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Abstract: The diagnosis of adenocarcinomas located in the pancreas head, i.e., distal
cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC), constitutes a clinical
challenge because they share many symptoms, are not easily distinguishable using imaging techniques
and accurate biomarkers are not available. Searching for biomarkers with potential usefulness in the
differential diagnosis of these tumors, we have determined serum metabolomic profiles in healthy
controls and patients with dCCA, PDAC or benign pancreatic diseases (BPD). Ultra-high-performance
liquid chromatography coupled to mass spectrometry (UHPLC-MS) analysis was performed in serum
samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42) and control (n = 25) individuals, divided
into discovery and validation cohorts. This approach permitted 484 metabolites to be determined,
mainly lipids and amino acids. The analysis of the results led to the proposal of a logistic regression
model able to discriminate patients with dCCA and PDAC (AUC value of 0.888) based on the
combination of serum levels of nine metabolites (acylcarnitine AC(16:0), ceramide Cer(d18:1/24:0),
phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20:3), lysophosphatidylcholines PC(20:0/0:0) and
PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0), and sphingomyelins SM(d18:2/22:0) and
SM(d18:2/23:0)) and CA 19-9. In conclusion, we propose a novel specific panel of serum metabolites
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that can help in the differential diagnosis of dCCA and PDAC. Further validation of their clinical
usefulness in prospective studies is required.

Keywords: biliary cancer; differential diagnosis; metabolites; pancreatic cancer; tumor
non-invasive biomarker

1. Introduction

Although distal cholangiocarcinoma (dCCA) and pancreatic ductal adenocarcinoma (PDAC)
share a close anatomical location, they are considered distinct entities and require specific management
strategies [1]. Whereas dCCA is an aggressive malignancy that arises in the biliary tract below the cystic
duct and represents approximately 20% of CCAs, PDAC derives from the epithelium of pancreatic
ducts and is the fourth cause of cancer-related deaths [2,3]. Although dCCA has a poor clinical
outcome [4] due to its late diagnosis and resistance to chemotherapy [5], in general, the prognosis is
worse in the case of PDAC [3].

Despite improvements in imaging techniques during recent years, the accurate diagnosis of
adenocarcinomas located in the pancreas head area represents a clinical challenge in gastrointestinal
oncology. Biopsy, either using cytologic brushing or fine-needle aspiration guided by endoscopic
ultrasound, is mandatory to confirm the diagnosis. However, this has serious limitations: (i) repeat
sampling is often required since the quality of the samples is not always sufficient to carry out the
anatomopathological analysis, and (ii) the detection of malignant cells can confirm the diagnosis,
but a negative result does not permit ruling it out [6]. To distinguish PDAC from benign pancreas
diseases (BPD), such as chronic pancreatitis or pancreatic cysts, is also challenging, and the lack of
accurate tumor biomarkers justifies that ≈ 5–10% of surgical removals of the head of the pancreas due
to presumed malignancies are finally identified as benign lesions.

Several non-invasive biomarkers have been evaluated for the diagnosis of PDAC [7] and CCA [8,9],
but none of them are being used in the clinical setting. Serum carbohydrate antigen 19-9 (CA 19-9) is the
only FDA-approved biomarker for PDAC for both the follow-up of the therapeutic response [10] and
for the detection of recurrence after surgery. Nevertheless, owing to its low sensitivity and specificity,
CA 19-9 is far from being considered an optimal biomarker. Serum CA 19-9 is also used clinically to
help in diagnosis and to monitor the response to therapy in biliary cancers, usually in combination
with another unspecific marker, i.e., carcinoembryonic antigen (CEA). However, its accuracy is low
and is not suitable for early detection. In addition, CA 19-9 can be elevated in patients with obstructive
cholestasis, chronic liver and pancreatic diseases, and premalignant pancreatic lesions. Moreover, ≈
10% of the Caucasian population with Lewis-negative phenotype do not express this biomarker [11].

Therefore, there is an urgent need to identify reliable minimally invasive biomarkers that can help
in the differential diagnosis of dCCA and PDAC. An optimal biomarker would also be expected to
contribute to the early detection of these cancers. The analysis of a large number of small metabolites
in biological samples represents an interesting approach for identifying clinically relevant biomarkers
for different diseases. In this context, the aim of the present study was to evaluate the usefulness of
differences in serum metabolomic profiles between dCCA and PDAC, as well as between these severe
malignancies and BPD and healthy individuals.

2. Results

2.1. Characteristics of the Study Population

The demographic and clinical features of individuals from both cohorts are shown in Table 1. The
age was higher in patients with dCCA and PDAC than in patients with BPD and healthy individuals
and only the latter group included a lower percentage of males. Most tumors included in the dCCA
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group were in early stage, while there was a similar distribution of tumors in early and advanced stage
in the PDAC group. Regarding liver biochemical parameters (Table 1), a significant increase in ALT,
GGT, alkaline phosphatase and total bilirubin was found in patients with dCCA and PDAC. Except for
total bilirubin, these parameters were also found to be elevated in BPD, although the magnitude of
changes was lower than that observed in patients with tumors.

Table 1. Demographic and clinical characteristics of the discovery and validation cohorts.

