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Abstract

In this work, we have studied a dilute and ultracold bosonic gas of weakly interacting atoms,

i.e. a Bose-Einstein Condensate (BEC) by means of the Modified Gross-Pitaevskii equation

(MGPE) taking into account beyond-mean-field corrections due to quantum fluctuations. We

have considered the case where the cloud of atoms is strongly confined transversally (within a

cigar-shaped trap) and therefore, the three-dimensional (3D) MGPE is reduced to an effective

one-dimensional (1D) form by averaging over the transverse coordinates. Based on this approach,

we have performed numerical simulations for analyzing the behavior of the BEC under the

influence of quantum fluctuations, which give rise to an additional nonlinear quartic term. After

reviewing the mathematical theory of Bose-Einstein condensation based on the GPE and the

numerical methods used to integrate it we discuss the computation of the ground state and the

simulation of its dynamic evolution in a waveguide (free expansion).
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Introduction

The discovery of the quantum nature of matter and energy is arguably one of the most profound

achievements of science in the 20th century, providing a complete new perspective of our world.

Fascinating as it is, Quantum Mechanics is utterly counter intuitive for observers like us, tethered

to the classical realm. Moreover, direct observation of quantum properties at the microscopic

level is notoriously difficult and requires very advanced experimental technology. Nevertheless,

there are a few, precious examples of macroscopic systems that manifest quantum behavior

such as: superfluidity, superconductivity, lasers, quantum Hall effect, giant magneto resistance,

topological order and quantum-gases, in particular Bose-Einstein Condensates (BEC) [1]. As a

matter of fact, a handful of Nobel prizes in physics have lately been awarded to researchers in

these fields.

In this work we study a model of one such BEC system and analyze the macroscopic quantum

properties it manifests.

Briefly stated, a BEC is a macroscopic state of matter (also known as the 5th state of matter)

which is achieved when a low density gas of identical of bosons is cooled to temperatures very

close to absolute zero (−273.15◦C) [2]. This cooling down is achieved by slowing down the

particles; to this end the so called laser cooling and evaporative cooling methods are used

[3]. As a result, the associated wavelengths of the particles that form the condensate acquire

macroscopic extent.

Bosons are one of the two types of elementary particles in nature (the other type being fermions).

They comprise the force carrying particles and their other salient feature is that their spin

possesses an integer value. By means of the spin-statistic theorem we know that this condition

makes them obey the Bose-Einstein statistic and exempts them from following Pauli’s exclusion

principle which in turn allows all the bosons to occupy the same quantum state.
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Under such thermal conditions, a large fraction of bosons will occupy the lowest quantum state,

so that the whole group starts behaving as though it were a single atom at which point micro-

scopic quantum phenomena become apparent macroscopically [2, 4].

In BECs the quantum probability distribution given by the wave function becomes, indeed, a

matter distribution of the atoms that form the condensate; this enables the direct measurement

of these quantum phenomena, normally by optical means [2].

The ground state of a quantum system of identical bosons is usually described by the Gross-

Pitaevskii mean-field equation (GPE). The main objective of this thesis is to study the influence

of a quantum fluctuation term on the waveguide expansion of a BEC; this study will be advanced

by means of numerical simulations of a MGPE.

The organization of this thesis

The present work is organized as follows: in Chapter 1 a short review about the discovery and

progress of BECs is presented; in Chapter 2 we discuss the basic theory of BEC in the mean field

regime (i.e., the Gross-Pitaevskii theory) and how it is modified by the addition of a quantum

fluctuation term. Next, in Chapter 3 we study numerically the ground state configuration of the

system and how it evolves in the waveguide after the removal of the axial confinement. Final

considerations will be drawn in the Conclusions section. In the Appendix the numerical methods

used for solving our MGPE are briefly discussed.
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Chapter 1

Bose-Einstein Condensates: Brief

History and State of the Art

One of the earliest physics lessons we are taught is that by modifying the temperature and/or

pressure conditions of any substance, dramatically different states of matter can be revealed. The

variation of these physical magnitudes we handle is usually at the human scale. The fascinating

fact is that this is only the beginning: with further cooling, additional states of matter can

eventually appear.

In fact, the approach to the coldest temperatures has paved the way for a number of striking

discoveries; reaching the kelvin range uncovered superconductivity in 1911 and superfluidity in

4He in 1938, whereas, achieving the millikelvin regime revealed superfluidity of 3He in 1972.

Cooling beyond these temperatures came hand in hand with the invention of laser cooling in

the 1980s, opening up a new approach to ultra low temperature physics; studies of ultracold

collisions have been made using microkelvin samples of dilute atom clouds and in order to study

quantum-degenerate gases, such as Bose-Einstein condensates, nanokelvin temperatures were

necessary [5]. This last achievement was first accomplished in 1995 and along with the rest of

the discoveries represented significant advances in science, all of them being recognized with

Nobel Prize awards in Physics. Let’s rewind some decades to review how the theory of BECs

was build.

Satyendra Nath Bose (1894–1974) published a paper describing the statistical nature of light

in 1924 [6]. Using Bose’s paper, Albert Einstein (1879–1955) predicted that a phase transition
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could occur in a gas of non-interacting atoms due to these quantum statistical effects [7]. Thus,

the concepts of Bose-Einstein statistics and condensation were born: a macroscopic number of

non-interacting bosons can simultaneously occupy the quantum state of lowest energy [8].

Although Einstein carried out his work for non-interacting bosons, the idea can be readily

extended to a system of interacting bosons. The de Broglie wavelength λdB is inversely pro-

portional to the temperature T and therefore increases while the temperature decreases: λdB =

~/
√

2mkBT . At high temperatures, the de Broglie wavelength is small compared to the spacing

between atoms and the dilute gas behaves classically [5]. Hence, when a critical temperature

TC is reached, the wavelength λdB becomes comparable to the average inter-particle spacing

and the atomic wave packets overlap [3], the system enters the quantum degeneracy regime

(where the fact that particles are identical directly affects their statistical properties) and the

gas becomes a “quantum soup” of indistinguishable particles [5]. In this situation, the particles

behave coherently as a unique giant atom and a BEC is formed [3].

