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ABSTRACT 

The overall crystallization kinetics of polymer nanocomposites is determined by 

nucleation and crystal growth, which are both greatly affected by confinement. 

Heterogeneous nucleation is influenced by the interphase area between filler and 

polymer matrix. Starting with a homogeneous nematic aqueous dispersion of a mixture 

containing polyethylene glycol (PEG) and varying amounts of a high aspect ratio 

layered silicate (hectorite, Hec), nanocomposite films were casted displaying a 

systematic variation of the degree of PEG confinement. This is achieved by a partial 

phase segregation upon drying, where independently of filler content a 

thermodynamically stable, 1 dimensional crystalline hybrid with constant volume of 

intercalated PEG (0.81 nm corresponding to a fraction 75 wt% and 55 vol%, 

respectively) is formed. This intercalated hybrid phase is incorporated into segregated 

PEG domains. The segregation is a kinetically controlled process and the length scale 

of segregation increases with PEG available in surplus of the hybrid. Due to the very 

large lateral extension of the Hec, the segregated domains are increasingly two 

dimensional. As evidenced by transmission electron micrographs and powder X-ray 

diffraction, the segregation produces composite structures where, in dependency of 

filler content, PEG slabs of different thickness are separated by domains of the 

intercalated hybrid material. The crystallization behavior of these bi-phasic materials 

was investigated by Differential Scanning Calorimetry (DSC) and Polarized Light 

Optical Microscopy (PLOM). DSC results reveal a competition between the nucleating 

effect of Hec, which was particularly important at low amounts, and the PEG 

confinement effect at higher filler loadings. Applying a self-nucleation protocol, the 

nucleation efficiency of the hectorite was shown to be up to 67%. The isothermal 

crystallization kinetics accelerated at low Hec contents (nucleation), went through a 

maximum and then decreased (confinement) as Hec content increased. Additionaly, a 

clear correlation between filler content and the Avrami index was obtained supporting 

the increase in confinement as filler loading increased. 

 

Keywords: Hectorite/PEG nanocomposites, Nucleation, Confinement 
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1. Introduction 

Polymeric nanocomposites are remarkable materials, because of their 

morphology and properties and the large variety of existing nanofillers.1-3 Furthermore, 

these nanofillers can improve many properties of the matrix, such as mechanical, fire 

retardancy, barrier quality, thermal resistance and conductivity. When the nanofiller 

content increases beyond a percolation threshold, normally, confinement effects can 

develop.4 

Polymers can be confined in one dimension (ultra-thin films, nanolayers, 

nanoscopic phases within block copolymers), two dimensions (nanocylinders in AAO 

templates or strongly segregated block copolymers) or three dimensions (3D micro or 

nano domains within blends, block copolymers, etc.).5 The behavior of polymers in 

restricted space can be dramatically different than in bulk6, in particular when 

nanodomains reach sizes comparable to the radius of gyration of the chains. Thermal 

transitions in confined polymers change according to the level of confinement, as well 

as crystal orientation.  

Nucleation and crystallization depend on the size and number of crystallizable 

domains or microdomains. When the number of micro or nanodomains is similar to the 

number of heterogeneities present in a bulk polymer, the crystallization of the confined 

material can be divided into several exotherms upon cooling from the melt at distinct 

supercoolings in a process know as fractionated crystallization.  The different 

crystallization peaks are due to the different populations of confined microdomains that 

have different nucleation mechanisms. Typically the nucleation changes from 

heterogeneous at high temperatures (where one or more exotherms can correspond 

to heterogeneities that have different activation energies) to surface or homogeneous 

nucleation at very high supercoolings, close to vitrification, as the degree of 
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confinement increases or the size of the microdomain decrease. If the number of 

microdomains is several orders of magnitude higher than the number of available 

heterogeneities in the bulk material, the crystallization occurs in a single crystallization 

peak that corresponds to surface or homogeneous nucleation.4  

Polyethylene oxide (PEO) and its low lower molecular weight equivalent, know 

as polyethylene glycol (PEG), are known to be water-soluble and non-ionic polymers 

of great interest in several fields of application. Beside their use as drug delivery 

systems, they are mainly used as hydrogels, wound healing materials, tissue 

engineering and in the field of cell culture.7-10 Moreover, they have been studied in 

confined systems, for example with carbon nanotubes (CNT), with silica, in block 

copolymers and blends.11, 12 In the case of polymer-filler systems, for example, 

polyethylene oxide (PEO), polyethylene (PE) and polycaprolactone (PCL) with carbon 

nanotubes, the effect of the concentration of the filler on the crystallization of the 

polymer has been studied. At low concentrations the filler can act as a nucleating 

agent, whereas at high concentrations a confinement effect may occur.13  

Recently, Wen et al., studied the confined crystallization of 

methoxypolyethylene glycol (MPEG) grafted to silica as a function of grafting density 

and molecular weight. They showed that confinement is stronger for lower molecular 

weight grafted MPEG. Their results demonstrated how the crystallization temperature 

