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Abstract: The aim of this paper is to present an application of a fixed point iterative process in
generation of fractals namely Julia and Mandelbrot sets for the complex polynomials of the form
T(x) = xn + mx + r where m, r ∈ C and n ≥ 2. Fractals represent the phenomena of expanding
or unfolding symmetries which exhibit similar patterns displayed at every scale. We prove some
escape time results for the generation of Julia and Mandelbrot sets using a Picard Ishikawa type
iterative process. A visualization of the Julia and Mandelbrot sets for certain complex polynomials is
presented and their graphical behaviour is examined. We also discuss the effects of parameters on
the color variation and shape of fractals.
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1. Introduction

Fixed point theory provides a suitable framework to investigate various nonlinear phenomena
arising in the applied sciences including complex graphics, geometry, biology and physics [1–4].
Complex graphical shapes such as fractals, were discovered as fixed points of certain set maps [1].
Informally, fractals can be treated as self similar mathematical structures which have similarity and
symmetry such that considerably small parts of the shape are geometrically akin to the whole shape.
Fractals are also known as expanding symmetries or unfolding symmetries. Although, fractals do not
have a formal definition, however they are identified through their irregular structure that cannot be
found in Euclidean geometry. Julia [5] who is considered as one of the pioneers of fractal geometry,
studied iterated complex polynomials and introduced Julia set as a classical example of fractals. Let C
be the complex space, T : C→ C be a complex polynomial of degree n ≥ 2 with complex coefficients
and Ti(x) be the ith iterate of x. The behaviour of the iterates Ti(x) for large i determine the Julia set
(see [1,6–8]).

Definition 1 ([1]). The set of points in C whose orbits do not converge to a point at infinity is known as filled
Julia set, KT , that is,

KT =
{

x ∈ C : {|Ti(x)|}∞
i=0 is bounded

}
.

Julia set of T denoted by JT is the boundary of filled Julia set, that is, JT = ∂KT .
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Therefore, we may say that x ∈ JT if for every neighborhood of x there exist points w and v such
that Ti(w)→ ∞ and Ti(v) 9 ∞. The complement of a Julia set is a Fatou set.

Let p ∈ C be a fixed point of T and |(Ti)′p| = ρ, where prime denotes the complex differentiation.
A point p is called a periodic point if p = Ti p for some integer i ≥ 0. Let

{
p, Tp, ..., Ti p, ...

}
be an

orbit of p. The point p is called an attracting point if 0 ≤ ρ < 1 and a repelling point if ρ > 1 [6,7].
The following result gives a significant connection between repelling points of a polynomial and the
Julia set.

Theorem 1 ([6]). If T is a complex polynomial, then JT is the closure of the repelling periodic points of T.

Let p be an attracting fixed point of T. Then, the set A(p) is called the basin of attraction of p if

A(p) =
{

x ∈ C : Tix → p as i→ ∞
}

.

The basin of attraction of infinity, A(∞), is defined in the same way. The following lemma is
pivotal in determining Julia sets.

Lemma 1. [7] Let p be an attracting fixed point of T. Then, JT = ∂A(p).

Thus, the Julia set is the boundary of the basin of attraction of each attracting fixed point of T,
including ∞. The existence of the fixed point p for any complex polynomial is guaranteed by Brouwer
fixed point theorem [9]. However, the existence of an attracting fixed point depends on the choice of the
parameters. Consider the polynomial Qr(x) = x2 + r. Then it has two fixed points excluding infinity.

In this case, a fixed point p is attracting if |2p| < 1 i.e., |1−
√

1
4 − r| < 1. Fix vr =

√
1
4 − r, then the

set of parameters r such that Qr has an attracting fixed point is given by S = {r ∈ C : |1− vr| < 1}.
Julia sets, JQr , on the real axis i.e., r = 0 are reflection symmetric while those with complex parameter
values, r ∈ C demonstrate rotational symmetry.

Mandelbrot [10] extended the idea of Julia sets and presented the notion of fractals. He
investigated the graphical behaviour of connected Julia sets and plotted them for complex function,
Qr(x) = x2 + r, where x ∈ C is a complex variable and r ∈ C is an input parameter. He noted that
various geometrical properties involving dimension, symmetry and similarity play consequential role
in the study of fractal geometry.

