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Abstract
A thorough characterization of the title compound, (dimim)2[Fe2Cl6(μ-O)], consisting of a
(μ-oxido)-bridged binuclear iron(III) complex and 1,3-dimethylimiazolium (dimim) cation,
has been performed using awide range of techniques. The room temperature disordered crystal
structure of this compound transits to an incommensuratelymodulated crystal structure at 100 K; to
our knowledge, the first one found for an imidazoliumhalometallate complex. The crystal structure
was solved in the superspace group P1(/α/β/γ)0withmodulation vector q=0.1370(10) 0.0982
(10) 0.326(2) at 100 K. Variable temperature synchrotron powder x-ray diffraction showed the
presence of satellite peaks in addition to themain diffraction peaks up to 208 K. Furthermore, a
thermal expansion studywas performedwith this technique from100 to 383 K (near of itsmelting
point) adressing questions about the nature and consequences of the ion self-assembly of this (μ-
oxido)-bridged binuclear iron(III) complex, as well as themolecularmotion of the imidazolium
cationwithin the crystalline structure as a response to the temperature effect. Finally, we present a
deepmagnetic study based onmagnetic susceptibility,magnetization andMössbauermeasurements,
where the strong antiferromagnetic exchange coupling detected is due to the occurrence of aμ-oxido
bridge between the Fe(III), giving rise to an intra-dimeric antiferromagnetic exchange coupling of
–308 cm−1.

1. Introduction

A common class of halometallate complex is the subgroup formed by ametal complex anion (with the same or
different halide atom) and an imidazolium cation. The acidic character of these compounds [1, 2] can be a
feature related to one of the anions, or to both of them.Moreover, depending on their cation/anion
compositions, these complexes can be classified either as Lewis acidicmaterials, with the capability to act as
electron pair acceptors (the anion is generally responsible for this type of acidity), or as Brønsted acidic
compounds, inwhich the acidity is due to ionizable protons either to the cation or to the anion. The upper limit
of the acidity achievable for any halometallate compound is the solubility of themetal halide in the
corresponding organic cation salt. In the case of chlorometallate complexes, several negatively charged species
are often present in equilibriumdepending on themetal chloride to organic salt ratio. In chloroferrate(III)
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compounds, this is constrained by the limited ability of Fe(III) to formdimeric [Fe2Cl7]
− anions. Indeed, neutral

chloroferrate(III) complexes are themost traditional andwidely studied [3]. In contrast to other acidic systems,
these compounds are relativelymoisture-stable in liquid and solid states. In addition, they possess a latent acidity
(the presence of water causes shifts in anion equilibrium) comparable to those containing chloroaluminates.
Taking advantage of this acidity,moisture stability, Fe andCl abundance, ability to dissolve awide range of
organic compounds andmagnetic properties [4–8], chloroferrate(III) complexes showmany applications [9].
They are especially useful as catalysts for awide variety of transformations including glycosidation [10],Michael
addition [11], desulfurization [12], CO2fixation into cyclic carbonates [13], Friedel Crafts acylation [14], for
benzylation of various arenes/heteroarenes into the diarylmethanes [15], for Lewis rechargeable batteries [16] or
glycolysis of polyethylene terephthalate (PET)waste [17, 18].

Searching for novel imidazolium- based halometallate complexes, we have recently synthetized a dinuclear
1,3-dimethylimidazolium (μ-oxido)bis[trichloridoferrate(III)] complex, (dimim)2[Fe2Cl6(μ-O)], as an
alternative to classicmononuclear halometallate type compounds [19]. This complexwas obtained through
addition ofH2O and triethylamine to a solution of (dimim)[FeCl4][6] inmethanol:heptanol under continuous
agitation. It is worth noting that [Fe–O–Fe] type halometallate complexes has been synthesized by awide variety
ofmethods, inmany instances as a serendipitously obtained side product [20]. On the contrary, this is a
straightforward route that would allow the large-scale synthesis of this type of compound.

