∈ 𝑟, and

det(𝜄𝜔𝐼𝑛 + 𝑟∑
𝑖=0

(𝑉𝑖 − 𝐹𝑖) 𝑧𝑖) ̸= 0;
∀𝜔 ∈ R0+, ∀𝑧 ∈ 𝐶 (0, 1) .

(43)

If the set 𝑆 = {(𝜔, 𝑧) ∈ R0+ × 𝜕𝐶(0, 1)} ̸= ⌀ then the
infective substate around the disease-free equilibrium point is
not exponentially stable for the sets of commensurate delays𝑆𝐻 = {ℎ𝑖 = − ln 𝑧/𝜔 : (𝜔, 𝑧) ∈ 𝑆}.

Taking into account the expression (36) to describe the
linearized infective dynamics around the disease-free equi-
librium point, it is possible to give an alternative sufficiency-
type condition for global stability of the infective subsystem
as the subsequent result reflects.

Corollary 15. 	e linearized infective substate around the
disease-free equilibrium point is exponentially stable indepen-
dent of the set of 𝑟 incommensurate delays ℎ𝑖; ∀𝑖 ∈ 𝑟 if

𝜌00 = 2 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑟∑
𝑖=1

(𝐹𝑖 − 𝑉𝑖)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2

⋅ sup
𝜔∈R+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(i𝜔𝐼𝑛 − ( 𝑟∑
𝑖=1

(𝐹𝑖 − 𝑉𝑖)))
−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩2 < 1

(44)

provided that ∑𝑟
𝑖=0(𝐹𝑖 − 𝑉𝑖) is a stability matrix, which holds if

and only if 𝜌00 = 𝜌[(∑𝑟
𝑖=0 𝐹𝑖)(∑𝑟

𝑖=0 𝑉𝑖)−1] < 1.
Proof. One gets the characteristic equation from (37) as
follows:

det(𝑠𝐼𝑛 − ( 𝑟∑
𝑖=0

(𝐹𝑖 − 𝑉𝑖)) − 𝑟∑
𝑖=1

(𝐹𝑖 − 𝑉𝑖) (𝑒−ℎ𝑖𝑠 − 1))
= 0 for 𝑠 ∈ C

(45)

Since (∑𝑟
𝑖=0(𝐹𝑖 − 𝑉𝑖)) is a stability matrix then det(𝑠𝐼𝑛 −(∑𝑟

𝑖=0(𝐹𝑖 − 𝑉𝑖))) ̸= 0 for 𝑠 ∈ C0+ so that

det(𝑠𝐼𝑛 − ( 𝑟∑
𝑖=0

(𝐹𝑖 − 𝑉𝑖))) det(𝐼𝑛
− (𝑠𝐼𝑛 − ( 𝑟∑

𝑖=0

(𝐹𝑖 − 𝑉𝑖)))
−1

⋅ ( 𝑟∑
𝑖=1

(𝐹𝑖 − 𝑉𝑖) (𝑒−ℎ𝑖𝑠 − 1))) ̸= 0; ∀𝑠 ∈ C0+

(46)

provided that ‖(𝑠𝐼𝑛 − (∑𝑟
𝑖=0(𝐹𝑖 − 𝑉𝑖)))−1(∑𝑟

𝑖=1(𝐹𝑖 − 𝑉𝑖)(𝑒−ℎ𝑖𝑠 −1))‖∞ < 1which is guaranteed if 𝜌00 < 1. Since∑𝑟
𝑖=0(𝐹𝑖−𝑉𝑖) is

a stability matrix, the above test is fulfilled at the origin of the
complex plane. Note also that ∑𝑟

𝑖=0(𝐹𝑖 − 𝑉𝑖) = ∑𝑟
𝑖=0(−𝑉𝑖)[𝐼𝑛 −
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∑𝑟
𝑖=0(𝑉𝑖)−1∑𝑟

𝑖=0 𝐹𝑖] is a stability matrix if and only if 𝜌00 < 1
since ∑𝑟

𝑖=0(−𝑉𝑖) is a stability matrix. Therefore, a sufficient
condition to achieve the global (exponential) asymptotic
stability test independent of the delays is constraint (44) since
sup𝜔∈R0+ |𝑒−iℎ𝑖𝜔 − 1| ≤ 2; ∀𝑖 ∈ 𝑟.

It follows from Corollary 15 and the “If Part” of
Theorem 13 (iii) that since ∑𝑟

𝑖=0(𝐹𝑖 − 𝑉𝑖) is a stability matrix,
constraint (44) guarantees that (∑𝑟

𝑖=0(𝐹𝑖 − 𝑉𝑖)𝑒−𝑠ℎ𝑖) has no
nonzero imaginary eigenvalues. Otherwise, the infective part
of the linearized system around the disease-free equilibrium
point could not be globally asymptotically stable.

Remark 16. The infective linearized system around the
disease-free equilibrium point has two important particular
cases which define auxiliary linearized systems which are
useful for the local stability analysis independent of the
delays, namely,

(a) auxiliary infective linearized delay-free system
(AILDFS) describing the particular case ℎ𝑖 = 0; ∀𝑖 ∈ 𝑟:

𝑥̇𝐿 (𝑡) = 𝑟∑
𝑖=0

(𝐹𝑖 − 𝑉𝑖) 𝑥𝐿 (𝑡) (47)

for 𝑡 > 0 for admissible initial conditions 𝜑 : [−ℎ, 0] 󳨀→ R𝑛
0+

with 𝜑(0) = 𝑥(0) = 𝑥0 and ℎ = ℎ𝑟;
(b) auxiliary infective linearized delayed dynamics-free

system (AILDDFS) describing the particular case 𝐹𝑖 − 𝑉𝑖 = 0;∀𝑖 ∈ 𝑟:
𝑥̇𝐿 (𝑡) = (𝐹0 − 𝑉0) 𝑥𝐿 (𝑡) (48)

for 𝑡 > 0 for admissible initial conditions 𝜑 : [−ℎ, 0] 󳨀→ R𝑛
0+

with 𝜑(0) = 𝑥(0) = 𝑥0 and a given maximum delay ℎ = ℎ𝑟 ≤+∞. This particular system can also be interpreted for the
case of point initial conditions 𝜑(𝑡) = 0 for 𝑡 ∈ [−∞, 0) and𝜑(0) = 𝑥(0) = 𝑥0 as defined under any amounts of delayed
dynamics associated with infinity delays ℎ𝑖 = +∞; ∀𝑖 ∈ 𝑟.

Note that the disease reproduction number 𝑅0(0, ℎ1,ℎ2, ..., ℎ𝑟) is, in general, delay-dependent with particular
values 𝑅00 = 𝑅0(0), with 0 ∈ R𝑛+1, which is the reproduction
number of the AILDFS, and 𝑅0∞ = 𝑅0(0, inf), where inf ∈
R𝑛 has all components equal to +∞, which is the repro-
duction number of the AILDDFS. Define the maximum
and minimum reproduction numbers for any given set of
incommensurate delays:

𝑅𝑀0 = max
0≤ℎ𝑖≤∞

𝑅0 (0, ℎ1, ℎ2, . . . , ℎ𝑟) ;
𝑅𝑚0 = min

0≤ℎ𝑖≤∞
𝑅0 (0, ℎ1, ℎ2, . . . , ℎ𝑟) (49)

Note also that

𝑅0 (0, ℎ1, ℎ2, . . . , ℎ𝑟) ∈ [𝑅𝑚0, 𝑅𝑀0] ;
∀ℎ𝑖 ∈ R0+, ∀𝑖 ∈ 𝑟,

𝑅00 ∈ [𝑅𝑚0, 𝑅𝑀0] ,
𝑅0∞ ∈ [𝑅𝑚0, 𝑅𝑀0] .

