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Abstract

Centipede Games represent a classic puzzle in game theory. In this work, we employ

p-beliefs to show that almost any behavior is consistent with rationality and almost

Common Belief in Rationality. However, Common p-Belief in Rationality cannot justify

why people cooperate in some Centipede Games but not others in a non-trivial way.

We thus propose a novel theoretical framework that links the p-beliefs in rationality to

the incentives to cooperate. This more general subjective belief-based approach serves

as a predictor of cooperation. We show that the proposed approach organizes well the

behavior in an experiment with a large variety of Centipede Games.
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2 1 Introduction

1 Introduction

The Centipede Game (CG, henceforth), proposed by Rosenthal (1981), represents a classic

puzzle in game theory. In such game, two players choose alternately between two possible

actions, Pass or Take, for a known number of rounds. If any player plays Take, the game

ends. CGs are characterized by a particular payo↵ structure: each player’s payo↵ from

playing Take in a decision node is (i) lower than the payo↵ she gets if she plays Take

in any later decision node, but (ii) higher than when she plays Pass and her opponent

plays Take.1 Rationality and Common (strong) Belief in Rationality (RCBR, henceforward)

implies that the only subgame perfect Nash equilibrium (SPNE, hereafter) is Take at every

decision node, resulting in a unique prediction: the game is over at the very first decision

node.2 However, people frequently play Pass initially in CGs, a behavior that stands in

stark contrast with the theoretical prediction (see McKelvey and Palfrey, 1992; Rapoport,

Stein, Parco and Nicholas, 2003; Bornstein, Kugler and Ziegelmeyer, 2004). Due to the

payo↵ structure, which simultaneously incentivizes passing and taking before the opponent

does, a conflict between payo↵ maximization and sequential reasoning arises. This classical

tension is also reflected in other strategic situations, such as the classic repeated Prisoner’s

dilemma (see Dal Bó and Fréchette, 2011; Friedman and Oprea, 2012; Bigoni, Casari,

Skrzypacz and Spagnolo, 2015; Embrey, Fréchette and Yuksel, 2018 for recent research),

industry oligopolies or public good provisions. So it is important to understand how people

behave when facing this type of situations.

In this paper, we first show theoretically that the standard prediction of behavior in CGs

is extremely non-robust to relaxations of Common (strong) Belief in Rationality (CBR,

hereafter). To this aim, we introduce the notion of p-rationalizability allowing players

to entail uncertainty about higher-order mutual rationality. The result establishes that

cooperation in CGs is justified for any p < 1 that is, no matter how negligible the uncertainty

about higher-order rationality is.

However, this result is insensitive on the payo↵ structure as long as the game is a

CG, while it has been documented that subjects’ behavior di↵ers systematically across

di↵erent CGs (Fey, McKelvey and Palfrey, 1996; Kawagoe and Takizawa, 2012; Garcia-

Pola, Iriberri and Kovář́ık, 2020). Our second contribution is to propose a subjective belief-

based approach that can organize the behavior across both subjects and CGs with di↵erent

payo↵ structures. To this aim, we combine two concepts: players’ subjective beliefs about

opponent’s behavior and Threshold Conjectures that reflect the incentives to Take or Pass

1Section 2.1.2 formally characterizes the Centipede Game and Figure 1 displays an example of a general
CG.

2Rationality and common strong belief in rationality is the natural counterpart of rationality and common
belief in rationality for dynamic games, see Battigalli and Siniscalchi (2003).
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in a particular CG. In particular, Threshold Conjectures correspond to subjective beliefs

regarding opponents’ behavior that induce indi↵erences between all the possible strategies

at every decision node. Our methodology predicts that the higher the Threshold Belief is,

the higher observed rates of cooperation should be, at a particular decision node.

Using lab data from an experiment with a large variety of CGs , we corroborate this

positive relationship between Threshold Beliefs and the degrees of cooperation estimating

correlations and some logit models. We find that the Threshold Conjectures explain well the

behavior in experimental data at both the population and the individual level. Specially,

for 60.56% of the subjects the Threshold Conjectures explain significantly the observed

behavior across their 16 decisions in the 16 variations of the CG.

We contribute to two streams of literature. Related to epistemic game theory we intro-

duce the strong p-belief operator, which building on Monderer and Samet’s (1987) notion

of p-belief generalizes Battigalli and Siniscalchi’s (2003) strong belief, by requiring that an

event is believed with probability at least p (instead of 1) at every unexpected history the

event is consistent with (instead at every history the event is consistent with). The above

allows for a more purely game-theoretic contribution consisting on the introduction of a new

solution concept for dynamic games, (extensive-form) p-rationalizability, which generalizes

extensive-form rationalizability (Pearce, 1984 and Battigalli, 1997). p-Rationalizability cap-

tures the behavioral implications of rationality and common strong p-belief in rationality

and hence, it allows for representing arbitrarily small departures from the benchmark of

perfect rationality in dynamic games. When p = 1, p-rationalizability and extensive-form

rationalizability coincide, and when the game is static, our solution concept coincides with

Hu’s 2007 notion of p-rationalizability for static games. Applying p-rationalizability we

show the extreme non-robustness of the standard prediction, as presented above.

We contribute to the literature which study the mismatch between the observed and the

predicted behavior in the CG by introducing a novel approach. This approach is able to

explain the di↵erences in the observed behavior at both the population and the individual

level based on the strong p-belief operator. We can classify the explanations that state why

observed behavior di↵ers from the unique SPNE in the CG in broadly three categories.

Models of bounded rationality, that assumes that individuals are not completely rational

(see McKelvey and Palfrey, 1995; Fey, McKelvey and Palfrey, 1996; McKelvey and Palfrey,

1998), preference-based models, which lean on the assumption that players do not maximizes

only their own payo↵ (e.g. McKelvey and Palfrey, 1992; Garcia-Pola, Iriberri and Kovář́ık,

2020) and models that relax the notion of CBR. A Bayesian equilibrium approach (see

McKelvey and Palfrey, 1992) and level-k thinking model (see Kawagoe and Takizawa,2012;

Ho and Su, 2013 for recent research) were proposed to relax this assumption. Although

there is a wide variety of literature that analyse why the players di↵er from the SPNE
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prediction, in this paper, we focus on the relaxation of the CBR allowing players to suspect

about the opponents’ rationality.