To date, ca. 50 structures containing the dinuclear [Fe2Cl6(μ-O)]
2− unit have been published in the

Cambridge Structural Database [21]. Themoiety wasfirst reported in 1978 byDrew et al in a study describing
the synthesis, crystal structure andmagnetic properties of (Hpy)2[Fe2Cl6(μ-O)] (Hpy=pyridinium) [20].
Since then it has become an important example in the coordination chemistry of trivalent iron. The oxido-
and hydroxido-bridged diiron complexes are relevant in several enzymes [22, 23] involved in reversible
dioxygen binding, for instance, nitrogenase [24] and non-heme Fe oxygenase [25].Moreover, the dinuclear
[Fe2Cl6(μ-O)]

2−unit is also very interesting froma physical point of view because itsmagnetic properties and
stability (diferric form) have served in the past decade as a paradigm for strong intramolecular antiferromagnetic
spin exchange coupling between two high-spin ferric ionsmediated by an oxido-bridge [26, 27] tending to be
antiferromagnetic [28].

Regarding the structural characterization, there is a lack of published research papers based on experimental
research about the effect of temperature on their crystalline structures. Concretely, these complexes based on
imidazolium cation display a wide variety of interactions, ranging fromnonspecific and isotropic forces, weak
ones (e.g., van derWaals (vdW), solvophobic, dispersion forces) and strong ones (Coulombic), to specific and
anisotropic forces (e.g., hydrogen bonding, halogen bonding, dipole−dipole,magnetic dipole, electron pair
donor/acceptor interactions). The competition among the aforementioned interactions could drive to
structural phase transitions as observed in neutral chloroferrate(III) complexes,mainly due to order-disorder
phenomena or the libration of the imidazolium cation [3–8].

Coming back to the aforementioned (dimim)2[Fe2Cl6(μ-O)] [19], we also reported structural details of its
crystal structure at 293 Kwhich is featured by a structural disorder that hinders getting deeper insights into the
fundamentalmolecular details that dominate properties such asmagnetic behavior.With all of this inmind,
hereinwe present both (1) the elucidation of the low temperarure single-crystal x-ray incommensurate structure
within its thermal expansion process and (2) an exhaustive physical characterization of the title compound by
the use of awide variety of techniques, including differential scanning calorimetry, thermogravimmetric
analyses, Raman spectroscopy, DCmagnetic susceptibility andmagnetization, andMössbauer spectroscopy
measurements.We think that this work could be of use in understanding on amolecular level the physical/
chemical properties of the (μ-oxido)bis[trichloridoferrate(III)] halometallate complexes.

2. Experimental details

2.1. Thermal analysis
Differential scanning calorimetry (DSC) analyses of (dimim)2[Fe2Cl6(μ-O)]were performed on aMettler-
Toledo (DSC822) from25 to 180 °Cunder nitrogen atmosphere at heating rate of 5 °Cmin−1. For this
experiment, ca. 7 mg of powder sample were thermally treated and blank runswere performed.
Thermogravimetric analyses (TGA)were carried out on aTA instrumentsDiscovery at a heating rate of
10 °Cmin−1 in a temperature range from20 °C to 800 °Cunder synthetic air in a platinumcrucible.

2.2. Single-crystal x-ray diffraction and structure determination
The crystal structure of (dimim)2[Fe2Cl6(μ-O)]was determined by single-crystal x-ray diffraction (SCXRD).
Datawere collected usingCu-Kα radiation (1.5418 Å) in anAgilent Technologies Supernova diffractometer at
100 K. The data reductionwas donewith theCrysAlis PROprogram [28]. Data were corrected for Lorentz and
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polarization effects. The single crystal data acquisition performed showed clear signs of an incommensurate
crystal structure. Careful examination of the peaks positions extracted from theCCD images showed the
presence of satellite peaks in addition to themain reflections (figure S1 is available online at stacks.iop.org/
JPMATER/3/015002/mmedia). Themain reflectionswere indexed using a triclinic unit cell, but the satellite
reflections required the use of four integers: H=ha*+kb*+lc*+mqwith q=0.1370(10) 0.0982(10)
0.326(2) to be indexed. The structure solutionwas fulfilled by charge-flipping algorithm [29]. (CFA) using
software Jana2006 and refining on F [30]. A detailed analysis of the superspace densitymap obtained through the
charge-flippingmethod reveals that the bridging oxide, O1, shows a discontinuity in themodulation function
whichwas described using a crenel function of width 0.5 (figure 1). At RT only some diffuse scattering can be
observed apart from themain reflections on the diffraction frames. Therefore, the structure was solved by direct
methods using the SIR92 program [31] and refined by fullmatrix least-squares on F2 including all reflections
(SHELXL97) [32]. The crystal solution required the presence of a disorderedμ-oxido bridge over two positions
related by a symmetry center. All non-hydrogen atomswere refined anisotropically but the anisotropic thermal
displacement parameters ofmost atomswere unusually high and elongated.H atomswere included at
calculated positions and treated as riding atomswith isotropic thermalmotion related to its parent atom. All
calculations for the latter were performed using theWINGX crystallographic software package [33].
Crystallographic data and details of the structure determination and refinement for the complex are
summarized in table 1. Crystallographic information (CIF)files are available in the supporting information (SI).