(Tc) and the crystallinity of grafted MPEG chains reduces with decreases in grafting 

density. They also fitted their results to the Avrami equation and found that the Avrami 

index had a value of n ≈ 3 for neat MPEG as the material formed instantaneous 

spherulites. Instead, for MPEG-g-SiO2, the Avrami index was less than 1 (at high silica 

loadings). This result showed that the overall crystallization kinetics was dominated by 

nucleation, a typical result of confined crystallization.14  
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The main objective of this work is to study the nucleation and confinement effect 

of a layered silicate with high aspect ratio on PEG in dependancy of the filler content. 

The used silicate polymer dispersions and the resulting composites are characterized 

via Small Angle X-Ray Scattering (SAXS) and X-Ray Diffraction (XRD) techniques, 

respectively. Furthermore, the influence of the resulting structures on the crystallization 

kinetics of PEG is investigated by DSC measurements. Additionally, the nucleating 

efficiency of the synthesized layered silicate on PEG were estimated by self-nucleation 

studies and confirmed by polarized light optical microscopy (PLOM). A potential 

application for these materials could be food packaging, as low molecular PEG is 

known to be biocompatible and biodegradable.15 

2. Experimental Section 

2.1 Materials and samples preparation 

Sodium hectorite  [Na0.5]inter[Mg2.5Li0.5]oct[Si4]tetO10F2 (Hec) was prepared 

emploting a synthesis procedure from the melt, previously reported in the literature.16, 

17 The material features a cation exchange capacity (CEC) of 1.27 mmol g-1. 

Polyethylene glycol (PEG, Mw = 1450 g mol-1) was provided by Sigma Aldrich 

(Germany).  Hec was immersed into Millipore water (1 wt%) for its delamination, and 

this suspension was added dropwise during stirring to a 1-5 wt% PEG solution in the 

weight ratios (wt%) PEG:Hec 80:20, 60:40, 40:60 and 25:75 and shaken overnight to 

improve dispersion quality. Afterwards, the dispersions were cast into Teflon 

containers and dried (room temperature and 40°C for 7 days (under vacuum), 

10- 3 bar). The different samples are labeled as PEGHec-X with X describing the filler 

content of Hec in wt%. For comparison, a neat PEG sample was used. 

2.2 Characterization 
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Structural Characterization. PEGHec composites were thinly cut with an Ion 

Slicer EM-09100IS (JEOL GmbH, Germany), which were then observed with a JEM-

2200 FS (JEOL GmbH, Germany transmission electron microscope (TEM).  

The diameter of the Hec platelets were measured via scanning electron 

microscopy (SEM, Zeiss Leo 1530).  

A small-angle X-ray “Ganesha AIR” (SAXSLAB, Denmark) equipment was used 

to record SAXS patterns. It is equipped with a rotating anode X-ray source (copper, 

MicoMax 007HF, Rigaku Corporation, Japan). A position-sensitive detector (PILATUS 

300K, Dectris) was employed to record the diffraction patterns. Prior to the 

measurements, the PEGHec suspension was centrifuged for 2 hours (13000 rpm) to a 

resulting gel (4.5 wt%) to enhance sensitivity. The measurement of the suspension 

was performed in 1 mm glass capillaries (Hilgenberg, Germany) at room temperature. 

The birefringence of the dispersions was shown with a self-made cross polarizer.  

Wide angle X-ray diffraction (XRD) patterns were measured using nickel filtered 

Cu-Kα radiation (λ = 1.54187 Å) with a Bragg-Brentano-type diffractometer (Empyrean) 

equipped with a Pixcel detector. The dispersions were dropped onto glass platelets 

and dried for 1 week in a vacuum chamber (10-3 bar). The X-ray diffraction powder 

patterns were analyzed with a software by Panalytical’s Highscore Plus.  