This paper is structured as follows. Section 2 sets out the theoretical framework and

presents our theoretical result apart from proposing the methodology used. Section 3

presents the data we use and the results that support our belief-based approach. Section

4 concludes and presents future research derived from our study. Additionally, Appendices

A to E incorporate all the auxiliary material.

2 Theoretical Framework

This section introduces the theoretical framework. First, we formally present dynamic

games as well as the concrete framework of the CGs. Then, we recall the concepts of

p-belief and p-Rationalizability and extend them to extensive-form dynamic games.

2.1 Preliminaries

We describe first the general framework for a dynamic game and characterize the terms of

conjecture and sequential rationality. Then, we formally define the CGs.

2.1.1 Dynamic Games

A dynamic game (with complete information) consists of a list � = hI, (Ai)i2I , H, Z, (ui)i2Ii
where I is the finite set of players and:

• For each player i, Ai is a finite set of actions. A history represents the unfolding of

the game and consists of finite sequence of possibly simultaneous choices, i.e. on a

finite sequence of elements from {;} [
S

J✓I
AJ , where AJ :=

Q
i2J Ai for any J ✓ I.

We say that history h
0 follows history h, denoted by h � h

0, if h0 obtains from adding

finitely many possibly simultaneous choices to h.3

• H and Z are finite and disjoint sets of histories such that (H [ Z,�) is a rooted and

oriented tree with terminal nodes Z. Symbol ; denotes the ex ante stage of the game

(i.e., the root of the tree) and histories in H and Z are referred to as partial and

terminal, respectively. For any player i and partial history h, let Ai (h) denote the

set of actions available to i at h. Player i is active at h if Ai(h) is nonempty; let

Hi denote the set of these histories. We assume that: (i) a player is never the only

active one twice in a row, and (ii) whenever a player is active, at least two actions

are available to her.
3That is, when there exists some (an)nN ✓ A such that h0 = (h; (an)nN ).
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In this context, the set of player i’s strategies is Si :=
Q

h2Hi
Ai(h) and, as usual, the set of

strategy profiles is denoted by S :=
Q

i2I Si and the set of player i’s opponents strategies,

by S�i :=
Q

j 6=i
Sj . Obviously, for each partial history h, each strategy s induces a unique

terminal history z(s|h). Let Si(h) and S�i(h) denote, respectively, the sets of player i and

i’s opponents strategies that reach partial history h, and Hi(si), the set of player i’s histo-

ries that can be reached when she chooses strategy si.4 Finally, for each terminal history

Z and for each player i, the payo↵ function is defined as ui : Z ! R.

Conjectures

A conjecture for player i formalizes player’s beliefs about other players’ behavior as the

game unfolds. Formally, for each player i, it consists of a conditional probability system

µi = (µi(h))h2Hi[{;} such that: (i) for every history h, either initial or in which player i is

active, µi(h) is a probability measure on S�i(h) that assigns probability 1 to S�i(h), and

(ii) whenever possible, beliefs are updated following conditional probability. We say that

history h 6= ; is unexpected for conjecture µi if µi(h0) assigns null probability to reaching h

at every history h
0 preceding h.5

Sequential rationality

Each strategy si and conjecture µi naturally induce a conditional expected payo↵ at each

history h 2 Hi [ {;}:

Ui (µi, si |h) :=
X

s�i2S�i

µi(h)[s�i] · ui (z (s�i; si |h)) .

A player is said to be sequentially rational when her strategy maximizes her conditional

expected payo↵ at every history that it reaches. This is captured when player i chooses a

strategy which is in the set of best-replies for conjecture µi, formally defined as:6

ri (µi) :=

8
<

:si 2 Si

������
si 2

\

h2Hi(si)

argmax
s
0
i
2Si

Ui

�
µi, s

0
i |h

�
9
=

; .

4To be precise, Si(h) = {si 2 Si|h � z(s�i; si|;) for some s�i 2 S�i} and S�i(h) =
Q

j 6=i
Sj(h) on the

one hand, and Hi(si) := {h 2 Hi|si 2 Si(h)} on the other.
5That is, if µi(h)[S�i(h

0)] = 0 for every h
0 � h.

6Notice that, if we denote the set of all conjecture of player i as �Hi[{;}(S�i), then ri : �
Hi[{;}(S�i) ◆

Si is upper-hemicontinuous.



6 2 Theoretical Framework

2.1.2 Centipede Games

In our analysis, we slightly simplify the notation above to taylor it to the specific structure

of CGs.7 The CG is a two-player extensive-form game with perfect information where

players choose between their available actions alternately. Figure 1 displays an example of

a generic version of such game. Formally, for a fixed integer n � 2 we represent a CG of

depth n as a list �n := hA,H,Z, (ui)i=1,2i, where:

• A := {r, d} is the set of actions available to each player at each of her turns: r (right)

and d (down).8

• H := {(i, 1), . . . , (i, n)} is the set of partial histories, so that for each player i and each

k  n, (i, k) is the kth decision node of player i. In consequence, the histories in which

player 1 is active are H1 := {(i, k)|k = 1, . . . , n}. Similarly, player 2’s set of histories

is H2 := {(1, 1)} [ {(2, k)|k = 1, ..., n} with (1, 1) being included as well to represent

the fact that player 2 has beliefs about the game before any choice has been made.

• Z := {(h, d)|h 2 H} [ {(2, n, r)} is the set of terminal histories, so that each (h, d)

denotes the terminal history in which partial history h = (i, k) has been reached and

player i has played d, and (2, n, r) denotes the terminal history in which both players

have always chosen r.

• (ui)i2I has the following particular structure. First, at every history of hers, a player

prefers: (i) playing down at a later node of herself than at the present one, and (ii)

playing down immediately than playing right and see her opponent play down. Let

denote ui(j, k, a) as the payo↵ for player i when the action a is played by player j at

her decision node k. Formally, for each k = 1 . . . , n� 1 we have:9

u1(1, k + 1, d) > u1(1, k, d) > u1(2, k, d),

u2(2, k + 1, d) > u2(2, k, d) > u2(1, k + 1, d).

The above expressions characterize the tension inherent to CGs. On one hand, each

player has incentive to proceed onward in the game, because of the payo↵ derived

from choose d in her following decision node, k+1, is higher than in the current one,

k. For example for player 1, it is reflected in u1(1, k + 1, d) > u1(1, k, d). On the

7Nevertheless, we maintain the previous general definitions to preserve the generality of the methodology
in Section 2.2.

