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Laburpena 

Doktorego-tesi hau 2017ko martxoan hasi zen, Espainiako Gobernuaren laguntzarekin, 

Ekonomia eta Lehiakortasun Ministerioaren plan nazionalen REBICAT (Hondakin 

Biomasikoak Bioerregai eta Produktu Berriztagarrietan Eraldatzeko Tekonologia 

Katalitiko Aurreratuak) proiektuaren esparruan eta Bilboko Ingeniaritzako Eskolako 

(Euskal Herriko Unibertsitatea, UPV/EHU) Ingeniaritza Kimikoaren eta Ingurumenaren 

Ingeniaritza Saileko Prozesu Iraunkorren Ingeniaritzako ikerketa-taldearen (Supren) 

esparruan. Lan hau Jesús M. Requies Martínez doktoreak eta Ion Agirre Arisketa 

doktoreak gainbegiratu dute. Gainera, doktorego-tesi honetan sei hilabeteko ikerketa-

egonaldia egin zen Bolognako Unibertsitateko (Italia) "Toso Montanari" Dipartamento 

di Chimica Industrialean, Fabrizio Cavani katedradunaren gainbegiradapean eta 

Tommaso Tabanelli eta Giulia Balestraren laguntza adeitsuarekin. 

Urte hauetan zehar, doktorego-tesi honetan egindako lanari esker, biomasatik 

eratorritako 5-hidroximetilfurfural (HMF) konposatutik bioerregaiak ekoizteko sistema 

katalitiko aurreratuak garatu ahal izan dira. Gainera, doktorego-tesi honek lehenengo 

laurdenean (Q1) dauden aldizkarietan 4 artikulu eta 2. laurdenean (Q2) kokaturik 

dagoen aldizkari batean beste artikulu bat argitaratzeko aukera eman du. Halaber, 

nazioarteko zazpi kongresuetan eta kongresu nazional batean gauzatutako lana 

aurkezteko bidea eman du. Doktorego-tesia hainbat kapitulutan egituratuta dago, eta 

hurrengo paragrafoetan laburbilduko dira. 

1. kapituluak erregai fosil konbentzionalen erabilera ordezkatzeko beharra 

nabarmentzen du. Alde horretatik, biomasa da produktu petrokimikoak ordezka 

ditzakeen energia-iturri berriztagarri bakarra. Beraz, biomasa lignozelulosikoa balio 

erantsiko produktu kimiko eta bioerregaietan bihurtzeko ikertzearen garrantzia 

nabarmentzen da. Biomasa lignozelulosikoaren konplexutasuna dela eta, ibilbide 

katalitiko gehienek lehengai berriztagarri hori hainbat molekula plataformatan 

bihurtzea dakarte, hala nola HMF. HMF-a produktu kimikoak eta bioerregaiak lortzeko 

bitarteko aldakor bat da. Kapitulu honetan, HMF-tik eratorritako bi bioerregairen 

propietateak eta etorkizun handiko aplikazioak deskribatzen dira, 2,5 dimetilfuranoa 

(DMF) eta 2,5 dimetiltetrahidrofuranoa (DMTHF) hain zuzen ere 



Laburpena 

 

4 

2. kapituluan, DMF eta DMTHF-ren ekoizpenaren ikerketen berrikuspen sakona azaltzen 

da. Lehenik eta behin, biomasa eta azukreetatik abiatuta, DMF-ren ekoizpen katalitiko 

zuzena zehazten da. Hainbat lehengai (arto-uztondoa, agarra, glukosa, fruktosa, etab.) 

DMF-n eraldatze prozesua deskribatzen da. Ondoren, DMF-ren ekoizpena deskribatzen 

da HMF-tik abiatuta. Ildo horretan, erreakzio-bide nagusiak eta sistema katalitikoak 

sakonki deskribatzen dira. Azkenik, DMTHF-ren ekoizpenean egin berri diren ikerketak 

deskribatzen dira. 

3. kapituluan doktorego-tesi honen helburu nagusia definitzen da. Helburu nagusi hori 

betetzeko, zenbait helburu partzial ere deskribatzen dira. Horien artean, katalizatzaileen 

metal aktiboen eta euskarri ezberdinen erabilera azaltzen da.  

4. kapituluan, doktorego-tesi hau garatzeko erabilitako prozedura esperimental eta 

analitikoak deskribatzen dira. Ildo horretan, katalizatzailea prestatzeko metodoak, 

erreakzio-sistema, analisi-metodoak eta karakterizazio-teknikak zehatz-mehatz 

deskribatzen dira. 

5. kapituluak lan honen lehen emaitza esperimentalak jasotzen ditu. Kapitulu honetan, 

Cu/ZrO2-n oinarritutako katalizatzaileak egokitu egiten dira sistemaren jarduera 

katalitikoa hobetzeko. Horretarako, lehenik eta behin, Cu-ren hainbat eduki metaliko 

gehitu zitzaizkion ZrO2-ren euskarriari. Gainera, ZrO2-ren euskarria eraldatu egin zen 

CeO2-rekin. Era berean, metal nobleak (Ru) eta ez-nobleak (Ni) gehitu zitzaizkion fase 

aktiboari. Katalizatzaileak HMF-ren hidrogenolisirako erabili ziren, DMF eta DMTHF 

ekoitziz. Screening katalitiko honen katalizatzailerik aktiboena NiCu/ZrO2 izan zen. 

Katalizatzaile honen aktibitate handia, Ni eta Cu-ren arteko interakzioari egotzi zitzaion. 

Aurreko kapituluan lortutako emaitzak ikusita, 6. kapituluak NiCu/ZrO2 sistema 

katalitikoaren ulermen sakona du ardatz. Ondorioz, metal kargaren eragina eta 

inpregnazio metodoa aztertu ziren. Ni eta Cu metalak elkarrekin inpregnatuak izan ziren 

edo sekuentzialki inpregnatuak (lehenik metal bat inpregnatzen da eta gero bigarrena). 

Oro har, katalizatzaile bimetalikoek beren homologo monometalikoek baino 

errendimendu eta egonkortasun hobea aurkeztu zuten. Hau, ziur aski, Ni-Cu 

interakzioaren presentziaren ondorio da. Gainera, metalen inpregnazio sekuentzialak 

Ni-Cu interakzio handiagoa, partikula tamaina txikiagoa eta azidotasun txikiagoa ezarri 
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zituen. Azkenik, katalizatzailearen gainazaleko Ni metalikoa izan zen DMTHF-ren 

ekoizpenaren arduraduna. 

7. kapituluan, ikatz komertzialaren eta biomasatik eratorritako ikatzaren erabilera 

aztertzen da, Ni eta Cu monometalikoen eta Ni-Cu bimetalikoen katalizatzaileetarako 

euskarri katalitiko gisa. Horretarako, lau euskarri prestatu ziren: ikatz komertziala, 

biomasatik eratorritako ikatza, tratatutako ikatz komertziala eta tratatutako biomasatik 

eratorritako ikatza. Azken bi euskarri hauen tratamendua ikatzak azidoarekin (HNO3) 

aurretratatzean eta ondoren NaOH-rekin neutralizatzean datza. Oro har, katalizatzaile 

bimetalikoek, erabilitako euskarria edozein dela eta, zentro azidoen eta zentro 

metalikoen balantze hobea erakutsi zuten (Ni-Cu fase aktiboa), horrek jarduera 

egonkorra eskainiz. 

Azkenik, 8. kapituluak lan esperimentaletik ateratako ondorio garrantzitsuenak 

laburbiltzen ditu. Ni-Cu sistema bimetaliko katalitikoak DMF eta DMTHF ekoizteko 

sistema aktibo eta egonkor gisa aurkezten dira ohantze finkoko erreaktore katalitiko 

batean. Gainera, ikerketarako mesedegarria izan daitekeen etorkizuneko lana ere 

deskribatzen da. 
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Resumen 

La presente tesis doctoral se inició en marzo de 2017 con el apoyo del Gobierno de 

España en el marco del proyecto REBICAT (Tecnologías Catalíticas Avanzadas para la 

Transformación de Residuos Biomásicos en Biocombustibles y Productos Renovables) 

de los Planes Nacionales del Ministerio de Economía y Competitividad y el grupo de 

investigación de Ingeniería de Procesos Sostenibles (Supren), integrado en el 

Departamento de Ingeniería Química y del Medio Ambiente de la Escuela de Ingeniería 

de Bilbao (Universidad del País Vasco, UPV/EHU). Este trabajo se ha realizado bajo la 

supervisión del Dr. Jesús M. Requies Martínez y el Dr. Ion Agirre Arisketa. Además, 

durante esta tesis doctoral se llevó a cabo una estancia de investigación de seis meses 

en el Dipartamento di Chimica Industriale “Toso Montari” de la Universidad de Bolonia 

(Italia) bajo la supervisión del profesor Fabrizio Cavani y con el amable apoyo del Dr. 

Tommaso Tabanelli y la estudiante de doctorado Giulia Balestra. 

A lo largo de estos años, el trabajo realizado en esta tesis doctoral ha permitido el 

desarrollo de sistemas catalíticos avanzados para producir biocombustibles a partir del 

compuesto 5-hidroximetilfurfural (HMF). Este compuesto es una molécula plataforma 

derivada de la biomasa, la cual puede ser transformada en diferentes productos 

químicos de valor añadido y biocombustibles.  

Por otro lado, esta tesis doctoral ha posibilitado la publicación de diversos artículos 

científicos en diferentes revistas indexadas. Concretamente, se han publicado 4 

artículos en revistas indexadas Q1 y un artículo en una revista indexada Q2. Además, 

ha permitido la defensa de diferentes publicaciones en siete congresos internacionales 

y un congreso nacional.  

La tesis doctoral está estructurada en diferentes capítulos, que se resumirán 

brevemente en los siguientes párrafos. 

El Capítulo 1 destaca la necesidad de reemplazar el uso de combustibles fósiles 

convencionales. En este sentido, la biomasa es la única fuente de energía renovable 

que puede sustituir a los productos de tipo petroquímico. Por tanto, se destaca la 

importancia de investigar la conversión de la biomasa lignocelulósica en productos 
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químicos de valor añadido y biocombustibles. Debido a la complejidad de la biomasa 

lignocelulósica, la mayoría de las rutas catalíticas implican la conversión de esta 

materia prima renovable en varias moléculas plataforma, como el HMF, un intermedio 

versátil para la obtención de productos químicos y biocombustibles. En este capítulo se 

describen las propiedades y aplicaciones prometedoras de dos biocombustibles 

derivados de HMF, el 2,5-dimetilfurano (DMF) y el 2,5-dimetiltetrahidrofurano 

(DMTHF).  

En el Capítulo 2 se expone una revisión exhaustiva del estado del arte de la producción 

de DMF y DMTHF. En primer lugar, se detalla la producción catalítica directa de DMF a 

partir de la biomasa y azúcares. Se describe la transformación directa de DMF 

partiendo de diversas materias primas (rastrojo de maíz, agar, glucosa, fructosa, etc.). 

Posteriormente, se describe la producción de DMF a partir de HMF. En este sentido, se 

describen ampliamente las principales rutas de reacción y los sistemas catalíticos más 

novedosos. Por último, se describen las recientes investigaciones en la producción de 

DMTHF. La obtención de este compuesto ha cobrado importancia en los últimos años, 

por lo que el número de investigaciones llevadas a cabo en la transformación de HMF a 

DMTHF es moderado. 

En el Capítulo 3 se define el objetivo principal de esta tesis doctoral: desarrollo de 

tecnologías catalíticas avanzadas para la producción de biocombustibles a partir de la 

hidrogenólisis selectiva de la molécula de plataforma derivada de la biomasa (HMF) 

empleando un reactor de lecho fijo. Para cumplir con este objetivo principal, se 

describen algunos propósitos parciales basados en la utilización de diferentes metales 

activos y soportes del catalizador. 

El Capítulo 4 describe los procedimientos experimentales y analíticos empleados para 

el desarrollo de la presente tesis doctoral. En este sentido, se describen con exactitud 

los métodos de preparación de los catalizadores y las técnicas de caracterización 

empleadas para el estudio físico-químico de las propiedades de los catalizadores 

sintetizados. Además, se detalla el sistema de reacción empleado, basado en un 

reactor de lecho fijo al que se alimenta el HMF diluido en 1-butanol y se evapora para 

llevar a cabo la reacción en fase gas, mezclando a continuación una corriente de H2 
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justo antes de alimentar la mezcla total al reactor. Después de la reacción, el H2 se 

separa de la corriente mediante un condensador (célula peltier), la cual permite 

recoger los productos en fase líquida. Por último, se describen los sistemas de análisis 

con los respectivos métodos empleados para el análisis de los productos obtenidos. Se 

utilizan tanto un cromatógrafo de líquidos (HPLC) para la cuantificación del HMF como 

un cromatógrafo de gases para la cuantificación de los productos de reacción (DMF, 

DMTHF, productos intermedios, etc.). Por último, los posibles productos desconocidos 

son analizados en un cromatógrafo de gases conectado a un detector de masas 

(GC-MS), el cual nos permite definir qué compuestos son aquellos que desconocemos.  