The semi-crystalline morphology of neat PEG and PEGHec nanocomposites 

were examined with polarized light optical microscopy (PLOM) with an OLYMPUS 

BX51 microscope equipped with an OLYMPUS SC50 camera and a hot-stage (Mettler 

FP82HT) with liquid nitrogen flow. Samples were prepared by heating them in between 

glass slides to a temperature of 30 ºC above their melting temperatures to erase 

thermal crystalline history. After 5 min at this temperature, the samples were cooled at 

50 ºC min-1 until the desired isothermal Tc value, which was selected based on prior 

DSC measurements. 
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Thermal Analysis. A PerkinElmer 8000 DSC equipment with a cooling 

accessory (an Intracooler II) was used. Ultrapure nitrogen was used as purge gas, and 

calibration with indium and tin standards was performed. Sample weight was 

approximately 5 mg. Non-isothermal scans were performed after melting for 3 min at 

80 ºC to erase thermal history. Employing scanning rates of 20 °C min-1, a cooling scan 

from the melt was recorded (down to 0 ºC) followed by a subsequent heating scan 

(from 0 ºC to the 80 ºC). 

We followed the procedure recommended by Lorenzo et al.18 to measure by 

DSC experiments, the overall isothermal crystallization rate of the samples, which 

includes primary nucleation and growth processes. The samples were heated to 80 °C 

and kept at this temperature for 3 min. Then the samples were rapidly cooled at 

60 °C min-1 to the isothermal crystallization temperature (Tc). The Tc range employed 

was previously determined by ensuring that no crystallization occurred during the 

cooling step. In this way, the minimum isothermal Tc value was chosen when the 

subsequent heating step showed no melting peak.18  

Self-Nucleation (SN) was performed according to the protocol of Fillon et al..19 

In this test, the following steps are carried out at 20 ºC min-1: (i) heating the sample to 

80 ºC and keeping at this temperature for 1 min to erase thermal history; (ii) the sample 

is then cooled from 80 ºC to 0 ºC; (iii) heating to a temperature that is denoted self-

nucleation temperature (Ts), and the sample remains at this Ts temperature for 5 min; 

(iv) cooling from Ts to 0 ºC to record any changes in Tc due to SN; and (v) a final heating 

scan is performed from 0 °C to 80 °C. There are three different SN Domains that are 

well-defined in the literature19, 20, and will be explained in the results and discussion 

section below. 
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3. Results and discussion 

Melt synthesized sodium fluorohectorite ([Na0.5]inter[Mg2.5Li0.5]oct[Si4]tetO10F2, 

Hec)16  comes in high lateral dimensions (20 µm) and shows the rare phenomenon of 

osmotic swelling delivering ≈ 1 nm thick nanosheets of huge aspect ratio (≈ 20 000). 

The latter renders it ideally suited as filler for poymer composite barriers as needed 

e.g. in (food) packaging.21-23 By immersing Hec into deionized water osmotic swelling 

allows for complete and gentle delamination.16, 24, 25 As Hec has a very large aspect 

ratio, the rotation of the nanosheets is stalled and instead of isotropic suspensions, 

rather liquid crystalline, nematic pahses are obtained. The separation of adjacent 

nanosheets is well defined and determined by its concentration.26  

Mixing the nematic Hec dispersion with different amounts of an aqueous PEG 

solution, allows the polymer to uniformally diffuse between adjacent Hec nanosheets 

yielding perfectly homogeneous ternary nematic dispersions, as evidenced by SAXS 

(Figure 1). For instance for one of the dispersions (PEGHec-75), a nematic 

suspension was obtained with 42 nm separation of the nanosheets. Reaggregation of 

 
Figure 1. SAXS pattern of the ternary dispersion (PEG, Hec (75 wt%), water) showing completely 
separated single nanosheets without any reaggregation of the Hec nanosheets evidenced by absence 
of a reflection at d=1.51 nm (blue line). The insets show a SEM picture of a Hec platelet exhibiting an 
lateral dimension of > 20 µm and the birefringence of the PEGHec-20 hybrid in a self-made cross 
polarizer. 
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Hec nanosheets to stacks can be excluded by the absence of a reflection typical for 

crystalline hydrated Hec phases at q = 0.65-0.41 Å-1 (1.51 nm, indicated as blue line 

in Figure 1).16, 26  

These suspensions were cast into Teflon shells and then slowly but thoroughly 

dried whereupon self-standing films with Hec contents varying from 20 to 75 wt% were 

obtained. Regardless of the filler content, for all composites a d001 peak at 1.77 nm 