(50)

where 𝑅00 = max(𝜌00, 𝜌00), 𝑅0∞ = max(𝜌0∞, 𝜌0∞). Note
that 𝜌00 and 𝜌0∞ are the respective reproduction numbers of
the AILDFS and the AILDDFS which are delay-free auxiliary
linearized systems and the amounts 𝜌00 and 𝜌0∞ express
the tolerance to stability independent of the delays of the
linearized systems around the disease-free equilibrium point
compatible with guaranteeing the stability independent of the
delay sizes provided that those amounts are less than unity.
Define 𝑅0 = min(𝑅00, 𝑅0∞) and note that 𝑅𝑚0 ≤ 𝑅0(0, ℎ1,ℎ2, ..., ℎ𝑟) ≤ 𝑅0 ≤ 𝑅𝑀0; ∀ℎ𝑖 ∈ R0+, ∀𝑖 ∈ 𝑟.

Thus, the asymptotic stability independent of the delays
of the linearized system around the disease-free equilibrium
point holds if 𝑅𝑀0 ≤ 1 and it is then guaranteed if 𝑅0 ≤ 1.
However, the above constraint has only a partial information
about the stability and attainability of the endemic equilib-
rium point for each particular combination of delays. For,
instance, we can intuitively discuss the following cases.

(1) For a set of delays ℎ𝑖; ∀𝑖 ∈ 𝑟, it holds that 𝑅0(0, ℎ1, ℎ2,. . . , ℎ𝑟) ≤ 1 < 𝑅0 ≤ 𝑅𝑀0. We get the conclusion that the
disease-free equilibrium point is locally asymptotically stable
and the endemic is unattainable for this value of 𝑅0(⋅). Since𝑅𝑀0 ≥ 𝑅0 > 1, we can say that there are combinations
of delays, all of them with the same amounts of delayed
dynamics, for which the disease is endemic but it also holds
that there exist some particular delays for which the disease
asymptotically extinguishes. On the other hand, since 𝑅𝑀0 >1, there are other sets of delays ℎ𝑖; ∀𝑖 ∈ 𝑟 for the samematrices
of dynamics such that the disease-free equilibrium point is
unstable and the endemic one is stable and attainable.

(2) For a set of delays ℎ𝑖; ∀𝑖 ∈ 𝑟, it holds that 𝑅0(0, ℎ1, ℎ2,. . . , ℎ𝑟) ≤ 𝑅0 < 1 < 𝑅𝑀0. We get the conclusion that
the disease-free equilibrium point is locally asymptotically
stable and the endemic one is unattainable. However, the
reproduction number range for which this holds exceeds the
lower-bound given by 𝑅0. Furthermore, there are other sets
of delays ℎ𝑖; ∀𝑖 ∈ 𝑟, under the same amounts of delayed
dynamics, such that the disease-free equilibrium point is
unstable and the endemic one is stable and attainable.

(3) In the inequalities of the above cases (a) and (b), if 𝑅0

is replaced with 𝑅00 or 𝑅0∞, we get similar conclusions.

The following three results discuss the stability and
positivity independent of the delays of the linearized system
around the disease-free equilibrium point if either 𝑅00 (i.e.,
the reproduction number of the AILDFS) or 𝑅0∞ (i.e., the
reproduction number of the AILDDFS) or both amounts are
less than unity. In the first case, the complementary sufficient-
type stability condition (44) of worst-case tolerance against
delayed dynamics is also invoked. In the second case the
complementary worst-case tolerance condition (40) replaces
to (44).

Corollary 17. If Assumption 5 holds then the following prop-
erties hold.

(i) If constraint (44) holds, then there exists a real number𝜀 = 𝜀(ℎ1, ℎ2, . . . , ℎ𝑟) ∈ R0+ dependent, in general, on the
delays ℎ𝑖 ≥ 0 for 𝑖 ∈ 𝑟, such that the reproduction number
is given by 𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) = (1 + 𝜀)𝑅00 − 𝜀, so that
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(𝑅00 ≤ 1) 󳨐⇒ (𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) ≤ 1), and the implication
also holds under strict inequalities, for any given set of delays ℎ𝑖;∀𝑖 ∈ 𝑟, and then 𝑅𝑚0 ≤ 𝑅𝑀0 ≤ 1.	en, the infective substate of
the linearized system around the disease-free equilibrium point
is globally asymptotically stable independent of the delays, with
a nonnegative state trajectory solution for any given admissible
nonnegative function of initial conditions, if 𝑅00 < 1.

(ii) 	e AILDFS is globally asymptotically stable around
the disease-free equilibrium point, with a nonnegative state tra-
jectory solution for any given admissible nonnegative function
of initial conditions, if and only if 𝜌00 ≤ 1. If 𝜌00 < 1 then,
furthermore, the endemic equilibrium point is unattainable.
If 𝜌00 = 1 then the disease-free and the endemic equilibrium
points coincide. If 𝜌00 > 1 then the disease-free equilibrium
point is unstable.

Proof. The positivity and stability are guaranteed for the lin-
earized infective substate fromTheorem 13 (ii) and Lemma 12
(ii). Nowassume that𝜌00 ≤ 1 and (44) holds, that is, if𝜌00 < 1,
both combined guarantee that 𝑅00 < 1. Note that the critical
stability of the infective linearized system around the disease-
free equilibrium point is given by 𝜌00 = 1. It is now proved
that (𝑅00 ≤ 1) 󳨐⇒ (𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) ≤ 1) for any set
of incommensurate delays ℎ𝑖; ∀𝑖 ∈ 𝑟 if (44) holds. Assume,
on the contrary, that (𝑅00 ≤ 1) 󳨐⇒ (𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) >1) for some set of delays ℎ𝑖; ∀𝑖 ∈ 𝑟, so that 𝑅𝑀0 > 1.
Then, the linearized infective substate around the disease-free
equilibrium point is unstable for at least one set of delays,
a contradiction to Theorem 13 (ii) from the joint conditions𝜌00 < 1 and (44).Hence, (𝑅00 ≤ 1) 󳨐⇒ (𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) ≤1). Since both 𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) and 𝑅00 are positive real
constants which depend on the model parameterization then

𝑅0 (0, ℎ1, ℎ2, . . . , ℎ𝑟) = (1 + 𝜀) 𝑅00 − 𝜀
= (𝑅00 − 1) 𝜀 + 𝑅00

(51)

for some 𝜀 = 𝜀(ℎ1, ℎ2, . . . , ℎ𝑟) ∈ R0+ for each set of delaysℎ𝑖 ≥ 0; ∀𝑖 ∈ 𝑟. The nonnegativity of any solution under
any nonnegative admissible initial conditions follows from
Assumption 5. Property (i) has been proved. Property (ii)
follows since if Assumption 5 holds, then the AILDFS is
globally asymptotically stable if and only if 𝜌00 ≤ 1 since 𝜌00
is the reproduction number of theAILDFS and any trajectory
solution is nonnegative under nonnegative initial conditions.
The other assertions in Property (ii) follow from Theorem 4
(ii) since the AILDFS is a delay-free system.

Corollary 18. Under Assumption 5, if 𝑉 = ∑𝑟
𝑖=0 𝑉𝑖 is

nonsingular and (40) holds then the following properties hold.
(i)𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) = (1+𝜀1)𝑅0∞−𝜀1 for any given set of

delays ℎ𝑖 ≥ 0 for 𝑖 ∈ 𝑟 and some 𝜀1 = 𝜀1(ℎ1, ℎ2, . . . , ℎ𝑟) ∈ R0+.
	us, the infective substate of the linearized system around the
disease-free equilibrium point is globally asymptotically stable
independent of the delays with a nonnegative state trajectory
solution for any given admissible nonnegative function of initial
conditions if 𝜌0∞ ≤ 1 and (40) holds, that is, if 𝜌0∞ < 1.

(ii) the AILDDFS is globally asymptotically stable around
the disease-free equilibrium point, with a nonnegative state tra-
jectory solution for any given admissible nonnegative function

of initial conditions, if and only if 𝜌0∞ < 1. If 𝜌0∞ < 1 then the
endemic equilibrium point of the AILDDFS is unattainable. If𝜌0∞ = 1 then the disease-free and the endemic equilibrium
points coincide. If 𝜌0∞ > 1 then the disease-free equilibrium
point is unstable.

Proof. It follows under a similar reasoning as that in the proof
of Corollary 17 by using Lemma 12 (iii).