8In this section, we refer to these available actions as right and down, instead of Pass and Take, because
they represent what we observe graphically.

9Typically it is also assumed that u2(2, 1, d) > u2(1, 1, d); while potentially relevant for lab implementa-
tion, it is strategically irrelevant.
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Figure 1: A Centipede Game of depth n

other hand, each player is better o↵ if she chooses d before her opponent does. Again,

for player 1 it is reflected in u1(1, k, d) > u1(2, k, d). Finally, players have opposite

preferences regarding the last and second to last terminal histories:

u1(2, n, r) > u1(2, n, d) and u2(2, n, d) > u2(2, n, r).

For convenience, we will make use of reduced strategies, so that the set of strategies of

each player i can be conceived as:

Si := {si(k)|k = 1, . . . , n,1} ,

where, for every k  n, si(k) consists of the strategy in which player i plays r until history

(i, k), where d is played instead, and si(1) consists of the strategy in which player i plays

r at every history of hers. Reduced strategies to analyse the CG were firstly used by Nagel

and Tang (1998), but are commonly applied in the current literature.

2.2 p-Rationalizability

A player is rational in a game if she chooses a strategy that maximizes the expected util-

ity given a probabilistic belief over the opponents’ behavior. The epistemic assumptions

of RCBR – that is, everybody is rational, everybody (strongly) believes that everyone is

rational, and so on – allows us to introduce the solution concept of (extensive-form) Ratio-

nalizability (Pearce, 1984 and Battigalli, 1997). We can relax the assumption of CBR by

allowing players to entertain some suspicion that their opponents: (1) may not be rational

(in any arbitrary sense), or (2) may suspect that their opponents are not rational, or (3)

may suspect that their opponents suspect that their opponents are not rational, and so on.

We formalize this idea of suspicion via Monderer and Samet’s (1987) p-belief, which relaxes

the notion of certainty by requiring that an event is believed with “at least probability p”

(for some exogenously given p) instead of “with probability 1” as in case of rationality.

Under the mentioned relaxation of belief, we introduce a solution concept that gener-

alizes Battigalli’s (1997) formalization of Pearce’s (1984) (extensive-form) rationalizability.

We consider Strong p-belief, which is a relaxation of p-belief to dynamic settings. For each
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p 2 [0, 1], we say that an event E�i ✓ S�i is strongly p-believed by conjecture µi if two

conditions hold. First, µi initially puts probability at least p on E�i. Second, at every

unexpected history h that might be reached by some strategy in E�i, conjecture µi puts

probability at least p on E�i.10 The p-belief constraint is not imposed on every history

consistent with E�i, but instead, among those consistent with E�i, only on those that were

assigned null probability at every preceding history. This allows for µi assigning very low

probability to E�i at some history E�i is consistent with, but which was considered unlikely

to be reached—yet not. Formally we get:

Definition 1 (Strong p-belief). Let � be a dynamic game. Then, for every p 2 [0, 1], every

player i, every conjecture µi and every event E�i ✓ S�i we say that µi strongly p-believes

in E�i if µi(h)[E�i] � p for every history h of either the following kind:

(i) h = ;.

(ii) h is unexpected for µi and is reached by B�i.

Given this extension of p-belief, it is immediate to define the solution concept our analysis

will rely on. This consists of an iterated elimination procedure that follows a very simple

logic: for a fixed p 2 [0, 1], in the first round we eliminate all strategies that are not a

best-reply to some conjecture, in the second round we eliminate all strategies that are not

a best-reply to some conjecture that strongly p-believes in the strategies of the opponents’

that survived the first round, in the third round we eliminate all strategies that are not a

best-reply to some conjecture that strongly p-believes in the strategies of the opponents’

that survived the second round, and so on.11 We can formally define, then, the solution

concept in the following manner:

Definition 2 (p-Rationalizability). Let p 2 [0, 1]. The set of p-rationalizable strategies of

player i is defined as an iterated elimination process by setting R
p

i
:=

T
k�0R

p

i,k
, where:

R
p

i,0 := Si,

R
p

i,k
:=

n
si 2 R

p

i,k�1

���si is a best-reply for some µi that p-believes in R
p

�i,k�1

o
,

for every k 2 N.
10Remember that, in Section 2.1.1, we define that a history h 6= ; is unexpected for a conjecture, if, at

every history that precedes, the conjecture assigns null probability to reaching h.
11Or, in other words, a player is rational, she strongly p-believes that her opponents are rational, she

strongly p-believes that her opponents strongly p-believes that their opponents are rational, and so on.
Technically, this assertion requires an epistemic characterization result, but this would follow from standard
(yet tedious) arguments.
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Remark 1. Obviously, both notions monotonically become more stringent as p increases

and, for p = 1, both converge to strong belief (see Battigalli and Siniscalchi, 2002) and

(extensive-form) rationalizability, respectively. Clearly, in static settings Definition 2 coin-

cides with Hu’s (2007) p-rationalizability.

After providing the theoretical result emanated from the general theoretical framework,

Proposition 1 shows the above result applied to the CG.

Proposition 1. Let �n be a Centipede Game of depth n. Then, there exists some p̄ 2 (0, 1)

such that:

R
p

1 :=

8
>><

>>:

{s1(1)} if p = 1,

S1 \ {s1(1)} if p 2 (p̄, 1),

S1 if p 2 [0, p̄],

R
p

2 :=

(
{s2(1)} if p = 1,

S2 \ {s2(1)} if p 2 [0, 1).

Proof. Given the payo↵ structure of CG, the only strategy that is not sequentially rational

in this game is s2(1). Hence we know that R
p

1,1 = S1 and R
p

2,1 = S2 \ {s2(1)} for every

p 2 [0, 1]. We proceed now in two steps:

Preliminary observation. There exists some p̄ 2 (0, 1) such that s1(1) 2 R
p

2,1 for every

p  p̄. Consider conjecture µ0
1 that assigns probability 1 to s2(1) at every history of player

1’s. Clearly, s1(1) is its unique sequential best reply and, furthermore, it is its unique

conditional strict best reply at every history of player 1. Take arbitrary p 2 (0, 1) and

define conjecture µ
p

1 as follows:

µ
p

1(h) :=

(
p · 1{s2(1)} + (1� p) · µ0

1(h) if h = (1, 1),

µ
0
1(h) otherwise.