Definition 2 ([6]). Let T be any complex polynomial of degree n ≥ 2. A Mandelbrot set M is the set consisting
of all parameters r for which the Julia set, JQr , is connected, that is,

M =
{

r ∈ C : JQr is connected
}

,

or an equivalent definition is

M = {r ∈ C : {|Qn
r (0)|}9 ∞ as n→ ∞} .

Mandelbrot [10,11] noted that records of heart beat, irregular coastal structures, variations of
traffic flow and many naturally existing textures are examples of fractals.

In order to generate and analyze fractals, various techniques are used such as iterated function
systems, random fractals, escape time criterion etc. The escape time algorithm is the stopping criterion
that is based on the number of iterations necessary to determine if the orbit sequence tends to infinity
or not. This algorithm provides a suitable mechanism used to demonstrate some attributes of dynamic
system under iterative process. Generally, the escape criterion for Julia and Mandelbrot sets is given by:
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Theorem 2 ([6]). For Qr(x) = x2 + r, x, r ∈ C, if there exists i ≥ 0 such that

|Qi
r(x)| > max {|r|, 2} ,

then Qi
r(x)→ ∞ as i→ ∞.

The term max {|r|, 2} is also known as escape radius threshold. The escape radius varies in each
iteration. The escape radius has a key role in visualizing the fractals.

Historically, Julia and Mandelbrot sets are investigated for the polynomials Qr but the study has
been extended to quadratic, cubic, and nth degree complex polynomials. Lakhtakia et al. [12] explored
the Julia sets for general complex function of the form T(x) = xn + r where n ∈ N. The superior
Julia and superior Mandelbrot sets for such complex polynomials in the context of noises arising in
the objects were analyzed by Negi et al. [13,14]. Rochon [15] considered a more generalized form of
Mandelbrot sets in bi-complex planes, see also [16,17].

Many authors have utilized various iterative processes to generate fractals. Julia and Mandelbrot
sets have usually been studied for quadratic, cubic and higher degree polynomials in Picard orbit [8].
Let T : C→ C and x0 ∈ C. The Picard orbit [6] is a sequence {xi} which is given by

xi+1 = T(xi),

where i ≥ 0.

Since the convergence of Picard process is slow, various faster converging iterative processes have
been introduced to generate Julia and Mandelbrot sets. Rani and Kumar [18,19] used one-step Mann
iterative process to generate superior Julia and Mandelbrot sets for nth degree complex polynomials of
the form T(x) = xn + r. The Mann orbit, for any x0 ∈ C, is a sequence {xi} which is given by

xi+1 = (1− α)(xi) + αT(xi),

where i = 0, 1, ... and α ∈ (0, 1].
In 2010, a two-step Ishikawa iteration was used by Rana and Kumar [20] and Chauhan et al. [21]

to study relative superior Julia and relative superior Mandelbrot sets, respectively. The dynamics
of the nth order complex polynomial for non integer values were investigated in [22]. The authors
also obtained new Julia and Mandelbrot sets via Ishikawa orbit. The Ishikawa orbit, for any x0 ∈ C,
is a sequence {xi} which is given by{

xi+1 = (1− α)xi + αTyi,

yi = (1− β)xi + βTxi,

where i = 0, 1, ... and α, β ∈ (0, 1].
Ashish and Rani [23] investigated the three-step Noor iteration process for Julia and Mandelbrot

sets. The Noor orbit, for any x0 ∈ C, is a sequence {xi} which is given by
xi+1 = (1− α)Txi + αTyi,

yi = (1− β)Txi + αTui,

ui = (1− γ)Txi + γTxi,

where i = 0, 1, ... and α, β, γ ∈ (0, 1].
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The modified Ishikawa process, S-iteration, was employed by Kang et al. [24,25] to study relative
superior Mandelbrot sets, tricorn and multicorns. The S-orbit, for any x0 ∈ C, is a sequence {xi}
given by {

xi+1 = (1− α)xi + αTyi,

yi = (1− β)xi + αTxi,

where i = 0, 1, ... and α, β ∈ (0, 1].
Kumari et al. [26] used a four-step iterative process which is faster than of Picard, Mann and

S-iteration processes and obtained some generalizations of Julia and Mandelbrot sets for quadratic,
cubic and higher degree polynomials.