Corollary 19. If Assumption 5 holds, 𝑉 is nonsingular and
(40) and (44) jointly hold, then 𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) = (1 +𝜀2)𝜌 − 𝜀2 for any given set of delays ℎ𝑖 ≥ 0 for 𝑖 ∈ 𝑟 and some𝜀2 = 𝜀2(ℎ1, ℎ2, . . . , ℎ𝑟) ∈ R0+, where 𝑅0 = max(𝑅00, 𝑅0∞) < 1,
and then the infective substate of the linearized system around
the disease-free equilibrium point has a globally asymptotically
stable nonnegative state trajectory solution independent of the
delays for any given nonnegative admissible function of initial
conditions.

Proof. It follows under a similar reasoning as that in the proof
of Corollary 17 by taking into account Corollary 18.

Remark 20. If Assumption 5 holds, and 𝑉 = ∑𝑟
𝑖=0 𝑉𝑖 and𝑉󸀠 = ∑𝑟

𝑖=1 𝑉𝑖 = 𝑉 − 𝑉0 are nonsingular then 𝜌1 =
max(𝜌(𝐹0𝑉−1

0 ), 𝜌((∑𝑟
𝑖=0 𝐹𝑖)(∑𝑟

𝑖=0 𝑉𝑖)−1)) = 𝜌 ≤ 1 and then
the condition 𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) ≤ 𝜌1 = 𝜌 for some set of
delays ℎ𝑖 ≥ 0; ∀𝑖 ∈ 𝑟 if 𝜌 ≤ 1 if both (40) and (44) hold
included in Corollary 19. Thus, the linearized description
of Lemma 12 (iv) does not add any new information to
reformulate alternative conditions to those of Corollary 19.

Remark 21. Note that, since Theorem 13 (ii) gives sufficient
(while not necessary) stability conditions independent of
the delays, it cannot be proved in Corollary 17 that (𝑅00 >1) 󳨐⇒ (𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) > 1) for some set of delaysℎ𝑖 ≥ 0; ∀𝑖 ∈ 𝑟 to conclude instability. That is, 𝑅00 ≤ 1
guarantees stability since 𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) ≤ 1 but the
converse is not true, in general. In fact, if 𝑅00 > 1 then𝑅0(0, ℎ1, ℎ2, . . . , ℎ𝑟) > 𝑅00 since 𝜀(𝑅00 − 1) > 0 so that 𝜌00
is a lower-bound of the maximum reproduction number for
any set of admissible delays. Similar considerations can be
said related to Corollaries 18 and 19 which do not provide
necessary conditions either, in general, having in mind
Theorem 13. So, 𝜌0∞ is also a lower-bound of the maximum
reproduction number for any set of admissible delays.

Remark 22. A case of interest might be when 𝐹𝑖 = 𝛼𝑖𝐹0;𝑖 ∈ 𝑟 ∪ {0} with 𝛼0 = 1. Then, 𝜌((∑𝑟
𝑖=0 𝐹𝑖)(∑𝑟

𝑖=0 𝑉𝑖)−1) =(1 + ∑𝑟
𝑖=1 𝛼𝑖)𝜌(𝐹0(∑𝑟

𝑖=0 𝑉𝑖)−1) in Corollaries 18 and 19. If 0 <𝛼𝑖+1 ≤ 𝛼𝑖 (respectively, 𝛼𝑖+1 > 𝛼𝑖) for 𝑖 ∈ 𝑟 − 1 ∪ {0}
then the delays lose their influence, or, at least, such an
influence does not increase (respectively, increases) in the
transmission of the disease as the delay sizes increase. So,𝜌((∑𝑟

𝑖=0 𝐹𝑖)(∑𝑟
𝑖=0 𝑉𝑖)−1) ≤ (𝑟+1)𝜌(𝐹0(∑𝑟

𝑖=0 𝑉𝑖)−1), respectively,𝜌((∑𝑟
𝑖=0 𝐹𝑖)(∑𝑟

𝑖=0 𝑉𝑖)−1) ≥ (𝑟 + 1)𝜌(𝐹0(∑𝑟
𝑖=0 𝑉𝑖)−1).

Example 23. Consider the subsequent linearized model
around the disease-free equilibrium point:

𝑥̇𝐿 (𝑡) = 1∑
𝑖=0

(𝐹𝑖 − 𝑉𝑖) 𝑥𝐿 (𝑡 − ℎ𝑖) (52)
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for any delay ℎ ≥ 0. The nonnegativity of the solutions of
the linearized system holds with (−𝑉0) ∈ 𝑀𝑛×𝑛

𝐸 and 𝐹0 ⪰ 0
(AILDDFS-positivity, that is, (𝐹0 − 𝑉0) ∈ 𝑀𝑛×𝑛

𝐸 ) and 𝐹1 ⪰ 𝑉1
(these three joint conditions implyingAILDFS-positivity, that
is, ∑1

𝑖=0(𝐹𝑖 − 𝑉𝑖) ∈ 𝑀𝑛×𝑛
𝐸 ). If furthermore, the nonlinear

contribution to the infective dynamics of the whole epidemic
model fulfills −𝑓(𝑥(𝑡), 𝑦(𝑡)) ⪰ 0; ∀𝑡 ∈ R0+, independent ofℎ, then the whole solution trajectory is nonnegative for all
time independent of ℎ.The relevant amounts to guarantee the
asymptotic stability of the auxiliary delay-free systems around
the disease-free equilibrium point and to keep it under a
certain tolerance to the delayed dynamics amount (specified
by the matrix (𝐹1 − 𝑉1)) independently of the delay ℎ, via
Theorem 13 and Corollaries 15 and 17, are

𝜌0∞ = 𝜌 (𝐹0𝑉−1
0 ) ;

𝜌0∞ = sup
𝜔∈R0+

󵄩󵄩󵄩󵄩󵄩(i𝜔𝐼𝑛 + 𝑉0 − 𝐹0)−1 (𝐹1 − 𝑉1)󵄩󵄩󵄩󵄩󵄩2 ;
𝜌00 = 𝜌 [(𝐹0 + 𝐹1) (𝑉0 + 𝑉1)−1] ;
𝜌00 = 2 󵄩󵄩󵄩󵄩𝐹1 − 𝑉1󵄩󵄩󵄩󵄩2 sup

𝜔∈R+

󵄩󵄩󵄩󵄩󵄩(i𝜔𝐼𝑛 − (𝐹1 − 𝑉1))−1󵄩󵄩󵄩󵄩󵄩2 ;
𝑅0 = min (𝑅00, 𝑅0∞) ;
𝑅00 = max (𝜌00, 𝜌00) ;
𝑅0∞ = max (𝜌0∞, 𝜌0∞) .

(53)

Note that
(1) 𝜌0∞ ≤ 1 if and only if the AILDDFS is locally

asymptotically stable. Since the endemic equilibrium point
is not attainable if 𝜌0∞ < 1 and it is confluent with the
disease-free one if 𝜌0∞ = 1, the condition also implies that
the AILDDFS is globally asymptotically stable.

(2) 𝜌0∞ > 1 implies that the disease-free equilibrium
point is unstable and the endemic one is stable and attainable.

(3) 𝜌00 ≤ 1 if and only if the AILDFS is locally
asymptotically stable. Since the endemic equilibrium point is
not attainable if 𝜌00 < 1 and it is confluent with the disease-
free one if 𝜌00 = 1, the condition also implies that theAILDFS
is globally asymptotically stable.

(4) 𝜌00 > 1 implies that the disease-free equilibrium point
is unstable and the endemic one is stable and attainable.

(5) If 𝑅0∞ < 1, or if 𝑅00 < 1, then all the disease-free
equilibrium points (which satisfy the respective conditions𝜌0∞ < 1 or 𝜌00 ≤ 1) for any value of ℎ ≥ 0 are globally
asymptotically stable. In particular,𝐹0−𝑉0 and𝐹1−𝑉1 are such
that either 𝜌00 ≤ 1 or 𝜌0∞ ≤ 1 so that the corresponding aux-
iliary delay-free system around the disease-free equilibrium
point is globally asymptotically stable. Under those respective
conditions, all the resulting endemic equilibrium points are
unattainable. They are attainable and stable if 𝑅0∞ ≥ 1 or if𝑅00 ≥ 1.