El Capítulo 5 contiene los primeros resultados experimentales de este trabajo. La 

reacción de hidrogenólisis de HMF para la producción de DMF y DMTHF se lleva a cabo 

a 15 bar de H2 y 275 ° C. En este capítulo, los catalizadores basados en Cu/ZrO2 se 

modifican para mejorar la actividad catalítica del sistema. Para ello, en primer lugar, se 

añadieron diferentes contenidos metálicos de Cu al soporte de ZrO2. Después de 

estudiar la cantidad óptima de Cu (15 wt%), el soporte de ZrO2 se modificó con CeO2 

para mejorar sus propiedades. El efecto esperado de la ceria no mejoró la actividad del 

catalizador. Por último, se añadieron metales nobles (Ru) y no nobles (Ni) a la fase 

activa. La adición de Ru mejoró levemente la actividad durante las primeras horas de 

reacción, pero manifestó la desactivación del catalizador. El catalizador más activo de 

este screening catalítico fue NiCu/ZrO2, obteniendo un máximo rendimiento a los 

productos de interés del 50 %. La elevada actividad de este catalizador se atribuyó a la 

interacción entre el Ni y el Cu. 

En vista de los resultados obtenidos en el capítulo anterior, el Capítulo 6 se centra en 

la comprensión profunda del sistema catalítico NiCu/ZrO2. En consecuencia, se estudió 

el efecto de la carga metálica (diferentes contenidos metálicos de Ni y de Cu) y el 

método de impregnación. Los metales de Ni y de Cu fueron co-impregnados (ambos 

metales impregnados en el mismo paso) o impregnados secuencialmente (primero se 

impregna un metal y en una segunda etapa el otro metal). En general, los catalizadores 

bimetálicos registraron un mejor rendimiento y una mayor estabilidad que sus 

homólogos monometálicos. Probablemente esto se deba a la presencia de la 

interacción Ni-Cu. Además, la impregnación secuencial de los metales estableció una 
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mayor interacción Ni-Cu, un menor tamaño de partícula y una menor acidez. Estas 

características mejoraron la actividad de dichos catalizadores. Finalmente, el Ni 

metálico depositado sobre la superficie del catalizador fue probablemente el 

responsable de la producción de DMTHF. Es decir, el Ni metálico en superficie 

posiblemente hidrogena el doble enlace del anillo furánico, obteniendo DMTHF a 

partir de DMF. El Ni es oxidado durante la reacción, reduciendo la capacidad 

hidrogenante del níquel. Por ello, la producción de DMTHF disminuye, aumentando la 

producción de DMF. Es decir, al oxidarse el Ni, pierde la capacidad de hidrogenar el 

anillo furánico. 

O OH

O O

HMF DMF DMTHF

Paso limitante
Ni⁰ Ni⁺²

BIOCOMBUSTIBLES

O

 

El Capítulo 7 examina el uso de carbón comercial y carbón derivado de la biomasa 

como soportes catalíticos para catalizadores de Ni y Cu monometálicos y Ni-Cu 

bimetálicos. Para ello, se prepararon cuatro soportes diferentes: carbón comercial, 

carbón derivado de la biomasa, carbón comercial tratado y carbón derivado de la 

biomasa tratado. Estos últimos se pretrataron con ácido (HNO3) y se neutralizaron con 

NaOH. A todos los carbones se les añadió caolín para aumentar la resistencia mecánica 

del catalizador. En general, los catalizadores bimetálicos, independientemente del 

soporte, mostraron un mejor balance de los centros ácidos y los centros metálicos 

(fase activa Ni-Cu), lo cual conlleva una actividad estable. En cambio, los catalizadores 

monometálicos mostraron altos rendimientos de los productos de interés al comienzo 

de la reacción. Sin embargo, sufrieron la desactivación del catalizador, probablemente 
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debido a la sinterización de los centros activos. Al igual que en el capítulo anterior, se 

observó una relación entre el contenido de Ni metálico en la superficie del catalizador 

y la cantidad de DMTHF producido.  

Finalmente, el Capítulo 8 resume las conclusiones más relevantes obtenidas del 

trabajo experimental de acuerdo con los objetivos establecidos en el Capítulo 3. Los 

prometedores sistemas bimetálicos catalíticos de Ni-Cu se presentan como activos y 

selectivos para la producción de DMF y DMTHF en un reactor catalítico de lecho fijo. 

Además, son estables durante 25 horas de reacción. Por último, se describe el trabajo 

futuro que puede ser favorable para la investigación. 
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Summary 

The present PhD thesis started in March 2017 with the support of the Spanish 

Government under the REBICAT project (Advanced Catalytic Technologies for the 

Transformation of Biomass Waste into Biofuels and Renewable Products) on the 

National Plans of the Ministry of Economy and Competitiveness and the research group 

Sustainable Process Engineering (Supren) integrated in the Department of Chemical and 

Environmental Engineering of the School of Engineering of Bilbao (University of the 

Basque Country, UPV/EHU). This work has been carried out under the supervision of Dr. 

Jesus M. Requies Martínez and Dr. Ion Agirre Arisketa. Moreover, during this PhD thesis 

a six month research stay in the Dipartamento di Chimica Industriale “Toso Montari” 

from the University of Bologna (Italy) was carried out under the supervision of Professor 

Fabrizio Cavani, and with the kind support of Dr. Tommaso Tabanelli and Giulia Balestra.  

Along these years, this work permitted to progress in the development of advanced 

catalytic systems to produce biofuels from biomass-derived 5-hydroxymethylfurfural 

(HMF). Furthermore, this PhD thesis allowed the publication of five scientific papers in 

Q1 indexed journals and one more paper in a Q2 indexed journal. Moreover, this PhD 

thesis permitted the publication in seven international conferences and one national 

conference. The PhD thesis is structured in different chapters, which will be briefly 

summarized in the following paragraphs. 

Chapter 1 emphasises the need of replacing the use of conventional fossil fuels. In this 

sense, biomass is the only renewable energy source that can replace petrochemical-type 

products. Therefore, the importance of investigating the conversion of lignocellulosic 

biomass into value-added chemicals and biofuels is outlined. Due to the complexity of 

the lignocellulosic biomass, most catalytic routes involve the conversion of this 

renewable feedstock into several platform molecules, such as HMF, a versatile 

intermediate for the production of chemicals and biofuels. In this chapter, the promising 

properties and applications of two biofuels derived from HMF, 2,5-dimethylfuran (DMF) 

and 2,5-dimethyltetrahydrofuran (DMTHF), are outlined. 
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Consequently, in Chapter 2 an exhaustive review of the state of art is described. Firstly, 

the direct catalytic production of DMF from biomass and sugars is reported. The 

transformation of diverse feedstock (corn stover, agar, glucose, fructose, etc.) into DMF 

is outlined. Subsequently, the production of DMF from HMF is described. In this sense, 

the main reaction pathways and catalytic systems are extensively reported. Lastly, the 

recent investigations in the production of DMTHF are described. 

In Chapter 3 the main objective of this PhD thesis is defined. To fulfil this main objective, 

some partial goals are described based on different active metals and catalyst support 

materials.  

Chapter 4 describes the experimental and analytical procedures employed for the 

development of the present PhD thesis. In this sense, the catalyst preparation methods, 

the reaction system, the analysis methods and the characterization techniques are 

precisely described.  

Chapter 5 contains the first experimental results of this work. In this chapter, Cu/ZrO2 

based catalysts are modified to enhance the catalytic activity of the system. For this 

purpose, firstly, different Cu metallic content were loaded to ZrO2 support. Additionally, 

ZrO2 support was modified with CeO2. Moreover, noble (Ru) and non-noble (Ni) metals 

were loaded to the active phase. The catalysts were used for the hydrogenolysis of HMF 

for the production of DMF and DMTHF at 15 bar of H2 and 275 °C. The most active 

catalyst of this catalytic screening was NiCu/ZrO2. The good performance of this catalyst 

was attributed to the interaction between Ni and Cu. 

In view of the obtained results in the previous chapter, Chapter 6 focuses on the deep 

understanding of NiCuZr catalytic system. Accordingly, the effect of the metal loading 

and the impregnation method was studied. The Ni and Cu metals were co-impregnated 

(both metals impregnated in the same step) or sequentially impregnated (first one metal 

is impregnated and later the second metal). In general, bimetallic catalysts recorded a 

better performance and stability than their monometallic counterparts. This is probably 

due to the presence of the Ni-Cu interaction. Moreover, the sequential impregnation of 

the metals implied higher Ni-Cu interaction, smaller particle size and lower acidity. 
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Finally, metallic Ni deposited onto the surface of the catalyst was responsible for DMTHF 

production.  

Chapter 7 examines the use of commercial carbon and biomass-derived carbon as 

catalytic support for monometallic Ni and Cu and bimetallic Ni-Cu catalysts. For this 

purpose, four different supports were prepared: commercial carbon, biomass-derived 

carbon, treated commercial carbon and treated biomass-derived carbon. These last two 

carbons were pretreated with acid (HNO3) and the neutralized with NaOH. In general, 

the bimetallic catalysts, regardless the support, showed a better balance of the acid sites 

and metallic sites (Ni-Cu active phase) to end with stable operation.  

Finally, Chapter 8 summarizes the most relevant conclusions achieved from the 

experimental work. The promising Ni-Cu bimetallic catalytic systems are presented as 

active and stable for the production of DMF and DMTHF in a continuous flow reactor. 

Moreover, the possible future work is outlined. 
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1.1 World energy Outlook: current situation 

“Immediate and decisive climate action is essential”. The noticeable urgency to protect 

our planet is stated in the communication “A Clean Planet for all” of the European 

Commission in 2018. There is a need of limiting the increase of global temperature in 

1.5 °C. For that purpose, the net-zero CO2 emissions should be achieved by 2050 [1].  

There is an increase in the world energy demand due to the economic growth and 

development, mainly relying on fossil fuels. This increment in the energy demand is 

closely related to the rise of the global CO2 emissions. The combustion of these fossil 

fuels (coal, oil and gas) emitted over 33.3 Gt of CO2 in 2019 (see Figure 1.1). In the last 

years, two-third of these emissions were produced mainly by two sectors: power and 

transport [2]. It is important to remark the growth of the transport sector over the last 

decades, which primary source is oil [2].  

Figure 1.1. Global CO2 emissions since 1990 (data from [3]) and future prespective [4]. 

The BP energy outlook estimated that the CO2 emissions will exceed 35 Gt of CO2 by 

2040 [5]. New fuel switch policies, energy efficiency and renewable energy sources are 

key points in minimizing the emissions. However, still exists a strong reliance on fossil 
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fuels in the world energy supply. Oil, coal and natural gas were responsible for the 

80 % in 2019. Oil was the leading fuel, being responsible of 31 %, followed by coal 

(26 %) and natural gas (23 %) (see Figure 1.2). The total final energy supply has 

increased by 65 % in the las three decades (see Figure 1.2), caused by the raising 

prosperity in fast-growing developing economies and population growth, which will 

continue increasing by around 1.7 billion to reach 9.2 billion people in 2040 [5].  

Figure 1.2. Total energy supply by source [left] (data from [6,7]) and change in final energy 

consumption by sector (2000-2018) [right] (data from [8]). 

The increase in the final energy consumption between 2000 and 2018 is summarized in 

Figure 1.2. It can be observed that more than 30 % of the increase in the energy 

consumption is caused by transport. In this sector the consumption of oil is 

predominant, with values above 90 % [9]. 

The relevance of oil in the total energy consumption is evident, but involves significant 

drawbacks, along with its impact in CO2 emissions. Disturbances such as armed 

conflicts, new discoveries and extraction technologies or strategic shifts can result in 

sharp price fluctuations [10]. In Figure 1.3 the instability of the crude oil price can be 

observed for both Brent (reference for European markets) and WTI (West Texas 

Intermediate, reference of U.S. markets). Moreover, the oil production forecast 
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predicts a near-term peak and subsequent terminal decline due to the physical 

depletion of the resources [11]. 