Variable
Control BPD dCCA PDAC

Discovery
(n = 12)

Validation
(n = 13)

Discovery
(n = 22)

Validation
(n = 20)

Discovery
(n = 16)

Validation
(n = 18)

Discovery
(n = 19)

Validation
(n = 19)

Age,
mean ±

SD
53.7 ± 9.8 52.2 ± 8.6 60.9 ±

12.3
59.9 ±
11.6 70.9 ± 7.0 68.6 ±

10.9 68.5 ± 9.3 63.1 ± 9.4

Males, n
(%) 5 (41.7) 6 (46.1) 12 (54.5) 10 (50) 12 (75) 10 (55.6) 12 (63.1) 12 (63.1)

Tumor stage *, n (%)

I - - - - 0 (0) 1 (5.6) 1 (5.3) 2 (10.5)

II - - - - 13 (81.2) 16 (88.8) 7 (36.8) 7 (36.8)

III - - - - 1 (6.3) 0 (0) 2 (10.5) 5 (26.3)

IV - - - - 2 (12.5) 1 (5.6) 9 (47.4) 5 (26.3)

Biochemistry, mean ± SD

ALT
(IU/L) 21.3 ± 8.0 17.1 ± 6.7 38.9 ±

64.3
32.0 ±
27.0

107 ± 118
a,b

38.5 ±
94.5

207 ± 203
a,b

208 ± 318
a,b

GGT
(IU/L)

24.8 ±
20.4 19.0 ± 9.8 125 ± 206

a
100 ± 142

a
589 ± 592

a,b
411 ± 816

a,b
775 ±

1037 a,b
784 ± 978

a,b

Alkaline
phosphatase

(IU/L)

56.1.8 ±
15.4

58.5 ±
22.9 102 ± 115 94 ± 68 301 ± 220

a,b
207 ± 153

a
442 ± 427

a,b
380 ± 359

a,b

Total
bilirubin
(mg/dL)

0.5 ± 0.3 0.6 ± 0.2 0.5 ± 0.2 0.8 ± 1.7 6.9 ± 7.5
a,b

2.8 ± 4.9
a

7.0 ± 7.6
a,b

7.3 ± 6.2,
a,b

CA 19-9
(IU/mL) 5.4 ± 4.5 8.6 ±7.4 46.6 ±

74.9 a
15.1 ±
10.5

893 ±
2405 a,b

328 ± 855
a,b

2983 ±
8024 a,b

431 ± 561
a,b

a, p < 0.05 compared with control (in the same cohort) and b, p < 0.05 compared with BPD (in the same
cohort) using the Bonferroni method of multiple range test. *, AJCC Cancer Staging Manual, 7th Edition. ALT;
alanine aminotransferase, BPD, benign pancreatic disease; CA 19-9, carbohydrate antigen 19-9; dCCA, distal
cholangiocarcinoma; GGT, gamma-glutamyl transpeptidase; PDAC, pancreatic ductal adenocarcinoma.

A significant increase in serum levels of CA 19-9 was found in both dCCA and PDAC, with a
marked interindividual variability. Moreover, although CA 19-9 levels were also elevated in some
patients with BPD, both with pancreatic cysts and with chronic pancreatitis, these were significantly
lower than those found in patients with cancer.

Any clustering of the different groups of samples according to the serum metabolome was
evaluated using multivariate data analysis, unsupervised principal component analysis (PCA) and
supervised orthogonal partial least-squares to latent structures discriminant analysis (OPLS-DA)
approaches. As shown in Figure 1, no differences in serum metabolomic profiles were found between
the hospitals of origin, discovery and validation cohorts, gender, and group of age or group of samples
(Figure 1A–E, respectively). A random distribution of patients with cysts and pancreatitis, both
included in the BPD group, was found (Figure 1F).
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Figure 1. Principal component analysis (PCA) score plots of human serum samples. Colors represent 
(A) the origin of the samples, (B) discovery or validation cohort, (C) gender, (D) age range, (E) group 
of samples and (F) type of benign pancreatic disease (BPD). (A–E) Principal component 1 (t[1]) and 
principal component 2 (t[2]) explain 17.4% and 11.2% of the total variance, respectively. (F) t[1] and 
t[2] explain 19.8% and 13.1% of the total variance, respectively. Each dot represents one sample. The 
ellipse represents 95% confidence interval according to Hotelling’s T2 test. 

The supervised OPLS-DA model showed a good predictive ability to discriminate patient 
groups from healthy individuals, since Q2X = 0.694 (Figure 2A), triglycerides and, to a lesser extent, 
oxidized fatty acids and bile acids (all of them increased) and sphingomyelins and 
glycerophosphatidylcholines (both decreased) being the main contributors to the differences found 
between patients and control individuals. However, the supervised OPLS-DA models to differentiate 
dCCA vs. BPD patients, PDAC vs. BPD and both types of tumors showed very low predictive ability 
(Figure 2B–D, respectively), since Q2X values were low, especially in the comparisons of PDAC with 
BPD (Q2X = 0.163) and dCCA (Q2X close to 0). 