It is noteworthy that for each iterative process the behaviour and dynamics of the Julia and
Mandelbrot sets differ. For some thought-provoking and fascinating comparisons, the reader may
refer to [1,24,27–29] and references therein.

Complex polynomials of the form T(x) = xn + mx + r, where m, r ∈ C occur in various
engineering problems including digital signal processing. These complex polynomials are used
to determine the pole-zero plots for signals and the study of the structure and solutions of linear
time invariant (LTI) state-space models, for details see [30]. Thus the study of behaviour of these
polynomials and their Julia and Mandelbrot sets has gained immense interest among researchers.
Kang et al. [28] introduced Julia and Mandelbrot sets in implicit Jungck Mann and Jungck Ishikawa
orbits. Later, several researchers [27,29,31–33] employed this implicit iterative process to generate
graphs of such complex polynomials. In order to achieve this, they split the polynomial T into two
functions T1(x) = xn + r and T2(x) = mx. However, the Jungck iterative process and its variants are
used to determine the common fixed points of two mappings. Therefore, the question arises whether
we can obtain an escape criterion and generate fractals for polynomials of the form T using explicit
iterative processes.

The purpose of this paper is to answer this question. In this paper, we discuss the graphical
behaviour of the complex polynomial of the form T(x) = xn + mx + r where m, r ∈ C and n ≥ 2
using Picard Ishikawa type fixed point iteration process for the generation of fractals. Note that the
Julia and Mandelbrot sets generated have distinctive shapes for the proposed iterative process as
compared to already present iterative processes in the literature. Further, we show the effect of change
of parameters on color variation and graph of the sets.

The Picard Ishikawa type iteration process was introduced by Piri et al. [34]. They claimed that
this iterative process converges faster than Mann and Ishikawa iteration processes. Let D be a subset
of a Banach space and f : D → D then the three step iteration process is given by

x1 = x ∈ D,

xi+1 = (1− αi)yi + αi f yi,

yi = f zi,

zi = f ((1− βi)xi + βi f xi), i ≥ 0,

(1)

where αi, βi ∈ (0, 1].

2. Main Results

In this section, we use a Picard Ishikawa type iterative process and some prove escape criterions
to determine the escape radius for this process. Throughout this paper we assume that for any complex
polynomial the parameters are chosen in a way that at the least one attracting fixed point exists.

Let C be a complex space and TC : C→ C be a complex polynomial with complex coefficients.
The Picard Ishikawa type orbit around any x0 ∈ C, is a sequence {xi} given by
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xi+1 = (1− α)yi + αTCyi,

yi = TCzi,

zi = TCti,

ti = (1− β)xi + βTCxi,

(2)

where i = 0, 1, 2, ... and α, β ∈ (0, 1].
We need the following escape criterions for the quadratics, cubic and higher degree polynomials.

2.1. Escape Criterion for Quadratic Complex Polynomials in a Picard Ishikawa Type Orbit

For the quadratic polynomial TC(x) = x2 + mx + r where m, r ∈ C, we have the following result.

Theorem 3. Suppose that |x| ≥ |r| > max
{

2(1+|m|)
α , 2(1+|m|)

β

}
, α, β ∈ (0, 1]. Define {xi}i∈N as in (2)

where x0 = x, y0 = y, z0 = z and t0 = t. Then, |xi| → ∞ as i→ ∞.

Proof. As, TC(x) = x2 + mx + r. From (2), we have

|t| =|(1− β)x + βTCx|
=|(1− β)x + β(x2 + mx + r)|
≥|(1− β)x + β(x2 + mx)| − β|r|.