The following result relies on sufficiency-type conditions
of global asymptotic stability independent of the delays
of the linearized infective substate around the disease-free
equilibrium point including the case when the transmission
matrices for the various delays are all identical.

Theorem 24. 	e following properties hold:
(i) Assume that (𝐹0 − 𝑉0) and ∑𝑟

𝑖=0(𝐹𝑖 − 𝑉𝑖) are stability
matrices, and that

𝜌 [(𝐼𝑛, 𝐼𝑛, 𝑟⏞⏞⏞⏞⏞⏞⏞⋅ ⋅ ⋅ , 𝐼𝑛)𝑇 (i𝜔𝐼𝑛 − 𝐹0 + 𝑉0)−1
⋅ (𝐹1 − 𝑉1, 𝐹2 − 𝑉2, . . . , 𝐹𝑟 − 𝑉𝑟)] < 1; ∀𝜔 ∈ R0+.

(54)

	en, the infective linearized subsystem around the disease-free
equilibrium point is globally asymptotically stable independent
of the delays.

(ii) If 𝐹𝑖 = 𝐹0 ≻ 0; ∀𝑖 ∈ 𝑟, (−𝑉0) and (−𝑉) = −∑𝑟
𝑖=0 𝑉𝑖 are

stability matrices, 𝜌(𝐹0𝑉−1) < 1/(𝑟 + 1), and
𝜌 [(𝐼𝑛, 𝐼𝑛, 𝑟⏞⏞⏞⏞⏞⏞⏞⋅ ⋅ ⋅ , 𝐼𝑛)𝑇 (i𝜔𝐼𝑛 − 𝐹0 + 𝑉0)−1

⋅ (𝐹0 − 𝑉1, 𝐹0 − 𝑉2, . . . , 𝐹0 − 𝑉𝑟)] < 1; ∀𝜔 ∈ R0+.
(55)

	en the infective linearized subsystem is globally asymptoti-
cally stable independent of the delays.

Proof. If (𝐹0 − 𝑉0) and ∑𝑟
𝑖=0(𝐹𝑖 − 𝑉𝑖) are stability matrices

then the linearized subsystem is globally asymptotically stable
for infinity and zero delays and the property also holds
independent of the sizes of the delays [18] if (54) holds.
Property (i) has been proved. Property (ii) follows in the
same way when 𝐹𝑖 = 𝐹0 ≻ 0; ∀𝑖 ∈ 𝑟 since 𝜌(𝐹0𝑉−1) <1/(𝑟 + 1) guarantees that (−𝑉) is a stability matrix if (−𝑉0)
is a stability matrix and (55) is identical to (54) if 𝐹𝑖 = 𝐹0 ≻ 0;∀𝑖 ∈ 𝑟.
Remark 25. Condition 2 of Theorem 24 holds if (−𝑉0) is
a nonsingular stability matrix (it suffices, for instance, that(−𝑉0) ∈ 𝑀𝑛×𝑛

𝐸 and it exists 𝑉−1
0 ≻ 0, the second condition

holds if and only if the Metzler matrix (−𝑉0) is a stability
matrix) and 𝜌(𝑉−1

0 (∑𝑟
𝑖=1 𝑉𝑖)) < 1 since such a condition

implies that (−𝑉) is a stability matrix provided that (−𝑉0) is
also a stability matrix.

A related result to Theorem 4 for the case of presence of
delays adopts the subsequent form.

Theorem 26. Let 𝑔 : R𝑛+𝑚 󳨀→ R𝑚 be everywhere contin-
uously differentiable with a Jacobian matrix: 𝐽𝑔,𝑧(𝑧0) =[𝐽𝑔,𝑥(𝑧0) | 𝐽𝑔,𝑦(𝑧0)] at any 𝑧0 = (𝑥𝑇0 , 𝑦𝑇0 )𝑇 ∈ R𝑛+𝑚 with 𝑥0 ∈
R𝑛 and 𝑦0 ∈ R𝑚, where 𝑧 = (𝑥𝑇, 𝑦𝑇)𝑇 ∈ R𝑛+𝑚, 𝑥 ∈ R𝑛,𝑦 ∈ R𝑚. Assume that the𝑚×𝑚matrix 𝐽𝑔,𝑦(𝑧0) is nonsingular
at any equilibrium point 𝑧0of (24)-(26). 	en, the following
properties hold.

(i) 	ere exists an open set 𝑈 of R𝑛 containing 𝑥0 such
that there exists a unique continuously differentiable functionℎ : 𝑈 󳨀→ R𝑚 such that 𝑦0 = ℎ(𝑥0) and 𝑓(𝑥, ℎ(𝑥)) = 0;∀𝑥 ∈ 𝑈. Also, any equilibrium point 𝑧0 = (𝑥𝑇0 , 𝑦𝑇0 )𝑇 can be
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expressed being dependent only on the infective substate, i.e.,𝑧0 = (𝑥𝑇0 , ℎ𝑇(𝑥0))𝑇, while satisfying
𝑦0 = ℎ (𝑥0) ;
𝑥0 = [ 𝑟∑

𝑖=0

(𝐹𝑖 (ℎ (𝑥0)) − 𝑉𝑖 (𝑥0))]
−1 𝑓 (𝑥0, ℎ (𝑥0)) (56)

provided that [∑𝑟
𝑖=0(𝐹𝑖(ℎ(𝑥0)) − 𝑉𝑖(𝑥0))] −1 is nonsingular at

any equilibrium point 𝑧0 = (𝑥𝑇0 , ℎ𝑇(𝑥0))𝑇, where 𝐹𝑖(ℎ(0)) = 𝐹𝑖
and 𝑉𝑖(𝑧0) = 𝑉𝑖; ∀𝑖 ∈ 𝑟 ∪ {0} if 𝑧0 = 𝑧𝑑𝑓 = (0𝑇, ℎ𝑇(0))𝑇 is
the disease-free equilibrium point and 𝐹𝑖(ℎ(𝑥𝑒𝑛𝑑)) = 𝐹𝑖𝑒 and𝑉𝑖(𝑥𝑒𝑛𝑑) = 𝑉𝑖𝑒; ∀𝑖 ∈ 𝑟 ∪ {0} if 𝑧0 = 𝑧𝑒𝑛𝑑 = (𝑥𝑇𝑒𝑛𝑑, ℎ𝑇(𝑥𝑒𝑛𝑑))𝑇 is
the endemic equilibrium point.

(ii) Assume, furthermore, that (−∑𝑟
𝑖=0 𝑉𝑖) ∈ 𝑀𝑛×𝑛

𝐸 is
nonsingular with 𝐹0 ⪰ 0.	en, (a) the disease-free equilibrium
point exists being defined by 𝑧𝑑𝑓 = (0𝑇, ℎ𝑇(0))𝑇, it is unique
and locally asymptotically stable independent of the delays if𝑅00 < 1 and

(b) the endemic equilibrium point exists being defined by𝑧𝑒𝑛𝑑 = (𝑥𝑇𝑒𝑛𝑑, 𝑦𝑇𝑒𝑛𝑑)𝑇 = (𝑥𝑇𝑒𝑛𝑑, ℎ𝑇(𝑥𝑒𝑛𝑑))𝑇 while it satisfies

𝑦𝑒𝑛𝑑 = ℎ (𝑥𝑒𝑛𝑑) ;
𝑥𝑒𝑛𝑑 = (𝐹𝑒 − 𝑉𝑒)−1 𝑓 (𝑥𝑒𝑛𝑑, ℎ (𝑥𝑒𝑛𝑑)) . (57)

It is reachable independent of the delays if 𝑅00 ≥ 1 and𝑓(𝑥𝑒𝑛𝑑, ℎ(𝑥𝑒𝑛𝑑)) ⪯ 𝑓(𝑥𝑑𝑓, ℎ(𝑥𝑑𝑓)) while it is unreachable,
in the sense that 𝑧𝑒𝑛𝑑 ∉ R𝑛+𝑚