Figure 1. Principal component analysis (PCA) score plots of human serum samples. Colors represent
(A) the origin of the samples, (B) discovery or validation cohort, (C) gender, (D) age range, (E) group
of samples and (F) type of benign pancreatic disease (BPD). (A–E) Principal component 1 (t[1]) and
principal component 2 (t[2]) explain 17.4% and 11.2% of the total variance, respectively. (F) t[1] and t[2]
explain 19.8% and 13.1% of the total variance, respectively. Each dot represents one sample. The ellipse
represents 95% confidence interval according to Hotelling’s T2 test.

The supervised OPLS-DA model showed a good predictive ability to discriminate patient groups
from healthy individuals, since Q2X = 0.694 (Figure 2A), triglycerides and, to a lesser extent, oxidized
fatty acids and bile acids (all of them increased) and sphingomyelins and glycerophosphatidylcholines
(both decreased) being the main contributors to the differences found between patients and control
individuals. However, the supervised OPLS-DA models to differentiate dCCA vs. BPD patients, PDAC
vs. BPD and both types of tumors showed very low predictive ability (Figure 2B–D, respectively), since
Q2X values were low, especially in the comparisons of PDAC with BPD (Q2X = 0.163) and dCCA (Q2X
close to 0).
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Figure 2. Score plots for the first predictive (t[1]) and orthogonal (to[1]) components of the supervised 
orthogonal partial least squares discriminant analysis (OPLS-DA) models for (A) disease vs. control 
samples; R2X = 0.445; R2Y = 0.835; Q2X = 0.694), (B) dCCA vs. BPD samples; R2X = 0.315; R2Y = 0.697; 
Q2X = 0.425, (C) PDAC vs. BPD samples; R2X = 0.265; R2Y = 0.471; Q2X = 0.163,and (D) dCCA vs. PDAC 
samples; R2X = 0.24; R2Y = 0.527; Q2X = 0.036. Each dot represents one sample. The ellipse represents 
95% confidence interval according to Hotelling’s T2 test. 

2.2. Serum Metabolomic Profiles of Patients with dCCA, PDAC and BPD and Healthy Individuals 

During the discovery phase we were able to determine 484 metabolites in serum samples, which 
was confirmed in the validation cohort. Changes in the levels of molecules belonging to the different 
families of analyzed metabolites (lipids, amino acids and amino acids derivatives) were found. Figure 
3 depicts the heatmaps showing the fold-changes and the p-values generated from different two-
groups comparisons carried out in the discovery and validation cohorts, and considering all samples 
together. 

Figure 2. Score plots for the first predictive (t[1]) and orthogonal (to[1]) components of the supervised
orthogonal partial least squares discriminant analysis (OPLS-DA) models for (A) disease vs. control
samples; R2X = 0.445; R2Y = 0.835; Q2X = 0.694), (B) dCCA vs. BPD samples; R2X = 0.315; R2Y = 0.697;
Q2X = 0.425, (C) PDAC vs. BPD samples; R2X = 0.265; R2Y = 0.471; Q2X = 0.163,and (D) dCCA vs.
PDAC samples; R2X = 0.24; R2Y = 0.527; Q2X = 0.036. Each dot represents one sample. The ellipse
represents 95% confidence interval according to Hotelling’s T2 test.

2.2. Serum Metabolomic Profiles of Patients with dCCA, PDAC and BPD and Healthy Individuals

During the discovery phase we were able to determine 484 metabolites in serum samples, which
was confirmed in the validation cohort. Changes in the levels of molecules belonging to the different
families of analyzed metabolites (lipids, amino acids and amino acids derivatives) were found. Figure 3
depicts the heatmaps showing the fold-changes and the p-values generated from different two-groups
comparisons carried out in the discovery and validation cohorts, and considering all samples together.
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Figure 3. Metabolomic signatures in serum of patients with dCCA, PDAC or BPD and healthy 
individuals (Control). Heatmaps show fold-changes and p-values in each two-group comparison of 
the relative metabolite levels in serum samples in the discovery cohort (Disc.), in the validation cohort 
(Val.) and considering all samples together (All). The log2 transformed metabolite abundance ratios 
are depicted for each comparison. In the scale, colors from green to red correspond to drop or 
elevation of metabolite levels and gray lines show significant fold-changes of individual metabolites; 
darker gray colors indicate higher significance. Metabolites are grouped by chemical 
group/subgroup: AA, amino acids; AC, acylcarnitines; BA, bile acids; Cer, ceramides; ChoE, 
cholesteryl esters; CMH, monohexosylceramides; DAPC, diacylglycerophosphocholines; DAPE, 
diacylglycerophosphoethanolamines; DG, diglycerides; FSB, free sphingoid bases; LPC, 
lysophosphatidylcholines; LPE, lysophosphatidylethanolamines; LPI, lysophosphatidylinositols 
MAPC, monoacylglycerophosphatidylcholines; MAPE, 
monoacylglycerophosphatidylethanolamines; MEMAPC, 1-ether, 2-
acylglycerophosphatidylcholines; MEMAPE, 1-ether, 2-acylglycerophosphatidylethanolamines; 
MEPC; 1-monoetherglycerophosphatidylcholines; MEPE, 1-
monoetherglycerophosphatidylethanolamines; MUFA, monounsaturated fatty acids; NAE, N-acyl 
ethanolamines; oxFA, oxidized fatty acids; PC, phosphatidylcholines; PE, 
phosphatidylethanolamines; PI, phosphatidylinositols; PUFA, polyunsaturated fatty acids; SFA, 
saturated fatty acids; SM, sphingomyelins; ST, steroids; TG, triglycerides. 