The assumption |x| ≥ |r| yields

|t| ≥|(1− β)x + β(x2 + mx)| − β|x|
≥β|x2| − (1− β + β|m|)|x| − β|x|
=β|x2| − (1 + β|m|)|x|

=|x|
(

β|x| − (1 + β|m|)
)

.

Since β ≤ 1, we obtain −(1 + β|m|) > −(1 + |m|) which implies that

|t| ≥ |x|
(

β|x| − (1 + |m|)
)

.

Thus, we have

|t| ≥ |x|(1 + |m|)
(

β|x|
1 + |m| − 1

)
.

Therefore,

|t| ≥ |t|
(1 + |m|)

≥|x|
(

β|x|
1 + |m| − 1

)
. (3)

From our assumption; |x| > max
{

2(1+|m|)
α , 2(1+|m|)

β

}
, we get

(
β|x|

1 + |m| − 1
)
> 1. (4)

Now, (3) gives that
|t| > |x|. (5)
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As z = z0, (2) gives

|z| =|TC(t)|
=|t2 + mt + r| ≥ |t2 + mt| − |r|.

Since β ≤ 1 , it follows from (5) and assumption |x| ≥ |r| that

|z| ≥|t2 + mt| − |x|
≥β|t2| − |m||t| − |t|

=|t|
(

β|t| − (1 + |m|)
)

,

which further implies that

|z| ≥ |z|
(1 + |m|) ≥ |t|

(
β|t|

(1 + |m|) − 1
)

. (6)

Using (4) and (5) we have

|t| >|x|

=⇒ β|t|
1 + |m| >

β|x|
1 + |m|

=⇒
(

β|t|
1 + |m| − 1

)
>

(
β|x|

1 + |m| − 1
)
> 1. (7)

Consequently, (5)–(7) yield
|z| > |x|. (8)

Moreover, let y = y0, |y| = |TC(z)| = |z2 + mz + r|. Then, by an assumption |x| ≥ |r|, (8) and the
fact that β ≤ 1 we obtain

|y| ≥|z2 + mz| − |r|

≥β|z|2 − |m||z| − |z|

≥|z|
(

β|z| − (1 + |m|)
)

.

This implies

|y| ≥ |z|
(

β|z|
1 + |m| − 1

)
.

From (4) and (8) we obtain

|y| ≥ |x|
(

β|x|
1 + |m| − 1

)
> |x|. (9)

Finally, we have

|x1| =|(1− α)y + αTC(y)|
=|(1− α)y + α(y2 + my + r)|.
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Furthermore, from |x| ≥ |r| and (9) we get that

|x1| =|(1− α)y + α(y2 + my + r)|
≥α|y2| − (1− α + α|m|)|y| − α|r|
≥α|y2| − (1− α + α|m|)|y| − α|y|
=α|y2| − (1 + α|m|)|y|

=|y|
(

α|y| − (1 + α|m|)
)

.

As α ≤ 1, we obtain

|x1| ≥|y|
(

α|y| − (1 + α|m|)
)

≥|y|
(

α|y| − (1 + |m|)
)

≥|y|(1 + |m|)
(

α|y|
(1 + |m|) − 1

)
.

By (9), we have

|x1| ≥ |x|
(

α|x|
1 + |m| − 1

)
.

From our given assumption, we have |x| > 2(1+|m|)
α and hence

(
α|x|

1+|m| − 1
)

> 1. Thus, there

exists a real number ρ > 0 such that (
α|x|

1 + |m| − 1
)
> 1 + ρ.

It follows that
|x1| > (1 + ρ)|x|.

In particular, |x1| > |x|. Continuing in the same manner yields

|xi| > (1 + ρ)i|x|.

Therefore, the orbit of x tends to infinity.

The following corollary is the refinement of the Theorem 3.

Corollary 1. Suppose that |xi| > max
{
|r|, 2(1+|m|)

α , 2(1+|m|)
β

}
where α, β ∈ (0, 1] then |xi| → ∞ as i→ ∞.

2.2. Escape Criterion for Cubic Complex Polynomials in a Picard Ishikawa Type Orbit

For the cubic polynomial TC(x) = x3 + mx + r where m, r ∈ C, we have the following result.