Figure 1.3. Global price of Brent crude and WTI crude [12,13]. 

Therefore, there is strong necessity of replacing conventional oil as raw material for 

fuels and chemicals. In this sense, biomass is presented as the only renewable energy 

source of organic carbon that can be used as precursor to products such as value-

added chemicals, carbon-based functional materials or liquid fuels [14] in addition to 

provide a sustainable supply of electricity and heat [15]. The following section will 

deepen more in this renewable source.  

1.2 Biomass, a renewable feedstock for the energetic 

transition 

The European Union Directive 2009/28/EC defined biomass as “biodegradable fraction 

of products, waste and residues from biological origin from agriculture (including 

vegetal and animal substances), forestry and related industries including fisheries and 

aquaculture, as well as the biodegradable fraction of industrial and municipal waste” 

[16]. This involves any material of biological origin, available in non-fossilized form, 

including arable crops, plants, forestry, animal by-products, biological waste from 

households, agriculture, animals and food/feed production [15].  
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Biomass is a carbon-neutral energy source. The released CO2 during the conversion 

and combustion of biomass is counter balanced by the CO2 previously absorbed during 

its growth. This involves a zero-net balance of CO2 emissions [15,17]. 

The most appealing characteristic of this resource is its versatility: it can be used as 

raw material to produce sustainable electricity or heat supply but also it is the only 

source of organic carbon in nature, which can be used as feedstock of transport fuel or 

value-added chemicals. Relatively little attention has been paid to biomass as a 

chemical feedstock, comparing to the considerable emphasis given to biomass as 

source of electricity and heat so far [15]. Moreover, biomass resources are common 

and widespread across the world, unlike other renewable sources [18]. Additionally, it 

can be easily stored, transported and utilized, giving flexibility to be used when 

required, depending on the energy demand of the place [19]. 

Bioenergy (use of biomass explicitly for energy use) is a complex energy system, where 

multitude variety of feedstock, technology pathways and products need to be 

contemplated. It is the largest renewable energy source across the world and is 

responsible of the two-third of renewable energy mix [20].  

In 2017 55.6 EJ of biomass was utilized for energy purpose. Primary solid fuel (wood 

chips, wood pellets, fuelwood for cooking and heating, etc.) was the most used form of 

biomass, reaching 86 % of the total supply, followed by liquid biofuels (7 %) (see 

Figure 1.4). Biogas, municipal waste and industrial waste provided the remaining 7 %. 

Although most of this biomass was expended in the sector of direct heating, since 

2000, the global energy supply from biomass has increased 30 %, mostly due to the 

fact that the supply of liquid biofuels was quadrupled during this period. Thus, in 2017 

the 70 % of the total consumption was employed in residential, commercial, 

agriculture, etc. sectors for heating and cooking [20].  

The consumption of biomass differs depending on the stage of development of each 

area. On the one hand, in developed countries this resource is used to produce liquid 

fuels (bioethanol and biodiesel), combined heat and power generation and heat in 

residential areas. On the other hand, in developing countries, biomass may represent 
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opportunities for domestic industrial development and economic growth. Finally, in 

least developed countries, especially in rural areas without access to electricity or 

other energy sources, it is used as the predominant domestic fuel [21]. 

Figure 1.4. Biomass global energy supply (data from [20]). 

Although biomass has been exploited mainly as a direct energy source so far, especially 

for heat generation; this energy can also be obtained from other renewable sources. 

Moreover, bioenergy production will be limited by the biomass supply. Thus, there is a 

need for optimizing its consumption. For these reasons, and taking into account that 

biomass is the only renewable source that can replace petrochemical-type products, 

an investment in biomass conversion processes into valuable products needs to be 

done, rather than just burning it [15,22]. In this sense, the biorefinery concept has 

gained relevance in the last decades and will be analysed in the subsequent section. 

1.3 The biorefinery concept 

The National Renewable Energy Laboratory (NREL), which depends on U.S. Department 

of Energy´s Office of Energy Efficiency and Renewable Energy, defined the biorefinery 

as a facility that integrates biomass conversion processes and equipment to produce 

fuels, power and chemicals from biomass. The biorefinery concept is analogous to 

today´s oil refinery. An oil refinery produces high-specification fuels and chemicals 
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from non-renewable crude oils and similarly, a biorefinery enables the conversion of 

renewable biomass into value-added chemicals, energy and fuels [15,23].  

The biorefinery implies multistep processes. First, the feedstock needs to be selected, 

depending on the required characteristic of the biomass. Next step involves 

pretreatments (such as extraction) for further processing. Afterwards, biomass is 

subjected to different conversion processes, which can be biochemical, 

thermochemical and/or hydrolysis/catalytic [15,22,24]. 

Biochemical conversion 

The carbohydrates (hemicellulose and cellulose) from biomass are converted into 

sugars, which can be further converted into biofuels and value-added chemicals. The 

most common biological conversions are fermentation or anaerobic digestion, which 

are carried out in absence of oxygen. The first process involves microorganisms and 

enzymes, which are able to produce alcohols (ethanol, butanol or methanol, among 

others) and organic acids (including, for instance, butyrate acid and acetate acid) from 

fermentable substrate. Conversely, in anaerobic digestion microorganisms break down 

complex organic material to produce biogas (methane and CO2) [15,22].  

Thermochemical conversion 

This type of process involves controlled heating to convert biomass into desired 

chemicals, fuels and/or power. The main pathways are: combustion (complete 

oxidation), gasification (partial oxidation) and pyrolysis (absence of oxygen). In 

combustion process, heat and power are generated from the exothermic reaction 

between oxygen and hydrocarbons from biomass, where the feedstock is converted 

into H2O and CO2. In gasification, the available oxygen is approximately one-third of 

the oxygen needed for complete combustion. This process produces a mixture of CO, 

CO2 and H2, commonly known as syngas. Lastly, pyrolysis converts the biomass at high 

temperatures but in absence of oxygen into solid (bio-char), liquid (bio-oils) and 

gaseous products. Both liquid and gas products can be further converted into valuable 

fuels and chemicals [22]. 
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Hydrolysis and catalytic conversion 

This pathway is appropriate if a higher selectivity is desired in the biomass processing. 

First, the isolation of the monomers is required, which is a complex and expensive 

step. Subsequently, these monomers can be efficiently processed at relatively mild 

conditions by different catalytic systems. Wide variety of value-added chemicals and 

biofuels can be obtained from these processes [25].  

The catalytic conversion of biomass has gained attention in the last decades, attributed 

to the wide variety of interesting chemicals that can be obtained by selective and 

active catalytic systems. There is a need of replacing the conventional catalytic 

generation of petrochemical products by developing new catalytic routes for the 

production of chemicals in biorefineries. 

The broad variety of biomass resources provides a heterogeneous raw material with a 

wide chemical complexity. Four types of biomass can be highlighted due to their 

economic interest: oleaginous (containing oil or lipids), saccharides (or sugary), starchy 

and lignocellulosic biomass [24]. For this reason, a preliminary detailed and accurate 

characterization of biomass feedstock is required to select the proper biomass, 

depending on the conversion process and the desired final product. 

Lignocellulosic biomass has been recognized as the most prosperous feedstock in 

biorefinery to produce valuable chemicals, fuels and power, due to its low cost and 

abundancy in agricultural residues and waste streams [24,25]. The structure can be 

described as a skeleton of cellulose (40-50 wt %), embedded in a cross-linked matrix of 

hemicellulose (25-35 wt %) within a lignin-based structure (15-20 wt %) [15,25]. 

Cellulose 

Cellulose is a high molecular weight polysaccharide constituted of glucose monomers 

(hexose), creating a linear and crystalline structure. A treatment for isolating the 

glucose is needed for further transformation of this monomer into value added 

chemicals including polyols, organic acids and furan derived compounds [26].  

 



Chapter 1 

 

38 

Hemicellulose 

Hemicellulose is composed by short-branched heteropolymers composed of 5 carbon 

(pentose) and 6 carbon (hexose) sugars or sugar acids. The most abundant monomer is 

xylose, which once extracted can be converted into a wide variety of chemicals, such 

as ethanol via fermentation or furfural by a dehydration process [25,27].  

Lignin  

Lignin is an amorphous, three-dimensional, highly cross-linked polymeric structure of 

aromatic units, which provides structural rigidity and a hydrophobicity to plants. This 

component has been used to produce energy, but the research for valorising this 

feedstock has recently gained attention, focusing on the separation, purification, 

fragmentation and functionalization to produce lignin-based high-value products 

[24,27]. 

These components develop a complex, robust and heterogeneous structure [14] which 

needs to be broken into its constituent parts to be efficiently processed [25] (see 

Figure 1.5). This can be solved by a suitable physical and/or chemical pretreatment of 

the biomass to achieve an efficient depolymerisation of lignocellulose [14]. These 

preprocessings serve to depolymerize the lignin seal, which surrounds the 

hemicellulose and cellulose fractions, and therefore the carbohydrates can be 

accessible. Subsequently, enzymatic or acid hydrolysis of cellulose and hemicellulose is 

performed to acquire the desired monomers [25]. 

The multiple possibilities of the lignocellulosic biomass have been underlined. 

Moreover, this feedstock does not present the most contentious issue that the existing 

first-generation biofuels exhibit: “fuel vs food”. These biofuels are produced directly 

from food crops that can also be consumed as human food, which means that the 

increase on fuel demand will drop the volume of crops destined for global food 

markets [28].  

Due to the complexity of lignocellulosic biomass, most of the catalytic routes involve 

the conversion of this renewable feedstock into several versatile platform molecules, 
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which are further transformed into a variety of important chemicals. Thereby, next 

section will highlight the most important platform chemicals and building blocks 

derived from this raw material.  
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Figure 1.5. Lignocellulose composition: cellulose, hemicellulose and lignin (adapted from [14]). 

1.4 Top platform molecules derived from lignocellulosic 

biomass carbohydrates 

The depolymerisation of cellulose and hemicellulose into simple sugars, cellulose and 

xylose, is of paramount importance for lignocellulosic biomass valorization. This step is 

optimized and controlled by an active and selective catalytic system. These sugars can 

be further converted into platform molecules, which are useful for the production of 

chemicals and fuels [23].  

In 2010 Bozell and Petersen [29] developed a list of biobased product opportunities 

from carbohydrates, updating the previous publication of the US Department of 

Energy (DOE) in 2004. In the report, the most interesting and promising compounds 

(platform molecules) and technologies for biorefinery are identified. A short review of 
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each chemical will be now described, giving special attention to 

5-hydroxymethylfurfural (HMF) due to the opportunities this platform molecule

provides.

Ethanol: It is produced by the fermentation of sugars obtained from biomass. This is 

the most important biochemical transformation of biomass to produce biofuels. 

Ethanol can be further dehydrated to ethylene or oxidized to produce acetic acid and 

ethyl acetate [29]. 

Furfural: Xylose (present in hemicellulose) can be dehydrated to produce furfural. This 

compound has a highly functionalized molecular structure which makes it attractive for 

the production of value-added chemicals and fuels. It can be converted into C4 

chemicals, by means of selective oxidation (e.g. maleic acid), and/or C5 chemicals, via 

selective hydrogenation and/or hydrogenolysis, including potential fuel components 

such as 2-methylfuran (2-MF) and 2-methyltetrehydrofuran (2-MTHF) [30]. 

5-hydroxymethilfurfural (HMF): The dehydration of glucose (present in cellulose)

produces this target molecule, which can be further converted into value added-

chemicals and biofuels. Due to the importance of this molecule, additional extended

information will be described below.

Furan-2,5-dicarboxylix acid (FDCA): It is produced by the oxidation of HMF. It has been 

proposed as an important molecule because it can substitute conventional 

terephthalic and isophthalic acids in the production of polyamides, polyesters and 

polyurethanes to obtain a greener process [26,29].  

Glycerol and derivatives: Glycerol is nowadays produced as a by-product in the 

conversion of fats and oils when biodiesel is produced. Moreover, it can also be 

produced by fermentation of sugars or hydrogenation of carbohydrates. It can be 

further converted into a wide variety of chemicals and polymers by different processes 

such as reduction, dehydration and fermentation. For instance, is commonly used as a 

polyol for the production of alkyd resins [29,31].  
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Biohydrocarbons: Production of hydrocarbons from biorefinery sugars by biochemical 

routes has gained attention because they provide a direct drop-in connection between 

conventional petrochemical industry and biorefinering. Isoprene is a high value 

hydrocarbon and its production is the most studied in this type of processes. 