Though, Einstein’s prediction did not receive much attention until Fritz London (1900–1954)

suggested in 1938 that the superfluidity of 4He is related to the Bose-Einstein condensation and

to the existence of a macroscopic wave function for the Bose condensate [9, 10].

In 1947, by developing the idea of London, Nikolái Bogoliúbov (1909–1992) calculated the quan-

tum depletion for a uniform weakly-interacting Bose gas [11].

Some years later, it was found experimentally that due to the strong interaction of the helium

atoms, less than 10% of the superfluid 4He is in the condensate state [3]. Further research had

to be done to find BECs with higher occupancy and physicists started to search for weakly inter-

acting systems of Bose gases. This was an altogether challenging task because most substances

become solid or liquid at the phase transition temperature of the BEC [3].

In 1980, spin-polarized hydrogen gases, that in 1959 were proved to remain gaseous even at 0 K

by Charles Hecht [12], were realized by Silvera and Walraven [13]. However, all the attempts to

observe those BECs experimentally failed [3].

As we stated before, laser cooling was developed shortly after; alkali atoms turned to be very

appropriate candidates for BEC experiments as they are well-suited to this laser-based method

[3] due to their favorable internal energy-level structure [14].

Bose-Einstein condensation was observed in 1995 in a remarkable series of experiments on
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vapours of rubidium and sodium [14]. The first BEC of dilute 87Rb gases was achieved by E.

Cornell and C. Wieman’s [15] and four months later, two successful experimental observations

of BEC, with 23Na by Ketterle’s group [16] and 7Li by Hulet’s group [17] were announced.

In each of these experiments, the atoms were confined in magnetic traps and cooled down to a

scale of fractions of microkelvins by combining the advanced laser cooling (whereby the alkali gas

can be cooled down to several µK) and the evaporative cooling (which can further reach down to

the 50–100 nK range) techniques together [3]. Velocity-distributions showed the first indications

of the Bose-Einstein condensation: the atoms produced the signature spike in velocity of the

condensate once the magnetic trap was turned off [7]. In 1998, atomic condensate of hydrogen

was finally realized [18].

The natural starting point for studying the behavior of the Bose-Einstein condensates, which

nowadays are routinely produced with ultracold and dilute alkali-metal atoms [19], is the theory

of weakly interacting bosons that takes the form of the Gross-Pitaevskii theory for inhomoge-

neous systems [14].

This theory was born in 1961 when Eugene P. Gross (1926–1991) and Lev Petrovich Pitaevskii

(1933–) derived the mean-field equation for the space-dependent macroscopic wave function of

a weakly-interacting Bose gas in the presence of an external trapping potential [20, 21]. They

came up with the Gross–Pitaevskii equation, that describes the ground state of a quantum

system of identical bosons: in point of fact it is a many-body nonlinear Schrödinger equation

for the macroscopic wave functions. The GPE includes a term for the trap potential as well as

the mean field interaction between atoms in the gas which manifests as a nonlinear term [7].

We will delve deeper into the study of the GP theory in Chapter 2 but for the moment, let us

outline some of the most relevant features of these trapped Bose gases. First of all, the particle

density at the center of the condensed atomic cloud is typically around 1013 − 1015 cm−3 which

is very small (consider that the density of air at standard temperature and pressure is of the

order of 1019 cm−3) and the temperature must be of the order of 10−5 K or lower [4]. The total

number of particles in the experiments ranges typically from a few thousands to several millions

[14].
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Chapter 2

The Gross-Pitaevskii Theory

In this chapter we will give an accurate mathematical description of BECs in order to be able

to study the influence of the term originating from quantum fluctuations added to the regular

GPE.

2.1 Mean-field approximation

The following discussion is based upon Refs. [3, 4, 14, 22].

2.1.1 General description of a BEC: the many-body systems

We are interested in studying an ultracold dilute bosonic gas confined in an external magnetic

trap, which is the case for most of the BEC experiments. The confining potential of a typical

magnetic trap for alkali atoms has the quadratic form characteristic of an harmonic oscillator

potential [14]

Vext(r) =
1

2
m(ω2

x x
2 + ω2

y y
2 + ω2

z z
2). (2.1)

In order to simplify the present discussion we will start by considering a time independent system

of N identical bosons. We will also, for the moment, neglect the boson-boson interaction. The

total Hamiltonian for the N particles is

H =

N∑
i=1

(
−~2

2m
∇2
i + Vext(ri)

)
, (2.2)
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whose eigenvalues have the form

εnx ny nz = ~ωx
(
nx +

1

2

)
+ ~ωy

(
ny +

1

2

)
+ ~ωz

(
nz +

1

2

)
(2.3)

nx, ny, nz being non-negative integers.

As stated before, due to the intrinsically quantum nature of a BEC its mathematical description

must be made in terms of wave functions. Therefore, the system under scrutiny can be described

as a many body wave function of the form ΨN (r1, r2, ...rN ) where the ri represent the spatial

coordinates of each of the N bosons that form the system. The system being composed of iden-

tical bosons, the wave function must be completely symmetric with respect to the interchange

of any two particles, ri ↔ rj [4].

For a BEC, all particles occupy the same quantum state and for this reason we can formally take

the Hartree ansatz for the many body wave function [3] so it can be written, approximately, as

a product of single-particle states that fulfill the symmetry conditions.