(2θ = 4.97°) was observed by XRD (Figure 2). The highly rational (00l)-series with 

sharp and intense basal reflections visible up to the sixth order indicate a well defined 

1 dimensional (1D) order.27, 28 For a Hec layer thickness of 0.96 nm, a PEG:Hec volume 

ratio of 45:55 can be deduced for the crystalline domains. Assuming in a first 

approximation that the intercalated PEG has the same density than bulk PEG 

(1.1 g cm-3) and applying the Hec density of  2.7 g cm-3, a filler content of 75 wt% can 

 
Figure 2. XRD patterns of PEGHec nanocomposites (red: 20wt% filler, blue: 40wt%, green: 60wt%, 
purple: 75 wt%). The dotted line at 0.96 nm indicates the d-spacing of neat, completely dry Hec 
(dHec). 



10 
 

be estimated for these crystalline domains. The sample with 75 wt% Hec corresponds 

to this estimated composition of the crystalline hybrid phase.  

TEM images (Figure 3a) of this sample showed extended ordered domains. 

The interlayer height of 0.81 nm (Figure 3b) observed by XRD and TEM agrees with 

published vaues for PEG layered silicate nanocomposites.29-31 This 1D ordered 

intercalated hybrid seems to be a thermodynamically favoured phase irrespective of 

the type and lateral extension of the layered silicate/clay applied as filler.  

A closer inspection of the the TEM images, however, reveals some few layer 

Hec defects. Apparently, the PEG:Hec ratio applied does not perfectly meet the ratio 

requested for the hybrid material and consequently some Hec-only domains (Figure 

3a, white arrow) are forced to segregate despite thermodynamics favouring the hybrid 

structure as recently suggested by Walther et al..32 These Hec domains are, however, 

far thinner than the coherence length of the X-ray beam and therefore do not show up 

in the diffraction pattern. 

 

Figure 3. a) TEM image of the highly filled PEGHec nanocomposite (75 wt%) showing extended 
ordered domains. White arrow indicates partial restacked Hec phase. White inset is shown in b) as 
close up indicating the equidistant ordering of the Hec nanosheets in the polymer matrix. 
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All other samples prepared being lower in Hec content display the opposite 

phenomenon. PEG is available in surplus of the stoichiometry of the hybrid phase and 

consequently needs to segregate in PEG-only domains. As the evaporation 

progresses, however, a tortuous path is built up in the casted film making mass 

transport increasingly more difficult and this severely limits the length scale of the 

segregated domains. Moreover, these domains are inherently 2D and occur as 

anisotropic eliptical lenses (Figure 4a) because the silicate layers with 20 µm lateral 

extension all orient in parallel in the film. The diffusion limitation defining the kinetics of 

the mass transport and thus the typical size of the segregated domains, according to 

Cussler is directly dependant on 𝜙𝜙
2

1-ϕ
 (ϕ= filler content).25, 33 The slabs of segregated 

PEG between intercalated hybrid domains therefore become thicker with decreasing 

Hec content.  

For PEGHec-40 typical slab heights in the range of 35 nm are observed (Figure 

4b). These segregated PEG domains therefore still sense some degree of 

confinement. Consequently, confinement effects are expected for the segregated PEG 

 

Figure 4. a) TEM image of PEGHec-40 nanocomposite showing neat PEG domains (white box) 
between the ordered hybrid domains. b) Close up of white box in a) showing the size of the PEG 
slabs between the hybrid domains matrix. 
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domains since they are far from the bulk state but rather experience a severe 

confinement between the intercalated domains (Figure 4b). The degree of 

confinement can be systematically varied with the filler content applied. The PEGHec 

composites thus represent ideal model systems to study the influence of 

heterogeneous nucleation surface and confinement on the crystallization behavior of 

PEG. 