Moreover, the bioproduction of long chain hydrocarbons has been deeply examined.  

Organic acids: Lactic acid, succinic acid and levulinic acid are obtained from the 

fermentation or chemical conversion of sugars. They have been widely studied 

because they are precursors for petrochemical products such as solvents 

(1,4-butanediol, tetrahydrofuran) or biobased polymers [29].  

Sugar alcohols: Xylitol and sorbitol are commercially produced by catalytic 

hydrogenation of xylose and glucose, respectively. Moreover, biochemical reduction 

has also been investigated, although it cannot yet compete with chemical reduction. 

These alcohols are promising intermediates for the production of hydrocarbons or 

isosorbide [29].  
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Figure 1.6. Platform molecules obtained from lignocellulosic biomass. 
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5-hydroxymethylfurfural (HMF) 

5-hydroxymethylfurfural (HMF) is the most important platform molecule from 

renewable feedstock for the next-generation plastic and biofuel production. It is called 

as the “sleeping giant” of renewable intermediate chemicals for having an enormous 

market potential [26,31]. The HMF derivatives are precursors in the synthesis of 

materials such as polyesters, polyamides and polyurethane [26]. Moreover, HMF can 

be converted into biofuels which can be substitutes or additives of conventional fuels 

[32].  

The HMF can be obtained from lignocellulosic biomass generally in three steps: 

i) hydrolysis of cellulose into glucose, ii) isomerization of glucose into fructose, 

iii) dehydration of fructose into HMF (see Figure 1.7) [33]. The latter sugar molecule is 

highly reactive and it can undergo conversion into levulinic and formic acids (FA), step 

that needs to be avoided to obtain high yields of HMF [29]. Moreover, HMF 

decomposition must be avoided and for that purpose, ionic liquid media or some 

specific organic solvents can be employed. Thus, high yields of HMF can be achieved; 

however, the separation of HMF, for further use, from the reaction mixture is not easy. 

One option to overcome these difficulties and optimize the extraction of HMF is the 

use of biphasic systems [29].  
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Figure 1.7. Formation steps of HMF from cellulose. 

Depending on the type of catalyst, the processes are divided into homogeneous (the 

catalyst and the reaction media are in the same state phase) and heterogeneous (the 

catalyst and the reaction media are in different state phase). Even though 

homogeneous inorganic acid and metal chloride catalysts demonstrated high catalytic 

activity, the use of homogeneous catalysts present several drawbacks. Being in the 
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same phase that the reaction media, it is difficult to separate the catalyst from the 

products or reaction system. Moreover, the corrosive nature of inorganic acids involve 

high maintenance costs due to the damage of the materials and the resulting final 

waste liquid requires further treatment due to its environmental impact. One solution 

to avoid these problems is the use of solid acid catalysts (heterogeneous catalysis). In 

this sense, carbon-based materials, molecular sieves, ion-exchanged resins and 

heteropoly acids have been extensively studied for the acidic dehydration of glucose to 

form HMF [33]. 

The additional conversion of this platform molecule can produce a broad variety of 

chemicals, such as furan-based derivatives (2,5-diformylfuran (DFF), 2,5-furan 

carboxylic acid (FDCA), 2,5-bis(hydroxymethyl)furan (BHMF), 2,5-dimethylfuran (DMF), 

2,5-dimethyltetrahydrofuran (DMTHF)), and ring-opening products (levulinic acid (LA), 

1,2,6-hexanetriol (HTO), 1,6-hexanediol (HDO)). 

The partial and selective oxidation of HMF to furan-based products produces DFF. This 

compound is used in the synthesis of fungicides, drugs and polymeric materials. 

Further oxidation of DFF leads to the production of FDCA, which is a potential 

substitute of terephthalic or isophtalic acids in the manufacture of polyamides, 

polyesters and polyurethanes, as explained above [26]. 

Another route is the opening of the furan ring. By a Brønsted acid catalyst HMF can be 

rehydrated into levulinic acid (LA), which is an interesting platform molecule for the 

production of biofuels, lubricants or plasticizers and thermoplastics or polyols [29,33]. 

Moreover, the hydrogenation-ring-opening reaction of HMF produces HTO. This 

compound is applied in the production of drugs and cosmetics as a humidity regulator 

and viscosity controlling agent [33]. Lastly, HDO is one of the most important diol 

obtained from lignocellulosic biomass, which is used for the production of polyester 

and polyurethane. Different reaction pathways have been reported in the open 

literature, that include direct hydrogenation of HMF to HDO or step hydrogenation 

through different intermediates [14,31].  
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Furthermore, BHMF is the hydrogenation product of the aldehyde group in HMF. This 

chemical is a versatile molecule for the generation of polymers, drugs, etc. 

Additionally, the hydrogenolysis of HMF produces DMF, which has gained attention 

because it is a suitable biofuel candidate and an important intermediate in the 

chemical industry. The deeper reduction of DMF produces DMTHF, another promising 

biofuel and potential alternative to conventional tetrahydrofuran solvent [32,34]. 
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Figure 1.8. HMF derived products (furan-based derivatives and ring-opening products). 

Due to of the multiple options HMF provides, the present PhD thesis focuses on the 

production of DMF and DMTHF. To understand the importance of these chemical 

compounds, the next section is dedicated to explain the excellent properties these 

biofuels offer. 

1.5 DMF and DMTHF properties and applications 

DMF has been extensively studied and the properties of this biofuel have been 

precisely defined by several authors. On the contrary, DMTHF has gained attention in 

the last years, and therefore, the research status of this fuel is not as advanced as that 
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of the DMF. The physical properties of DMF and DMTHF, which are suitable for liquid 

fuels, are compared with the characteristics of conventional gasoline and ethanol. 

Although it is already known that the latter presents various restrictions (low energy 

density, high volatility and high energy consumption in the production stage [35]) it 

has been also chosen for this comparison as it is the only renewable liquid fuel 

currently produced in large quantities [36].  

It must be remarked that DMF exhibits more suitable properties than bioethanol for 

replacing conventional gasoline (see Table 1.1). The energy density of DMF 

(31.5 kJ/cm3) is almost 40 % higher than the one from ethanol, and comparable to the 

one of gasoline (32.2 kJ/cm3). Moreover, due to its immiscibility with water (unlike 

ethanol), absorption of atmospheric steam, and therefore its contamination, is avoided 

[37]. Furthermore, the higher boiling point of DMF (92-94 ⁰C) makes this fuel less 

volatile and more convenient for transportation [38]. Lastly, DMF consumes one-third 

of the energy in its production, compared to the required energy in the fermentation 

process of bioethanol fabrication [39].  

Table 1.1. Properties of converntional gasoline and different biofuels. 

Due to the similar physicochemical properties of DMF and gasoline, DMF exhibits very 

similar combustion and emissions characteristics (CO, HC, NOX, particulate matter) to 

gasoline [37]. Because of these similarities, the adaptation between this biofuel and 

current DISI technologies would not be difficult [35]. 

Similarly to DMF, DMTHF presents characteristics which overcome the limitations of 

bioethanol, such as higher energy density and boiling point and lower miscibility in 

 Conventional 
gasoline [40] 

Ethanol 
[40] 

DMF 
[40] 

DMTHF 
[41] 

Energy density (kJ/cm3) 30-33 21.4 30.1 31 

RON 88-98 109 119 82 

Boiling point (⁰C) 27-225 78 94 90 

Water soluble Insoluble Highly 
soluble Insoluble Insoluble 
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water [42]. In addition, it can be blended with gasoline up to 60 % by volume without 

deleterious engine performance [43]. 

Even though the most studied applications of DMF and DMTHF are as substitutes or 

additives of conventional gasoline, these chemicals can be utilized for other purposes. 

DMF can also be a renewable source of furan based compounds, which have extensive 

use in solvent and pharmaceutical industry. Moreover, it is an intermediate for 

p-xylene production, one of the highest volume bulk chemical derived from petroleum 

[44,45]. DMTHF is also a valuable organic solvent, which can serve as an alternative to 

conventional tetrahydrofuran solvent. Besides, it can be converted into other high 

value-added chemicals such as 2,5-hexanediol and 2,4-hexadiene [32,46].  

Once the valuable properties of these molecules have been explained, the catalytic 

production of HMF into biofuels DMF and DMTHF will be discussed in the following 

section. 

1.6 Biofuels production from hydrogenolysis of HMF 

The catalytic hydrogenolysis of HMF into DMF and DMTHF is an effective and 

promising approach, which has attracted increasing attention in the last decade due to 

the excellent properties these biofuels offer [32,47]. 

HMF is composed of an aldehyde group (−C=O) and a hydroxyl group (−OH) attached 

to a furan ring. This molecule can follow different reaction pathways when a 

hydrogenation/hydrogenolysis process is carried out, which causes a complicated 

reaction network, as it can be observed in Figure 1.9. Ring-opening and C−C cleavage 

need to be avoided to provide high selectivity to desired biofuels. For that purpose, 

selective, active and stable catalysts need to be found. 

For the production of DMF and DMTHF from HMF, hydrogenation and hydrogenolysis 

reactions take place. HMF possess both C=C and C=O bonds, which can be 

hydrogenated over proper catalysts. The direct hydrogenation of HMF produces BHMF 

(hydrogenation of C=O bond of the aldehyde group) and further hydrogenation of 
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BHMF yields 2,5-bis(hydroxymethyltetrahydro)furan (BHMTHF) due to the 

hydrogenation of C=C bonds of the furan-ring. This reaction takes place over the 

surface of metal catalyst, which absorbs the substrate and activates hydrogen 

molecules to form active hydrogen species that reduces the double bond. Depending 

on the desired product, controlled hydrogenation of C=O or C=C needs to be carried 

out. Additionally, hydrogenolysis reaction is needed to obtain the desired DMF and 

DMTHF products. Particularly, C−O bond cleavage is required. Some authors explained 

this cleavage as a combination of dehydration and hydrogenation process to transform 

C−OH group into a C−H group. This is considered an indirect hydrogenolysis of C−O 

bond [34,48].  
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Figure 1.9. Reaction pathway of HMF hydrogenolysis and hydrogenation (addapted from [49]). 

DMF can be obtained through two possible pathways. Path 1 involves the conversion 

of HMF to BHMF by the hydrogenation of the aldehyde group and further double 

hydrogenolysis of C–O to produce 5-methyl furfuryl alcohol (MFA) in a first step and 

finally DMF in a second step. Path 2 includes a hydrogenolysis as initial step to produce 

5-methylfurfural (5-MF). Then, the aldehyde group is hydrogenated to produce MFA 

and lastly, a hydrogenolysis step produces DMF. Although there is a certain 

discrepancy in the literature, most of the studies revealed that Path 1 is the main route 

for DMF production. The difference on the observed pathway could be caused by the 

diverse nature and properties of the catalytic systems [47]. 
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Similarly, DMTHF production can undergo two different pathways, as stated in 

literature. In Path 1 DMF undergoes further hydrogenation of the furan ring to 

produce DMTHF. Alternatively, in Path 2, the furan ring is hydrogenated from BHMF to 

produce BHMTHF and a sequential double hydrogenolysis of C–O produces 5-methyl 

tetrahydrofurfuryl alcohol (MTHFA) in a first step and DMTHF in a final second step 

[50].  
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As specified in Chapter 1, this PhD thesis is focused on the production of DMF and 

DMTHF from HMF. These organic compounds offer excellent properties to be exploited 

as substitutive or additive of conventional fuels. In the last years, different catalytic 

systems have been studied for the production of these biofuels. In this second chapter, 

an extended bibliographic review is presented, including different investigations 

carried out recently. Firstly, researches focused on the production of DMF directly 

from biomass have been explained. Subsequently, investigations of the production of 

DMF from HMF have been described. Finally, the studies focused on DMTHF 

production have been outlined. 

2.1 DMF production directly from biomass and sugars 

In 2007 Roman-Leshkov et al. [1] described a pioneering process to obtain DMF 

directly from fructose. The system was divided in two different stages: i) sugar 

dehydration into HMF and ii) hydrogenolysis of HMF to DMF (see Figure 2.1). In the 

first step, a biphasic system was used (R1). In the aqueous phase, the fructose was 

converted to HMF by a homogeneous acid catalyst (HCl) at 180 °C and the produced 

HMF was extracted by an organic solvent. The use of NaOH in the aqueous phase 

optimized the extraction of HMF, improving the ratio [HMF]org/[HMF]aq. Different 

organic solvents were employed and there was no difference in the obtained results. 