If the system is in thermal equilibrium, at temperature T the total number of particles is given,

in the grand canonical ensemble, by the sum [14]:

N =
∑

nx ny nz

1

eβ(εnx ny nz−µ) − 1
, (2.4)

where µ is the chemical potential, N is the total number of bosons, β = 1/(kBT ) and kB is

Boltzmann’s constant. As we stated before, the Bose-Einstein distribution predicts a phase

transition at a temperature TC below which the lowest quantum state becomes macroscopically

occupied and this corresponds to the onset of Bose-Einstein condensation [14]. According to

equation (2.4), at T = 0 all the particles will be in their lowest single-particle state, so that many

body wave function of the ground state ΨN (r1, r2, ...rN ) of N noninteracting bosons becomes [14]:

ΨN (r1, r2, ...rN ) =

N∏
i=1

Φ0(ri), (2.5)

where the function Φ0 is given by

Φ0(r) =
(mωho

π~

)3/4
e−

m
2~ (ωx x2+ωy y2+ωz z2) (2.6)

and will from now on be described as the condensate’s wave function occupied by N0 particles,

with the normalization condition [3] ∫
R3

|Φ0(r)|2dr = 1. (2.7)
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Thus, the wave function for the whole condensate becomes

ψ(r) ≡
√
N0 Φ0(r), (2.8)

which is simply the single-particle wave function normalized according to the total number of

particles ∫
R3

|ψ(r)|2dr = N. (2.9)

Note that in the work domain covered by this research all atoms are considered to be conden-

sated and thus, N = N0. Equation (2.8) is the macroscopic wave function of the condensate. Let

us recall that for the moment we are using the so called mean field approximation, where quan-

tum and thermal fluctuation terms are neglected for being small compared to the macroscopic

occupation of the condensate [4].

The density distribution then becomes

n(r) = |ψ(r)|2 (2.10)

and its value grows with N . Instead, the size of the cloud is independent of N and is fixed by

the harmonic oscillator length

aho =

√
~

mωho
, (2.11)

which corresponds to the average width of the Gaussian wave function Φ0 (2.6) and ωho is the

geometric average of the oscillator frequencies:

ωho = 3
√
ωx ωy ωz. (2.12)

Therefore, the trapping frequency ωho provides an indirect measurement of aho, the first impor-

tant length scale of the system which, in the samples available, has a value on the order of a few

microns [14].

This length scale aho is the one that characterizes the size of a non-interacting system. In the

presence of repulsive interactions, the system size is increased further by the effect of repulsive

two-body forces, that make the trapped gases become almost “macroscopic” objects (“meso-

scopic”, as a matter of fact). Typical density variations in a condensate occur on the length

scale of few microns, and are directly measurable with optical methods.
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2.1.2 The effective interaction

We have developed the previous discussion considering the approximation of non-interacting

bosons. In this section, we will try to make a more faithful approach to the real condensates;

we will add to the description of our BECs the effect of the binary interatomic interactions at

low temperatures. In fact, despite the very dilute nature of these gases the harmonic trapping

greatly enhances the effects of the atom-atom interactions on important measurable quantities

[14].

In order to describe the interaction between two atoms in a dilute gas only one relevant variable

needs to be taken into account, namely, their relative coordinate rij = ri− rj . We will therefore

describe the boson-boson isotropic interaction by a potential Vint(rij) that solely depends on the

distance rij = |rij | between the two atoms [4].

Hence, the many body Hamiltonian for N identical bosons held in a trap can be written as

[19, 23]

HN =

N∑
i=1

(
− ~2

2m
∇2
i + Vext(ri)

)
+

∑
1≤i<j≤N

Vint(rij), (2.13)

where the ri denote the positions of the particles, m is the mass of a boson, V (ri) is the

external trapping potential, and as explained before Vint(r) stands for the interatomic two body

interactions [3].

However, when sufficiently low energies are reached the scattering of a particle by a potential can

be accurately described by a single physical parameter, the s−wave scattering length as of the

potential [14]. Since we are considering the lowest energy case it seems a reasonable assumption

to restrict ourselves to s−wave scattering (l = 0) and neglect the rest of the terms.

The cost of solving the above many body system increases quadratically as N grows large due

to the binary interaction term. To simplify the interaction, the true interatomic potential of the

binary interaction, Vint(|rij |), can be well approximated by a mean-field potential. This effective

interacting pseudopotential has the form of a Dirac distribution at the origin [3]:

Vint(|ri − rj |) = g δ(|ri − rj |), (2.14)

where the constant g = 4π~2as/m. Here as is the s−wave scattering length of the bosons (posi-

tive for repulsive interaction and negative for attractive interaction). The above approximation
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(2.14) is valid because we have assumed that the system is very dilute and such that the scat-

tering length and the range of the interatomic interaction are much smaller than the average

interatomic distance [11]. Thus, the mean interaction energy of the many body system is given

by:

〈Eint〉 =
1

2

4π~2as
m

∑
ij

|Ψ(rij → 0)|2, (2.15)

where Ψ is the many body wave function and rij → 0 means that the separation between the

two atoms of the condensate is very small compared to the average distance between particles

d ≡ v1/3 = (V/N)1/3 [19] and to the de Broglie wavelength λdB, but as stated before, large

compared to as. An equivalent statement is that |Ψ|2 should be understood as averaged over

a volume � a3
s [19]. This leaves us with several conditions that must be fulfilled for (2.15) to

be valid. First, we require that d � as which generally holds due to the diluteness of the gas.

Second, λdB � as will enable us to take into account the averaged effect of the potential. This

is a physically important restriction because in quantum mechanics particles cannot be localized

and one must consider a region of space comparable in size to their thermal wavelength, namely,

the region of space where it is highly probable to find them. Therefore, the particles will

experience an averaged effect of the potential. This last condition must hold to the first order

in as neglecting the l 6= 0 scattering.

If we write equation (2.15) in terms of the many body wave function, adding the interaction

between every pair of atoms in the condensate and neglecting three particle interactions and

quantum depletion terms we get:

〈Eint〉 =
1

2

4π~2 as
m

∑
ij

∫
R3

|Φ(r)|4dr =
1

2

4π~2 as
m

N(N − 1)

∫
R3

|Φ(r)|4dr. (2.16)

Importantly, here and in equation (2.15) a 1/2 factor arises in order to count each interaction

between particle i and particle j only once and not twice. Then the energy of the state (2.5)

can be written as

E = N

∫
R3

[
~2

2m
|∇Φ0(r)|2 + V (r)|Φ0(r)|2 +

N − 1

2
g |Φ0(r)|4

]
dr. (2.17)

This description of the ground state of a quantum system of identical bosons using the Hartree-

Fock approximation and the pseudopotential interaction model is called the Gross–Pitaevskii

equation and equation (2.17) is the well-known Gross-Pitaevskii energy functional. The Gross-

Pitaevskii equation governing the motion of the condensate is obtained by functional derivation

10



[24]. So,

ı ~ ∂tψ(r, t) =
δE(ψ)

δψ∗
=

[
− ~2

2m
∇2 + V (r) + g |ψ(r, t)|2

]
ψ(r, t), (2.18)

where ψ∗ denotes the complex conjugate of ψ(r, t). Notice that in (2.18) we used the normal-

ized wave function according to the total number of the particles. We obtained a nonlinear

Schrödinger equation (NLSE) with cubic nonlinearity.