These structural results are in line with the non-isothermal DSC scans 

performed in this work reported in Figure 5. As can be seen in the DSC scans, the 

addition of Hec increases the peak crystallization temperature. The results are 

consistent with a nucleating effect that is maximum for 20 wt% filler content (as Tc is 

the highest) and progressively reduces, as the amount of Hec is increased. The peak 

crystallization temperature (Tc) increases from 22 °C to 34 °C upon 20 wt% Hec 

addition (Figure 5). With further increases in the amount of Hec (40, 60 and 75 wt%) 

  
Figure 5. DSC scans (a,b) of the different nanocomposites (red: 20wt% filler, blue: 40wt%, green: 
60wt%, purple: 75 wt%) in comparison with neat PEG (grey). 
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confinement increases. A competition occurs between the nucleating effect of Hec 

(which tends to increase Tc) and its confinement effect on PEG (which tends to 

decrease Tc). The 1D-crystalline intercalation compound obtained at 75 wt% Hec, even 

shows a Tc of 19°C that is below the Tc of neat PEG (22°C) and an extremely low 

crystallinity degree (see Figure 5b). This indicates that strong confinement is the 

dominant behavior. This verification is in agreement with recent results obtained by 

Walther et al. and published in Reference 32, where they confirmed the presence of a 

crystalline phase of PEO in all nanocomposite samples. 

Figure 6 summarizes the non-isothermal DSC results by plotting Tc, Tm, and 

the degree of crystallinity (Xc) versus Hec content in the composites (see Table 

S1). As can be clearly seen, the crystallinity of the PEGHec composites strongly 

decreases with an increasing amount of Hec. This effect leads to a crystallinity of < 5% 

in PEGHec-75. As already disussed, the space for segregated PEG-only domains  

   
Figure 6. a) Experimental melting temperatures (grey circles) and crystallization temperatures (red 
cicles); b) calculated degree of crystallinity developed during non-isothermal crystallization (grey 
circles) and during isothermal crystallization (blue circles) determined as a function of the Hec 
content in the composites.  
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between the perfectly ordered hybrid phase is affected by the amount of Hec, 

which significantly hinders PEG to crystallize. Within the confined space PEG is not 

able to crystallize and the crystallinity is given by the separated PEG phase outside 

the galleries of Hec. Compared to other publications in the field of polymer-filler 

crystallinity studies, we observed a large decrease of crystallinity with increasing filler 

content (Figure 6b) up to very high loadings.34 The hybrid materials even keep a 

significant crystallinity at filler contents as high as 60 wt%.34  
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By polarized light optical microscopy (PLOM, Figure 7) the nucleating effect of 

Hec can be observed. For neat PEG, the isothermal growth of negative spherulites at 

40 ºC was easily observed, as PEG develops large spherulites with diameters of 

around 400 µm (see Figure 7a). In the case of the sample with 20% Hec, the 

birefringent colors observed in Figure 7b and 7c are due to Hec nanosheets that are 

viewed edge-on. Figure 7c shows that birefringent crystals nucleate directly around the 

areas where the Hec nanosheets are located. They are acting as nuclei for the 

surrounding PEG matrix crystallisation. From these starting points, PEG chains 

nucleate and PEG crystal aggregates (resembling irregular axialites) grow impinging 

on one another.  

To calculate the efficiency of Hec as a nucleating agent for PEG we employ the 

self nucleation (SN) technique. (Figure 8, Table 1) Müller et al. have applied SN 

 
Figure 7. PLOM micrographs of a) a single PEG spherulite crystallized isothermally at 40 ºC and the 
time-dependant crystallization of PEGHec-20 sample crystallized at 40 ºC at b) t= 0 seconds, c) t= 
20 seconds, d) t= 60 seconds. 
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protocols to study the confined crystallization in copolymers and 

nanocomposites/hybrids, among other polymeric systems.19, 20, 35 The protocol used 

here is detailed in the experimental section. 

Figure 8a presents the cooling scans after SN at the indicated Ts values. Figure 

8b shows the subsequent heating scans from the same Ts values. With the cooling 

DSC scans of Figure 8a, the transition between Domain I and II can be clearly 

established, while the transition between Domains II and III can be detected by 

analyzing the heating DSC scans of Figure 8b. Domain I or melting domain (red lines) 

in Figure 8 occurs at Ts temperatures where all crystalline memory is erased. This 

Domain is characterized by a constant Tc as is observed in Figure 6a and invariant Tm 

value as is observed in Figure 8b.  