Clearly, µp

1 is a well-defined conjecture. Since s1(1) is a unique conditional best reply at

every history of player 1, there exists some p̄ > 0 such that s1(1) is a sequential best reply

to µ
p

1 for every p  p̄. Thus, since R
p

2,1 = S2 \ {s2(1)} for every p  p̄, µp

1 justifies the

inclusion of s1(1) in W
p

1,2. The fact that we know that s1(1) /2 R
1
1,2 lets us conclude that

p̄ 2 (0, 1). F

Proof of the proposition. Fix arbitrary p 2 [0, 1). The fact that R
p

1,1 = S1 implies

that Rp

2,2 = R
p

2,1. We know then that:

R
p

1,2 :=

(
S1 \ {s1(1)} if p 2 (p̄, 1),

S1 if p 2 [0, p̄],
R

p

2,2 = S2 \ {s2(1)}.

We proceed now by induction: Suppose that the same equalities hold for some m � 2.

We will show that they also to for m + 1. For player 1 it is immediate: the fact that
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R
p

2,m = R
p

2,m�1 implies that R
p

m+1 = R
p
m. For player 2, the claim is trivially true of

R1,m = S1. Otherwise, for each k = 1, . . . , n construct conjecture µ
p

2 as follows:

µ
p,k

2 (h) :=

(
p · 1{s1(k)} + (1� p) · 1{s1(1)} if h = (2, k0) with k

0
< k,

1{s1(1)} otherwise.

Obviously µ
p,k

2 is a conjecture that justifies the inclusion of s2(k) in R
p

2,m+1 and hence the

proof is complete. ⌅

From Proposition 1, it follows that cooperation in CG is justified even by an epsilon

doubt about the belief in rationality of the opponent. In fact, almost any behavior is p-

rationalizable under the minimum suspicion. Moreover, Pass Always is also p-rationalizable

for player 1 under a larger degree of doubt (p  p̄). Actually, p̄ is the probability that

allows for player 1 being indi↵erent between playing Pass or Take in her last decision node.

Obviously, under no suspicion, that is with p = 1, the only p-rationalizable strategy for both

players is choose Take in their first node, as under the notion of rationalizability. Hence, we

detect one element of the theoretical prediction that is extremely non-robust even to a tiny

relaxation: an arbitrarily small uncertainty regarding the opponents’ rationality rationalizes

any degree of cooperation.

Second, player 2’s behavior is trivially identified as it does not depend of p̄ (except for

the extreme case of p=1). Thus, we cannot use the data from player 2 for the identification

purpose. This observation is in line with the one presented by Brandenburger, Danieli and

Friedenberg (2019).

Note that Poposition 1 has an important limitation: p-rationalizability cannot discrim-

inate behavior across di↵erent subjects and/or di↵erent CGs. We target this issue in the

following section.

2.3 Threshold Conjectures

Proposition 1 shows that Common p-Belief in Rationality rationalizes any strategy except

si(1) for both players for any p < 1, and even legitimizes s1(1) for p  p̄. Therefore, p-

rationalizability does not allow to explain behavioral di↵erences across subjects and across

di↵erent variations of CGs. In this section, we propose a novel belief-based approach to

overcome this issue. Our methodology allows us to explain di↵erent behavior across subjects

and/or games on basis of di↵erences in subjective beliefs about opponents’ rationality and

di↵ering incentives to play Take or Pass across di↵erent CGs.

Let m denote the decision node perspective, m 2 {1, . . . , n, }, and k label the decision

node of the opponent in which she plays Take, k 2 {m,m+1, . . . , n,1}. Then, we define the
subjective (updated) belief µm

1 (k) := µ1(m)[s2(k)] as the belief of player 1 in decision node
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m that the opponent plays s2(k). Consequently, we can define µm

1 := (µm

1 (k))k=m,m+1,...,n,1

as the player 1’s conjecture, at node m. We call subjective updated conjectures the belief

formed in later nodes, i.e. when m > 1. For instance, consider a CG with n = 3. A generic

conjecture of player 1 is denoted by µ
1
1 =

�
µ
1
1(1), µ

1
1(2), µ

1
1(3), µ

1
1(1)

�
, where µ

1
1(1) repre-

sents the probability with which player 1 believes that her opponent chooses s2(1). A generic

updated conjecture from the perspective of node 2 is denoted by µ
2
1 =

�
µ
2
1(2), µ

2
1(3), µ

2
1(1)

�

and, finally, the subjective updated conjecture at node 3 as µ3
1 =

�
µ
3
1(3), µ

3
1(1)

�
. It is im-

portant to note that the subjective conjectures are not objective, material elements, but

rather, subjective personal assessments of uncertainty of each individual. Importantly, in-

dividual di↵erences in the subjective beliefs can explain why some players cooperate but

not others in the same CG.

For each CG at each decision node of player 1, H1, we obtain the (Updated) Threshold

Beliefs (µ̄m

1 (k))k=m,...,n,1, from node m perspective, that make player 1 indi↵erent between

s1(k) and s1(k+1) , whenever possible beliefs are updated following conditional probability.

Thanks to the full support of the (Updated) Threshold Beliefs, we can also define the

(Updated) Threshold Conjecture of a game, µ̄
m

1 := (µ̄m

1 (k))
k=m,m+1,...,n,1 , which is the

conjecture that maximizes player 1 strategic uncertainty. That is, a subject in player 1’s

role with µ
1
1 = µ̄

1 would be indi↵erent among all her strategies at every node of the

game. Consider, again, a CG with n = 3. The prior Threshold Conjecture is defined

as µ̄
1
1 =

�
µ̄
1
1(1), µ̄

1
1(2), µ̄

1
1(3), µ̄

1
1(1)

�
, where µ̄

1
1(1) represents the belief that make player

1 indi↵erent between s1(1) and s1(2).12 The Updated Threshold Conjecture from node 2

perspective is defined as µ̄2
1 =

�
µ̄
2
1(2), µ̄

2
1(3), µ̄

2
1(1)

�
and the Updated Threshold Conjecture

at node 3 as µ̄3
1 =

�
µ̄
3
1(3), µ̄

3
1(1)

�
.13 While the subjective conjectures, which are intrinsic to

the decision makers, explain the di↵erences in the observed behavior across subjects playing

the same CG, the Threshold Conjectures are computed from the game payo↵s and can thus

predict di↵erent behavior across CGs.