2.3. Variable temperature synchrotron x-ray powder data collection
Synchrotron x-ray powder diffraction (SR-XRPD)measurements were performed at the high resolution station
of theMSPDbeamline (BL04) at ALBA synchrotron [34]. The sample was introduced into a 0.7 mmglass
capillary andmeasured in transmission at E=20 keVusing themicrostripMythen-II detector (sixmodules,
1280 channels/module, 50 μm/channel, sample-to-detector distance 550 mm). Temperature was controlled
using anOxfordCryosystems Series 700Cryostream.Data from2 to 45° (2θ)were collected during a 5 Kmin−1

ramp from100 to 400 K every 30 s. Exact wavelength for the experiments was 0.619 69 Å determined from a Si
NIST-640d reference.

2.4. Raman spectroscopy
The non-polarized Raman spectra of (dimim)2[Fe2Cl6(μ-O)]was recorded in backscattering geometry with a
Horiba T64000 triple spectrometer with the same protocol of reference [35].

2.5.Magneticmeasurements.
Temperature dependence of themagnetic susceptibilitymeasurements for (dimim)2[Fe2Cl6(μ-O)]were
performed using a standardQDMPMSmagnetometer by heating from2 to 300 K at 10 KOe after cooling in
either the presence (field cooling, FC) or the absence (zerofield cooling, ZFC) of the appliedfield.Magnetization
as a function offield (H)wasmeasured using the samemagnetometer in the−50�H/kOe�50 at 2 K. 57Fe
Mössbauermeasurements were recorded between 295 and 4 Kwith the same protocol of reference [36]. The
spectrawere fitted to Lorentzian lines using a non-linear least-squaresmethod [37].

3. Results and discussions

3.1. Thermal analysis
TGAcurves show that (dimim)2[Fe2Cl6(μ-O)] starts to decompose at 196 °C (figure 2(a)). DSC curves display a
melting point of ca. 98 °Cupon heating (figure 2(b)), whichwas corroborated bymeans of variable temperature
SR-XRPD experiments (see below). Therefore, the complex reported herein could be considered as a

Figure 1.Positionalmodulation of Fe1,O1 andCl1 atoms in (dimim)2[Fe2Cl6(μ-O)] as functions of the inernal x4 axis through the
superspace.
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paramagnetic ionic liquid (MIL)which, according to the literature, is defined as a paramagnetic salt with a
melting point below 100 °C [38]. In fact, similarmelting temperature values have been observed in previously
reported halometallates, such as (pyprmim)2[Fe2Cl6(μ-O)] (pyprmim: 1-(1-pyridinium-yl-propyl)-3-
methylimidazolium, Tm: 104 °C) [26] and other (μ-oxo)bis[trichloroferrate(III)] dianion salts [39]. The cooling
curve of the thermogram reveals amarked delay in the crystallization peak (supercooling: 46 °C)which is similar
inmagnitude to that observed in hydrated inorganic salts [40]. It is worth noting that the shape of the cooling
peak could suggest the occurrence of a solid-solid transition immediately after crystallization.However, after
this cooling peak, the low temperature phase shows the crystal structure as that found in the fresh sample (see
following section). Finally at a temperature near of−90 °C theDSC curve (see inset offigure 2(b)) display a
transition, probably due to the change from a incommensurate crystal structure to a disordered one (see below).