Figure 4 shows the volcano plots generated for each two-groups comparison, and the number of 
metabolites significantly changed in each comparison considering the full cohort (Figure 4G). When 
BDL was compared with control, altered serum concentrations of 268 metabolites (mainly 
phosphatidylcholines > triglycerides > sphingomyelins ≈ lysophosphatidylcholines) were found. The 
comparison of dCCA with control revealed altered serum levels of 236 metabolites (mainly 
triglycerides ≈ phosphatidylcholines > lysophosphatidylcholines > sphingomyelins).  

Figure 3. Metabolomic signatures in serum of patients with dCCA, PDAC or BPD and healthy
individuals (Control). Heatmaps show fold-changes and p-values in each two-group comparison of
the relative metabolite levels in serum samples in the discovery cohort (Disc.), in the validation
cohort (Val.) and considering all samples together (All). The log2 transformed metabolite
abundance ratios are depicted for each comparison. In the scale, colors from green to red
correspond to drop or elevation of metabolite levels and gray lines show significant fold-changes
of individual metabolites; darker gray colors indicate higher significance. Metabolites are grouped by
chemical group/subgroup: AA, amino acids; AC, acylcarnitines; BA, bile acids; Cer, ceramides;
ChoE, cholesteryl esters; CMH, monohexosylceramides; DAPC, diacylglycerophosphocholines;
DAPE, diacylglycerophosphoethanolamines; DG, diglycerides; FSB, free sphingoid bases; LPC,
lysophosphatidylcholines; LPE, lysophosphatidylethanolamines; LPI, lysophosphatidylinositols
MAPC, monoacylglycerophosphatidylcholines; MAPE, monoacylglycerophosphatidylethanolamines;
MEMAPC, 1-ether, 2-acylglycerophosphatidylcholines; MEMAPE, 1-ether, 2-acylglycerophospha
tidylethanolamines; MEPC; 1- monoetherglycerophosphatidylcholines; MEPE, 1-monoetherglycer
ophosphatidylethanolamines; MUFA, monounsaturated fatty acids; NAE, N-acyl ethanolamines;
oxFA, oxidized fatty acids; PC, phosphatidylcholines; PE, phosphatidylethanolamines; PI,
phosphatidylinositols; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids; SM,
sphingomyelins; ST, steroids; TG, triglycerides.

Figure 4 shows the volcano plots generated for each two-groups comparison, and the number
of metabolites significantly changed in each comparison considering the full cohort (Figure 4G).
When BDL was compared with control, altered serum concentrations of 268 metabolites (mainly
phosphatidylcholines > triglycerides > sphingomyelins ≈ lysophosphatidylcholines) were found. The
comparison of dCCA with control revealed altered serum levels of 236 metabolites (mainly triglycerides
≈ phosphatidylcholines > lysophosphatidylcholines > sphingomyelins).
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Figure 4. Volcano plots [-log10(p-value) and log2(fold-change)] considering the serum metabolite levels 
of the whole cohort of (A) BPD patients vs. controls, (B) dCCA vs. controls, (C) PDAC vs. controls, 
(D) dCCA vs. BPD, (E) PDAC vs. BPD and (F) dCCA vs. PDAC. (G) Number of metabolites and 
metabolite classes significantly different in each comparison. AA, amino acids; AC, acylcarnitines; 
BA, bile acids; Cer, ceramides; ChoE, cholesteryl esters; CMH, monohexosylceramides; DG, 
diglycerides; FSB, free sphingoid bases; LPC, lysophosphatidylcholines; LPE, 
lysophosphatidylethanolamines; LPI, lysophosphatidylinositols; MUFA, monounsaturated fatty 
acids; NAE, N-acyl ethanolamines; oxFA, oxidized fatty acids; PC, phosphatidylcholines; PE, 
phosphatidylethanolamines; PI, phosphatidylinositols; PUFA, polyunsaturated fatty acids; SFA, 
saturated fatty acids; SM, sphingomyelins; ST, steroids; TG, triglycerides. 

Figure 4. Volcano plots [-log10(p-value) and log2(fold-change)] considering the serum metabolite
levels of the whole cohort of (A) BPD patients vs. controls, (B) dCCA vs. controls, (C)
PDAC vs. controls, (D) dCCA vs. BPD, (E) PDAC vs. BPD and (F) dCCA vs. PDAC. (G)
Number of metabolites and metabolite classes significantly different in each comparison. AA,
amino acids; AC, acylcarnitines; BA, bile acids; Cer, ceramides; ChoE, cholesteryl esters; CMH,
monohexosylceramides; DG, diglycerides; FSB, free sphingoid bases; LPC, lysophosphatidylcholines;
LPE, lysophosphatidylethanolamines; LPI, lysophosphatidylinositols; MUFA, monounsaturated
fatty acids; NAE, N-acyl ethanolamines; oxFA, oxidized fatty acids; PC, phosphatidylcholines; PE,
phosphatidylethanolamines; PI, phosphatidylinositols; PUFA, polyunsaturated fatty acids; SFA,
saturated fatty acids; SM, sphingomyelins; ST, steroids; TG, triglycerides.