Remember that Player 2’s p-rationalizable strategies do not depend on p̄ as shown in

Proposition 1. As a result, player 2 data cannot be used to check our theoretical results.

For this reason, we only define both (Updated) Threshold Beliefs and (Updated) Threshold

Conjectures for player 1 and, therefore, in Section 3 we focus our empirical analysis only on

this player role. To simplify the notation, we will leave aside the subscript referring players

role i and substitute it to a subscript that refers to the decision makers.

Now, we clarify the interpretation of our theoretical framework for a CG with n = 3

because the empirical data used in Section 3 presents this length. Consider a subject i

12Appendix A shows how we obtain the prior Threshold Conjecture for the McKelvey and Palfrey’s (1992)
exponentially increasing sum Centipede Game, with n = 3.

13Note that as the game unfolds the (Updated) Threshold Conjecture decreases by n, as in the case of
subjective (updated) conjectures
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(a) CGA (b) CGB

Figure 2: Di↵erent CGs with Di↵erent Prior Threshold Conjectures

who has a prior conjecture denoted by µ
1
i
=

�
µ
1
i
(1), µ1

i
(2), µ1

i
(3), µ1

i
(1)

�
. As mentioned

above, each (Updated) Threshold Conjecture µ̄
m represents the beliefs that make player

1 indi↵erent at node m between choose any of the available strategies. Focusing on the

first decision node, if µ
1
i
(1) � µ̄

1(1) Take First belongs to the set of best-replies for a

given subjective belief, while for µ
1
i
(1) < µ̄

1(1) Take First does not belong to the set of

best-replies. That is, if the individual believes that her opponent would choose Take in

her first node with a higher probability than the prior Threshold Belief of the CG, Take

First belongs to the set of player 1’s best-replies. Therefore, given a distribution of µi(1)

obtained from a sample of di↵erent decision makers, di↵erent CGs with di↵erent µ̄(1) must

imply di↵erent theoretical predictions.

Example 2.1. Consider that subject i with µ
1
i
(1) = 0.75. That is, this subject believes that

her opponent play down in her first decision node, i.e. chooses Take First, with a probability

equal to 0.75. There are two possibilities: (i) the subjective prior belief is lower than the

prior Threshold Belief µ̄1(1) and (ii) the subjective prior belief is higher or equal than the

prior Threshold Belief µ̄1(1). Consider the games shown in Figure 2, CGA and CGB, with

µ̄
1(1) = 0.8571 and µ̄

1(1) = 0.05, respectively. Since µ
1
i
(1) = 0.75 < µ̄

1(1) = 0.857 in CGA,

the best response set contains all possible strategies except Take First while in the CGB,

where µ
1
i
(1) > µ̄

1(1), Take First is the only best response. So, the theoretical predictions

under our methodology are any strategy except Take First in the first CG and Take First

in the second CG. In a pool of subjects, with di↵erent subjective beliefs, playing CGA and

CGB we expect more people choosing Take First in the latter game than in the former. In

other words, if this Threshold Belief is very high, many di↵erent players would have their

subjective beliefs below it and Take First would not belongs to the best-replies sets of their

observing, then, higher cooperation rates.

The example above shows how di↵erent (Updated) Threshold Beliefs imply di↵erent

theoretical predictions. In particular, they may predict why di↵erent people behave hetero-

geneously in the same CG and why same people act di↵erent across modified versions of

the CG. CGA and CGB correspond to CG1 and CG5 of the data used in Section 3 with

an observed Take First frequencies equal to 3.95% and 65.79%, respectively, corroborating
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the prediction of the proposed theory.

For players who do not Take First, the decision of Take Second or not would follow the

same reasoning as in the Example 2.1. But, instead of analyse µ̄
1(1) and her subjective

belief µ
1
i
(1), the individual must take into account the Updated Threshold Belief µ̄

2(2)

compared with her subjective updated belief µ2
i
(2). The same applies for the third, and

last, decision node. Thus, contingent upon the structure of (Updated) Threshold Beliefs of

every game the predicted strategies may vary across CGs with di↵erent payo↵s structures.

This is the relationship we explore empirically in the section below.

3 Empirical Analysis

In this section, we apply the proposed theoretical methodology to experimental data. We

present the data and then analyse the relationship between Threshold Conjectures and

observed behavior at both the population and the individual level.

3.1 Data

The data used come from Garcia-Pola, Iriberri and Kovář́ık (2020) where the authors pro-

pose 16 di↵erent CGs with n = 3, presented in Appendix D, with a large variety in the

payo↵ structure. Authors classify the games according to some characteristics. First, half

of the games start with unequal splits while the rest games have perfect equality in the very

first node. Second, the evolution of the sum of players’ payo↵s in each terminal node can be

di↵erentiated in four groups: increasing-sum, constant-sum, decreasing-sum and variable-

sum.14 The participants in the experiment decide, using reduce-form strategies, in the 16

di↵erent CGs via strategic-method and without feedback between games to reduce as much

as possible learning and reputation concerns. As we show above, the (Updated) Threshold

Conjectures of a CG depend on the payo↵s structures. Therefore, thanks to the payo↵

di↵erences across the 16 CGs, we obtain a variety of (Updated) Threshold Conjectures’

structures, which we exploit in the next section. Table 1a lists the corresponding prior

Threshold Conjecture µ̄1 of each CG and Figure 6 in Appendix E illustrates their evolution

graphically.15 Note that, accordingly with the evolution of prior Threshold Conjectures,

there is no common trend among all games, but we can roughly classify them as increasing,

decreasing, V-shaped and Threshold Conjectures with no specific evolution.

Table 1b displays the observed relative frequencies of each strategy played by decision

makers in the role of player 1 (P1, henceforth) for each of the 16 CGs. We can highlight

that the modal choices vary between groups of games. For increasing-sum games, the modal

14Games from 1 to 8 are classified as increasing-sum, games 9 and 10 as constant-sum, games 11 and 12
as decreasing-sum and the rest as variable-sum

15Table 6 in Appendix C displays the Updated Threshold Beliefs from node 2 and 3 perspective.
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choices are more concentrated around Take Second and Take Third, except for CG 5 and 6

where the most frequent choice is Take First with a relative frequencies higher than 50%.