Theorem 4. Suppose |x| ≥ |r| > max


(

2(1+|m|)
α

) 1
2

,
(

2(1+|m|)
β

) 1
2

, α, β ∈ (0, 1]. Define a sequence

{xi}i∈N as in (2) where x0 = x, y0 = y, z0 = z and t0 = t. Then, |xi| → ∞ as i→ ∞.
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Proof. As TC(x) = x3 + mx + r, from (2) we have

|t| =|(1− β)x + βTC(x)|
=|(1− β)x + β(x3 + mx + r)|
≥|(1− β)x + β(x3 + mx)| − β|r|.

The assumption |x| ≥ |r| yields that

|t| ≥|(1− β)x + β(x3 + mx)| − β|x|
≥β|x3| − (1− β + β|m|)|x| − β|x|
=β|x3| − (1 + β|m|)|x|

=|x|
(

β|x2| − (1 + β|m|)
)

.

As β ≤ 1,

|t| ≥ |x|
(

β|x2| − (1 + |m|)
)

.

Therefore,

|t| ≥ |t|
(1 + |m|)

≥|x|
(

β|x2|
1 + |m| − 1

)
. (10)

The assumption, |x| > max


(

2(1+|m|)
α

) 1
2

,
(

2(1+|m|)
β

) 1
2

 implies that

(
β|x2|

1 + |m| − 1
)
> 1. (11)

It follows from (10) that
|t| > |x|. (12)

As z = z0, by (2) we have

|z| =|TC(t)|
≥|t3 + mt| − |r|.

As β ≤ 1 , from (12) and assumption |x| ≥ |r| we obtain

|z| ≥|t3 + mt| − |x|

=|t|
(

β|t2| − (1 + |m|)
)

which further implies that

|z| ≥ |t|
(

β|t2|
(1 + |m|) − 1

)
. (13)

Now by (12) and (11), we have(
β|t|2

1 + |m| − 1
)
≥
(

β|x|2
1 + |m| − 1

)
> 1. (14)
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Consequently, (5), (20) and (14) imply that

|z| > |x|. (15)

Also, y = y0, |y| = |TC(z)| = |z3 + mz + r|. Then, the given assumption |x| ≥ |r|, (8) and the fact
that β ≤ 1 yield

|y| ≥ |z3 + mz| − |r|

≥|z|
(

β|z2| − (1 + |m|)
)

.

Thus

|y| ≥ |z|
(

β|z2|
1 + |m| − 1

)
.

From (11) and (15), we obtain

|y| ≥ |x|
(

β|x2|
1 + |m| − 1

)
> |x|. (16)

Lastly, we have

|x1| =|(1− α)y + αTCy|
=|(1− α)y + α(y3 + my + r)|.

From |x| ≥ |r|, (16) and α ≤ 1, we have

|x1| =|(1− α)y + α(y3 + my + r)|
≥α|y3| − (1− α + α|m|)|y| − α|y|
=α|y2| − (1 + α|m|)|y|

≥|y|
(

α|y2| − (1 + |m|)
)

≥|y|(1 + |m|)
(

α|y2|
(1 + |m|) − 1

)
.

From (16), we have

|x1| ≥ |x|
(

α|x2|
1 + |m| − 1

)
.

By our assumption we have |x| >
(

2(1+|m|)
α

) 1
2

and hence
(

α|x2|
1+|m| − 1

)
> 1. Thus, there exists

a real number ρ > 0 such that (
α|x2|

1 + |m| − 1
)
> 1 + ρ.

It follows that
|x1| > (1 + ρ)|x|.

Continuing in the same manner, we obtain

|xi| > (1 + ρ)i|x|.

Therefore, the orbit of x tends to infinity.

The following corollary is the refinement of the Theorem 4.
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Corollary 2. Suppose that |xi| > max

|r|,
(

2(1+|m|)
α

) 1
2

,
(

2(1+|m|)
β

) 1
2

where α, β ∈ (0, 1] then |xi| → ∞

as i→ ∞.

2.3. Escape Criterion for General Complex Polynomials in a Picard Ishikawa Type Orbit

For the general complex polynomial TC(x) = xn + mx + r where m, r ∈ C, we have the
following result.