Henceforth, we will not be studying the GPE equation but a Modified GPE equation with an

additional correction term to take into account the quantum fluctuations that occur in BECs.

2.2 Beyond the mean-field approximation

We have decided to go beyond the mean field approximation by taking into account the quantum

depletion effect of the condensate. In order to complete this undertaking we need to come up

with a new term able to accurately account for this correction to the mean-field approximation.

This new term represents the fraction of atoms which –because of correlation effects– do not

occupy the condensate at zero temperature. As we stated before, the quantum depletion is

ignored in the derivation of the Gross-Pitaevskii equation. Therefore, it is useful to have a

reliable estimate of the magnitude of the correction in order to check the validity of the Gross-

Pitaevskii theory. In the presently available experimental conditions, the effect of the quantum

depletion of the condensate is very small (less than 1%) [14]. We will numerically work out these

effects in Chapter 3 in an attempt to validate the Gross-Pitaevskii theory with the calculated

results.

Quantum corrections to density n(r) (equation (2.10)) are dominated by quantum fluctuations

with wavelengths of order 1/
√
n(r) as, where as is the so far well known s−wave scattering

length. By expanding the equations for the Hartree-Fock approximation to second order in the

gradient expansion, we derive local correction terms to the Gross-Pitaevskii equation that take

into account the dominant effects of quantum fluctuations. By carrying out a self-consistent one-

loop calculation through second order in the gradient expansion, we determine the correction

terms that must be added to the Gross-Pitaevskii equation (2.18) to take into account the effects

of quantum fluctuations [25]. We obtain the MGPE for any arbitrary potential [26]:

ı ~ ∂tψ(r, t) =

[
− ~2

2m
∇2 + V (r) + g3D |ψ(r, t)|2 + g′3D |ψ(r, t)|3

]
ψ(r, t), (2.19)
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where we tagged g′3D the term corresponding to the quantum depletion that is defined as:

g′3D =
128

3

~
mωho

√
a5
s π (2.20)

and we renamed our previous g term as g3D.

2.3 The Modified Gross-Pitaevskii Equation

This section follows the approaches made in Refs [27] and [28] and will be centered on how to

re-write the MGPE (2.19) in order to ease its numerical solution. With that purpose we will

start re-scaling the equation to express it with the help of dimensionless variables. Then, we will

factorize the three-dimensional wave equation into a transverse and a longitudinal component

to obtain a one-dimensional version of the MGPE. Finally, we will spell out how to deal with

the time dependence.

2.3.1 Dimensionless form of the MGPE

We are considering the case of a cigar-shaped trap, viz. a tight transverse confinement whereby

the applied external potential has cylindrical symmetry. Specifically, we will analyze a harmonic

trapping potential split into two pieces, the first transversal, describing the trapping along the

transverse dimensions; the second longitudinal, i.e. dependant on the z coordinate. The latter

piece describes the longitudinal trapping, which is much weaker than the transversal one (the

ωz/ω⊥ < 1 inequality holds in a cigar shaped trap) [28]. So,

V (x, y, z) =
1

2
mω2

⊥ (x2 + y2) +
1

2
mω2

z z
2, (2.21)

where ω⊥ and ωz are respectively the trap frequencies in the radial and axial directions.

Then (2.19) becomes:

ı ~
∂ψ (r, t)

∂t
=

[
− ~2

2m
∇2 +

1

2
mω2

⊥
(
x2 + y2

)
+

1

2
mω2

⊥ z
2

+
4π~2 as
m

|ψ (r, t)|2 +
128~

3mω⊥

√
a5
sπ |ψ (r, t)|3

]
ψ (r, t) . (2.22)

With hindsight we claim that the numerical solution of these equations can be greatly facilitated

by the device of rearranging them in an equivalent but simpler form. This scheme consists in
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the rewriting of the equations in dimensionless form, by expressing lengths and energies in

harmonic oscillator (ho) units. Thus, the spatial coordinates, the energy, and the wave function

are rescaled as follows [29]:

r̃ =
r

a⊥
Ẽ =

E

~ω⊥
ψ̃ =

√
a3
⊥
N

ψ

where the rescaled ψ̃ is normalized to unity as in equation (2.8) and a⊥ =
√

~
mω⊥

. The reduction

to the dimensionless form results in:

ı
∂ψ̃ (r, t)

∂t
=

[
−1

2
∇2 +

1

2

(
x̃2 + ỹ2

)
+

1

2

ω2
z

ω2
⊥
z̃2

+ 4π
as
a⊥

N
∣∣∣ψ̃ (r, t)

∣∣∣2 +
128

3

√
a5
s

a⊥
πN3

∣∣∣ψ̃ (r, t)
∣∣∣3] ψ̃ (r, t) . (2.23)

2.3.2 3D to 1D reduction of the MGPE

In the following we will reduce the 3D (three dimensional) MGPE to an effective 1D (one

dimensional) form by averaging over the transverse coordinates. The resultant effective equation

produces results in good agreement with the original 3D formulation [29]. The 3D GPE can

be obtained by using the quantum least action principle, i.e. 3D MGPE is the Euler-Lagrange

equation of the following action functional

S =

∫
dt dr ψ̃∗(r, t)

[
ı
∂

∂t
+

1

2
∇2 − 1

2

(
x̃2 + ỹ2

)
− 1

2

ω2
z

ω2
⊥
z̃2

+ 2π
as
a⊥

N
∣∣∣ψ̃ (r, t)

∣∣∣2 +
2

5

128

3

√(
as
a⊥

)5

πN3

(√
ψ̃∗(r, t) ψ̃ (r, t)

)3]
ψ̃ (r, t) . (2.24)

We want to minimize this action functional by factorizing the wave function into two compo-

nents: a transversal (radial) component and a longitudinal (axial) component. A natural choice

is considering the fundamental Gaussian state of the harmonic oscillator for the transverse com-

ponent

ψ̃ (r, t) =
1√
πσ

exp

[
− x̃

2 + ỹ2

2σ2

]
Φ̃ (z, t) = Γ̃ (x, y) Φ̃ (z, t) . (2.25)

The choice of a Gaussian shape for the condensate in the transverse direction is well justified in

the limit of weak interatomic coupling, because the exact ground state of the linear Schrödinger

equation with harmonic potential is Gaussian [27].