0+ , if 𝑅00 < 1 supposing that𝑓(𝑥𝑒𝑛𝑑, ℎ(𝑥𝑒𝑛𝑑)) ≻ 𝑓(𝑥𝑑𝑓, ℎ(𝑥𝑑𝑓)) if 𝑧𝑒𝑛𝑑 ̸= 𝑧𝑑𝑓.
Proof. Since 𝐽𝑔,𝑧(𝑥0, 𝑦0) is nonsingular, there exists an open
set 𝑈 of R𝑛 containing 𝑥0 such that there exists a unique
continuously differentiable function ℎ : 𝑈 󳨀→ R𝑚 such that𝑦0 = ℎ(𝑥0) and 𝑓(𝑥, ℎ(𝑥)) = 0; ∀𝑥 ∈ 𝑈. Let 𝑧0 be either the
disease-free equilibrium point 𝑧0 = 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇0 )𝑇 or the
endemic one 𝑧0 = 𝑧𝑒𝑛𝑑 = (𝑥𝑇𝑒𝑛𝑑, 𝑦𝑇𝑒𝑛𝑑)𝑇. Property (i) follows if[∑𝑟

𝑖=0(𝐹𝑖(ℎ(𝑥0)) − 𝑉𝑖(𝑥0))]−1 exists for any equilibrium point.
To prove Property (ii), note that (−𝑉) ∈ 𝑀𝑛×𝑛

𝐸 is
nonsingular with 𝐹 ⪰ 0. Then, the disease-free equilibrium
point exists being defined by 𝑧𝑑𝑓 = (0𝑇, ℎ𝑇(0))𝑇, it is unique
since h(⋅) is unique, given by 𝑥𝑑𝑓 = (𝐹 − 𝑉)−1𝑓(0, ℎ(0)) =0 and it is locally asymptotically stable if 𝑅00 < 1 since
then (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 is a stability matrix, equivalently(𝑉 − 𝐹)−1 ≻ 0 so that the linearized system around the
disease-free equilibrium point is locally exponentially (then
asymptotically ) stable. On the other hand, it is unstable if𝑅00 > 1 [Theorem 1 (iii)-(iv)]. The part (a) of Property (ii)
has been proved. Now let 𝑧0 = 𝑧𝑒𝑛𝑑 = (𝑥𝑇𝑒𝑛𝑑, 𝑦𝑇𝑒𝑛𝑑)𝑇 be the
endemic equilibrium point. Note that it is also unique, since𝑓 and ℎ are everywhere continuous. Note that the following
cases can occur.

(a) If 𝑅00 ≥ 1, note that
𝑥𝑒𝑛𝑑 = (𝑉𝑒 − 𝐹𝑒)−1 (−𝑓 (𝑥𝑒𝑛𝑑, ℎ (𝑥𝑒𝑛𝑑)))

⪰ (𝑉 − 𝐹)−1 (−𝑓 (𝑥𝑑𝑓, ℎ (𝑥𝑑𝑓))) ⪰ 0 (58)

since𝑓(𝑥𝑒𝑛𝑑, ℎ(𝑥𝑒𝑛𝑑)) ⪯ 0 (being a strict inequality if and only
if 𝑥𝑒𝑛𝑑 ̸= 𝑥𝑑𝑓 = 0) and (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛

𝐸 is stable, then it is
nonsingular.

(b) If 𝑅00 < 1 then (𝑉 − 𝐹)−1 ≻ 0, since (𝐹 − 𝑉) ∈ 𝑀𝑛×𝑛
𝐸 ,

and 𝐹𝑒 ≻ 𝐹. Therefore, (𝐼𝑛 + (𝑉 − 𝐹)−1(𝐹𝑒 − 𝐹)) ≻ 0 and𝜌[(𝑉−𝐹)−1(𝐹𝑒−𝐹)] > 0 then (𝐼𝑛+(𝐼𝑛−𝑉−1𝐹)−1𝑉−1(𝐹𝑒−𝐹))−1
exists, and

(𝑉𝑒 − 𝐹𝑒)−1 = (𝐼𝑛 + (𝑉 − 𝐹)−1 (𝐹𝑒 − 𝐹))−1 (𝑉 − 𝐹)−1
= (𝐼𝑛 + (𝐼𝑛 − 𝑉−1𝐹)−1 𝑉−1 (𝐹𝑒 − 𝐹))−1 (𝑉 − 𝐹)−1
≺ (𝑉 − 𝐹)−1

(59)

Note that 𝑥𝑒𝑛𝑑 is unreachable if 𝑥𝑒𝑛𝑑 ̸= 𝑥𝑑𝑓 = 0 since−𝑓(𝑥𝑒𝑛𝑑, ℎ(𝑥𝑒𝑛𝑑)) ≻ −𝑓(𝑥𝑑𝑓, ℎ(𝑥𝑑𝑓)) = 0, and
𝑥𝑒𝑛𝑑 = (𝑉𝑒 − 𝐹𝑒)−1 (−𝑓 (𝑥𝑒𝑛𝑑, ℎ (𝑥𝑒𝑛𝑑)))

≺ (𝐼𝑛 + (𝐼𝑛 − 𝑉−1𝐹)−1 𝑉−1 (𝐹𝑒 − 𝐹))−1
× (𝑉 − 𝐹)−1 (−𝑓 (𝑥𝑑𝑓, ℎ (𝑥𝑑𝑓)))

= (𝐼𝑛 + (𝐼𝑛 − 𝑉−1𝐹)−1 𝑉−1 (𝐹𝑒 − 𝐹))−1 𝑥𝑑𝑓 = 0.
(60)

Then, 𝑥𝑒𝑛𝑑 ⪯ 0. But, for the case, 𝑥𝑒𝑛𝑑 = 0, the endemic
equilibriumpoint is coincident with the disease-free one, that
is, 𝑥𝑒𝑛𝑑 = 𝑥𝑑𝑓 = 0 and 𝑅00 = 1 while, for 𝑅00 < 1, 𝑥𝑒𝑛𝑑 ≺0, hence a contradiction to its reachability follows since the
infective components of the endemic equilibrium point are
never allocated in the open first orthant of R𝑛. Property (ii)
has been proved.

The above result can be reformulated directly under the
replacements 𝑅00 󳨀→ 𝑅0∞ and 𝑅00 󳨀→ 𝑅0. Note that if 𝑅00 ≤1 or 𝑅0∞ ≤ 1 or 𝑅0 ≤ 1, one concludes that the disease-free
is guaranteed to be locally asymptotically stable independent
of the delays. It can also be guaranteed that the endemic
equilibrium point is attainable and stable independent of the
delays if 𝑅00 ≥ 1, or 𝑅0∞ ≥ 1, or 𝑅0 ≥ 1. However,
combinations of delays with identical amounts of associated
delayed dynamics can exist with reproduction numbers less
than 𝑅00, respectively, 𝑅0∞, or, respectively, 𝑅0 so that the
disease-free equilibrium point is unstable and the endemic
one stable and attainable. From Theorem 13, and based on
the previous results ofTheorem 10 for the delay-free case, the
following result holds on positivity and global asymptotically
stability of the system subject to delays.

Theorem 27. Consider the epidemic model (27)-(29) under
Assumptions 4-5 and, furthermore, assume that

(1) any of the sets of conditions of either 	eorem 13 (ii), or
	eorem 13 (iii), or Corollary 18(ii), or Corollary 19 hold,

(2) there are a unique disease-free equilibrium point and a
unique endemic equilibrium point,

(3) 𝑔𝑖(𝑧̂(𝑡)) ≥ 0 in (28) if 𝑦𝑖(𝑡) = 0 for any 𝑖 ∈ 𝑚 and𝑡 ∈ R0+,
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(4) 𝑓𝑖(𝑧̂(𝑡)) ≤ 𝑒𝑇𝑖 (𝐹 − 𝑉)𝑥(𝑡) if 𝑥𝑖(𝑡 − ℎ𝑗) = 0 for any 𝑖 ∈𝑛; ∀𝑗 ∈ 𝑟 ∪ {0} and 𝑡 ∈ R0+ (it suffices that 𝑓𝑖(𝑧̂(𝑡)) ≤ 0 if𝑥𝑖(𝑡 − ℎ𝑗) = 0),
(5) the epidemic model is subject to any bounded absolutely

continuous function of initial conditions 𝜑 : [−ℎ, 0] 󳨀→
R𝑛+𝑚
0+ with eventual finite jumps on a subset of [−ℎ, 0] of zero

measure, where 𝜑(0) = (𝑥𝑇(0), 𝑦𝑇(0))𝑇, such that the resulting
function of initial conditions 𝜑 : [−ℎ, 0] 󳨀→ R𝑛+𝑚

0+ .
(i) 	en, any trajectory solution is nonnegative and uni-

formly bounded independent of the delays while it is globally
convergent to the disease-free equilibrium point if 𝑅0 < 1,
which is also a globally asymptotically stable attractor.