The highest number of metabolites affected by changes in their serum levels (n = 280; mainly
triglycerides > phosphatidylcholines > lysophosphatidylcholines) was found in the PDAC group.
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Different serum levels of 111 metabolites were found when comparing dCCA with BPD (mainly
phosphatidylcholines > lysophosphatidyletanolamines = sphingomyelins), whereas this number
increased to 178 when comparing PDAC with BPD (mainly phosphatidylcholines > triglycerides). The
number of serum metabolites altered when comparing dCCA vs. PDAC was 63 (mainly triglycerides
> phosphatidyletanolamines > lysophosphatidyletanolamines), and most of them were higher in
PDCA than in dCCA. The number of metabolites with a value of area under the receiver operating
characteristic curve (AUC) ≥ 0.8 was 73 when comparing BPD vs. control, 63 when comparing dCCA
vs. control and 72 when comparing PDAC vs. control.

An important number of metabolites were found altered in the serum of more than one group of
patients, although the magnitude of changes was higher in patients with cancer. Table 2 shows the 10
metabolites with the best diagnostic capacity (best values of AUC, sensitivity and specificity) for each
disease vs. control. Complete panels are presented in Table S1A–C.

Table 2. Diagnostic capacity of the top 10 metabolites in the comparison of each disease vs. control
considering the whole cohort.

Metabolite AUC Sensitivity Specificity log2FC
Glutamic acid 0.926 90 84 1.112
Tryptophan 0.910 92 83 −0.441

DG(34:0) 0.910 84 86 −1.731
PE(16:0/18:1) 0.909 88 88 1.475

SM(32:1) 0.909 96 74 −0.722
AC(8:0) 0.906 92 86 −1.379

PC(O-16:0/18:2) 0.903 92 71 −1.087
Arachidic acid 0.898 69 96 0.606
SM(d18:2/22:0) 0.896 84 83 −0.749

BP
D

vs
.C

on
tr

ol

SM(38:1) 0.889 96 76 −0.612
Metabolite AUC Sensitivity Specificity log2FC

SM(d18:2/22:0) 0.967 92 94 −0.992
SM(d18:2/23:0) 0.959 88 97 −1.204

SM(39:1) 0.958 96 91 −1.052
Aspartic acid 0.955 79 100 1.671
Glycocholic

acid 0.954 94 88 4.779

SM(38:1) 0.951 96 94 −0.750
SM(d18:1/23:0) 0.929 80 94 −0.900
SM(d18:1/22:0) 0.928 92 88 −0.810
SM(d18:2/20:0) 0.921 84 88 −0.581dC

C
A

vs
.C

on
tr

ol

Taurocholic
acid 0.919 76 100 8.035

Metabolite AUC Sensitivity Specificity log2FC
Glutamic acid 0.937 92 88 1.570
Aspartic acid 0.937 79 96 1.473
PE(16:0/18:1) 0.919 82 88 2.295

SM(d18:2/22:0) 0.919 92 89 −0.810
SM(39:1) 0.915 88 82 −0.907

SM(d18:2/23:0) 0.911 92 87 −1.059
ChoE(18:3) 0.907 76 92 −1.178

AC(8:0) 0.903 80 92 −1.312
SM(38:1) 0.899 96 76 −0.603

PD
A

C
vs

.C
on

tr
ol

PE(16:0/0:0) 0.897 79 92 0.601
AUC, area under the receiver operating characteristic curve; FC, fold change. Colors from green to red correspond
to drop or elevation of metabolite levels.

Although fewer alterations in the circulating metabolomic profiles were observed when the
different diseases were cross compared, we found changes with interest in diagnosis. Among 50
metabolites with significant AUC values in the comparison of dCCA vs. BPD, 6 showed AUC values
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of ≥ 0.8 (Table 3), while 2 among 61 in the comparison PDAC vs. BPD reached these AUC values. In
the comparison dCCA vs. PDAC, 9 metabolites showed significant AUC values, although all with
AUC < 0.8. In the last comparison serum concentrations of the 9 metabolites were lower in dCCA than
in PDAC. Table 3 shows the 9–10 metabolites with the best diagnostic capacity in each two-groups
comparison, and the complete panels are presented in Table S1D,E.

Table 3. Diagnostic capacity of the top 9-10 metabolites in each two-disease group comparison
considering the whole cohort.