Next we must determine the variational function Φ̃ (z, t) by minimization of the action functional.

With this objective in mind we will assume at this stance that the transverse wave function Γ̃
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showcases a much slower variation along the axial direction than with respect to the transverse

directions:

∇2ψ̃ (r, t) = Γ̃ (x, y)
∂2Φ̃ (z, t)

∂z2
+ Φ̃ (z, t)

(
∂2

∂x2
+

∂2

∂y2

)
Γ̃ (x, y) . (2.26)

By inserting the trial wave-function in (2.23) and after spatial integration over the transverse

coordinates the action functional becomes

S =

∫
dt dz Φ̃∗(z, t)

[
ı
∂

∂t
+

1

2

∂2Φ̃ (z, t)

∂z2
− 1

2

ω2
z

ω2
⊥
z̃2 − as

a⊥

N

σ2

∣∣∣Φ̃ (z, t)
∣∣∣2

− 512

75

√(
as
a⊥

)5
N3

πσ2 |σ|
Φ̃∗(z, t) Φ̃ (z, t)

√
Φ̃∗(z, t) Φ̃ (z, t)

]
Φ̃ (z, t) . (2.27)

In the process of doing the calculation, it is also necessary to use the adiabatic approximation,

which consists of neglecting the spatial derivatives of the transverse width, i.e. we assume that

σ is constant:

σ2 =
~

mωz
⇐⇒ σ̃2 =

ω⊥
ωz
. (2.28)

As a matter of fact, this is an exact result under the assumption that the transverse potential

is strong enough to confine the atoms in the fundamental state.

The Euler-Lagrange equation with respect to Φ̃∗(z, t) reads:

ı
∂

∂t
Φ̃ (z, t) +

1

2

∂2Φ̃ (z, t)

∂z2
Φ̃ (z, t)− 1

2

ω2
z

ω2
⊥
z̃2 Φ̃ (z, t)− 2

as
a⊥

N

σ2
Φ̃∗(z, t) Φ̃ (z, t)2

− 5

2

512

75

√(
as
a⊥

)5
N3

πσ2 |σ|
Φ̃∗(z, t)3/2 Φ̃ (z, t)5/2 = 0. (2.29)

This equation is a 1D Gross-Pitaevskii equation with an additional quartic nonlinear term which

describes quantum fluctuations. This expression is the main result of this section.

It is essential noticing that the terms g3D and g′3D have been renormalized according to the

following expressions:

g1D =
mN

2πσ2~a⊥
g3D, g′1D =

2

5

√
N3

a9
⊥π

3

g′3D

σ2|σ|
. (2.30)

For the sake of notational simplicity hereafter the symbols g and g′ stand for their renormalized
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values

g = g1D = 2
asN

a⊥σ2
, g′ = g′1D =

256

15

√(
as
a⊥

)5
N3

πσ2|σ|
. (2.31)

2.3.3 Stationary MGPE

The equation one must consider to calculate the ground state of a confined BEC is given by the

following expression:

Note: below we make use of the dimensionless auxiliary quantity λ = (ωz/ω⊥)2.

[
−1

2

∂2

∂z2
+

1

2
λ z̃2 + 2

as
a⊥

N

σ2
|Φ̃ (z) |2 +

256

15

√(
as
a⊥

)5
N3

πσ2 |σ|
|Φ̃ (z) |3

]
Φ̃ (z) = µ̃ Φ̃ (z) , (2.32)

where µ̃ = µ/(~ω⊥) naturally stands for the normalized dimensionless chemical potential. In the

next chapter we will study the influence of the nonlinear terms of the above equation; therefore

it is extremely convenient to rewrite the equation in a terser form:[
−1

2

∂2

∂z2
+

1

2
λ z̃2 + g |Φ̃ (z) |2 + g′ |Φ̃ (z) |3

]
Φ̃ (z) = µ̃ Φ̃ (z) (2.33)

such that we can focus on the effects that the g and g′ coefficients may have. This equation

can be interpreted as the Euler-Lagrange equation associated with the constraint minimization

problem and the chemical potential plays the role of a Lagrange multiplier associated to the

norm conservation.

As a consequence, we are dealing with a nonlinear eigenvalue problem and any eigenvalue µ̃ can

be computed from its corresponding eigenfunction Φ̃ (z) by imposing the normalization condition

[3]

µ̃(Φ̃) =

∫ 1

2

∣∣∣∣∣∂Φ̃ (z)

∂z

∣∣∣∣∣
2

+
1

2
λ z̃2 |Φ̃ (z) |2 +

g

2
|Φ̃ (z) |4 +

2

5
g′ |Φ̃ (z) |5

 dz. (2.34)

Once the ground state solution of equation (2.32) is known we are capable of calculating the

time evolution of the fundamental state of the condensates that solely depends on a phase factor:

Φ̃ (z, t) = Φ̃ (z) e−ıµ̃t. (2.35)

However, we are interested in studying the time evolution of the condensates once the axial

trapping potential is turned off. In order to do so, the time dependent MGPE must be solved,

15



namely, equation (2.29) without the transverse potential term. This processes will be expounded

in the next chapter.
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Chapter 3

Numerical Solutions

In this chapter we will expose the guidelines followed to solve the dimensionless one-dimensional

Gross-Pitaevskii equation (2.33). As we have already explained, we are intent on analyzing

the behavior and general properties of the modified equation while varying the parameters

that multiply the non-linear terms; thence, we expect the use of the dimensionless form of the

equation to be so much more revealing.