3.2. Structural characterization
Aswe commented above, we recently reported the synthesis of (dimim)2[Fe2Cl6(μ-O)]. Such a complexwas
employed as catalyst for the degradation of PET under conventional andmicrowave-assisted heating.
Furthermorewe also described the RT crystal structure of (dimim)2[Fe2Cl6(μ-O)] (space group:P–1; cell
parameters: a=7.3221 Å, b=7.5071 Å, c=10.4916 Å andα=102.996°β=100.472° γ=92.433°). At this
temperature, its crystal structure is built up by dinuclear (μ-oxido)bis(trichloridoferrate)(2–) anionic complexes
and 1,3-dimethylimiazolium cations. The asymmetric unit consists of one organic cation and halfmetal
complex. The symmetry center, located in themiddle of the intermetallic Fe···Fe axis, entails the disorder of the
bridging oxygen atom into two symmetry-related positionswith an occupation factor of 0.5 each.

However, the data collection at cryogenic temperatures (table 1) has allowed us to realize that this
chloroferrate(III) compound presents an interesting structural feature as it transits from a disordered crystal

Table 1.Crystallographic data and structure refinement details of
(dimim)2[Fe2Cl6(μ-O)] at 100 K.

Chemical formula (C5H9N2)[Fe2Cl6(μ-O)]

Mr 534.7

Formula units 1

Radiation type CuKα

Wavelength (Å) 1.541 84

Temperature (K) 100(2)
Crystal system, space group Triclinic, P1 (αβγ)0
a (Å) 7.1967(6)
b (Å) 7.4456(6)
c (Å) 10.4488(7)
α (º) 103.341(6)
β (º) 100.037(7)
γ (º) 92.582(7)
V (Å3) 534.31(7)
Density (g/cm3) 1.662

Abs coeffμ (mm−1) 17.845

Modulation vector 0.1370(10) 0.0982(10) 0.326(2)
Max. order of satellites 1

Range of h, k, l, (m) −8�h�9
−9�k�8
−13�l�11
−1�m�1

No. ofmeasured and unique

reflns

13 060, 6565

Noof parameters 314

No. of obsd reflns 4901

No. of obsdmain reflns 1863

No. of obsdfirst-order satellites 3038

Criterion for obs reflns I>3σ(I)
Rint 0.0592

Goodness offit (S) 2.53

R, wR (obs reflns) 0.1039, 0.1238

R, wR (main reflns) 0.1037, 0.1240

R, wR (satellite reflns) 0.1040, 0.1233

Δρmax/min (e·Å
−3) 0.89/−0.65
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structure at room temperature to an incommensurate ordering at 100 K. Selected bond lengths and angles for
the coordination environment of Fe(III) at both temperatures are presented in table 2, while those
corresponding to the imidazolium cations are gathered in the SI (table S1). Bond parameters corresponding to
themetal center are similar to those found in previously described [Fe2X6(μ-O)]

2– (X: halide anion) type
complexes [26, 39, 41].

In order to ease the understanding of the structuralmodulation and its origin, firtsly the average crystal
structure is described in the next two paragraphs. The coordination polyhedron of Fe(III), defined by the
Cl3Odonor set, resembles a slightly distorted tetrahedron according to continuous shapemeasurements
(STd=0.82) [42].With regard to the geometry of the dinuclear entity, the oxide bridge sets a bended geometry
with Fe1–O1–Fe1(i) angle of 158º and Fe1LFe1(i) distance of 3.475 Å, which are in agreementwith previously
reported distances [24–26]. Furthermore, in order to reduce steric hindrance, the bridged trihalidoferrate
groups display a staggered conformation.

Thus, at RT, the crystal structure (figure 3(a)) is sustained by electrostatic attraction forces established
between the ionic entities and through an intricate network of non-covalent interactions, occurring between

Figure 2. (a)TGA curve recorded in air atmosphere. (b)DSC thermogramof (dimim)2[Fe2Cl6(μ-O)]. 2nd heating and cooling cycle.
Heating rate 5 K min−1. The inset shows the enlargement of the low temperature crystal phase transition.
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iron(III) complexes and organicmoieties (figure 3(b) and table S1). These interactions comprise Car–H
hydrogen bonding (C4–H4LCl2, C5–H5···Cl1), halideLπ interactions (Cl1LC2) and halide···methyl
interactions (Cl2···H6–C6; Cl1LH7–C7), which have also been observed in other imidazolium ILs. Indeed,
such interactions have also been observed for the (dimim)[FeCl4] precursor [6] and other imidazolium ILs [43].
In addition to the aforementioned non-covalent interactions, the crystal packing of analogous (im)[FeX4] type
ILs (im: imidazoliumderivative; X: halide ligand) implies non-covalent interactions betweenmetal complexes.