Metabolite AUC Sensitivity Specificity log2FC
SM(d18:1/23:1) 0.858 79 81 0.839

Glycocholic
acid 0.834 94 62 2.579

Taurocholic
acid 0.823 73 83 4.096

PC(16:0/16:0) 0.811 76 79 0.753
PC(31:0) 0.805 71 81 1.233
TG(54:7) 0.800 60 91 −3.358
18:3n-3 0.790 69 82 −1.368

CMH(d18:1/16:0) 0.788 82 71 0.720
Phenylalanine 0.785 56 90 0.482

dC
C

A
vs

.B
PD

TG(54:6) 0.783 51 100 −2.154
Metabolite AUC Sensitivity Specificity log2FC
PC(O-34:1) 0.814 66 90 0.951

SM(d18:1/23:1) 0.813 79 79 0.898
PC(P-16:0/16:0) 0.795 74 74 0.730
PC(16:0/16:0) 0.794 66 86 0.950

PC(31:0) 0.794 68 81 1.376
PC(O-16:0/16:0) 0.782 68 81 0.941

PC(O-38:5) 0.782 58 93 0.446
PC(O-18:1/18:1) 0.776 63 81 0.760
PC(O-22:1/20:4) 0.768 74 71 0.677

PD
A

C
vs

.B
PD

SM(d18:0/15:0) 0.766 55 93 1.058
Metabolite AUC Sensitivity Specificity log2FC
PE(18:0/0:0) 0.769 82 71 −0.367
PE(0:0/18:0) 0.763 84 68 −0.358
PE(16:0/0:0) 0.742 74 68 −0.356
PE(20:4/0:0) 0.739 74 71 −0.317
PE(0:0/20:4) 0.735 76 71 −0.302
PE(0:0/16:0) 0.732 89 47 −0.365

PE(38:5) 0.719 95 44 −0.844
TG(52:5) 0.705 71 68 −0.620

dC
C

A
vs

.P
D

A
C

PE 20:4 0.704 95 38 −0.520
AUC, area under the receiver operating characteristic curve; FC, fold change. Colors from green to red correspond
to drop or elevation of metabolite levels.

2.3. Discrimination between Patients with and without Tumors

In our study, with a cut-off fixed in 37 IU/mL, CA 19-9 showed a good diagnostic capacity to
differentiate patients with tumors (dCCA+PDAC) from healthy individuals, with an AUC of 0.93
in both cohorts. However, as shown in Figure 5A, it was not so good in differentiating between
dCCA+PDAC and patients without cancer (Control+BPD). AUC was 0.845, 0.820 and 0.828 in discovery,
validation and the whole cohort, respectively (Figure 5B).
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As shown in Figure 6, a model including 10 metabolites [amino acids sarcosine, tryptophan
and aspartic acid, lysophosphatidylethanolamine PE(0:0/16:0), phosphatidylinositol PI(18:0/18:2),
diglycerides DG(38:4) and DG(34:0), sphingomyelin SM(42:1), N-acyl ethanolamine NA(16:0) and
sterol pregnenolone sulfate] was generated to differentiate patients with tumors (dCCA+PDAC) and
without malignancies (Control+BPD).
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Figure 6. Diagnostic prediction capacity of the logistic model in tumors (dCCA+PDAC) vs. non
tumors (Control+BPD). (A) Box plot diagrams showing the probability to detect each group as
tumors. (B) Area under the receiver operating characteristic curve (AUC) in discovery and validation
cohorts and considering all cohorts. (C) AUC, sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) of the algorithm to differentiate tumors vs. non tumors in
each cohort. (D) Selected metabolites included in the model. AA, amino acids; DG, diglycerides;
LPE, lysophosphatidylethanolamines; NAE, N-acyl ethanolamines; PI, phosphatidylinositols; SM,
sphingomyelins; ST, steroids.

Using this model, the probability of diagnosing patients with chronic pancreatitis or healthy
subjects as individuals suffering from dCCA or PDAC is low. However, this risk is higher for patients
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with benign pancreatic cysts (Figure 6A). AUC was 0.93 in discovery, 0.86 in validation and 0.89
considering the whole cohort. Sensitivity was 73.6% and specificity 83.6% considering the whole
cohort. We have evaluated the relationship between the age and the diagnostic error rate of the model.
Based on a stratification of the patients in quantiles, the diagnostic error rate was constant and around
20% (average 21%, ranging from the 17% to 29%) and was not associated with the patient’s age.

In our study, CA 19-9 showed a sensitivity of 71% and a specificity of 83% to differentiate patients
with tumors from individuals without tumors (Controls+BPD).

2.4. Discrimination between dCCA and PDAC

Since none of the individual circulating metabolites had a sufficient capability of distinguishing
dCCA from PDAC (Table 3), our next goal was to obtain a predictive model for discriminating between
both tumors. A logistic regression model was built with nine metabolites (Figure S1) (acylcarnitine
AC(16:0), ceramide Cer(d18:1/24:0), phosphatidylcholines PC(20:0/0:0) and PC(O-16:0/20.3),
lysophosphatidylcholines PC(20:0/0:0) and PC(0:0/20:0), lysophosphatidylethanolamine PE(P-18:2/0:0),
and sphingomyelins SM(d18:2/22:0) and SM(d18:2/23:0)), with an AUC of 0.91 in discovery, 0.82
in validation and 0.85 considering the whole cohort; sensitivity was 55.9% and specificity 89.5%
considering all the patients. The analysis of CA 19-9 showed a sensitivity of 77% and a specificity of
48% to differentiate patients with PDAC from those with dCCA (Figure S2).