If furthermore, the following condition holds:
(6) if 𝑅0 > 1 then the total population of (27)-(29),

i.e., the sum of all the subpopulations, is uniformly bounded
independent of the delays for all time.

(ii) 	en, provided that 𝑓(𝑥(𝑡), 𝑦(𝑡)) and 𝑔(𝑥(𝑡), 𝑦(𝑡)) are
uniformly continuous in the first closed orthant of R𝑛+𝑚, all the
trajectory solutions are bounded and nonnegative for all time
while they converge asymptotically to the endemic equilibrium
point which is also the unique asymptotically stable attractor.

Proof. If 𝑅0 < 1 then conditions (1)-(5) with Assumptions
4-5 guarantee that the linearized model around the disease-
free equilibrium point is locally asymptotically stable and
all the trajectories within the open first orthant of R𝑛+𝑚

remain within it for all time. Since it is the unique attainable
equilibrium the local asymptotic stability is also global (that
is, for any bounded function of initial conditions within the
first orthant) and asymptotic. Since all the subpopulations
of both the infective and noninfective compartments are
bounded and nonnegative for all time, the total population is
also nonnegative and bounded through time. Property (i) has
been proved. On the other hand, if condition (6) holds and𝑅0 > 1 then the disease-free equilibriumpoint is unstable and
the endemic one is attainable. Assume the two subsequent
cases potentially to occur.

Case a. The endemic equilibrium point is globally asymptoti-
cally stable independent of the delays. Property (ii) is proved
directly.

Case b. The endemic equilibrium point is unstable indepen-
dent of the delays. Since the total population is bounded by
hypothesis and all the subpopulations are nonnegative for all
time, all the subpopulations are bounded for all time and a
bounded limit cycle should surround the endemic point to
attract any trajectories in the first orthant from the admis-
sible Poincaré-type combinations of allowed stable/instable
combinations of configurations of singular points and limit
cycles. Rewrite compactly (27) to (29) in the form 𝑧̇(𝑡) =𝑓(𝑥(𝑡), 𝑦(𝑡)) by defining 𝑓 : R0+ × R𝑛 × R𝑚 󳨀→ R𝑛+𝑚

from the linearized infective dynamics and the functions𝑓 : R0+ × R𝑛+𝑚 󳨀→ R𝑛 and 𝑔 : R0+ × R𝑛+𝑚 󳨀→ R𝑚.
Assume that ∫∞

0
𝑓(𝑥(𝜏), 𝑦(𝜏))𝑑𝜏 = ±∞. Then 𝑧(𝑡) 󳨀→ ±∞

as 𝑡 󳨀→ ∞ which is not compatible with the nonnegativity
of the solution trajectories within the first orthant and their
boundenness. Therefore, −∞ < ∫∞

0
𝑓(𝑥(𝜏), 𝑦(𝜏))𝑑𝜏 < +∞.

Since 𝑓(𝑥(⋅).𝑦(⋅)) is uniformly continuous, it follows from
Barbalat’s lemma that 𝑧̇(𝑡) 󳨀→ 0 as 𝑡 󳨀→ ∞ so that 𝑧(𝑡)
cannot have a limit oscillation in any of its components. So, a
stable limit cycle cannot surround the endemic equilibrium
point. Therefore, 𝑧(𝑡) 󳨀→ 𝑧𝑒𝑛𝑑 as 𝑡 󳨀→ ∞ for any set of
initial conditions satisfying condition (5). Property (ii) has
been proved.

Remarks 28. Note that the equilibrium points do not depend
on the delays but only on the delay-free and delayedmatrices.
However, the reproduction numbers are dependent, in gen-
eral, on each particular set of delays although the threshold𝑅0 is independent of the delays.

(2) Note also that Theorem 27 concludes the stability
(respectively, instability) of the disease-free equilibriumpoint
for each set of delays if𝑅0 < 1 (respectively,𝑅0 > 1).However,
it does not conclude that, for a particular set of delays, the
endemic equilibriumpoint is unattainable/ unstable if𝑅0 < 1.

(3) From Remark 21, Theorem 13, Corollaries 18 and 19,
it follows that 𝑅00 and 𝑅0∞ are the reproduction numbers
for the auxiliary delay-free systems AILDFS and AILDDFS,
respectively, and also lower bounds of the reproduction
number for thewhole set of delays.They also guarantee global
asymptotic stability independent of the delays towards the
disease-free equilibrium under sufficiency-type conditions of
tolerance to the delayed dynamics given, respectively, by (44)
and (40).

Appendix

A. Some Technical Results on
Positivity and Stability of Matrices and
Meztler and𝑀-Matrices

Some technical results on positivity and stability of matrices
and their perturbed counterparts are given. Those results are
then used concerning the stability of the linearized system
around the disease-free equilibrium point.

Theorem A.1 (see [14, 15]). Assume that 𝐺 ∈ R𝑛×𝑛. 	en, the
following properties hold.

(i) 𝐺 is an𝑀-matrix if and only if (−𝐺) ∈ 𝑀𝑛×𝑛
𝐸 .

(ii) 𝐺 is nonsingular with 𝐺−1 ≻ 0 if and only if 𝐺 is an𝑀-matrix.
(iii) 𝐺 is nonsingular with 𝐺−1 ≻ 0 if and only if (−𝐺) ∈𝑀𝑛×𝑛

𝐸 is a stability matrix.
(iv) 	ere exists 𝐺𝐵(∈ R𝑛×𝑛) ≻ 0 with maximal eigenvalue𝑟 such that 𝐺 = 𝑐𝐼𝑛 − 𝐺𝐵, where 𝑐 ≥ 𝑟.

Theorem A.2. Assume that 𝐺 ∈ R𝑛×𝑛. 	en, the following
properties hold.

(i) Assume that 𝐺 is decomposed as 𝐺 = 𝐺1 + 𝐺2 with 𝐺1

being nonsingular and 𝐺2 = 𝐺 − 𝐺1. 	en, 𝐺 is nonsingular
if ‖𝐺2‖ < 𝜀 for some sufficiently small (in general, norm-
dependent) 𝜀 ∈ R+.

(ii) Assume that 𝐺 ∈ R𝑛×𝑛 is an 𝑀-matrix that is
decomposed as 𝐺 = 𝐺1 + 𝐺2 with 𝐺1 being an𝑀-matrix with
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𝐺−1
1 ≻ 0 and𝐺2 = 𝐺−𝐺1 ≺ 0.	en,𝐺 ∈ R𝑛×𝑛 is a nonsingular

antistable matrix with 𝐺−1 ≻ 0 if and only if 𝜌(𝐺2𝐺−1
1 ) < 1.

Equivalently, (−𝐺) ∈ 𝑀𝑛×𝑛
𝐸 , while it is a stability matrix if and

only if 𝜌(𝐺2𝐺−1
1 ) < 1.