While in decreasing-sum games the modal strategy is Take First. In the constant-sum

games the most frequent election is Take Second and, finally, for variable-sum games there

is no a common pattern but the Take First is the modal choice for almost all the games.

CG µ̄
1(1) µ̄

1(2) µ̄
1(3) µ̄

1(1)
1 85.71 12.24 1.75 0.29
2 93.18 6.01 0.73 0.08
3 80.00 10.00 3.64 6.36
4 90.91 4.46 1.08 3.55
5 5.00 5.94 19.08 69.98
6 11.76 16.54 32.26 39.43
7 96.15 3.21 0.53 0.11
8 65.91 11.36 18.18 4.55
9 63.64 7.06 2.65 26.65
10 66.67 15.00 1.47 16.87
11 33.33 9.52 5.19 51.95
12 37.50 5.21 6.03 51.26
13 12.50 40.00 15.83 31.67
14 28.57 31.43 13.75 26.25
15 14.29 7.79 3.32 74.61
16 75.00 1.32 0.95 22.74

(a) Prior Threshold Conjectures

CG s(1) s(2) s(3) s(1)
1 3.95 32.89 40.79 22.37
2 2.63 34.21 31.58 31.58
3 15.79 57.89 18.42 7.89
4 9.21 64.47 21.05 5.26
5 65.79 14.47 13.16 6.58
6 51.32 15.79 19.74 13.16
7 15.79 21.05 25.00 38.16
8 53.95 21.05 14.47 10.53
9 22.37 59.21 11.84 6.58
10 11.84 67.11 15.79 5.26
11 64.47 10.53 15.79 9.21
12 55.26 32.89 7.89 3.95
13 50.00 17.11 22.37 10.53
14 31.58 39.47 15.79 13.16
15 72.37 10.53 14.47 2.63
16 39.47 40.79 10.53 9.21

(b) Relative Frequencies

Table 1: Data across CGs, Player 1

3.2 Results

This section reviews, first, whether there is the predicted negative relationship between the

Threshold Conjectures and the observed strategies. Then, we provide various evaluations

of how our theoretical result can explain the observational data. To this purpose, we apply

di↵erent techniques to check by how much our methodology explicate the observed behavior

at the population and the individual level.

Table 2 shows the correlations between the dummy variables for each strategy and the

corresponding potentially (Updated) Threshold Conjectures.16 The diagonal elements of

the table support the intuition presented in Section 2.3. At each decision node, the higher

the Threshold Belief –µ̄1(1), µ̄2(2), µ̄
3(3)– the lower the likelihood to choose Take and,

consequently, the lower the observed frequencies of Take in that node. Moreover, although

the magnitude of the estimated correlation coe�cients decrease as the game unfolds, all the

16The correlations are computed using only the behavior of subjects who reach the corresponding node in
the corresponding game for m > 1.
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diagonal elements are significant at 1% significance level. Finally, we can remark the similar

structure of correlations between each strategy and its Threshold Conjecture starting with

the highest negative value that end up being positive as the Threshold Belief is further away

from the decision node. In Section 4 we delve into the significant correlations between the

strategies and the future Threshold Beliefs when we present avenues for future research.

µ̄
1 First µ̄

2 Second µ̄
3 Third µ̄

3 Pass

µ̄
1(1) -0.4036***

µ̄
1(2) 0.0516** µ̄

2(2) -0.1742***
µ̄
1(3) 0.2564*** µ̄

2(3) -0.1116*** µ̄
3(3) -0.1491***

µ̄
1(1) 0.4140*** µ̄

2(1) 0.2066*** µ̄
3(1) 0.1491*** µ̄

3(1) -0.1491***

Note: ⇤
p < 0.10; ⇤⇤

p < 0.05; ⇤⇤⇤
p < 0.01

Table 2: Correlation Between (Updated) Threshold Beliefs and Behavior

To provide a more formal econometric analysis, we estimate logit models of each binary

decision on the corresponding Threshold Belief, i.e. µ̄m(m)m=1,2,3. Table 3 in Appendix C

presents the estimation results. Since the estimations corroborate the results in Table 2, we

only include in the main text Figure 3 that visualizes the estimated probabilities of each

strategy for changes in the contemporaneous Threshold Beliefs.

Figure 2 delivers the following observations. First, roughly 70% of the subjects would

take at each decision node if the (Updated) Threshold Belief is 0, that is, if the Threshold

Belief that player 2 would choose Take in the following decision node is 0. Following

the interpretation shown, all subjects would present a subjective belief higher than the

Threshold Belief, i.e. µ1
i
(1) � µ̄

1 for all subjects, and then Take would be the unique best-

response. Consequently, we can expect higher rates of Take in this case. If all subjects in

the pool act following our proposed methodology, we could expect a predicted probability

of Take equal to 100%.

Second, the sensitivity of the predicted probabilities to changes in Threshold Beliefs

decreases as the game progresses. This is reflected in the slope of the predicted probability

curve that becomes flatter as we move from Figure 3a to 3c. So, the subjects in the later

decision nodes are less sensitive to changes in the Threshold Beliefs. In this line, mention

that the average marginal e↵ects of the explanatory variables in each model decreases by

50%, for the estimated logit models for Take First and Take Third, respectively. Note that,

since the actions in the third node, Take Third and Pass Always are complementary, the

estimated models, as well as the probabilities derived from them, are symmetric in Figure

3 and Table 2.

Last, the predicted probability to Take at each node in the hypothetical case of a (Up-

dated) Threshold Belief equal to 100, in percentages, increase at later stages. As indicated
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by our methodology, if an (Updated) Threshold Belief would at some decision node be 100,

nobody should play Take in this node. However, the estimated percentage in such a case

is 15%, somehow higher than 0%, for the first node and increases up to 50% in the third

node. This indicates that our methodology would explain worse the observed behavior in

advanced nodes of the game.