1-butanol was selected for further investigations, since this solvent can be produced by 

the fermentation of biomass-derived carbohydrates (green solvent). The achieved 

conversion of fructose reached 88 %, with a HMF yield of 82 %. The extracting phase 

was then purified by vacuum evaporation at low temperature (E1) to separate volatile 

impurities, which are recycled to the biphasic reactor, from lower relative volatile 

components (1-butanol and HMF). Next, HMF is converted to DMF over a bimetallic 

CuRu/C catalyst in both liquid-phase (autoclave reactor) and vapour-phase (flow 

reactor) systems. Monometallic Cu was able to produce DMF, although it was 

deactivated by chloride ions, which were not completely removed in the purification 

step. By contrast, Ru monometallic catalyst was resistant to chloride ions but did not 

carry out the hydrogenolysis step, obtaining principally BHMTHF. Therefore, the 
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bimetallic CuRu catalyst was used showing both the hydrogenolysis behaviour of 

copper and the chlorine resistance of ruthenium. The reaction was studied in liquid 

and vapour phase at 220 °C. The maximum yield of DMF obtained in the liquid phase at 

6.8 bar of H2 was 61 %, due to the fact that impurities of NaCl slightly lowered the 

activity of the bimetallic catalyst. However, the vapour phase hydrogenolysis reached 

DMF yields of 76-79 % since NaCl does not evaporate under the aforementioned 

conditions and therefore did not contaminate the catalytic system. Finally, the more 

volatile products (DMF and water) were separated from the solvent and the reaction 

intermediates (S1), recycling the latter stream back to the hydrogenolysis reactor. 

Subsequently, DMF was separated spontaneously from water by means of simple 

condensation.  

This innovative work was the starting point of other numerous investigations on the 

direct production of DMF from lignocellulosic biomass.  
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Figure 2.1. Schematic diagram for the conversion of frucrose to DMF (propossed by  
Roman-Leshkov et al. [1]). 

Based on this work, Binder and Raines [2] studied the production of DMF directly from 

untreated corn stover in N,N-dimethylacetamide (DMA). Lithium chloride (LiCl) was 
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used as a promising solvent and a maximum yield of 9 % of DMF (based on the 

cellulose content of the corn stover) was achieved. As in the previous investigation, the 

process was carried out in two steps, involving the transformation of the feedstock 

into HMF by CrCl3-HCl homogeneous catalyst, followed by the hydrogenolysis to DMF 

by Cu-Ru/C catalyst in 1-butanol in the presence of H2. The most important drawback 

of this system is the toxicity of the chromium salt along with the mineral acid used as 

catalyst in the first step. Moreover, the obtained global yield is quite low. Zhang et al. 

[3] tried to solve the toxicity problem, synthetizing and optimising a SO4
-/ZrO2-TiO2 

catalyst for the glucose and xylose mixture dehydration in a biphasic H2O/1-butanol 

system. The extracting solvent containing HMF and furfural was separated and it 

underwent a further purification step. The hydrogenolysis step was then performed at 

260 °C by Ru/C catalyst, reaching a DMF yield of 32.7 % after 1.5 h on stream in a Parr 

reactor. 

Thananatthanachon and Rauchfuss [4] studied the dehydration and hydrogenolysis 

processes of DMF from fructose using FA as an acid catalyst, H2 source and 

deoxygenation agent. In contrast, these authors carried out the process in one unique 

step, using the so called “one-pot synthesis”. The sugar was kept stirring with the acid 

at 150 °C during 2 h. The obtained solution, containing HMF and its formate ester 

(FMF), was cooled down to room temperature and diluted in tetrahydrofuran (THF). 

Moreover, H2SO4 and Pd/C catalysts were added before warming the solution up to 

70 °C, which was stirred for additional 15 h. The progress of the reaction was followed 

by the conversion of the intermediaries, MFA and its monoformate ester FMMF (see 

Figure 2.2). After the overall process, 51 % of DMF yield was reached.  
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Figure 2.2. One-pot process to generate DMF from fructose (addapted from [4]). 
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Similarly, Chidambaran and Bell [5] studied the glucose dehydration into HMF and its 

posterior hydrogenolysis to DMF in one-pot synthesis based on ionic liquids (IL). These 

liquids are salts that melt below 100 °C and provide liquids composed by cations and 

anions exclusively [6]. The addition of acetonitrile to either 1-butyl-3-

methylimidazolium chloride (BMIMCl) or 1-ethyl-3-methylimidazolium chloride 

(EMIMCl) reduced the tendency of glucose to form humins (both IL exhibited similar 

activities). Different solid and liquid acids were tested for the dehydration step, 

obtaining 99 % conversion of glucose and achieving a yield of HMF of 98 % with the 

solid 12-molybdophosphoric acid (12-MPA) at 120 °C after 3 h of reaction. The mixture 

was cooled down to 50 °C and 12-MPA was removed and replaced by Pd/C catalyst in 

order to carry out the hydrogenolysis step of HMF to DMF. This step was performed 

under 120 °C and 62 bar of H2 pressure (high H2 pressure was required due to the low 

solubility of H2 in IL) achieving a HMF conversion of 46 % and a DMF yield of 30 % after 

1 h. This noticeable decrease of DMF yield, comparing with other investigations, can be 

attributable to lower temperature and reaction time, as well as low solubility of H2 in 

IL. A similar case was studied by De´s group [7], obtaining a DMF yield of 24 % from the 

micro algae derived agar. Brønsted acid IL catalyst ([DMA]+[CH3SO3]-) was initially used 

for the dehydration step to obtain HMF at 150 °C. Then, FA (used as deoxygenating 

agent and H2 source for hydrogenolysis step) was added for the formilation of HMF 

into 5-(formyloxymethyl) furfural (FMF), which was further converted into DMF by 

loading Ru/C, H2SO4 and THF solvent for the hydrogenolysis step at 75 °C. The process 

was optimized by microwave (MW)-assisted transformation, increasing the DMF final 

yield 10 points, up to 34 % and reducing 10 times the reaction time under the same 

operation conditions.  

Continuing with those studies using IL-s, Li et al. [8] investigated the direct conversion 

of fructose to DMF using a biphasic ionic liquid/solvent system (BMIMCl/THF). The 

dehydration of the fructose was carried out at 130 °C for 30 minutes adding the ionic 

liquid (IL) to the reaction media. Afterwards, the in situ hydrodeoxygenation was 

performed including another solvent to the system, THF. Thus, the negative effect of 

the high viscosity of IL is compensated and the mass transfer is favoured in the 

reaction media. Moreover, Ru/C catalyst was also added and stirred for 5 h at 220 °C 



State of art 

 

63 

and 50 bar of H2 pressure, obtaining DMF and DMTHF yields of 50 % and 20 %, 

respectively.  

To avoid the use of ionic liquids, Upare and coworkers [9] studied two heterogeneous 

catalytic reactions: i) fructose dehydration into HMF over Amberlyst-15 in 1-butanol 

and, ii) the subsequent vapour-phase hydrogenolysis over Ru-Sn/ZnO catalyst. This 

second step was carried out using directly the obtained solution in the first step and 

the achieved overall DMF yield was 92 % under atmospheric pressure and 240 °C. 

Following the idea of the direct use of dehydration products into hydrogenolysis 

reaction, Wang´s group [10] proposed a process where real lignocellulosic biomass was 

firstly transformed into HMF by Sn-Mont catalyst combined with NbOPO4 to tune-up 

Lewis and Brønsted acid sites. Lewis acid sites are required for the isomerization step 

while Brønsted sites are responsible for the hydrolysis and dehydration processes. This 

first step was carried out in a biphasic system using THF and H2O-NaCl as solvents. 

Depending on the type of lignocellulosic biomass employed as feedstock, the achieved 

furfural and HMF yields were in the range of 50-70 % and 30-40 %, respectively. The 

organic phase was further treated by Ru/Co3O4 at 170 °C and 10 bar of H2 pressure, 

reaching DMF and 2-methylfuran (2-MF) yields above 90 % from HMF and furfural, 

correspondingly. In this bimetallic catalyst, Ru was favourable for hydrogenation step 

and CoOx species for C−O bond cleavage. 

An important effort was carried out by Saha et al. [11] for the optimization of 

hydrogenolysis step, obtaining high yields of DMF when feeding the reactor with HMF 

in THF with ZnCl2-Pd/C catalyst. The synergy of both metals was effective for the 

hydrogenolysis step. Moreover, the reaction system was tested using fructose as raw 

material, obtaining a total yield of DMF of 22 % after 8 h of reaction at 150 °C and 

8 bar of H2 pressure. The low fructose conversion to HMF by ZnCl2 containing Lewis 

acid sites could be the reason of the low global yield of DMF. 

Insyani and colleagues [12] synthetized a multifunctional heterogeneous catalyst 

based on metal-organic frameworks (MOFs). Pd nanoparticles were loaded into Zr-

metal organic framework (UiO-66) treated with HCl and sulfonated graphene oxide 

(SGO). The effective combination of SGO properties (Brønsted acid sites and 
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hydrophilic surface) and UiO-66 treated with HCl characteristics (high porosity, acidity 

and surface area) enhanced the fructose adsorption and dehydration to HMF. 

Moreover, Pd nanoparticles were responsible for the hydrogenolysis of HMF to DMF. 

The reaction was carried out in THF at 160-180 °C and under 10 bar of H2 pressure for 

3 h, achieving a DMF yield of 70.5 % and 45.3 % when using fructose and glucose as 

feedstock, respectively. Further optimization of the catalytic system was carried out, 

maximizing the yield towards DMF [13]. This enhancement was achieved modifying the 

UiO-66 with –NH2. Moreover, adding Cu to the metallic active phase resulted in the 

formation of a bimetallic Cu-Pd alloy, which promoted consecutive C=O 

hydrogenation and C−OH hydrogenolysis, producing DMF yield of 73 % after 2 h of 

reaction at 200 °C and 10 bar using sucrose as feedstock.  

More recently, Zhang´s group [14] studied a simple catalytic system using ethanol as 

reaction media, commercial PdCl2 catalyst and poly(methylhydrosiloxane) (PMHS) as 

H2 donor. Acid sites are needed for the dehydration of fructose to HMF. In this case, 

HCl was in situ generated from PMHS and PdCl2 in an alcoholic solvent, acting as 

Brønsted acid sites. The reached DMF yield was 88 % when using fructose as substrate 

at 120 °C after 2.5 h. Moreover, the maximum yield obtained from glucose as 

feedstock was 41 %, under the aforementioned conditions. To enhance the glucose to 

fructose isomerization step, AlCl3 was added into the system, promoting as Lewis acid 

sites, which were in charge of accelerating the isomerization procedure, increasing the 

yield to 53 %.  

The above mentioned investigations with different catalytic systems, reaction 

conditions and activity results are summarized in Table 2.1.  
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        Table 2.1: DMF direct production from biomass 

a Dehydration+hydrogenolysis consecutively at same reaction conditions. Others: first raw for dehydration data and second for hydrogenolysis data.

Feedstock Catalyst H2 donor Solvent T (°C) Time DMF yield (%) Reference 
Fructose HCl H2 H2O-NaCl / BuOH 180 3 min 82 (HMF) [1] HMF Cu-Ru/C BuOH 220 10 h 76-79 (VP) 

Corn stover CrCl3-HCl H2 DMA / LiCl 140 1 h 9 [2] Cu-Ru/C BuOH 220 10 h 

Glucose + xylose SO4
-/ ZrO2-TiO2 H2 H2O / BuOH 180 3 h 32.7 [3] 

Ru/C Ru/C 260 1.5 h 

Fructose FA FA FA 150 2 h 51 [4] H2SO4 and Pd/C THF 70 15 h 

Glucose 12-MPA H2 BMIMCl or 
EMIMCl 

120 3 h 30 [5] Pd/C 120 1 h 

Agar 
[DMA]+[CH3SO3]- 

FA 
DMA / LiCl 150 2 h 

24 [7] 
H2SO4 and Ru/C THF 75 17 h 

Fructose BMIMCl H2 BMIMCl 130 30 min 50 [8] Ru/C BMIMCl / THF 220 5 h 

Fructose Amberlyst-15 H2 BuOH 100 5 h 83 [9] Ru-Sn/ZnO 240 100 h 
Lignocellulosic 

biomass 
Sn-Mont and NbOPO4 H2 H2O-NaCl / THF 160 2 h 27-36 [10] Ru/Co3O4 THF 170 24 h 

Fructosea ZnCl2-Pd/C H2 THF 150 8 h 22 [11] 
Glucosea 

Fructosea Pd/UiO-66@SGO H2 THF 160-
180 3 h 45.3 

70.5 [12] 

Sucrosea Cu-Pd/UiO-
66(NH2)@SGO H2 THF 200 2 h 73 [13] 

Glucosea PdCl2 + AlCl3 PMHS Ethanol 120 2.5 h 53 [14] 
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2.2 DMF production from HMF 

In the previous section, the direct conversion of biomass into DMF has been reported. 