Table 2. Selected bond lengths and angles of [Fe2Cl6(μ-O)]
2− anion.

T(K)
100(2)

Bond lengths (Å) 293(2) [19] Average Minimum Maximum

Fe1–O1 1.848(2) 1.77(4) 1.75(6) 1.81(6)
Fe1–Cl1 2.217(2) 2.226(3) 2.218(3) 2.238(3)
Fe1–Cl2 2.211(2) 2.225(3) 2.196(3) 2.253(3)
Fe1–Cl3 2.206(4) 2.204(4) 2.159(4) 2.250(4)
Angles (°)
O1–Fe1–Cl1 103.1(6) 112.0(8) 109.9(8) 113.0(8)
O1–Fe1–Cl2 104.3(7) 112.5(8) 109.7(8) 118.7(7)
O1–Fe1–Cl3 124.5(5) 108.1(8) 102.7(7) 111.1(8)
Cl1–Fe1–Cl2 106.1(1) 106.1(1) 104.5(1) 107.1(1)
Cl1–Fe1–Cl3 110.3(1) 110.7(1) 109.6(1) 111.6(1)
Cl2–Fe1–Cl3 107.2(2) 108.0(1) 107.3(1) 109.0(1)
Fe1-O1-Fe1(i) 154.5(8) 158(3) 155(2) 165(4)

Figure 3. (a)Constituents of the crystal structure showing the atom labelling.(b)Relevant non-covalent interactions around the
dinuclear complex.Hydrogen bonding due to imidazolium aromatic C–Handmethyl groups are represented in red and green dashed
lines, respectively. The halideLπ interactions are depicted in black dashed lines.
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These specific interactions play a crucial role in the laminar packing of the ionic entities and also in their
magnetic structure, as in these cases it is governed by Fe–ClLCl–Fe type superexchange pathways [3, 6, 8]. On
the contrary, the ionic charge of [FeCl6(μ-O)]

2– involves two imidazolium cations per formula instead of one.
As a consequence, eachmetal complex is surrouned by eight cations (figure 3(b)), which precludes direct
interactions between them. It is alsoworth tomention that there is no evidence of direct supramolecular
interactions between imidazolium cations.

As previously stated, the single crystal data acquisition performed at 100 K showed clear signs of an
incommensurate crystal structure that required the inclusion of amodulation vector to index the satellite
reflections. The atompositions affected by the structuralmodulation could be viewed by using the
commensurate approximant and drawing an approximant supercell.We could see that the vector
0.136a*+0.098b*+0.326c*≈1/7a*+1/10b*+1/3c * and thus a 7a×10b×3c could be drawn
to get an approximate description of themodulated structure, as shown in figure 4.

Interestingly, in themodulated structure, the bridging oxide is no longer disordered but oscilates between
those two positions observed in the RTmodel following themodulationwave. Themodulation seems to be
induced by the presence of two competing supramolecular interactions between the dimeric [Cl3FeOFeCl3]

2−

complex entity and the 1,3-dimethylimidazolium cations: C7–H7LCl1 andC4–H4LCl2 as can be seen at the
bottomoffigure 4 (bottom). The intramolecular geometry and distances of the dimethylimidazolium cation
does not allow tomaximize both interactions simultaneously, thus generating a structural instability that leads
to an incommensurate crystal structure at low temperatures due to the thermal expansion effects. However, the
shrinkage of the unit cell volume betweenRT and 100 K is ca. 1%with a slightly anisotropic expansion along the
a-axis. Apart from that, themain structural feature is the significantly shorter Fe–Obond distances at 100 K
(1.77 Å versus 1.85 Å). These subtle variation in the supramolecular interactions explains the difficulty to obtain
incommensurate structures on these imidazolium-based system, where the largemobility of the counterion
preclude inmost of the cases arriving to this situation of quasi-equilibrium.

Once the crystal structure was elucidated, SR-XRPD experiments were performed in order to follow the
thermal evolution (seefigure S2) of differents crystal parametres. On one hand, the temperature evolution of the
SR-XRPDpatterns between 100 and 400 K (see figure 5) shows the appearance of additional elastic intensity at
temperatures below around 210 K, denoting the onset of the incommensurate structure.