Theorem 5. Suppose |x| ≥ |r| > max


(

2(1+|m|)
α

) 1
n−1

,
(

2(1+|m|)
β

) 1
n−1

, with n ≥ 2 and α, β ∈ (0, 1].

Define a sequence {xi}i∈N as in (2) where x0 = x, y0 = y, z0 = z and t0 = t. Then, |xi| → ∞ as i→ ∞.

Proof. Let TC(x) = xn + mx + r. Note that (2), assumptions |x| ≥ |r| and β ≤ 1 give

|t| =|(1− β)x + βTC(x)|
≥|(1− β)x + β(xn + mx)| − β|r|
≥β|xn| − (1− β + β|m|)|x| − β|x|

=|x|
(

β|xn−1| − (1 + β|m|)
)

≥|x|
(

β|xn−1| − (1 + |m|)
)

.

Therefore,

|t| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
. (17)

By our assumption, we have |x| >
(

2(1+|m|)
β

) 1
n−1

and hence

(
β|xn−1|
1 + |m| − 1

)
> 1. (18)

It follows from (17) that
|t| > |x|. (19)

Since z = z0, so from (2) we obtain

|z| ≥ |tn + mt| − |r|.

As β ≤ 1, from (19) and assumption |x| ≥ |r|, we have

|z| ≥ |t|
(

β|tn−1|
(1 + |m|) − 1

)
. (20)

Now by (18) and (19), we have (
β|t|n−1

1 + |m| − 1
)
> 1.

Hence,
|z| > |x|. (21)
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As y = y0, |y| = |TC(z)| = |zn + mz + r|, so using the similar arguments as before we obtain

|y| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|. (22)

Also, from |x| ≥ |r|, (22), and α ≤ 1 we have

|x1| =|(1− α)y + α(yn + my + r)|
≥α|yn| − (1− α + α|m|)|y| − |r|
=α|y2| − (1 + α|m|)|y|

=|y|
(

α|y2| − (1 + α|m|)
)

≥|x|
(

α|x2|
1 + |m| − 1

)
.

Furthermore, from our assumption we have |x| >
(

2(1+|m|)
α

) 1
n−1

and thus
(

α|xn−1|
1+|m| − 1

)
> 1.

Thus, there exists a real number ρ > 0 such that(
α|xn−1|
1 + |m| − 1

)
> 1 + ρ.

Finally, we obtain
|x1| > (1 + ρ)|x|.

Now, continuing this process
|xi| > (1 + ρ)i|x|.

Therefore, the orbit of x tends to infinity.

The following corollary is the refinement of the Theorem 5.

Corollary 3. Suppose that |xi| > max

|r|,
(

2(1+|m|)
α

) 1
n−1

,
(

2(1+|m|)
β

) 1
n−1

 where n ≥ 2 and α, β ∈ (0, 1]

then |xi| → ∞ as i→ ∞.

Theorem 6. Suppose that {xi}i∈N∪{0} is a sequence in the Picard Ishikawa type orbit for the complex
polynomial TC(x) = xn + mx + r where m, r ∈ C with n ≥ 2 such that |xi| → ∞ as i → ∞,

then |x| ≥ |r| >
(

2(1+|m|)
α

) 1
n−1

and |x| ≥ |r| >
(

2(1+|m|)
β

) 1
n−1

, α, β ∈ (0, 1].

Proof. Let {xi}i∈N be a sequence in Picard Ishikawa type orbit. First, we prove that |x| ≥ |r|. According
to hypothesis, |xi| → ∞ as i → ∞, the sequence {|xi|} must be unbounded. Hence, |xi| ≥ |r| for all
i ∈ N ∪ {0} and therefore |x| ≥ |r|. Let TC(x) = xn + mx + r, m, r ∈ C where t0 = t, x0 = x, y0 = y
and z0 = z, then |x| ≥ |r| implies that

|t| =|(1− β)x + βTCx|
=|(1− β)x + β(xn + mx + r)|
≥|βxn|+ ((1− β) + mβ)x| − β|r|
≥β|xn| − ((1− β) + |m|β)|x| − β|x|
≥β|xn| − (1 + |m|β)|x|.
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Thus,

|t| ≥|x|(β|xn−1| − (1 + |m|))