Proof. Since (𝐺1 + 𝐺2) is a regular splitting of 𝐺 such that 𝐺1

is nonsingular, one has from Banach’s Perturbation Lemma
[25] that

𝐺 = 𝐺1 + 𝐺2 = 𝐺1 (𝐼𝑛 + 𝐺−1
1 𝐺2) (A.1)

Thus, 𝐺−1 exists and

󵄩󵄩󵄩󵄩󵄩𝐺−1󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩(𝐺1 + 𝐺2)−1󵄩󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩󵄩󵄩(𝐼𝑛 + 𝐺−1
1 𝐺2)−1 𝐺−1

1

󵄩󵄩󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩󵄩𝐺−1

1

󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩󵄩(𝐼𝑛 + 𝐺−1
1 𝐺2)−1󵄩󵄩󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩󵄩𝐺−1
𝑑

󵄩󵄩󵄩󵄩󵄩1 − 󵄩󵄩󵄩󵄩𝐺−1
1 𝐺2

󵄩󵄩󵄩󵄩
(A.2)

for any matrix norm ‖ ⋅ ‖, provided that ‖𝐺−1
1 𝐺2‖ < 1, that

is, if ‖𝐺2‖ < 𝜀 = 1/‖𝐺−1
1 ‖ = 𝐾(𝐺1)/‖𝐺1‖, where 𝐾(𝐺1) =‖𝐺1‖‖𝐺−1

1 ‖ is the condition number of 𝐺1 with respect to the
matrix norm ‖ ‖. Property (i) has been proved.

To prove Property (ii), note that (𝐺1 + 𝐺2) is a regular
splitting of the 𝑀-matrix 𝐺 since 𝐺1 is a nonsingular 𝑀-
matrix with𝐺−1

1 ≻ 0.Then, (−𝐺1) ∈ 𝑀𝑛×𝑛
𝐸 is a stability matrix

(Theorem A.1 (iii)) and𝐺1 is anti-stable.Thus,𝐺𝑎2 = −𝐺2 ≻ 0
and 𝐺−1

1 𝐺𝑎2 ≻ 0 and it follows that

𝐺 = 𝐺1 + 𝐺2 = 𝐺1 − 𝐺𝑎2 = 𝐺1 (𝐼𝑛 − 𝐺−1
1 𝐺𝑎2) (A.3)

and 𝐺−1 exists and it is given by 𝐺−1 = (𝐼𝑛 − 𝐺−1
1 𝐺𝑎2)−1𝐺−1

1 .
Since 𝜌(𝐺−1

1 𝐺𝑎2) = 𝜌(𝐺−1
1 𝐺2) < 1, (𝐼𝑛 − 𝐺−1

1 𝐺𝑎2)−1 =∑∞
𝑛=0(𝐺−1

1 𝐺𝑎2)𝑛 ≻ 0 from Von Neumann’s series expansion
and since (𝐺−1

1 𝐺𝑎2)𝑛 ≻ 0 for all 𝑛 ≥ 0 and 𝐺−1
1 ≻ 0, it follows

that 𝐺−1 = (∑∞
𝑛=0(𝐺−1

1 𝐺𝑎2)𝑛)𝐺−1
1 ≻ 0.

On the other hand, since 𝐺𝑎2 ≻ 0 and 𝐺−1
1 ≻ 0

both have a simple, in general, nonstrictly dominant Perron
root. But the inverse of the Perron root of 𝐺1 is also a real
positive eigenvalue of 𝐺−1

1 with the minimum value of all its
eigenvalues. Therefore, since 𝐺1 and 𝐺−1

1 are both antistable
and the eigenvalues of a matrix are continuous function with
respect to all its entries, one concludes that the condition𝜌(𝐺−1

1 𝐺2) < 1 guarantees that 𝐺−1 ≻ 0 and 𝐺 are both
antistable and then (−𝐺) is a stability Metzler matrix. The
above condition can also be expressed as 𝜌(𝐺2𝐺−1

1 ) < 1 since
the order of the matrix product does not affect the spectral
radius since the eigenvalues of a product of two matrices do
not depend on the product order [25]. The sufficient part has
been proved. The necessity of 𝜌(𝐺2𝐺−1

1 ) < 1 for 𝐺 to be an
antistable𝑀-matrix follows since if 𝜌(𝐺2𝐺−1

1 ) = 1 then, from
the continuity of all the eigenvalues with respect to thematrix
entries, one of the eigenvalues of𝐺 crosses the imaginary axis
of the complex plane. It has been proved that 𝐺 ∈ R𝑛×𝑛 is
a nonsingular antistable matrix with 𝐺−1 ≻ 0 if and only
if 𝜌(𝐺2𝐺−1

1 ) < 1. Equivalently, (−𝐺) ∈ 𝑀𝑛×𝑛
𝐸 , while it is a

stability matrix, if and only if 𝜌(𝐺2𝐺−1
1 ) < 1.

B. Two Technical Results Which Guarantee
the Uniqueness of the Equilibrium Points

Theorem B.1. 	e following properties hold.
(i) Let 𝑔 : R𝑛+𝑚 󳨀→ R𝑚 be a continuously differentiable

function such that 𝑔(0, 𝑦0) = 0 for 0 ∈ R𝑛 and some 𝑦0 ∈
R𝑚. If the Jacobian matrix 𝐽𝑔,𝑦(0, 𝑦0) = ((𝜕𝑔𝑖/𝜕𝑦𝑗)(0, 𝑦0))
is nonsingular then the disease-free equilibrium point 𝑧𝑑𝑓 =(0𝑇, 𝑦𝑇𝑑𝑓)𝑇, 𝑦𝑑𝑓 = 𝑦0, is unique.

(ii) Let 𝑔 : R𝑛+𝑚 󳨀→ R𝑚 be continuous with 𝑔(0, 𝑦0) = 0
for 0 ∈ R𝑛 and some𝑦0 ∈ R𝑚. If there exist open neighborhoods𝐴 ⊂ R𝑛 of 0 ∈ R𝑛 and 𝐵 ⊂ R𝑚 of 𝑦0, such that for all 𝑥 ∈ 𝐴,𝑔(𝑥, .) : 𝐴 󳨀→ R𝑚 is locally one-to-one then the disease-free
equilibrium point 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇𝑑𝑓)𝑇, 𝑦𝑑𝑓 = 𝑦0, is unique.
Proof. Let 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇𝑑𝑓)𝑇, for 𝑦𝑑𝑓 = 𝑦0 ∈ R𝑚, 𝑦𝑑𝑓 =𝑦01( ̸= 𝑦0) ∈ R𝑚 be two distinct disease-free equilibrium
points and 𝑔 : R𝑛+𝑚 󳨀→ R𝑚 a continuously differentiable
function such that 𝑔(0, 𝑦0) = 0 for 0 ∈ R𝑛 and some 𝑦0 ∈
R𝑚. If the Jacobian matrix 𝐽𝑔,𝑦(0, 𝑦0) = ((𝜕𝑔𝑖/𝜕𝑦𝑗)(0, 𝑦0)) is
nonsingular then, from the implicit function theorem, there
exists an open set 𝑈 of R𝑛 with 0 ∈ 𝑈 such that there exists a
unique continuously differentiable function ℎ : 𝑈 ⊂ R𝑛 󳨀→
R𝑚 such that 𝑦0 = ℎ(0), 𝑓(𝑥, 𝑔(𝑥)) = 0; ∀𝑥 ∈ 𝑈, and(𝜕ℎ/𝜕𝑥𝑗)(𝑥) = −[𝐽𝑔,𝑦(𝑥, ℎ(𝑥))]−1[(𝜕𝑔/𝜕𝑥𝑗)(𝑥, ℎ(𝑥))]; ∀𝑥 ∈ 𝑈.
Now, take a similar reasoning for 𝑦𝑑𝑓 = 𝑦01, again assuming
that 𝐽𝑔,𝑦(0, 𝑦01) = ((𝜕𝑔𝑖/𝜕𝑦𝑗)(0, 𝑦01)) is nonsingular, what
concludes that 𝑦01 = ℎ1(0) with ℎ1 : 𝑈1 󳨀→ 𝑅𝑚 but since
both ℎ : 𝑈 󳨀→ 𝑅𝑚 and ℎ1 : 𝑈1 󳨀→ 𝑅𝑚 are unique
in 𝑈 and 𝑈1 which both are open and contain 0 ∈ R𝑛