(a) Take First (b) Take Second

(c) Take Third (d) Pass Always

Figure 3: Predicted Probabilities of Strategies from Changes in its SizeBAP

All the results presented so far corroborate that the (Updated) Threshold Belief are

significant predictors of the behavior.In the following, we quantify to what extent our

methodology explains the observed behavior.As a first step, we evaluate to what extent

our estimated logit models predict the observed individual choices. We define a correct

estimation if, at the individual level, two conditions hold: (i) an estimated model predicts

that a subject takes a particular action in a particular decision node with a probability

higher than 50% and (ii) the observed decision is this particular action. The precision of

the estimated models are 16.94%, 28.21% and 18.67% for Take First, Take Second and Take

Third, respectively.

Previous literature (see Cooper, DeJong, Forsythe and Ross, 1996; Costa-Gomes, Craw-

ford and Broseta, 2001; Garcia-Pola, Iriberri and Kovář́ık,2020; among many others) shows

that individuals cannot be classified in an homogeneous decision making process. If that is
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so, we cannot expect that all subjects act following our belief-based approach. Therefore,

we assess that Threshold Conjectures predict significantly the behavior of a subject if the

prior Threshold Belief a↵ects the observed behavior at less 10% significance for the esti-

mated logit model in the first decision node. To do so, we estimate individually the logit

model regressing the dummy for Take First on the prior Threshold Belief µ̄1(1) using the 16

decisions made by each individual. We carry out the classification procedure using the first

decision node where there is a clearer relationship between the decision to enter the game

or not and the prior Threshold Belief. We obtain that for 43, out of the total 71, subjects

the e↵ect is significant at 10% confidence level.17 Precisely, for 26.76% of the subjects the

p-value is equal or less than 1%, for 47.89% is equal or less than 5% and for 60.56% the sig-

nificance level is less or equal than 10%.18 Thereupon, our novel belief-based approach can

explain significantly the di↵erences across both subjects and CGs and, additionally, there

are evidences that an important part of the decision makers may follow this methodology.

4 Conclusions and Future Research

In this study, we show that cooperation in CGs does not have to be puzzling. We theoret-

ically present that cooperation in such games can be explained with a minimum suspicion

about CBR. We further propose a novel general subjective belief-based approach that links

p-rationalizability with the payo↵s structure of CGs. We find that Threshold Conjectures,

which induce indi↵erence between possible strategies, serve as predictors of cooperation.

Our methodology can explain the intra-subjects heterogeneity behavior, as a consequence

of changes in the Threshold Beliefs of the CGs, and the between-subjects heterogeneity

behavior, as a consequence of changes in the subjective beliefs. The reported results in

this paper exhibit a well explanation of the lab data at both the population level and the

individual level.

In the following, we outline three avenues for future research.

Design new CGs. In Section 3 we use CGs from Garcia-Pola, Iriberri and Kovář́ık (2020)

which are designed for a di↵erent purpose purpose. There, these games were not designed

to test our methodology. In order to test our theory further, we should design a set of

alternative CGs, to exploit the ability of Threshold Conjectures to target causality, that

systematically manipulate the magnitude and the evolution of the Threshold Conjectures.

Forward Looking. The framework presented in this paper explains the behavior in a

17There are 5 subjects who had never chose Take First so there is no estimated model for them.
18Table 10 in Appendix C displays both the cumulative and the cumulative relative frequencies for some

ranks of p-values
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particular node solely in function of the Threshold Belief in this node and disregards the

Threshold Belief in later decision nodes. However, Table 2 and Table 5 in Appendix B show

that all the future Threshold Beliefs, at every decision node, are strong predictors of the

cooperation rates suggesting some king of Forward Lookingness. Future research should pro-

pose a theory linking the behavior in a particular node to payo↵s in later stages of the game.

Strategy Uncertainty. Recent literature emphasizes in the ability of strategic uncer-

tainty to organize the observed behavior in games that reflect the tension between payo↵

maximization and sequential rationality. Mostly of the papers applies the Basin of Attrac-

tion notion to the prisoners dilemma (Embrey, Fréchette and Yuksel, 2018; Dal Bó and

Fréchette, 2011) but also to the CG (Healy, 2017). We can show that the first element of

µ̄
m at each decision node, i.e. µ̄m(m)m=1,2,3 for the case of CGs with n = 3, coincides with

the size of the Basin of Attraction to Pass, which is the size of the set of beliefs such that

cooperation is appealing. Therefore, their approach seems to be a subset of our more gen-

eral methodology. As a result, further research should establish a more formal connection

between our approach and this literature and between CGs and the games analysed in the

above cited studies.
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A Computing the prior Threshold Conjecture

To obtain the prior Threshold Conjecture of P1, µ̄1, for the McKelvey and Palfrey’s (1992)

exponentially increasing sum CG we proceed backwards. At each decision node we make

indi↵erent P1 between Take and any future strategy. Note that whenever necessary beliefs

are updated via bayesian rule.

1 2 1 2 1 2
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Figure 4: Exponentially increasing sum Centipede Game

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

640 = 320 µ̄1(3)
µ̄1(3)+µ̄1(1) + 2560 µ̄1(1)

µ̄1(3)+µ̄1(1)

160 = 80 µ̄1(2)
µ̄1(2)+µ̄1(3)+µ̄1(1) + 320 µ̄1(3)

µ̄1(2)+µ̄1(3)+µ̄1(1) + 2560 µ̄1(1)
µ̄1(2)+µ̄1(3)+µ̄1(1)

40 = 20
µ̄1(1)

µ̄1(1) + µ̄1(2) + µ̄1(3) + µ̄1(1)
+ 80

µ̄1(2)

µ̄1(1) + µ̄1(2) + µ̄1(3) + µ̄1(1)
+

320
µ̄1(3)

µ̄1(1) + µ̄1(2) + µ̄1(3) + µ̄1(1)
+ 2560

µ̄1(1)

µ̄1(1) + µ̄1(2) + µ̄1(3) + µ̄1(1)

µ̄1(1) + µ̄1(2) + µ̄1(3) + µ̄1(1) = 1

To obtain the equations we proceed as follows:

• First equation. Payo↵ for Take Third equals to the expected payo↵ for any possible

future final histories. That is, payo↵ for P1 when P2 chooses Take Third times the

Threshold Belief µ̄1(3) over the probability to reach node 3 plus the payo↵ for P1

when P2 chooses Pass Always multiplied by the Threshold Belief µ̄1(1) over the

probability to reach node 3.