Similarly, in the subsequent section, the reaction pathways and catalytic systems for 

the production of DMF from HMF have been described. 

2.2.1 Reaction pathway 

Different reaction mechanisms have been reported for HMF hydrogenolysis to produce 

DMF. The pathway and product distribution are strongly dependent on the nature of 

the employed catalyst and the reaction conditions. Most of the studies follow mainly 

two routes (see Figure 2.3): 1) selective hydrogenolysis of the hydroxyl group to form 

5-MF, followed by the hydrogenation of the aldehyde group to form MFA. Finally, the 

hydrogenolysis of −OH provides the desired product DMF. Alternatively, route 2) 

begins with the hydrogenation of the aldehyde group to form BHMF followed by the 

hydrogenolysis of the hydroxyl group to obtain MFA, from which finally DMF can be 

produced by its −OH hydrogenolysis. 
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Figure 2.3. Main reaction pathways for the hydrogenolysis of HMF to DMF. 

Route 1) 5-MF as main intermediate 

To study the reaction sequence of HMF hydrogenolysis, Chidambaram and Bell [5] 

studied the use of the reaction intermediates ( 5-MF, MFA and BHMF) as reagents 

using a Pd/C catalyst. 5-MF was highly reactive to form MFA and, when reaction time 

increased, DMF was obtained. However, when BHMF was fed in the reactor, MFA was 
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the main product, producing slight amount of DMF. To understand the behaviour of 

BHMF in the reaction system, increasing amounts of this compound were incorporated 

to a mixture containing a fixed quantity of MFA, concluding that BHMF inhibits the 

conversion of MFA to DMF due to the competitive adsorption of them on the surface 

of Pd.  

The complete mechanism to form DMF and DMTHF from fructose employing 

hydroiodic acid (HI) and RhI3 was studied by Grochowski et al. [15]. HI was in charge of 

the dehydration step to form HMF. Under inert atmosphere (He) the reaction was 

stopped when 5-MF was formed and they did not observe any further hydrogenation. 

However, when hydrogen gas was added to the reaction system, DMF and 2,5-

hexanedione (HD) were formed, meaning that HI performed as dehydration and 

hydrogenolysis agent whereas Rh acted as hydrogenation agent. Longer reaction times 

implied a decrease of both products and formation of an equal amount of DMTHF. 

Thus, the formation of DMTHF was a direct result of the disappearance of both DMF 

and HD (see Figure 2.4, blue pathway). Similarly, Zhang and colleagues [14] studied the 

formation of DMF through hydrogenolysis of 5-MF but proposed a new route for the 

formation of DMTHF. Remarkably, ring-hydrogenation product of MFA, MTHFA, was 

detected during the reaction and further confirmed as an intermediate of DMTHF 

production (see Figure 2.4, green pathway). 
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Figure 2.4. Reaction pathway of HMF to DMF and DMTHF with 5-MF as intermediate. 
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Tzeng et al. [16] studied the effect of the electronic structure of Ru nanoparticles on 

the reaction pathway. Ru catalysts of different porous textures on carbonaceous 

materials were tested. Non-porous carbon exhibited Ru metallic particles which were 

able to hydrogenate the aldehyde group obtaining BHMF as main product. In contrast, 

microporous materials presented Ru0/RuOx particles. This incomplete reduction might 

be due to high interaction between the metal and the support or caused by a 

limitation of mass transfer of H2. The synergy of both metallic and oxidized sites 

involved the hydrogenation and hydrogenolysis steps, obtaining high yields of DMF 

with 5-MF as by-product. 

Other authors confirmed the production of DMF via 5-MF by Cu-Pd bimetallic catalysts 

[13], by CuZnCo complex [17] (where Cu-Co alloy acted as hydrogenolysis agent and 

ZnO as hydrogenation agent) and, by Ni/ZSM-5 [18]. All of them concluded that the 

transformation of 5-MF to MFA is the rate determining step. 

Route 2) BHMF as main intermediate 

Another possible route for the hydrogenolysis of HMF to DMF is the hydrogenation to 

BHMF in the first step, followed by MFA production to finally obtain DMF. To validate 

the formation of BHMF, Saha et al. [11] performed an experiment using this chemical 

as the starting substrate catalysed by ZnCl2-Pd/C, achieving high conversion and 

producing high DMF yields. MFA was not detected, meaning that the last 

hydrogenolysis step was rapidly carried out. In the same way, Upare and colleagues [9] 

concluded that the hydrogenolysis step of BHMF to produce MFA was much lower 

than the subsequent hydrogenolysis to DMF.  

Recently, Li et al. [19] studied the synergistic effect of metallic Co and CoOx acidic sites 

in the hydrogenolysis of HMF. Metallic Co was responsible for the hydrogenation step 

and CoOX was in charge of activating the C−O bond, obtaining DMF through BHMF 

hydrogenation. 

This reaction pathway was approved by other authors via different catalytic systems. 

Using Ru/Co3O4 [10] or a nitrogen-doped carbon decorated Cu based catalyst [20] DMF 

was produced from HMF via BHMF and MFA, followed by a further hydrogenation step 
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towards DMTHF. It must be mentioned that in the first system DMF etherification 

products were also detected. 

Some authors detected both 5-MF and BHMF during the reaction. Solanki and 

co-workers [21] tried to find the exact reaction sequence by taking BHMF and 5-MF 

intermediates as starting compounds. They obtained high yields of DMF with no 

considerable difference when varying the substrate, deducing that both pathways 

were followed in parallel. In the same line, Chen et al. [22] reasoned that the 

conversion of HMF into DMF follows two analogous routes (BHMF hydrogenation and 

5-MF hydrogenolysis) to form DMF and MFA, which was further hydrogenated into 

MTHFA. Similarly, Liao and colleagues [23] proposed a double parallel route due to the 

synergy of Pd and CoS sites, which are in charge of the hydrogenation of −CHO and 

the hydrogenolysis of −HO, respectively. 

Esteves et al. [24] studied the product distribution varying the acidity of the support on 

Cu based catalyst. Lewis and Brønsted acid sites followed BHMF route, while weak and 

moderate acidic catalysts showed the formation of 5-MF during the reaction. 

Interestingly, some investigations established a parallel pathway of hydrogenolysis and 

etherification reactions in the formation of DMF. Jae and colleagues [25] detected 

etherified compounds during the reaction over Ru/C catalyst. The acidic functional 

groups on activated carbon were presumably responsible for the etherification 

reactions. The hydrogenolysis reaction of HMF was conducted by the hydrogenolysis of 

BHMF to form DMF through MFA and occurred combined with etherification reactions, 

which also produced DMF, as it can be observed in see Figure 2.5 (green pathway). 

Analogously, Han et al. [26] demonstrated the parallel production of DMF through 

both hydrogenolysis and etherification. In this case, the hydrogenolysis route followed 

the hydrogenolysis of 5-MF and further hydrogenation of MFA to form DMF (see 

Figure 2.5, blue pathway).  

Lastly, some groups investigated the reaction pathway through etherification in the 

absence of hydrogenolysis intermediates such as BHMF, 5-MF or MFA. Braun and 

colleagues [27] identified the formation of two condensates, determining a reaction 
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mechanism that involved the etherification of HMF in ethanol to produce DMF. 

Similarly, De´s group [7] studied the transformation of HMF to DMF by Ru/C catalyst in 

FA and H2SO4. The investigation revealed that this reaction occurred via the formation 

of HMF formate ester (FMF), as shown above in Figure 2.2.  
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Figure 2.5. HMF hydrogenolysis and etherification pathway to DMF. 

Therefore, different reaction pathways can be followed to obtain DMF from HMF. 

BHMF or 5-MF are the most common intermediates, implying firstly the hydrogenation 

of the aldehyde group or the hydrogenolysis of the hydroxyl group, respectively. 

2.2.2 Catalytic system 

It has been previously stated that HMF possess an aldehyde group, a hydroxyl group 

and a furan ring, which makes a highly reactive molecule. Moreover, numerous 

products can be obtained from the hydrogenation-hydrogenolysis reaction of this 

molecule. One of the key challenges for upgrading HMF is to get a high desired product 

selectivity to avoid undesired side reactions. Therefore, a highly efficient, selective and 

stable catalytic system needs to be found. In general, most of the studied systems are 

based on batch discontinuous reactors. However, only a limited number of 

investigations have been carried out in fixed-bed continuous flow reactors. In the next 
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sections, different catalytic systems for the production of DMF have been described. 

On the one hand, monometallic catalytic systems based on noble metals such as Ru, Pd 

or Pt have been studied. On the other hand, non-noble Ni and Cu monometallic 

catalysts have been examined to reduce the high costs that noble metals imply. Lastly, 

bimetallic catalysts based in noble and/or non-noble metals have been investigated. 

2.2.2.1 Noble metal monometallic catalysts 

Noble metals exhibit remarkable, and in many cases unique, catalytic performance in 

numerous reaction systems. Therefore, Ru, Pd and Pt have been extensively studied 

for the hydrogenolysis reaction of HMF. 

Ru based monometallic catalysts 

Numerous investigations have studied catalytic systems of Ru supported on carbon 

materials. Commercial Ru/C catalyst was employed by Hu et al. [28] in THF, which 

acted as a solvent without playing any active role in the reaction. Moreover, the acid 

sites observed in the support were responsible for side reactions such as etherification 

reactions and Ru was in charge of the hydrogenolysis of HMF to DMF. The reaction 

conditions were optimized obtaining a DMF yield of 94 % after 2 h of reaction at 200 °C 

and 20 bar of H2 pressure. Longer reaction times and higher temperatures or pressures 

led to ring-opening and over-hydrogenated products. Similarly, Jae´s group [25] 

investigated the role of commercial Ru/C using 2-propanol as H2 donor and solvent to 

avoid the consumption of H2. The reaction variables were adjusted and the yield of 

DMF reached 81 % at 190 °C and 20.4 bar of N2 after 6 h. Carbon nanotubes (CNTs) 

were synthetized by Priecel and colleagues [29], enhancing the performance of 

ruthenium by a combination of higher porosity of CNTs and the electronic promotion 

within the nanotubes, which increased the reducibility of the metal. Lower 

temperature (150 °C) and reaction time (1 h) were needed to obtain a maximum DMF 

yield of 83.5 % at 20 bar of H2 in dioxane. Interestingly, some authors verified the 

beneficial synergy of metallic Ru and RuOx for the production of DMF. Jae et al. [30] 

examined the partial oxidation of Ru by mild oxidation treatment at 130 °C, generating 

a partially oxidized Ru surface necessary for the hydrogenolysis reaction, achieving a 
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DMF yield of 72 %. Recently, Tzeng and coworkers [16] investigated Ru supported on 

microporous, mesoporous and non porous carbon, concluding that the hydrogenolysis 

reaction was highly correlated with the electronic structure of Ru nanoparticles. Ru 

supported in non-porous carbon was completely reduced. In contrast, RuOx species 

were detected in microporous and mesoporous supports. These last catalysts achieved 

high yields of DMF (nearly 70 %) at mild reaction conditions, 5 bar of H2 and 125 °C 

after 1 h. 

Moreover, zeolite and metal oxide supports have also been considered for this 

reaction. Nagpure et al. investigated Ru catalyst over NaY zeolite [31] and hydrotalcite 

(HT) [32]. The Lewis acid sites detected in NaY increased the deoxygenation ability of 

the catalyst, maximizing the DMF yield up to 78 % after 1 h at 220 °C and 15 bar of H2. 

When hydrotalcite was used as support, the yield decreased to 58 %. The pressure was 

slightly reduced to 10 bar, since higher values resulted in over-hydrogenated products. 

Lastly, Raut and colleagues [33] synthetized a mesoporous ZrO2-MCM-41 support 

containing acid sites that apparently could enhance the dehydration of CH2−OH, 

achieving 90 % of DMF yield at 160 °C and 15 bar of H2 after 1 h.  