Another logistic regression model was built with the nine metabolites plus CA 19-9 (Figure 7),
which improved the sensitivity. However, the specificity slightly decreased in the full cohort and
especially in the validation cohort. Thus, AUC was 0.888, sensitivity 71.4% and specificity 89.2
considering the whole cohort.
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showing the probability to detect each type of tumor. (B) Area under the receiver operating characteristic
curve (AUC) in discovery and validation cohorts and considering the whole cohort. (C) AUC, sensitivity,
specificity, positive predictive value (PPV) and negative predictive value (NPV) of the algorithm to
differentiate dCCA vs. PDAC in each cohort. (D) Selected metabolites included in the model: AC,
acylcarnitine; Cer, ceramide; LPC, lysophosphatidylcholines; LPE, lysophosphatidylethanolamines; PC,
phosphatidylcholines; SM, sphingomyelins plus CA 19-9. ***, p < 0.001.
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3. Discussion

The lack of non-invasive biomarkers for the early diagnosis of PDAC and dCCA contributes to the
bad prognosis of these tumors [12]. The anatomical difficulty in accessing the tumors to obtain good
quality biopsies for diagnostic purposes makes it necessary to identify minimally invasive biomarkers
that could help, not only in the early detection of these tumors to enable more patients to benefit
from surgical treatment, but also in the prognosis and follow-up of these patients during treatment.
However, although important efforts have been made during recent years, none of the identified
markers have been validated and reached clinical practice. Despite their moderate clinical utility, only
CA 19-9 and carcinoembryonic antigen (CEA) are currently used for PDAC and CCA diagnosis [13].

Omics technologies are providing valuable information to understand cancer biology. Metabolic
reprogramming is one hallmark of tumor cells [14,15]; thus, the analysis of the metabolome (hundreds
of small molecules or metabolites) in body fluids of patients with cancer can give an indirect reflection
of the metabolic behavior of the tumors and could be used to identify potential biomarkers.

Several studies have been conducted to identify serum metabolomic profiles for the diagnosis of
pancreatic or biliary cancers. Most of them included only patients with pancreatic cancer and healthy
controls [16–18] or with biliary cancer and healthy individuals [19]. However, it is important to include
clinically relevant controls since the metabolome can be affected by many factors, including gender, age,
comorbidities, medication, life style, environment or circadian rhythms; in fact, important intra-day
variations have been observed in serum levels of patients with advanced pancreatic cancer, which were
further affected by cachexia [20].

The use of metabolomics to discriminate between different types of tumors and between
tumors and benign diseases has been less explored. Combinations of metabolites discriminating
malignant from benign pancreaticobiliary diseases and from healthy controls have been reported,
although the number of cases was low and most of the patients with tumors were in an advanced
stage, for which their usefulness in early diagnosis cannot be guaranteed [21]. More recently, a
biomarker signature for the differential diagnosis between PDAC and chronic pancreatitis was reported,
consisting of nine metabolites, five of them lipids (two sphingomyelins, sphinganine 1-phosphate, one
phosphatidylcholine and one ceramide), and proline, histidine, pyruvate and isocitrate plus CA 19-9,
with a negative predictive value of 99.9% in patients with chronic pancreatitis [22].

All these studies support the concept that the combination of several metabolite markers allows
for a more accurate diagnosis. In this study, we have included patients with biopsy-proven tumors or
cysts located in the head of the pancreas divided into two independent cohorts of PDAC, dCCA, BPD
and controls. Although serum bile acids levels represented the most marked alteration in patients
with cancer, this hypercholanemic condition occurs in different pathologies that are accompanied
by cholestasis, in which compensatory mechanisms are developed to limit the accumulation and
toxic effects of these compounds [23]. It has been demonstrated that obstructive jaundice impacts the
performance of biomarkers for PDAC [24], and in our study, a certain degree of cholestasis was found
in some patients with tumors, since serum bilirubin was elevated, and as a consequence, none of the
bile acid species measured could be considered as a good biomarker.

In the present study we have identified a multimarker signature for the differential diagnosis
of adenocarcinomas located in the pancreas including nine metabolites plus CA 19-9 with better
performance than serum CA 19-9 alone and another panel of ten metabolites (seven lipids and three
amino acids) with similar performance to serum CA 19-9 to discriminate tumors from BPD but which
are especially useful for chronic pancreatitis. Since this disease is a risk factor for the development of
pancreatic cancer [25], these biomarkers could be useful for early detection of tumor development,
for monitoring patients during treatment and for avoiding unnecessary pancreatic surgery and its
complications. Interestingly, some of the metabolites included in the signature proposed here belonged
to the same families of compounds (amino acids, sphingomyelins and ceramides) of a previously
described model [22]. Changes in serum levels of certain amino acids have been described in other
tumors, such as liver [26,27] and breast [28] cancer. In addition, sphingomyelins and ceramides have
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been found altered in the serum of patients with liver [27] and ovarian [29] cancer. Alterations in
sphingolipid metabolism have been associated with cell proliferation [30]. Our model of changes in ten
metabolites was less accurate than CA 19-9 levels in distinguishing pancreatic cysts from tumors in the
head of pancreas, although the low number of cases of cystic lesions in our cohort can be considered a
limitation. In recent years, several studies have proposed circulating microRNA (miRNA) signatures
for early detection of pancreatic cancer [31] or for the differential diagnosis of PDAC and chronic
pancreatitis with good sensitivity and specificity [32], although none of them included a group of
patients with pancreatic cysts. A recent study proposed a two-miRNA panel of downregulated miR-16
and upregulated miR-877 to differentiate patients with dCCA from benign disease (AUC = 0.90) and
from PDAC (AUC = 0.88) [33]. Serum proteins have also been investigated. The analysis of cell
migration-inducing hyaluronan binding protein (CEMIP) plus CA 19-9 improved the diagnostic value
compared to CA 19-9 alone for the diagnosis of pancreatic cancer [34]; the study included a small but
very heterogeneous group of patients with BPD in the control cohort, but the results must be validated.