= |x|(1 + |m|)
(

β|xn−1|
1 + |m| − 1

)
implies

|t| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
. (23)

Here, we have two possibilities; either
(

β|xn−1|
1+|m| − 1

)
≤ 1 or

(
β|xn−1|
1+|m| − 1

)
> 1. If

(
β|xn−1|
1+|m| − 1

)
≤

1 we have
β|xn−1|
1 + |m| ≤ 2

which implies that

|xn−1| ≤ 2(1 + |m|)
β

and hence

|x| ≤
(

2(1 + |m|)
β

) 1
n−1

,

a contradiction. Indeed, {|xi|} is not bounded where i ∈ N∪ {0}. Therefore, we must have
(

β|xn−1|
1+|m| −

1
)
> 1. Thus, |x| >

(
2(1+|m|)

β

) 1
n−1

. Now, inequality (23) implies that

|t| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|.

Furthermore, β ≤ 1 and |x| ≥ |r| give

|z| =|TC(t)|
≥|tn + mt| − |r| ≥ β|tn| − |m||t| − |x|
=|t|(β|tn−1| − |(1 + |m|)).

As
(

β|xn−1|
(1+|m|) − 1

)
> 1, so we have

|t| > |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|.

As a consequence we obtain

|z| ≥|x|
(

β|xn−1|
1 + |m| − 1

)
(1 + |m|).

Thus,

|z| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|. (24)
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Similarly, |y| = |TC(z)| = |zn + mz + r|, |x| > |r| and β ≤ 1 imply that

|y| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
.

Consequently,

|y| ≥ |x|
(

β|xn−1|
1 + |m| − 1

)
> |x|. (25)

Finally, we have

|x1| =|(1− α)y + αTC(y)|
=|(1− α)y + α(yn + my + r)|
≥α|yn| − (1− α + α|m|)|y| − α|r|
≥α|yn| − (1− α + α|m|)|y| − α|y|
≥α|yn| − (1 + α|m|)|y|
≥α|yn| − (1 + |m|)|y|
=|y|(α|yn−1| − (1 + |m|))
≥|x|(α|xn−1| − (1 + |m|)).

Hence

|x1| ≥ |x|
(

α|xn−1|
1 + |m| − 1

)
.

Using arguments similar to those as before, we only have one possibility that
(

α|xn−1|
1+|m| − 1

)
> 1.

Therefore, |x| >
(

2(1+|m|)
α

) 1
n−1

. This completes the proof.

3. Visualization of Fractals

In this section, we present some Julia and Mandelbrot sets for quadratic and higher order
polynomials. We found several captivating new fractals having various geometric shapes. However,
we have chosen some figures. The color variation occurs due to the change of input parameters.
We have also investigated the effect of change of parameters α and β on the shape and the variation of
colors. The number of iterations was fixed at 10.

3.1. Generation of Julia sets

Following Algorithm 1 is the pseudocode for the generation of Julia sets. Note that T′(z) represents
the iteration process.
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Algorithm 1: Generation of Julia Set
Input : complex polynomial–T : C→ C, parameters–r, m ∈ C, Area–A ⊂ C, number of

iterations–N, colormap with M colors–colormap[0...M− 1]
Output :< is the area for Julia set

1 R = Threshold radius
2 for c ∈ A
3 do
4 k = 0
5 while k ≤ N do
6 z = T′(z)
7 if |z| > R then
8 break
9 end

10 k = k + 1
11 end
12 m = b(M− 1) k

N c
13 color c with colormap[m]

14 end

Now, we present quadratic, cubic and septic Julia sets in Picard Ishikawa type orbit for the
complex polynomial, TC(x) = xn + mx + r.