Pd based monometallic catalysts 

Monometallic palladium is also investigated as a promising noble metal in the DMF 

production. As well as Ru catalysts, carbon materials showed interesting behavior as 

catalytic support. Mitra et al. [34] studied the effect of FA on the product distribution 

over commercial Pd/C in dioxane. In absence of FA, HMF underwent decarbonylation 

to furfuryl alcohol (C5). However, in presence of FA, decarbonylation of HMF is 

suppressed, enhancing the hydrogenolysis to DMF. Therefore, FA facilities the 

conversion of HMF to DMF by acting as H2 source and inhibiting decarbonylation to C5, 

reaching 85 % DMF yield after 15 h on stream at 120 °C in an autoclave reactor. 

Commercial Pd/C was also employed by Chatterjee and coworkers [35] in a 

supercritical carbon dioxide (scCO2) and water system. A complete miscibility of 

reagents was obtained by scCO2, which is highly used in the chemical reactions 

involving gasses. Moreover, the acidity of scCO2-H2O benefited the hydrogenolysis 

reaction. Optimization of the reaction variables was carried out in a batch reactor, 
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obtaining 100 % of DMF yield at 80 °C and H2 and CO2 partial pressures of 10 bar and 

100 bar, respectively, after 2 h of reaction time. The CO2 pressure variation completely 

altered the product distribution, being able to produce high yields of MTHFA and 

DMTHF when adapting the pressure. This variation affects to the phase behaviour and 

hence, the product distribution can be tuned-up (see Figure 2.6). 
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Figure 2.6. Phase observation over different pressures and main product of each division [35].  

Pd catalyst supported on Fe2O3 was synthetized by Scholz´s group [36], using 

2-propanol as H2 donor in a continuous flow at 25 bar of N2 and 180 °C. The in situ 

reduced Pd catalyst was able to obtain 70 % of DMF yield. Recently, Zhang et al. [14] 

studied the hydrogenolysis of HMF over commercial PdCl2 catalyst and PMHS acting as 

H2 donor. HCl was in situ liberated from both catalyst and H2 source in alcoholic 

solvents such as ethanol. At room temperature and atmospheric pressure, the reached 

yield rose up to 89 % after 30 minutes.  

Pt based monometallic catalysts 

Most of the platinum-based catalysts are developed with the addition of another noble 

or non-noble metal, resulting in bimetallic catalysts, which will be discussed later in 

section 2.2.2.3. However, some authors studied the performance of monometallic Pt 

catalysts. 
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Shi et al. [37] reached 73.2 % DMF yield with complete HMF conversion at 120 °C and 

30 bar of H2 over Pt supported on reduced graphene oxides (rGO). The suitable 

performance of the catalyst was attributed to the highly dispersed Pt nanoparticles, to 

the micropore-free configuration and to the flat structured Pt/rGO, which enabled the 

selective adsorption of HMF, accelerating its reaction rate.  

   Table 2.2. Activity results of monometallic noble metal catalysts. 

    a Continuous flow  

Batch and continuous flow reactors were employed by Luo and colleagues [38] to 

investigate the hydrogenolysis over Pt/C catalyst. The batch experiments revealed that 

DMF showed its highest concentration at the beginning of the reaction (27.2 %), 

decreasing steadily with time of reaction as a result of the formation of ring-opening 

and over-hydrogenated products. This implied that shorter contact time were needed. 

Thus, when using the continuous reactor higher DMF yields could be obtained (60 %) 

since this reaction system allows choosing the suitable contact time by modifying the 

space velocity. The reaction was carried out sequentially, producing partially 

hydrogenated compounds and ethers from HMF and producing DMF afterwards. 

Catalyst Solvent P 
(bar) 

T 
(°C) 

Time 
(h) 

Conversion 
(%) 

Yield 
(%) Ref. 

Ru/C THF 20 200 2 100 94 [28] 

Ru/C 2-propanol 20 (N2) 190 6 100 81 [25] 

Ru/CNT Dioxane 20 150 1 96.5 83.5 [29] 

Ru-RuO2/C 2-propanol 20 (N2) 130 6 100 72 [30] 

Ru/C 2-propanol 5 125 1 100 70 [16] 

Ru/NaY THF 15 220 1 100 78 [31] 

Ru/HT 2-propanol 10 220 1 100 58 [32] 

Ru/ZrO2-MCM-41 THF 15 160 1 99 90 [33] 

Pd/C Dioxane 2 120 15 95 85 [34] 

Pd/C Water+CO2 
10 (H2) 

100 (CO2) 80 2 100 100 [35] 

Pd/Fe2O3 2-propanol 25 (N2) 180 0.5 100 70 [36] 

PdCl2 Ethanol - 25 0.5 100 89 [14] 

Pt/rGO BuOH 30 120 2 100 73.2 [37] 
Pt/C + 

ZrO2/SBA-15a 1-propanol 33 180 - 100 77.6 [38] 
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Assuming that DMF was produced from the ethers, high concentrations of these last 

compounds was tried to obtain by the addition of ZrO2/SBA-15. This catalyst was 

previously studied, providing high conversion of HMF towards different ethers. 

Therefore, it was placed on the flow reactor before the Pt/C catalyst, involving the 

production of ethers by ZrO2/SBA-15 followed by the conversion of the ethers into 

DMF by Pt/C. This modification improved the DMF yield up to 77.6 %.  

The explained catalytic systems, reaction conditions and obtained activity results in the 

different studies based on monometallic noble metal catalysts have been summarized 

in Table 2.2. 

2.2.2.2 Non-noble metal monometallic catalysts 

The effective and selective performance of noble metals has been explained in the 

previous section. However, their application is restricted because of their limited 

availability and high costs [39].  

The development of efficient and non-precious metal-based catalytic system for this 

hydrogenolysis process is of great importance, from the large-scale industrialization 

[40,41] point of view. 

Ni based monometallic catalysts 

Gyngazova´s group [42] synthetized monometallic Ni supported on carbon (Ni/C) by 

incipient-wetness impregnation method, which is attractive due to its technical 

simplicity and low cost. The optimization of the variables was carried out to avoid the 

formation of polymeric side products, reaching a DMF yield of 70 % and almost 80 % of 

HMF conversion at 45 bar of H2 and 180 °C after 2 h of reaction. Based also on carbon 

materials, Goyal et al. [39] developed a more sophisticated mesoporous nitrogen-rich 

carbon (NrC) support. The high HMF conversion (99.9 %) and DMF yield (98.7 %) were 

attributed to the strong interfacial interaction between Ni and nitrogen atoms of the 

support, which enhanced the total Ni reduction. Ni nanoparticles (below 5 nm) highly 

dispersed on the support were observed when the metal loading was 5 %. Higher 

metal loading involved an increase of the particle size, reducing DMF selectivity. Mani 
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and coworkers [43] created a functional nickel-carbon composite based on squaric 

acid-zinc complex and porous carbon (Ni@SAZn_PC), achieving a cube shaped 

morphology and high porosity. The catalyst was tested in a continuous flow reactor 

reaching 79 % of HMF conversion and 68 % of DMF at 6 bar of H2 and 150 °C.  

Commercial Ni Raney was employed by Kong and collegues [41]. The difference on 

product distribution was related to the variation of the temperature. The catalyst 

enabled the hydrogenation to BHMF at low temperatures and its hydrogenolysis to 

DMF at high temperatures (see Figure 2.7). The high yield obtained was ascribed to the 

weak acidity of Raney Ni. The same group investigated the reaction over Ni/Al2O3 [44]. 

The modulation of surface metal-acid bifunctional sites (by varying the calcination 

temperature) and reaction conditions altered the product distribution. Lower 

calcination temperatures involved excessive metal sites that promote C=C 

hydrogenation. Moreover, low temperature and high pressure values blocked the 

hydrogenolysis reaction. Thus, BHMTHF yield of 96.2 % was obtained at 60 °C and 

60 bar of H2 when the catalyst was calcined at 450 °C. When a higher calcination 

temperature (850 °C) was set, a balanced surface acid/metallic sites was obtained. 

Hence, together with a slightly higher reaction temperature (180 °C) and a lower 

pressure (12 bar) hydrogenolysis to DMF and DMTHF was obtained in a tank reactor. In 

such conditions, the DMF yield reached 91.5 % in 4 h of reaction time; longer reaction 

times (20 h) implied high DMTHF yield (97.4 %). 

Recently, Guo et al. [18] employed ZSM-5 zeolite to synthetize Ni/ZSM-5 by solid-

phase grinding method. The synergistic effect of acid sites and metal sites on the 

catalyst surface was responsible for the excellent production of DMF (86.5 %). An 

appropriate ratio of metal sites and acidic sites was essential for the selective 

hydrogenolysis of HMF. 

Other supports such as zirconium phosphate (Ni/ZrP) [45], Co3O4 [46] and perovskites 

[40] have been studied for the hydrogenolysis of HMF to produce DMF in batch 

reactors. 
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Cu based monometallic catalysts 

Diverse metal oxides have been investigated as supports of Cu monometallic catalysts 

for hydrogenolysis reactions. Hansen et al. [47] synthetized monometallic Cu 

supported on porous metal oxide (PMO) by coprecipitation of a mixture of Al, Mg and 

Cu precursors, obtaining a Cu-doped hydrotalcite like compound. The reaction was 

carried out in supercritical methanol at 260 °C resulting in 48 % of DMF yield after 3 h. 

Another studied metal oxide was ZnO. Zhu et al. [48] tested different Cu loadings 

obtaining the highest yield when the (Cu:Zn) molar ratio was equal 2. This ratio offered 

the most proper combination of high surface Cu concentration and suitable acidity. 

The same behaviour as explained before with Ni-Raney was observed; low reaction 

temperatures involved the hydrogenation of HMF to BHMF and by contrast, high 

temperatures implied hydrogenolysis to DMF (see Figure 2.7).  

O
OH O

HMF
O

OH OH

BHMF
99.1%

OH3C CH3

DMF
88.5%

O
H3C CH3

BHMTHF
96.0%

Raney Ni

OH3C CH3

DMF
91.8%

Cu/ZnO

100 ⁰C 220 ⁰C 180 ⁰C 

Figure 2.7. Difference on product distribution depending on the reaction temperature 

The synergistic effect of ZnO Lewis acidic sites and Cu0 active species was studied by 

Bottari et al. [49]. The Cu0 particles were responsible for hydrogenation/ 

hydrogenolysis, being the particle size a crucial parameter. They determined that Cu 

particle size < 150 nm is needed for the optimal production of DMF. Thus, they were 
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able to reach a DMF yield of 89 % at 200 °C using cyclopentyl methyl ether (CPME) as 

solvent.  

Table 2.3. Activity results of monometallic non-noble metal catalysts 

   a Continuous flow 

Different supports were evaluated by Zhang et al. [50] in a microbatch reactor (14 ml). 

In all the cases, methanol was used as H2 donor, thus, the catalyst needed to be active 

for the hydrogenolysis reaction but also for the in situ H2 production from methanol. 

Monometallic Cu supported on Al2O3 exhibited the best catalytic activity (73.9 % DMF 

yield) attributable to the elevated H2 production, small Cu crystallite size and strong 

acidity. Similarly, Esteves and colleagues [24] also studied the effect of various 

supports. They concluded that high copper dispersion and Lewis acid sites of the 

support were crucial for the activation of oxygen of hydroxyl group in HMF. Alumina 

containing catalyst showed the best performance, reaching a complete conversion and 

a DMF yield of 85 %.  

In Table 2.3 the results of DMF production and the operating conditions using Ni and 

Cu catalysts are summarized.  

Catalyst Solvent P 
(bar) 

T 
(°C) 

Time 
(h) 

Conversion 
(%) 

Yield 
(%) Ref. 

Ni/C THF 45 180 2 80 70 [42] 

Ni/NrC Water 30 200 6 99.9 98.7 [39] 

Ni/SAZn_PCa Ethanol 6 150 - 79 68 [43] 

Raney Ni 1,4-dioxane 15 180 15 100 88.5 [41] 

Ni/Al2O3 1,4-dioxane 12 180 4 100 91.5 [44] 

Ni/ZSM-5 THF 2.5 180 7 90 86.5 [18] 

Cu/PMO MeOH - 260 3 100 48 [47] 

Cu/ZnO 1,4-dioxane 15 220 5 100 91.8 [48] 

Cu/ZnO CPME 20 200 6 100 89 [49] 

Cu/Al2O3 MeOH 1 (N2) 240 6 100 73.9 [50] 

Cu/Al2O3 THF 20 150 10 100 85 [24] 
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2.2.2.3 Bimetallic catalysts 

Different bimetallic (noble and non-noble) catalysts designed for the production of 

DMF have been recently reported.  