Please note the following change of notation that we adopt from this point onward: while

functions, energies, chemical potentials, coordinates, wave functions, etc. that we will be using

will all be truly dimensionless quantities, for the sake of clarity we will altogether drop the tildes.

3.1 Computation of stationary states

In order to solve the MGPE numerically it is fundamental to establish the initial state of the

condensate. This initial state will be obtained by reaching the ground state, which by definition

is the state that minimizes the energy of the system and corresponds to the state in which the

condensate is produced experimentally.

As mentioned in Chapter 2, the problem consists in finding a solution to the equation (2.33).

Thus, to reshape conveniently our wave function at each step, we need to know its energy

functional and change it iteratively assuring that the new wave function will be a state of less
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energy than the previous one, the energy functional being [3]:

Eg(Φ) =

∫
R

[
1

2

∣∣∣∣ ∂2

∂z2
Φ̃

∣∣∣∣2 +
1

2
λz̃2|Φ̃|2 +

g

2
|Φ̃|4 +

2

5
g′ |Φ̃|5

]
dz. (3.1)

Summarizing, calculating the global minimal solutions Φg to the energy functional (3.1) corre-

sponds to obtaining the ground state solution while local minima are excited states.

In the following we outline one of the many approaches that can be used for numerically com-

puting Φg.

3.2 Approximate solution

With the object of numerically computing solutions to the minimization problem, an iterative

procedure is needed. This means that an initial guess has to be given to the method in order to

initialize it and then the minimization process computes a minimal solution through iterations.

For a non-rotating BEC, it can be proved that the global minimal solution is unique and gives

a ground state Φg ≥ 0 for a positive initial data Φ0 [30].

We will consider the Thomas-Fermi (TF) approximation of the ground state as initial guess with

a simple harmonic oscillator as the potential [4].

3.2.1 Thomas-Fermi Regime

This approximation is based on ignoring the kinetic energy of the particles at temperatures close

to zero Kelvin and will provide a very reasonable estimate of the stationary state energy of our

condensate. Since the TF limit is characterized by slowly varying the density of the gas in space,

the interaction term will dominate over the kinetic one enabling us to write the equation in a

very simple form [
Vext (z) + g |Φ (z)|2

]
Φ (z) = µΦ (z) , (3.2)

where we are ignoring the quantum fluctuation g′ term. Once again we are solely developing
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the one-dimensional case whose solution is

Φ (z) =


√

µ−Vext(z)
g µ ≥ Vext (z)

0 elsewhere.

(3.3)

As we imposed a harmonic type of trapping external potential, we will develop the solution

given above for this kind of potential.

To calculate the chemical potential we need to integrate the following equation

N =

∫ +RTF

−RTF

|Φ (z)|2 dz =

∫ +RTF

−RTF

(
µ

g
− mω2

z

2g
z2

)
dz, (3.4)

where RTF =
√
µ/(mω2

z) is the cut-off distance of the Thomas Fermi approximation and gives

the result

µ (N) =

(
3

5
Ng ωz

√
m

)2/3

, (3.5)

where ωz is the frequency of the harmonic potentials in the z direction.

The energy of our initial guess of the BEC wave-function is

E =

∫
µ(N) dN =

3

5
N µ(N). (3.6)

Once we have described the shape of our initial guess, we shall choose a numerical method to

minimize the energy and achieve the initial state of the condensate. The initial distribution of the

BEC will be calculated using the Backward Euler pseudoSpectral (BESP) scheme as we assume

the initial distribution is the ground state of the system. A description of this method can be

found in Appendix A.1. Consequently, once the ground state of our condensate is achieved we

want to examine its time evolution. For that aim, the numerical spectral scheme used to model

the dynamics of our MGPE is presented in Appendix A.2.

3.3 Results of the numerical simulations

In this section we present the numerical results of the performed simulations. To compute the

ground state we have used the BESP method (Appendix A.1 [30]) in 1D with the stopping

criterion set as ∆E < 10−12. Besides, for the time-dependent analysis we have chosen the

ADI-TSSP scheme (Appendix A.2 [31]) with a time step of 10−3.
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3.3.1 Ground State solutions

We now proceed to study the influence of the quantum fluctuation term in the ground state

solution of the BEC. For that purpose, we will calculate the numerical solution of equation

(2.33) with different g and g′ terms, which, as we already know, stand respectively for the cubic

and quartic nonlinearities. From now on, the starting point of every simulation will be the

Thomas-Fermi initial data.

Bearing in mind that the g′ term is a correction to the previous terms, it can never be bigger

than g. Thus, the value of the g′ parameter we contemplate depends essentially on the g term.

The constraint used is g′ = k · g where k = 0, 0.01, 0.1, 1. Our convention for Figure 3.1 is:

k Color LineStyle

0 Green ——

0.01 Magenta - - - -

0.1 Red · · · ·

1 Blue - · - ·

Figure 3.1: Density distribution of the ground state for different values of the parameters g

and g′, as obtained from the numerical solution of the MGPE.
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Figure 3.1 illustrates the shape of the ground state of a BEC under the influence of specific g

and g′ terms. We recall that the shape of the density distribution is mainly affected by the

interplay of the kinetic, potential, and mean field terms (the latter being the one proportional to

g). In this respect, the term proportional to g′ has to be considered a perturbation. Indeed, the

g term represents the atom-atom interactions upon which the GPE is based and g′ introduces

the corrections due to quantum fluctuation.

Then, let us first consider the effect of g. We recall that it is proportional to Nas

g = 2
asN

a⊥σ2
.

Figure 3.1 shows that the size of the system increases by increasing g (that is, the number of

atoms N and/or the scattering length as), the shape of the density distribution going from a

Gaussian profile (in the non interacting limit g = 0) to a TF profile in the large N and/or large

as limit.

As for the effect that the quantum fluctuation term has, its net effect is to lower the central

density, by pushing atoms out from the bulk into the tails. It is worth noticing that the influence

of the g′ term becomes significant, i.e. differs from the result obtained using g′ = 0, when its

value is of the order of g, that is to say, when k = 1. Further, from Figure 3.1 it is also discernible

that the influence of the g′ coefficient augments in the range 10 < g < 500.