In sum, in this study, using two independent cohorts of patients, we have identified a model
consisting of 9 metabolites in serum with promising capability to differentiate both types of pancreatic
head adenocarcinomas, with AUC = 0.854. Because accurate diagnosis of these tumors remains
challenging, our results suggest that the analysis of multiple types of biomarkers could help in the
early and differential diagnosis and in the follow-up of these aggressive tumors.

4. Materials and Methods

4.1. Study Population and Eligibility

Fasting serum samples from dCCA (n = 34), PDAC (n = 38), BPD (n = 42), and healthy subjects (n
= 25) were obtained from two Spanish hospitals; University Hospital of Salamanca, National DNA
Bank Carlos III, and Donostia University Hospital in San Sebastian. Samples were randomly divided
in two cohorts, “discovery” and “validation”, with equal proportional representation of individuals
belonging to each pathology as well as to each origin of samples.

Inclusion criteria for patients with dCCA and PDAC were histopathologic confirmation of
diagnosis by expert pathologists and serum obtained before any type of treatment. Exclusion
criteria were other types of CCA or synchronous presence of another type of malignancy. The BPD
group included 22 samples from patients with cysts and 20 from patients with chronic pancreatitis.
Selected healthy individuals had no history of any type of malignancy and no clinical evidence of
hepatopancreaticobiliary disease. Clinical and laboratory test values were collected from the patients’
records. The research protocol was approved by the Ethics Committee for Clinical Research of
Salamanca (July 18, 2018) and San Sebastian (October 16, 2019), and informed written consent for the
samples to be used for biomedical research was obtained from each patient.

4.2. Metabolomic Analyses

Serum metabolic profiles were analyzed as previously described [35]. Briefly, two
ultrahigh-performance liquid chromatography (UHPLC)-time of flight-MS based platforms analyzing
methanol and chloroform/methanol serum extracts were combined with the amino acid measurement
using an UHPLC-single quadrupole-MS based analysis. Identified ion features in the methanol extract
platform included amino acids and its derivatives and lipids.

Metabolite extraction procedures, chromatographic separation conditions and mass spectrometric
detection conditions have been previously described [35]. Metabolomics data were pre-processed
using the TargetLynx application manager for MassLynx 4.1 (Waters Corp., Milford, MA, USA). Intra-
and inter-batch normalization was performed by inclusion of multiple internal standards and pool
calibration response correction, following a previously described procedure [36]. Data quality was
assessed by the inclusion of quality control samples, including repeated injections of these samples to
evaluate the reproducibility of the analysis process [36].
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4.3. Statistical Analysis

Data are shown as mean ± SD. Differences between groups were determined using the Student´s
t-test or the Bonferroni method of multiple range test, as appropriate. Calculations were performed using
the statistical software package R v.3.4.0 (R Development Core Team, 2017; http://cran.r-project.org).

Multivariate principal component analysis (PCA) [37] and orthogonal partial least squares
discriminant analysis (OPLS-DA) [38] modeling were performed with the software SIMCA 14.1
(Umetrics, Malmo, Sweden). Model quality was assessed using R2 and Q2 values, which indicate the
explained fraction of variance and the goodness of prediction, respectively. The Q2 parameter was
calculated by sevenfold cross validation.

To find statistical models to differentiate patients with tumors (dCCA or PDAC) and subjects
without tumors (controls or BPD [chronic pancreatitis or pancreatic cysts]), as well as to differentiate
each type of tumor, dCCA vs. PDAC, generalized linear models (GLM) were used and those selected
were confirmed by leave-one-out cross validation (LOOCV). Box-Cox transformations were applied to
the biomarker metabolite levels for correcting non-normally distributed data and used to calculate the
classification algorithm. The diagnostic accuracy of the model to identify patients in each comparison
was assessed using the AUC p < 0.05.

5. Conclusions

Based on the results obtained in the present study, we propose novel specific panels of serum
metabolites that can help in the early and differential diagnosis of dCCA and PDAC. Further validation
of their clinical usefulness in prospective studies including other relevant controls and in combination
with clinical features is required.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1433/s1,
Figure S1: Diagnostic prediction capacity of the model of nine metabolites in dCCA vs. PDAC, Figure S2:
Diagnostic prediction capacity of CA 19-9 in dCCA vs. PDAC, Table S1: Diagnostic capacity of the metabolites in
the comparison.
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Abbreviations

AUC area under the receiver operating characteristic curve
BPD benign pancreatic disease
CA 19-9 carbohydrate antigen 19-9
CCA cholangiocarcinoma
dCCA distal cholangiocarcinoma
OPLS orthogonal partial least squares
PCA principal component analysis
PDAC pancreatic ductal adenocarcinoma
UHPLC-MS ultra-high performance liquid chromatography coupled to mass spectrometry
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