Domain I switches to Domain II when the Tc increases to higher temperatures 

(as Ts is lowered). This Domain is also called the exclusive self-nucleation domain. In 

Domain II the Ts values are low enough to induce the formation of self-nuclei but high 

enough to guarantee that annealing does not occur. Domain II can be observed in 

Figure 8a (DSC scans are plotted with blue lines) and is first detected when Tc values 

increase in comparison with the standard Tc value observed in Domain I. The lowest 

Ts value within Domain II identifies the “ideal self-nucleation temperature” (Ts,ideal), a 

temperature that should be carefully measured. The ideal self-nucleation temperature 

is the Ts temperature that provokes maximum self-nucleation (i.e., maximum increase 

in the concentration of self-nucleai within Domain II) but without producing annealing. 

According to Figure 8a, the ideal SN temperature for the employed PEG in this work is 

48 ºC. If the applied temperature gets too low, melting is incomplete and annealing 

sets in. This is characteristic for Domain III where a second melting peak appear, as it 

can be observed in Figure 8b (DSC plotted with green lines).  
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According to Fillon et al. the nucleation efficiency (NE) of a nucleating agent can 

be easily calculated by using the information obtained by SN measurements.36 As 

explained above, self-nuclei are the most efficient nuclei for polymer crystallisation and 

thereby, the lowest applied temperature in Domain II is expected to be the most 

efficient temperature for SN (Ts,ideal), as with decreasing temperature, the nuclei 

number is increasing. Thereby, the Tc value after SN at 48 °C (i.e., the ideal SN 

temperature for the PEG employed here, as shown in Figure 8) or Tc,max is taken for 

the calculation of the different NEs (Equation (1)).  

                                                      NE= Tc,NA-Tc,P
Tc,max-Tc,P

·100                                                  (1) 

where Tc,NA = Tc (PEGHec-X) and Tc,P = Tc (neat PEG) = 22°C, taken from Figure 5. 
(For neat PEG, Figure 8, Tc,max = 40 °C) 

 

The calculated nucleation efficiencies are reported in Table 1. At 20% Hec, a 

realtively high nucleation efficiency of 67% is obtained. However, as Hec content 

 
Figure 8. Cooling (a) and heating (b) scans for neat PEG after SN at different Ts values and 
presented from top to bottom in decreasing Ts order Domain I (red), II (blue), III (green) are shown. 



18 
 

increases, the efficiency of Hec as a nucleating agent is offset by its confinement effect 

and the calculated efficiency decreases dramatically, until it vanishes at very large Hec 

contents. 

Table 1. Nucleation efficiencies calculated from Equation 1 (see text). 

Sample Tc / °C NE / % 

PEGHec-20 34 67 

PEGHec-40 30 45 

PEGHec-60 25 17 

PEGHec-75 19 0 

 

Additionally, calorimetry experiments were used to measure the overall 

isothermal crystallization rate of neat PEG and the PEGHec composites. A polymer 

overall crystallization rate depends on both primary nucleation rate and crystal growth 

rate. The experimentally measured half-crystallization time (1/τ1/2) is proportional to the 

overall crystallization rate. The half-crystallisation time is defined as the time needed 

for 50% relative conversion from the melt to the crystalline state.  

Figure 9a shows the overall crystallization rates (expressed as 1/τ1/2) for neat 

PEG and all PEGHec composites as a function of Tc. The curves show the expected 

trend of reduction of overall rate as a function of Tc usually observed at low 

supercoolings, where the crystallization kinetics is dominated by nucleation effects 

(i.e., primary and secondary nucleation) and much less affected by diffusion.37 

When 20 wt% Hec is added to PEG, the curve of rate versus Tc in Figure 9a is 

shifted to higher crystallization temperatures or lower supercoolings. This is a clear 

acceleration effect of the overall crystallization kinetics provoked by the primary 

heterogeneous nucleation effect of Hec (which in non-isothermal conditions has a 67% 
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nucleation efficiency, see Table 1) on PEG. Increasing the amount of Hec to 40 wt%, 

increases even further the overall crystallization kinetics. This indicates that primary 

nucleation is still controlling the overall crystallization kinetics. However, when 60 wt% 

Hec is added to PEG, confinement effects start to be present. Hec can still nucleate 

PEG, but Figure 9a shows that 60 wt% filler content accelerates the overall kinetics 

less than adding 40 wt% Hec.  