Likewise, by establishing g′ = 0 we would retrieve the GPE. Let us recall the expression of g′:

g′ =
256

15

√(
as
a⊥

)5
N3

πσ2|σ|
.

Thus, for the quantum depletion term to have an effect in the shape of the condensate g′ ≈ g

and accordingly N must be of the order

N ≈
(

15

128

)2

π2 σ2

(
a⊥
as

)3

. (3.7)
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The values of the chemical potential µ for each case are:

g k = 0 k = 0.01 k = 0.1 k = 1

0.1 0.5396 0.5398 0.5422 0.5655

1 0.8994 0.8721 0.8915 1.0711

10 3.1072 3.1169 3.2021 3.9526

100 14.1343 14.1655 14.4426 16.9545

500 41.2816 41.3514 41.9736 47.7252

1000 65.5236 65.6223 66.5033 74.7075

Table 3.1: Values of the chemical potential µ.

Again, these tabulated values sustain the conclusion that the effect of the g′ term is only appre-

ciable when g′ ≈ g.

From Figure 3.1 we can also conclude that the results calculated for the values k = 0 and

k = 0.01 are barely distinguishable. Subsequently, for the numerical simulations of the dynamical

evolution he case k = 0.01 will be omitted.

3.3.2 Solutions for the Dynamic Evolution

In order to explore the dynamic evolution of the condensates the trapping potential is removed

from equation (2.29).

The next figures show qualitatively the behavior of the time evolution of the density of the BEC

for g = 0.1 and g = 100. We have omitted the influence of g′ because in this qualitative analysis

it would not be appreciable.

The chosen waveguide in these cases (Figures 3.2, 3.3 and 3.4) has a width of 160 and we have

let each system evolve up to a final time t = 10.
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Figure 3.2: 2D representation of the time evolution of |Φ|2 with g = 0.1.

Figure 3.3: 2D representation of the time evolution of |Φ|2 with g = 100.
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Figure 3.4: 3D representation of the time evolution of |Φ|2 with g = 100.

Along the same lines followed for the time-independent analysis developed in the previous sec-

tion, the effect of the binary interatomic interaction described by the g term is apparent in the

dynamic evolution: the greater the g term, the more interactions between particles occur and as

a consequence, the wider the shape of the density distribution becomes. We observe that over

time the wave function expands as a result of the removal of the trapping potential. Once again,

the g term has a remarkable impact in this expansion making it substantially faster as g grows.

This effect can be clearly seen by comparing Figures 3.2 and 3.3.

Furthermore, we proceed to study quantitatively the dynamic evolution of the BECs in order

to determine the impact that the quantum fluctuation term may or may not have in the time-

dependent MGPE.

From now on our plotting convention reads:

k Color LineStyle

0 Green ——

0.1 Red · · · ·

1 Blue - · - ·

In Figure 3.5 we show the root-mean-square (rms) value of the longitudinal (z) coordinate of
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the wave function plotted as a function of time until t = 10.

Figure 3.5: rms of z as a function of time ,for different values of the parameters g and g’.

Notice that in Figure 3.5 the vertical axis is different for each plot due to the influence of the

g term. Besides, the presence of quantum fluctuations adds an expansion effect with respect to

mean-field case (g′ = 0).

Indeed, even more compelling insight can be obtained from this same analysis; to this end we

will compare in the same figure the ratio of the final values at t = 10 of the six plots represented

in Figure 3.5. That is to say, we will represent the following percentage variation,

∆[g] ≡ zrms[g, g
′]

zrms[g, g′ = 0]
− 1 (3.8)

as a function of g in a logarithmic scale.

From Figure 3.6 we can conclude that the quantum fluctuation term g′ has its maximum effect

when g = 10. That maximum effect amounts to a 10% when g′ = 1 and to a 1% when g′ = 0.1.
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Figure 3.6: Percentage variation of the final values at t = 10 of zrms[g, g
′] as a function of g and

g′ = k · g.

In the last two figures of this chapter we will plot sections of the density distribution |Φ|2 at

t = 5 for different values of g and g′, following the procedure we have carried out so far.

Figure 3.7: Sections of the dynamic evolution of the MGPE at t = 5 for different g and g′

terms.
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The cases g = 0.1, g′ = 0 and g = 100, g′ = 0 in Figure 3.7 (green continuous line) are sections

of Figures 3.2 and 3.3 respectively. Consistently, once again we notice that the influence of the

g′ term is appreciable only when g′ ≈ g. Nevertheless, notice that in Figure 3.7 each plot has a

different vertical axis and hence, the scale difference of the density distribution of the condensate

as a function of g is not readily noticeable. With the purpose of showing that effect we now plot

all the graphics in Figure 3.8 together.

Figure 3.8: Sections of the dynamic evolution of the MGPE at t = 5 plotted all together with

different g and g′ terms.

The evolution of the Gaussian distribution towards a TF distribution as g grows is prominent

in Figure 3.8.
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Conclusions

The completion of this work has required four steps:

1. As a basic pre-requisite, we have had to acquaint ourselves with the physics of the Bose-

Einstein Condensates and with their mathematical description by means of the Gross-

Pitaevskii equation.

2. Next, we have developed analytically the MGPE (2.29) corresponding to a condensate in

the ground state of the transverse trap and subsequently we have recast it into dimension-

less form. To this effect, we have postulated a Gaussian form for the distribution of the

transversal coordinates of the wave function for a cigar-shaped trapping potential, we have

integrated over the transverse variables and further, we have derived the Euler-Lagrange

equation for the appropriate action potential.

3. Then, we have performed extensive numerical simulations with the help of the GPELab

toolbox of the MATLAB computing environment. Clearly, this task has necessitated

the conduction of a preliminary study of the numerical methods employed to solve the

nonlinear Schrödinger equation in both its stationary and dynamic regimes.

4. Finally, we have tried to uncover the subtle influence of the quantum fluctuating term with

the help of the manifold numerical simulations that we have carried out.

Let us outline the main results of this work:

First, as stated previously in Step 2, we have achieved the reduction of equation (2.23) from

3D to 1D. This equation describes a condensate under strong transversal confinement and its

main characteristic is the presence of a new quartic nonlinear term which describes the quantum

fluctuation.