These additional elastic intensities canbe indexedwith thepropagation vectorq=0.137 07(16) 0.100 69(9)
0.322 32(22) at 100 K ingood agreementwith SCXRDdata (seefigure 6). Sequential refinements against these data
were performedusing the FullProf suite [44] to follow the evolution of this parameter in the range from100 to
208 K.The temperature dependence is given infigure S3 showing an almost linear behaviour of the propagation
vectorup to 200 K. Later, it ismodificated up to a value ofq=0.128 14(68) 0.098 42 (13) 0.335 38(16) at 208 K.

Figure 4.Approximant supercell (7a×10b×3c) of (dimim)2[Fe2Cl6(μ-O)] at 100 K, showing the supramolecularmodulation of
the atomic positions and the competing supramolecular interactions probably responsible of themodulation.
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On the other hand, thefitting of the experimental patterns reveals that the cell parameters evolve
anisotropically up to themelting point of the sample, with the a lattice increasing nearly 0.23 Å and the b and c
axes growing by 0.12 and 0.06 Å, respectively (figure 7(a)).Moreover, theβparameter is the only angle that
increases with temperature (0.81°), whereasα and γ angles are reduced by 0.62° and 0.28°, respectively
(figure 7(b)). The cell volume increases in≈30 Å3. All length parameters display a positive thermal expansion,
showing a change of tendency in the slope around 210 Kdue to the transits from an incommensurate crystal
structure to disordered one. Finally, cooling powder x-ray diffraction data confirms the aforementioned
supercooling of themelted compound, as the emersion of the diffraction peaks is delayed until 40 °C. In any
case, despite somewidening of the diffraction peaks, the solid/liquid transition of (dimim)2[Fe2Cl6(μ-O)] is
reversible (figure S4).

3.3. Raman spectroscopy.
The structural characterizationof the complexwas alsoperformedbyRaman spectroscopy, as this techniqueoffers
oneof themost rewarding and simplemeans for studying the bonding and typeof anionic species inhalometallate

Figure 5. 2D contours of the temperature dependence of the selected 2θ region of SR-XRPDpatterns between 100 and 380 K. The (*)
dots show several satelite peaks. The line at 208 K shows the temperature associatedwith the change of the crystal structure.

Figure 6.Observed SR-XRPDprofiles of (dimim)2[Fe2Cl6(μ-O)] at 100 K (red) andRT (blue). Calculated (black solid line) powder
diffraction patterns at 100 K obtainedwith theMSPDbeamline (BL04) at ALBA synchrotron. Positions of the Bragg reflections for the
nuclear structure (first row) andmodulation vector (second row) are presented.
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compounds in a lab [4–9]. Figure 8 shows thenon-polarizedRaman spectra of (dimim)2[Fe2Cl6(μ-O)] and
(dimim)[FeCl4] (for the comparison), between50 and3200 cm−1 at 300 Kwith647 nmexcitation.Neutral
chloroferrate(III) [MX4], as theprecursor, display a vibrational spectra characterizedby fourRaman-active vibration
modes in the low-frequency region. In the caseof (dimim)2[Fe2Cl6(μ-O)] these bands are shifted tohigher (3bands)

Figure 7. (a)Evolution of a, b and c, (b)α,β andϒ cell parameters during sample heating from100 to 373 K.

Figure 8.Raman spectra of (dimim)[FeCl4] (blue) and (dimim)2[Fe2Cl6(μ-O)] (black) in the range 50–1000 cm
−1 and (inset) between

2700 and 3200 cm−1.
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and lower (1band) energies and are attributed to thebendingmodes [νs=98 andνas=128 cm−1] and the
stretchingmodes [νs=302 andνas=408 cm−1]ofFe–Clbonds (seefigure 8 and table S2, SI). In addition, the
vibrational spectrumof this compound features the symmetric (medium intensity) and antisymmetric (low intensity)
Fe–O–Fe stretching bands in the vicinity of 446 and847 cm−l. Indeed, the latter peaks are afingerprint of (μ-oxido)
bis(trichloridoferrate) type complexes [45]. Regarding the counterion, (dimim)+, themost representativemodes
appear at 2700–3200 cm−1 (νCar–HandνCmethyl–Hstretching; inset offigure 8) and1000–1600 cm−1 (νN–Cmethyl

stretching and in-plane ring deformation).Nomeaningful differences are observed forRamanpeakpositions of the
(dimim)+ cation [6]when comparing the spectra of both compounds (see the inset offigure 8). Further information
is gathered in table S2 (SI).