Finally, when the amount of Hec increases to 75 wt%, Figure 9a shows how the 

overall crystallization rate versus Tc curve is shifted to higher supercoolings with 

 

Figure 9. (a) Inverse of the half-crystallization time (1/τ1/2) as a function of Tc and (b) Avrami index 
(n) as a function of Tc. (red:20wt% filler, blue: 40wt%, green: 60wt%, purple: 75 wt%, grey: neat 
PEG) 
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respect to PEG, i.e., a slower kinetics is promoted in relative terms if constant 

crystallization temperatures are considered (by extrapolation). This result means that 

confinement effects completely dominate the overall crystallization kinetics and the 

primary nucleation effect of Hec is less important. 

Generally speaking, if we extrapolate all data to a single crystallization 

temperature in Figure 9a, the results show that Hec addition increases overall 

crystallization rate until a maximum is obtained at 40 wt%, then further Hec addition 

decreases the crystallization rate. The isothermal crystallization kinetics shows 

remarkable trends that are consistent with an acceleration effect due to primary 

nucleation enhancement at low hectorite contents and at higher filler loadings, a 

reduction due to confinement of PEG chains by the filler.  

The competition between primary nucleation and confinement in the overall 

crystallization kinetics results shown in Figure 9a is very clear. In the last few years 

similar trends have been reported for similarly confined materials, containing carbon 

nanotubes and silica nanoparticles, amongst others.4, 13, 14, 38 

The overall crystallization kinetics data can be modeled by the Avrami equation, 

even if the fittings to the Avrami equation are usually restricted to low conversions to 

the crystalline state, i.e., the primary crystallization stage (before crystalline 

superstructural aggregates impinged on one another during growth).18, 39 

Thereby, the Avrami index (n) (Figure 9b) provides a useful tool to have a 

deeper look into the crystallization kinetics with respect to the morphology. As 

proposed by Müller et al. 38, 40, 41 the Avrami index can be considered the sum of two 

parts (Equation (2)): 

                                                          n = nn+ngd                                           (2) 
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where nn describes the fraction of the index related to primary nucleation (nn=0 

instantaneous nucleation and nn=1 sporadic nucleation). The value ngd shows the 

growth dimensionality (usually 1−3, ngd = 1 (one-dimensional crystals), ngd = 2 

(axialites, 2D) and ngd = 3  (spherulites, 3D)).  

Figure 9b shows how the Avrami index varies with crystallization temperature. 

At low filler contents, the nucleating effect leads to the formation of instantaneously 

nucleated spherulites or axialites, for which an Avrami index of 3 and 2 respectively 

should be expected. Within experimental errors and the fact that nucleation is normally 

not perfectly instantaneous, fractional values of the Avrami index are usually obtained. 

In samples with a Hec content between 20 and 60 wt%, the Avrami values are around 

2.2-2.7. On the other hand, when the Hec content increased to 75 wt%, the Avrami 

index decreased drastically to values around 1.6-1.8, due to the increasing 

confinement effect due to Hec. An Avrami index value of 2 would be expected for 2D 

crystal aggregates instantaneously nucleated, or 1D crystals sporadically nucleated. 

As it has been observed in literature before in similar nanocomposites/hybrids,13, 14 a 

close correlation exists between Avrami index and confinement. Additionally, as 

confinement increases the composites need higher degrees of supercooling to 

crystallize.  

As confinement increases, the slow step of the kinetics becomes the nucleation, 

as growth is usually very fast at high supercoolings and the small spaces where the 

material crystallizes can be quickly filled by crystal growth, once one nucleous is 

formed. This is the rationale behind the close correlation between decreases in Avrami 

index and confinement.38-41   

The Lauritzen and Hoffman (LH) model can be used to fit the isothermal overall 

crystallization rate data. Further insights into the nucleation versus confinement 
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competition can be gathered from the interpretation of the fitting parameters.42-44 The 

LH model applied to DSC data (including both nucleation and growth) is expressed by 

Equation (3): 

                                        1
Ƭ0.5

 (T) =  1
Ƭ0.5

 (T=0) exp � -U*
R(Tc-T∾

� exp � -Kg
Ƭ

∆Tf Tc
�                  (3) 

1/τ0.5 represents the overall crystallisation rate (nucleation+growth, obtained from 
DSC). 
U* is a diffusion activation energy (taken as 1500 cal/mol) 
R is the gas constant. 
Tc is the isothermal crystallization temperature. 
T∾ is a temperature where chain mobility stops (taken as Tg - 30 K). 