so that they have a nonempty intersection, it follows thatℎ ≡ ℎ1 in 𝑈 ∩ 𝑈1 so that 𝑦01 = ℎ1(0) ̸= 𝑦0 = ℎ(0) is a
contradiction.Therefore, 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇𝑑𝑓)𝑇 is unique. Property
(i) has been proved. Now, let again 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇𝑑𝑓)𝑇 be a
disease-free equilibrium point with 𝑦𝑑𝑓 = 𝑦0. The proof of
Property (ii) is supported by the implicit function theorem
for continuous (nonnecessarily continuously differentiable)
functions. If there exist open neighborhoods 𝐴 ⊂ R𝑛 of0 ∈ R𝑛 and 𝐵 ⊂ R𝑚 of 𝑦0 ∈ 𝐵, such that for all 𝑥 ∈ 𝐴,𝑔(𝑥, ⋅) : 𝐴 󳨀→ R𝑚 is locally one-to-one, then there exist
open neighborhoods 𝐴0 ∈ R𝑛 of 0 ∈ R𝑛, and 𝐵0 ∈ R𝑚 of𝑦0 ∈ R𝑚 such that for all 𝑥 ∈ 𝐴0, 𝑦 = ℎ(𝑥) ∈ 𝐵0 ⊂ R𝑚 is
the unique local solution of 𝑔(𝑥, 𝑦) = 0, defined by the pairs(𝑥, 𝑦 = ℎ(𝑥)) ∈ 𝐴0 × 𝐵0, where ℎ is a continuous function
from 𝐴0 into 𝐵0. Since any disease-free equilibrium point is
of the form 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇𝑑𝑓 = ℎ𝑇(0))𝑇 and ℎ is a continuous
function from 𝐴0, which contains 0 ∈ R𝑛, into 𝐵0, such an
equilibrium point is unique; that is, two solutions (0𝑇, 𝑦𝑇0 )𝑇
and 𝑧𝑑𝑓 = (0𝑇, 𝑦𝑇1 )𝑇 with 𝑦0, 𝑦1( ̸= 𝑦0) cannot exist. Property
(ii) has been proved.

Theorem B.2. Assume that all the entries of the Jacobian
matrix around any equilibrium point are additive functions
and that all the equilibrium points have the same associate
transition matrix (−𝑉0). Let 𝑧0 = (𝑥𝑇0 , 𝑦𝑇0 )𝑇 = (𝑥𝑇0 , ℎ𝑇(𝑥0))𝑇
be an endemic equilibrium point.	en, the following properties
hold.



Discrete Dynamics in Nature and Society 21

(i) Let 𝑧0 be reachable. 	en, it is the unique endemic
reachable equilibrium point if and only if

[∀Δ𝑥0 ( ̸= 0) ∈ R𝑛, ∀Δ𝑦0 ∈ R𝑚 : (Δ𝑥0 ≻ −𝑥0)
∧ (ℎ (Δ𝑥0) ≻ −𝑦0) ∧ (𝑓 (𝑥0 + Δ𝑥0, 𝑦0 + Δ𝑦0)
≺ 0) ∧ (rank [𝐹 (ℎ (𝑥0 + Δ𝑥0) − ℎ (Δ𝑥0))
+ 𝐹 (ℎ (Δ𝑥0)) − 2𝑉0, 2𝑓 (Δ𝑥0, ℎ (Δ𝑥0))])
= rank [𝐹 (ℎ (𝑥0 + Δ𝑥0) − ℎ (Δ𝑥0)) + 𝐹 (ℎ (Δ𝑥0))
− 2𝑉0]] 󳨐⇒ [ℎ (𝑥0) ̸= ℎ (𝑥0 + Δ𝑥0) − ℎ (Δ𝑥0)]

(B.1)

(ii) Let 𝑧0 be either reachable or unattainable. 	en, it is the
unique endemic equilibrium point if and only if

[∀Δ𝑥0 ( ̸= 0) ∈ R𝑛, ∀Δ𝑦0 ∈ R𝑚 :
(rank [𝐹 (ℎ (𝑥0 + Δ𝑥0) − ℎ (Δ𝑥0)) + 𝐹 (ℎ (Δ𝑥0))
− 2𝑉0, 2𝑓 (Δ𝑥0, ℎ (Δ𝑥0))])
= rank [𝐹 (ℎ (𝑥0 + Δ𝑥0) − ℎ (Δ𝑥0))
+ 𝐹 (ℎ (Δ𝑥0)) − 2𝑉0]] 󳨐⇒ [ℎ (𝑥0) ̸= ℎ (𝑥0 + Δ𝑥0)
− ℎ (Δ𝑥0)]

(B.2)

Proof. Assume that there exist two distinct equilibrium
points with infective and noninfective variables 𝑥(⋅) and 𝑦(⋅),
namely, 𝑧0 = (𝑥𝑇0 , 𝑦𝑇0 )𝑇 and 𝑧1 = (𝑥𝑇1 , 𝑦𝑇1 )𝑇 = 𝑧0 + Δ𝑧0 so that

𝐽𝑔,𝑧 (𝑧1) 𝑧1 = 𝐽𝑔,𝑧 (𝑧0 + Δ𝑧0) (𝑧0 + Δ𝑧0)
= 𝐽𝑔,𝑧 (𝑧0) 𝑧0 = 0 (B.3)

Since all the entries of the Jacobian matrices are additive, one
gets

𝐽𝑔,𝑧 (𝑧1) 𝑧1 − 𝐽𝑔,𝑧 (𝑧0) 𝑧0
= 𝐽𝑔,𝑧 (𝑧0) Δ𝑧0 + 𝐽𝑔,𝑧 (Δ𝑧0) 𝑧0 + 𝐽𝑔,𝑧 (Δ𝑧0) Δ𝑧0
= 0

(B.4)

then

𝐽𝑔,𝑧 (𝑧0) Δ𝑧0 + 𝐽𝑔,𝑧 (Δ𝑧0) Δ𝑧0 = −𝐽𝑔,𝑧 (Δ𝑧0) 𝑧0. (B.5)

Again, using the additive property assumption on the Jaco-
bian matrix, one has that the infective and noninfective
compartments satisfy the constraints:

(𝐹 (𝑦0) − 𝑉0) Δ𝑥0 − 𝑓 (𝑥0, 𝑦0) + (𝐹 (Δ𝑦0) − 𝑉0) Δ𝑥0
− 𝑓 (Δ𝑥0, Δ𝑦0) = − (𝐹 (Δ𝑦0) − 𝑉0) 𝑥0
+ 𝑓 (Δ𝑥0, Δ𝑦0)

𝑦0 = ℎ (𝑥0) ;
𝑦1 = ℎ (𝑥1) = ℎ (𝑥0 + Δ𝑥0) = 𝑦0 + ℎ (Δ𝑥0) = 𝑦0

+ Δ𝑦0

(B.6)

where Δ𝑥0 = 𝑥1 − 𝑥0 and Δ𝑦0 = 𝑦1 − 𝑦0. If the
second two constraints are replaced into the first equation,
one gets that, from Rouché-Froebenius theorem of Linear
Algebra, such an algebraic equation is solvable (being either
compatible determinate with one solution or indeterminate
with infinitely many ones) in Δ𝑥0 ̸= 0 if and only if

rank [𝐹 (ℎ (𝑥0 + Δ𝑥0) − ℎ (Δ𝑥0)) + 𝐹 (ℎ (Δ𝑥0))
− 2𝑉0, 2𝑓 (Δ𝑥0, ℎ (Δ𝑥0))]
= rank [𝐹 (ℎ (𝑥0 + Δ𝑥0) − ℎ (Δ𝑥0))
+ 𝐹 (ℎ (Δ𝑥0)) − 2𝑉0]]

(B.7)

This implies the existence of at least another endemic equi-
librium point, which is not coincident with the disease-free
one since 𝑥1 = Δ𝑥0 ̸= 0 if ℎ(𝑦1) = ℎ(𝑥0 + Δ𝑥0) = ℎ(𝑥0) +ℎ(Δ𝑥0) = 𝑦0+ℎ(Δ𝑥0). Such a point does not exist if either rank
condition fails (i.e., the algebraic system is incompatible) or if
it holds but ℎ(𝑥0) ̸= ℎ(𝑥0+Δ𝑥0)−ℎ(Δ𝑥0).There are additional
conditions on positivity needed for the point to be reachable
in the case that it exists.This leads directly to the two claimed
properties.
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