28



Second, we have performed an extensive array of numerical simulations in order to integrate the

said nonlinear partial differential equation under the influence of different sets of parameters,

both in the stationary and the dynamical regimes.

These performances have allowed us to observe the strong influence of the binary interatomic

interaction term in the shape of the condensate: the density distribution of the BEC transitions

from being Gaussian to being TF as the parameter g and thus, the number con atoms N , grow.

As a result, the simulations seem to indicate that the corrections of the quantum fluctuation

term to the GPE based results may be as large as 10% when the conditions of the BEC are

g ≈ g′ ≈ 10.

Nevertheless, when the value of the g′ coefficient is smaller than the value of the g coefficient,

the corrections introduced by using the MGPE are very slight compared to the results given by

the mean field approximation.
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Appendix A

Numerical methods

The aim of this appendix is to present the numerical methods implemented in GPELab, the

Matlab [32] third party toolbox that we have used for computing both the stationary state solu-

tions and the dynamic evolution of the condensates [30, 31]. Recent research [33] has provided

wide support as to its reliability and effectiveness.

A.1 Backward Euler pseudoSpectral (BESP) scheme

This next development follows section 4.1.2 of Ref. [30]. Different schemes for computing

ground states are available. Here, we chose BESP for its high order accuracy [34]. This method

is based on Backward Euler in time but on a Spectral Fast Fourier Transform scheme in space.

Therefore, it considers an approach based on Fourier series representation through FFTs in order

to calculate the derivatives in the backward Euler scheme. In the following we present the 1D

version. Artificial periodic boundary conditions are imposed on the boundary of a computational

box of length L assuming the solution is confined in it. Our spatial grid has J points, thus, the

uniform discretization step h can be described as

h = (zj − zj−1) =
2L

J
. (A.1)

The discrete Fourier pseudospectral disretization is given by

Φ(zj , t) =
1

J

J/2−1∑
k=−J/2

Φ̂k(t)e
2πik
L

zj , (A.2)
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where Φ̂k(t) is the Fourier coefficient

Φ̂k(t) =
J−1∑
j=0

Φ(zj , t) e
− 2πik

L
zj . (A.3)

The spatial approximation for the Backward Euler scheme is

Φ− Φn

δt
=

1

2

∂2

∂z2
Φ− 1

2
λz2

jΦ− β|Φn|2Φ− α|Φn|3Φ, Φn+1 =
Φ

||Φ||0
. (A.4)

By using the Fourier discrete transform, the second derivative of a function can be computed as

such:

(∂2
zΦ)j =

1

J

J/2−1∑
k=−J/2

−µ2
k Φ̂k(t) e

2πik
L

zj . (A.5)

The discrete norm is given by

||Φ||0 =
√
hz

√∑
j

|Φj |2. (A.6)

Now we must solve a nonlinear system at each iteration the stopping criterion being defined as

||Φn+1 − Φn||∞ < ε δt. (A.7)

The chosen values for ε and δt are specified in Chapter 3.

A.2 Spectral scheme for simulating of the dynamics

This next development follows section 3.1.2 of Ref. [31]. First, lets recall the time-dependent

dimensionless Modified Gross-Pitaevskii equation

ı
∂Φ

∂t
=

[
−1

2
∂2
z Φ + V + g |Φ|2 + g′ |Φ|3

]
Φ. (A.8)

To observe the time evolution of the condensate we will remove the trapping potential by im-

posing V = 0.
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A.2.1 Implicit-Time Splitting pseudoSPectral scheme

Let us define two operators, A and B and consider the following time dependent partial differ-

ential equation 
∂tΦ(z, t) = AΦ(z, t) +B Φ(z, t)

Φ(z, 0) = Φ0(z).

(A.9)

The solution for t > 0 has the form Φ(z, t) = e(A+B)t Φ0(z). The time-splitting schemes ap-

proximate the solution of Φ splitting the exponential operator e(A+B)t using the Trotter product

formula [22]:

Φ(z, t+ δt) = e(A+B)t Φ(z, t) ≈ ea1Aδt eb1Bδt ea2Aδt eb2Bδt...eanAδt ebnBδt Φ(z, t), (A.10)

where {ai, bi}1≤i≤n ⊂ R are computed weights to approximate e(A+B)t. We will use the Strang

scheme (which is of order two and unconditionally stable) where a1 = a2 = 1/2 and b1 = 1, b2 =

0.

Let us define the A and B operators as the following decomposition of our equation

A =
ı

2
∂2
z , B = −ı g |Φ(z, t)|2 − ı g′ |Φ(z, t)|3. (A.11)

The partial differential equation associated to the operator A can be efficiently solved by using

Fast Fourier Transforms (FFT) whereby the FT of a derivative becomes a multiplicative operator

and the nonlinear ordinary differential equation associated to B can be integrated exactly.

Therefore, the approximation of the solution remains

Φ(z, t+ δt) ≈ eı(1/2∂2z )δt/2 e−ı(g |Φ|
2+g′ |Φ|3) δt/2 eı(1/2∂

2
z )δt/2 Φ(z, t). (A.12)

Departing from the ground state solution we want to solve equation (A.8) on an uniformly

discretized time-interval. We must start computing the solution of the PDE:
ı∂tΦ1(z, t) = −∂2

zΦ1(z, t), tn < t ≤ tn+1/2

Φ1(z, tn) = Φn(z).

(A.13)

This equation can be easily solved by inverting the second derivative operator through FFTs.
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The next step is to determine the solution of the ODE:
ı∂tΦ2(z, t) = −g |Φ2(z, t)|2 Φ2(z, t)− g′ |Φ2(z, t)|3 Φ2(z, t), tn < t ≤ tn+1/2

Φ2(z, tn) = Φ1(z, tn+1/2),

(A.14)

whose solution is

Φ2(z, t) = Φ1(z, tn+1) e−ıg |Φ1(z,tn+1)|2 (t−tn)−ıg′ |Φ1(z,tn+1)|3 (t−tn), (A.15)

which finally gives: Φn+1(z) ≈ Φ2(z, tn+1/2).

All these techniques and methods enable us to solve completely the problem of a freely expanding

condensate.
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