∆T defines the supercooling (Tm
0-Tc), and Tm

0 is the equilibrium melting temperature.  

f is defined as: f= 2Tc

�Tc+Tm
0�

 

Table 2. Fitting parameters of the LH theory applied to the overall isothermal crystallization data 
measured by DSC. 

Values employed for the L-H fitting: ρc =1.239 g/cm3;  ρa=1.124 g/cm3 Å45  
T∞=-97.2 ºC;  a0=4.67 Å   bo=4.65 Å;  U*= 1500 Cal/mol;  ∆hf = 230 J/g46  
 

The value Kg
Ƭ is given by the slope of the graph ln 1

Ƭ0.5
+ U*

R(Tc-T∾)
  against 

(∆Tf Tc)- 1. Kg
Ƭ is proportional to the energy barrier of the overall crystallization. Table 

2 shows all relevant parameters that can be obtained by the fitting of the LH model .47  

samples Kg x 104 (K2) σe (erg/cm2) q x 10-13 (erg) R2 

neat PEG 4.3 41.3 1.79 0.7826 

PEGHec-20 3.1 30.4 1.32 0.8969 

PEGHec-40 2.6 25.5 1.11 0.9753 

PEGHec-60 3.5 34.2 1.48 0.9875 

PEGHec-75 5.2 51.5 2.24 0.8804 
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As shown in Figure 10 and Table 2, the energy barrier for overall crystallization 

(proportional to Kg
Ƭ), the fold surface free energy σe and the work of chain folding q,  

decrease first with increasing Hec content, passing thorugh a minimum at 40 wt% Hec, 

as expected in view of the nucleating effect of Hec. A similar effect has also already 

been observed and examined with the LH theory for PE layered silicate 

nanocomposites.48 With further increases of filler loading, the described values 

increase again and the energy barrier ends up being higher than that for neat PEG at 

a Hec content of 75 wt%. Ghasemi et al.48 described an increased surface energy and 

work of chain folding as hindered re-entry of the polymer chains into the crystal due to 

the Hec nanosheets. The results presented in Figure 10 provide additional evidences 

of the nucleation versus confinement competition that occurs upon Hec addition to 

PEG. 

 

4. Conclusions  

 

Figure 10. Kg  (a)) and σ (b)) versus Hec Content. 
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Due to the large diameter (20 µm)  of individual silicate layers upon repulsive 

delamination, liquid crystalline phases are obtained with separations of neighbouring 

nanosheets of > 40 nm. This allows the formation of a homogenous nematic ternary 

dispersion (water, PEG, Hec). Upon removing the dispersion medium, 

thermodynamics  drives a partial phase segregation. Since mass transport is hindered 

during the drying process, kinetics of segregation are slowed down and the length 

scale at which phase segregation can be accomplished varies systematically with filler 

content.  

A clear competition between heterogeneous nucleation and confinement 

imposed on PEG by increasing amounts of Hec has been demonstrated by changes 

in thermal properties, isothermal crystallization kinetics of PEG as a function of filler 

content, Avrami index trends and crystallization energy barrier variations.  

Aside of the more fundamental aspects, the PEGHec composites with their 

tailor-made crystallinity and a very long tortuous path for gas molecules, may have 

potential as biodegradable barrier systems, particularily of interest as food packaging 

material. Work in that direction is in progress. 
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24. Stöter, M.;  Kunz, D. A.;  Schmidt, M.;  Hirsemann, D.;  Kalo, H.;  Putz, B.;  Senker, J.; 
Breu, J., Nanoplatelets of Sodium Hectorite Showing Aspect Ratios of≈ 20 000 and Superior 
Purity. Langmuir 2013, 29, 1280-1285. 
25. Kunz, D. A.;  Schmid, J.;  Feicht, P.;  Erath, J.;  Fery, A.; Breu, J., Clay-based 
nanocomposite coating for flexible optoelectronics applying commercial polymers. ACS nano 
2013, 7, 4275-4280. 
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	∆T defines the supercooling (,,T-m.-0.-,T-c.), and ,,T-m.-0. is the equilibrium melting temperature.
	f is defined as: f=,2,T-c.-,,T-c.+,,T-m.-0...
	The value ,,K-g.-Ƭ. is given by the slope of the graph ln,1-Ƭ0.5.+ ,U*-R(,T-c.-T∾).  against (,∆Tf T-c.)- 1. ,,K-g.-Ƭ. is proportional to the energy barrier of the overall crystallization. Table 2 shows all relevant parameters that can be obtained by ...
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