1. For Figure 1, we consider the polynomial T(x) = x2 + (−0.5 + 0.7i)x + (−0.01 + 0.18i)
and A = [−2.5, 2.5]× [−2.1, 2.1]. It is easy to see that T has one attracting fixed point,
p = −0.1427 + 0.1019i. Observe that for α = 0.2, β = 0.097 and α = 0.11,β = 0.18 we obtain
different images due to color variation caused by parameters. It is interesting to note that for
α = 1, β = 1 and α = 10−10, β = 10−10 we have similar shapes but there is clear variation of
colors.

2. For Figure 2, we consider the polynomial T(x) = x3 + (−0.275 + 0.5i)x + (−0.559 + 0.35i) and
A = [−1.5, 1.5]× [−1.8, 1.8]. The polynomial T has attracting fixed point p ∼ −0.6434 + 0.2687i
in A. Note that the cubic Julia sets for α = 0.08 and β = 0.09 have more color variation as
compared to the Julia sets for α = 0.1, and β = 0.2. Again, for α = 1, β = 1 and α = 10−10,
β = 10−10 the shapes are same but there is variability in colors.

3. For Figure 3, we input T(x) = x7 + (0.23 + 1.2i)x + (0.5 + 0.7i) and A = [−1.3, 1.3]2.
The attracting fixed point of the polynomial is p ∼ −0.2391 + 0.5835i. We can see that for
α = 0.01 and β = 0.08 the shape is spread and stretched while the shape is dense and neatly
packed for α = 0.1 and β = 0.05. Note the variation of colors in figures (C) and (D) as well.
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(a) α = 0.2, β = 0.097 (b) α = 0.11, β = 0.18

(c) α = 1, β = 1 (d) α = 10−10, β = 10−10

Figure 1. Quadratic Julia sets.

(a) α = 0.08, β = 0.09 (b) α = 0.1, β = 0.2

(c) α = 1, β = 1 (d) α = 10−10, β = 10−10

Figure 2. Cubic Julia sets.
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(a) α = 0.01, β = 0.08 (b) α = 0.1, β = 0.05

(c) α = 1, β = 1 (d) α = 0.009, β = 0.009

Figure 3. Septic Julia sets.

3.2. Generation of Mandelbrot Sets

Following Algorithm 2 is the pseudocode for the generation of Mandelbrot sets. Note that T′(z)
represents the iteration process.

Algorithm 2: Generation of Mandelbrot set.
Input : complex polynomial–T : C→ C, parameters–r, m ∈ C, Area–A ⊂ C, number of

iterations–N, colormap with M colors–colormap[0...M− 1]
Output :< is the area for Mandelbrot set

1 for c ∈ A
2 do
3 R = Threshold radius
4 k = 0
5 x0 = critical point of T
6 while k ≤ N do
7 z = T′(z)
8 if |z| > R then
9 break

10 end
11 k = k + 1
12 end
13 m = b(M− 1) k

N c
14 color c with colormap[m]

15 end
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For Figure 4 we input A = [−2, 2]× [−1.2, 2.5] and observe that for α = 0.1 and β = 0.3, the shape
is stretched and the bulb is wider and for α = 0.75 and β = 0.7 the shape is compact with defined
bulb. Notice the variation of colors for Mandelbrot sets for α = 1, β = 1 and α = 0.009, β = 0.009.
Also, observe that Mandelbot sets generated are symmetric about origin.

(a) α = 0.1, β = 0.3 (b) α = 0.75, β = 0.7

(c) α = 1, β = 1 (d) α = 0.009, β = 0.009

Figure 4. Mandelbrot sets.

4. Conclusions

In this paper, a Picard Ishikawa type orbit was used to study the behaviour of complex
poylnomials. We obtained escape criterions for complex quadratic, cubic and higher degree
polynomials. Some alluring Julia and Mandelbrot sets have been generated. We also observed that the
variation of parameters has shown eminent changes in the Julia and Mandelbrot sets. Our results are
different from comparable existing results as we obtain escape criterion and fractals for polynomials
of the form T(x) = xn + mx + r where m, r ∈ C without using the Jungck iterative process. It is also
worth mentioning that the behaviour of the polynomial and shape of the fractal generated under the
iterative process (2) is different and unique as compared to the iterative process studied before in the
literature [1,24,29,32].
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