3.4.Magnetic properties
Themagnetic properties of the title complexwere determinedover the temperature range 2–300 KonaSQUID
magnetometerwith an externalfieldof 10 kOe.Theplots for themagnetic susceptibility (χm) and theχmTversusT,
calculated for twoFe(III) ions, are shown infigure 9. Themolarmagnetic susceptibility decreases fromRT,
accordingly to an antiferromagnetic coupling, and it reaches aminimumat ca.60 K,which increases later up to2 K.
TheχmTcurve alsodecreases from0.73 emu·K·mol−1·Oe−1 at 300 K to0.47 emu·K·mol−1·Oe−1 at 2 K.
TheχmTvalue atRT is considerably lower than expected for a dinuclear species containingnon-interacting
FeIII (S=5/2) ions (8.754 emu·K·mol−1·Oe−1).Moreover, the effectivemagneticmoment,μeff=(8χmT)

1/2,
was 2.41μB/Fe2,which is notably lower than the expected spin-only value of 8.37μB/Fe2 expected for two
independent FeIII spins (g=2, S=5/2). These results suggest the presence of a relatively strong intramolecular
antiferromagnetic exchange interaction atRT [39].

The evolution of themolarmagnetic susceptibility with temperature was analyzed using theVanVleck
equation for a S=5/2 dinuclear spinmodel (equation (1)), derived from the spin exchangeHamiltonian
H=−JS1·S2 (S1=S2=5/2) [39].
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In equation (1), p represents the fraction of the paramagnetic impurity and x=J/kT, with J being the
magnetic coupling constant. A term corresponding to the temperature independent paramagnetism (TIP) has
been included in themodel. The bestfit to equation (1) gives rise to values ofJ=−308(11) cm−1 and p=1.5
(1)%,with TIP held constant at 500×10−6 cm3 mol−1. It is worth noting that the g value for both the
mononuclear contribution and the dinuclear units wasfixed to 2.00 to avoid over-parameterization. The
determined J value is in the range reported for other complexes containing the [Fe2OCl6]

2− unit [26, 39].
Although there is not a clear relationship between themagnitude of antiferromagnetic exchange coupling and
the Fe–O–Fe angle in [Cl3Fe–O–FeCl3]

2– type complexes [27], the strength of the coupling ismarkedly
influenced by the Fe–Obond, in such away that the shorter the Fe–Obond distance, the stronger themagnetic

Figure 9.Temperature dependence ofχm andχmTmeasured under 10 kOe. The solid red line represents the best fit of equation (1)
(seemain text). The inset shows thefield dependence of themagnetizationM(H), collected at 2 K.
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coupling. A theoretical calculation shows that the exchange coupling should be ca. 340 cm−1 for an Fe–O–Fe
angle of 160º and a Fe–Obond distance of ca. 1.75 Å [45], which is slightly stronger than the value reported
herein (308 cm−1) according to its larger Fe–Obond distance [1.848(2)Å]. This behavior could be indicative of a
weak ferromagnetism inside binuclear iron(III) complexes due to the antisymmetricDzyaloshinskii–Moriya
superexchange interaction.

Thefield dependence ofmagnetizationM(H) collected at 2 K is displayed in the inset offigure 9. At this
temperature, it tends to saturate at 50 kOewith a value ofmagnetization of 0.6μΒ/formula, which is far from the
expected fully saturated value of 10 μΒ for two non-interacting Fe

III ions. Furthermore, themagnetization shows
neither a ferromagnetic component (no irreversibility in the dM/dH)nor signal of ametamagnetic transition in
the entire applied field. Therefore, the shape of the field dependentmagnetization curve is in agreement with a
small rotation of the dinuclear units along the direction of the external appliedfield, but the intra-dinuclear
interactions remain strongly antiferromagnetically coupled.