• Second equation. Payo↵ for Take Second equals to the expected payo↵ for any possible

future final histories. That is, payo↵ for P1 when P2 chooses Take Second times the

Threshold Belief µ̄1(2) over the probability to reach node 2 plus the payo↵ for P1

when P2 chooses Take Third times the Threshold Belief µ̄1(3) over the probability to

reach node 2, and so on.

• Third equation. Same procedure as the other two equations.

• Fourth equation. Restriction to get a full support conjecture.
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B Estimated Models

First Second Third Pass

µ̄(1) -0.0289***

(0.00216)

µ̄
2(2) -0.0125***

(0.00258)

µ̄
3(3) -0.00935*** 0.00935***

(0.00325) (0.00325)

Constant 0.836*** 0.661*** 0.899*** -0.899***

(0.120) (0.139) (0.200) (0.200)

Observations 1,216 786 376 376

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 3: Estimated Simple Logit Models for each Strategy

First Second Third Pass

µ̄(1) -0.00960** 0.0147*** -0.00171

(0.00457) (0.00469) (0.00499)

µ̄
2(2) -0.0363*** 5.37e-05 0.00257

(0.00685) (0.00713) (0.00744)

µ̄
3(3) -0.00394 -0.0296*** -0.0104*

(0.00524) (0.00549) (0.00577)

Constant 3.039*** 1.376*** 0.929***

(0.226) (0.237) (0.246)

Observations 1,216 1,216 1,216 1,216

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 4: Estimated Simple Multinomial Logit Model
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First First First Second Second Third

µ̄(1) -0.0430***

(0.00323)

µ̄
2(2) -0.0474*** -0.0232***

(0.00415) (0.00410)

µ̄
3(3) -0.0201*** -0.0248*** -0.0178***

(0.00285) (0.00346) (0.00633)

Constant 1.936*** 1.337*** 0.409*** 1.801*** 1.755*** 1.813***

(0.187) (0.154) (0.121) (0.250) (0.207) (0.463)

Observations 688 688 688 392 392 140

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 5: Estimated Simple Logit Models, Forward Looking
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C Additional Tables

node 2 node 3

CG µ̄
2(2) µ̄

2(3) µ̄
2(1) µ̄

3(3) µ̄
3(1)

1 85.71 12.24 2.04 85.71 14.29

2 88.20 10.65 1.16 90.21 9.79

3 50.00 18.18 31.82 36.36 63.64

4 49.09 11.84 39.07 23.26 76.74

5 6.25 20.09 73.66 21.43 78.57

6 18.75 36.56 44.69 45.00 55.00

7 83.33 13.89 2.78 83.33 16.67

8 33.33 53.33 13.33 80.00 20.00

9 19.40 7.30 73.30 9.06 90.94

10 45.00 4.40 50.60 8.00 92.00

11 14.29 7.79 77.92 9.09 90.91

12 8.33 9.65 82.02 10.53 89.47

13 45.71 18.10 36.19 33.33 66.67

14 44.00 19.25 36.75 34.38 65.63

15 9.09 3.87 87.04 4.26 95.74

16 5.26 3.79 90.95 4.00 96.00

Table 6: Updated Threshold Conjectures from node 2 and 3 perspective

First Second Third Pass

µ̄(1) -0.4036* 0.2317* 0.0903* 0.1471*

(0.0000) (0.0000) (0.0016) (0.0000)

µ̄(2) 0.0516 -0.0557 0.0246 -0.0241

(0.0720) (0.0520) (0.3920) (0.4012)

µ̄(3) 0.2564* -0.1960* -0.0356 -0.0489

(0.0000) (0.0000) (0.2142) (0.0885)

µ̄(1) 0.4140* -0.2087* -0.1157* -0.1652*

(0.0000) (0.0000) (0.0001) (0.0000)

p-values in parentheses. ⇤
p < 0.01

Table 7: Correlations between Threshold Beliefs and Strategies
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node 1 node 2 node 3

µ̄(1) µ̄(2) µ̄(3) µ̄
2(2) µ̄

2(3) µ̄
3(3)

µ̄(1) 1.0000 µ̄(2) 1.0000 µ̄
3(3) 1.000

( - ) ( - ) ( - )

µ̄(2) -0.4709 1.0000 µ̄
2(3) -0.0026 1.0000 µ̄

3(1) -1.0000

(0.0000) ( - ) (0.9284) ( - ) (0.000)

µ̄(3) -0.6829 0.4586 1.0000 µ̄
2(1) -0.9109 -0.4103

(0.0000) (0.0000) ( - ) (0.0000) (0.0000)

µ̄(1) -0.8652 0.0320 0.3354

(0.0000) (0.2642) (0.0000)

Note: p-value between brackets

Table 8: Correlation between (Updated) Threshold Beliefs

µ̄(1) µ̄
2(2) µ̄

3(3)

µ̄(1) 1.0000

( - )

µ̄
2(2) 0.6610 1.0000

(0.0000) ( - )

µ̄
3(3) 0.4647 0.7956 1.0000

(0.0000 (0.0000 ( - )

Note: p-value between brackets

Table 9: Correlation between First Element of (Updated) Threshold Conjectures

p-value Cum. Freq Cum. Rel. Freq

 0.005 13 18.31

 0.010 19 26.76

 0.050 34 47.89

 0.100 43 60.56

 0.250 57 80.28

 0.500 59 83.10

 0.750 68 95.77

 1.000 71 100

Table 10: Frequencies of p-value used to Classify Individuals
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D Centipede Games

CG 1 CG 2

CG 3 CG 4

CG 5 CG 6

CG 7 CG 8

CG 9 CG 10

CG 11 CG 12

CG 13 CG 14

CG 15 CG 16

Figure 5: The 16 CGs Used in the Experiment.
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E Additional Plots

Figure 6: Evolution of prior Threshold Conjectures across CGs
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Figure 7: Evolution of Updated Threshold Beliefs across CGs

The Updated Threshold Beliefs plotted in this figure are the Threshold Beliefs that player

2 would play s2(m)m=1,2,3, from each node perspective m. That is, µ̄m

1 (m)m=1,2,3, which

correspond to second column of Table 1a and second and fifth columns of Table 6.
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Figure 8: Evolution of Strategy’s Frequencies across CGs
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Figure 9: Evolution of Conditioned Strategy’s Frequencies across CGs