TheMössbauer spectra of the presented compound consists of two absorption peaks similar to those
previously described for complexes containing the [Fe2Cl6(μ-O)]

2− unit and other organic cations [46, 47]. The
spectrum acquired at 295 K (figure 10) is asymmetric, with the intensity of the high velocity peak being lower
than the low velocity peak. Thewidths of both peaks are equal within the experimental error. This contrasts with
the spectrumof (BzlMe3N)2[Fe2Cl6(μ-O)] (BzlMe3N: benzyltrimethylammonium) reported byMolins et al [47]

Figure 10.Mössbauer spectra of (dimim)2[Fe2Cl6(μ-O)] acquired at different temperatures. The lines over the experimental points
are quadrupole doublets (estimated parameters in table 2).

Table 3.Estimated parameters from theMössbauer spectra of
(dimim)2[Fe2Cl6(μ-O)] acquired at different temperatures.

T (K) IS (mm s−1) QS (mm s−1) Γ (mm s−1) I

295 0.23 1.24 0.25 100

150 0.31 1.29 0.26 100

100 0.33 1.30 0.28 100

4.0 0.34 1.32 0.32 100

IS (mm/s) isomer shift relative tometallicα-Fe at 295 K;QS (mm/s)
quadrupole splitting;Γ (mm/s) peakwidth; I relative area. Estimated

errors�0.02 mm s−1 for IS, QS andΓ.
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which contains a small amount of impurities. Furthermore, the peaks in the spectrumof the complex at RT are
narrow,with the samewidth as those of theαFe used for calibration. It is therefore unlikely that the asymmetry
results from the presence ofmore than one doublet with different parameters and seems rather due to either
texture effects or to theGoldanskii–Karyagin effect. Considering that the asymmetry of the doublets strongly
decreases with decreasing temperature, such an asymmetry is very likely caused by theGoldanskii–Karyagin
effect, as suggested by Petridis et al for (BzPh3P)2[Fe2Cl6(μ-O)] (BzPh3P: benzyltriphenylphosphonium) [48].

The isomer shift (IS) relative tometallicαFe at 295 Kand thequadrupole splitting (QS) estimated for the single
doubletfitted to the spectra are similar to thosedescribed for analogous compounds (table 3) [48, 49]. The IS values are
consistentwith tetrahedrally coordinatedFe3+ in the S=5/2 state [50] and their increasewithdecreasing temperature
is explainedby the secondorderDoppler shift.As expected, the IS values are slightly lower than those reported for
oxido-bridgeddinuclear complexes [47], inwhichFe3+ is in an almost ideal octahedral environment. Finally, no long-
rangemagnetic order is detecteddown to4 K, in goodagreementwithDCmagnetic susceptibilitydata, since the
relaxationof theFe3+magneticmomentsdirections remains fast compared to theMössbauer timewindow.

4. Conclusions

The crystal structure of (μ-oxido)bis[trichloridoferrate(III)] is sustained by an intricate network of non-covalent
interactions occurring between staggered [Fe2Cl6(μ-O)]

2– anions and (dimim)+ cations, and exhibits an
anisotropic thermal expansion from100 Kup to itsmelting point. The competition among different
supramolecular interactions at low temperature gives rise to an incommensurate crystal structure that translates
into a structural disorder one near of 210 K. Thus, the occurrence of new reflections in the diffraction pattern at
100 K are compatible with an incommensurate structure for which an approximant supercell 210 times larger
than the of RT (VLT=7aRT×10bRT×3cRT) can be generated. The low temperature phasewas solved using
the super-space formalism, showing that the structure remain in a triclinic space group after the phase
transition. Although, due to thewell know ability of the (dimim) group to present displace and rotational
transformation as function of the temperature, a large number of phase transition have been observed on
imidazolium-based systems.However, to the best of our knowledge the (dimim)2[Fe2Cl6(μ-O)] compound is
thefirst one presenting an incommensurate structure at low temperature. Based on the RT and the LT crystal
structures, the order-disorder of theμ-oxido bridge could be the trigger of this uncommon phase transition.

Furthermore, theμ-oxido bridge is not only playing on the structural phase transition but also play a
fundamental role in themagnetic behavior of this compound. The Fe–O–Fe bridge provides a relatively strong
antiferromagnetic exchange between the two equivalent high-spin state (S=5/2) iron(III) centers, which is
even observed at RT. Based on the susceptibility andMössbauermeasurements we can conclude that the
magnetic behaviour is governed by the intra-dimers antiferromagnetic coupling. Due to the occurrence of this
strong intra-dimersmagnetic interaction, no long rangemagnetic ordering is detected down to 2 K.
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