Gao et al. [51] centred their study on Ru-Co nanoparticles (NP) homogeneously 

dispersed on CoOx microspheres, which possessed abundant surface defects, such as 

oxygen vacancies and Co2+ species. High DMF yield (96.5 %) was obtained by the 

synergistic effect of Ru-Co NP, highly active sites, and abundant surface defects. These 

characteristics led to an effective activation of C=O and C−O bonds, promoting the 

hydrogenolysis of the hydroxyl group.  

Other authors have investigated this reaction using Pd-based bimetallic catalysts. 

Nishimura and coworkers [52] selectively produced DMF by Pd-Au/C. X-ray diffraction 

(XRD) results revealed the existence of Pd-Au alloy particles and Au isolated particles, 

indicating the need of both active sites for the conversion of HMF to DMF. Moreover, 

the co-existence of a strong acid (HCl), which performed as homogeneous catalyst, 

optimized the efficiency of the catalytic system, reaching a DMF yield of 96 %. To 

reduce the noble metal consumption and avoid the use of acidic precursors, Talpade 

and colleagues [53] developed a bimetallic Fe-Pd/C nanocatalyst. Partially oxidized Fe 

and reduced Pd atoms led a DMF yield of 85 %. Moreover, the oxidized Fe presented 

magnetic properties to the catalyst, performing an easier recovery of the catalyst. 

More recently, Liao´s group [23] studied a bimetallic Pd-Co catalyst supported on 

sulphur-modified carbon nanotubes (S-CNT). The high activity of Pd-Co/S-CNT was 

attributed to the synergetic effect of active Pd and Co9S8, which were responsible for 

the hydrogenation of the aldehyde group and the hydrogenolysis of the hydroxyl 

group, respectively. It was demonstrated that Pd-Co9S8 was much more active than Pd-

CoO in the hydrogenolysis reaction of HMF to DMF, reaching a maximum yield of 

83.7 % of DMF at mild reaction conditions (120 °C and 3 bar).  

As it is explained above, monometallic Pt catalysts have not been widely studied. 

However, the incorporation of another noble or non-noble metal to Pt-based catalyst 

has gained attention over the last years. Wang et al. [54] incorporated Pt-Co bimetallic 
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nanoparticles in hollow carbon nanospheres (HCS), reaching a DMF yield of 98 % after 

2 h at 180 °C, where the hydrogenolysis was the rate-determining step. Moreover, 

different commercial Pt/carbon catalysts were tested, reaching considerable lower 

yields. However, altering these catalysts with Co (forming Pd-Co alloy) improved the 

DMF yield up to 98 %, proving that the alloy is essential for the production of desired 

product. Similarly, Wang´s group [55] deposited Pt-Co bimetallic nanoparticles over 

carbon nanotubes (CNT) by atomic layer deposition. Pt enhanced the hydrogenation of 

C=O bond and Co promoted the selectivity to DMF and inhibited the production of 

undesired byproducts. Moreover, the graphene layer on CNT transferred electrons to 

Pt nanoparticles, involving an increase of the charge density on Pd, improving C=O 

activation. Recently, Ledesma and colleagues [56] synthetized a Pt-Ir alloy supported 

on CMK-3 and SBA-15. This alloy combines the hydrogenating capacity of Pt and 

hydrogenolysis ability of Ir. Moreover, the Pt high activity involved the generation of 

undesired byproducts, which was prevented by adding the second metal. The highest 

DMF yield (86 %) was obtained by Pt-Ir supported on CMK-3 due to the neutral nature 

of this support, that avoids the C=C cleavage, and the high dispersion achieved on the 

mesoporous carbon support.  

An efficient nonprecious nickel-tungsten carbide catalyst on active carbon (Ni-W2C/C) 

was reported by Huang et al. [57]. Ni particles showed an excellent hydrogenation 

capacity and W2C an exceptional deoxygenation ability, achieving 96 % of DMF yield 

with the optimized loading ratio of 7 % Ni and 30 % W2C. Yu´s group [58] determined 

that Ni-Fe supported on carbon nanotubes (CNT) showed higher activity than the same 

metals supported on activated carbon. Moreover, the Ni-Fe alloy species favoured the 

cleavage of C−O bond, reaching DMF yields exceeding 90 %. Besides, this catalyst 

presented a magnetic nature, that generates a simpler separation, as explained above. 

Based on sulphur-modified catalysts, a non-noble catalytic system was synthetized by 

Han et al. [59] by evaporation-induced self-assembly (EISA) method. The obtained 

Ni-MoO/Al2O3 catalyst was sulfided by dimethyl disulphide (DMDS) as sulphiding 

agent, obtaining an ordered mesoporous alumina supported nickel-molybdenum 

sulphide catalyst. The activity depended on the content of NiMoS coordinated 

unsatured sites (CSU). Moreover, 2-propanol solvent promoted the formation of 



State of art 

 

81 

intermediate ether compounds, which were easier to be hydrogenolyzed. Under mild 

reaction conditions, 130 °C and 10 bar of H2, the reached DMF yield was 95 % after 6 h. 

Continuing with Ni-based bimetallic catalysts, Yang and coworkers [60] obtained the 

same activity results (DMF yield of 95 %) at identical reaction parameters as Han´s 

group by Ni-Co/C catalyst. The high activity obtained with this catalyst was attributed 

to the synergistic effect between Ni and CoOx species. The optimization of Ni loading 

was needed because excessive Ni content provoked over-hydrogenated products. A 

subsequent investigation was carried out by Yang et al. [61] employing the same 

catalyst but using FA as hydrogen donor, reaching 90 % of DMF yield at 210 °C under 

self-generated pressure. Recently, Chen et al. [62] efficiently dispersed Co and Ni-Fe 

alloy species on the surface of boron nitride (BN). Fe species were beneficial for the 

adsorption of the furan ring but they showed low hydrogenation ability. However, Ni 

species possessed excellent hydrogenation capacity. Thus, the Ni-Fe alloy presented a 

favourable synergist effect. Moreover, the addition of Co enhanced the selectivity to 

DMF, concluding that three metals were crucial factors to achieve high yields of DMF, 

reaching 94 % of DMF yield at 20 bar of H2 pressure and 180 °C. The XRD and 

temperature programmed reduction with hydrogen (H2-TPR) results indicated that 

isolated Co and Ni-Fe alloy were formed on the support surface.  

Cu-based bimetallic catalysts have been considered by several authors. Srivastava and 

colleagues [63] studied the bimetallic Cu-Co catalyst over various supports (CeO2, ZrO2 

and Al2O3). Cu-Co/CeO2 produced mainly BHMF due to large Cu particles. By 

comparison, Cu-Co/ZrO2 exhibited low selectivity due to the generation of 

over-hydrogenated and ring-opening products, caused by the strong acidic sites of the 

support. The best activity was achieved by Cu-Co/Al2O3, as a result of combination of 

highly dispersed Cu and partially reduced CoOx and suitable weak acidic sites, reaching 

a DMF yield of 78 % after 8 h of reaction at 220 °C and 30 bar of H2. Similar catalytic 

system was studied by Guo et al. [64]. The bimetallic Cu-Co/Al2O3 was modified with 

N-graphene (NGr). The achieved optimum DMF yield (99 %) was a consequence of 

highly effective catalyst for C−O cleavage and C=O bond hydrogenation but exhibited 

an inactive capacity for the hydrogenation of C=C bond, avoiding DMTHF or BHMTHF 

production. Identical metals were employed by Chen et al. [65] but supported on 
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carbon. Monometallic Cu catalyst was not able to achieve the hydrogenolysis step, 

obtaining high yields of BHMF. However, the Co species improved the catalytic 

performance of copper species by the synergistic effect between metals, achieving the 

hydrogenolysis step to produce DMF.  

The aforementioned investigations were focused on discontinuous batch reactors. 

Nevertheless, Luo and colleagues [66] studied the hydrogenolysis of HMF to DMF over 

bimetallic catalysts in continuous flow reactors. They synthetized Pt-based bimetallic 

catalysts supported on carbon by sorvothermal method and tested in a liquid-phase 

flow reactor. High yields (> 95 %) were achieved by Pt-Ni, Pt-Zn and Pt-Cu nanocrystals. 

The alloying metal prevented the ring-opening or ring-hydrogenated byproducts.  

The above mentioned investigations based on bimetallic catalysts are summarized in 

Table 2.4, including the catalytic system, operation conditions and activity results.  

   Table 2.4. Activity results of bimetallic catalysts. 

Catalyst Solvent P 
(bar) 

T 
(°C) 

Time 
(h) 

Conversion 
(%) 

Yield 
(%) Ref. 

Ru-Co/CoOx 1,4-dioxane 5 200 2 100 96.5 [51] 

Pd-Au/C THF 1 60 12 99 96 [52] 

Pd-Fe/C THF 20 150 2 100 85 [53] 

Pd-Co/S-CNT THF 3 120 13 96 83.7 [23] 

Pt-Co/HCS BuOH 10 180 2 100 98 [54] 

Pt-Co/CNT BuOH 10 160 8 100 90 [55] 

Pt-Ir/CMK-3 THF 15 120 4 98 86 [56] 

Ni-W2C/C THF 40 180 3 100 96 [57] 

Ni-Fe/CNT BuOH 300 200 3 100 91.3 [58] 

NiMoS/Al2O3 2-propanol 10 130 6 100 95 [59] 

Ni-Co/C THF 10 130 24 99 95 [60] 

Ni-Co/C FA 1 (N2) 210 24 99 90 [61] 

NiFeCo/BN THF 20 180 4.5 100 94 [62] 

Cu-Co/Al2O3 THF 30 220 8 100 78 [63] 

Cu-Co/NGr/Al2O3 THF 20 180 16 99 99 [64] 

Cu-Co/C Ethanol 50 180 8 100 99.4 [65] 

Pt-M/Ca 1-propanol 33 200 - 95 95 [66] 
     a Continuous flow: M = Ni, Zr or Cu.  
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2.3 DMTHF production 

The production of DMTHF has gained attention in the very last years; therefore, there 

is a modest number of investigations focused on its production. As described in 

Figure 2.4, DMTHF can be obtained following different routes. The most studied 

pathway is the hydrogenation of the furan ring of DMF to produce DMTHF. Another 

possibility is that the hydrogenation of the furan ring is produced in a previous step, 

where MFA is converted into MTHFA to subsequently be transformed into DMTHF. In 

the last route, the furan ring of DMF can be opened to HD, which is further 

hydrogenated to 2,5-hexanediol and finally, DMTHF is generated. 

Yang et al. [67] studied the transformation of fructose, glucose and cellulose to DMTHF 

in a biphasic system. A homogeneous catalyst constituted of rhodium salt and 

hydroiodic acid (HI) under H2 atmosphere was employed. The addition of an organic 

solvent enhanced the production of DMTHF due to the extraction of unstable reaction 

intermediates out of the aqueous phase. The desired product yield was enlarged by 

increasing the temperature and decreasing the amount of acid, obtaining a maximum 

DMTHF yield of 81 %, 70 % and 54 % when fructose, glucose and cellulose were tested 

as raw materials. Subsequently, the same research group investigated the role of both 

Rh and the HI in the production of DMTHF from fructose [15]. They concluded that HI 

acts as a dehydration agent in the conversion of fructose to HMF and as a reducing 

reagent to consecutively produce 5-MF. Moreover, HI enables the hydration of DMF to 

HD, an important intermediate to produce DMTHF. The I2 produced in the reduction 

steps is converted back to HI by Rh. This metal is additionally responsible for the 

hydrogenation of unsaturated C=C and C=O. Even if high yields of DMTHF are 

obtained with this catalytic system, the high cost of Rh and the corrosive nature of HI 

make the process uneconomical. Similarly, Li´s group [68] investigated the fructose 

conversion to DMTHF in a biphasic system. A hydrophilic (Brønsted acid: H2SO4) and 

hydrophobic catalyst (Pt/C) were added into immiscible organic/water system. The 

dehydration of fructose to HMF was catalysed by H2SO4 in the aqueous phase, and 

then, to DMTHF by Pd/C at the water/organic interface. Higher amount of diethyl 

ether (EtOEt) solvent improved the extraction of HMF. The maximum yield of DMTHF 
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obtained was 70 % in water-EtOEt biphasic system at 130 °C after 12 h. The addition of 

dimethyl sulfoxide (DMSO) provoked the decrease of Pd/C activity, involving the 

production of DMF and 5-MF and the decrease in DMTHF generation.  

The same heterogeneous catalyst (Pt/C) was employed by Jackson and colleagues [69]. 

The catalyst was poisoned by sulphur (sulfided Pt/C) to increase the selectivity of 

DMTHF from HD by enhancing the rate of ring closing of HD. The reaction was carried 

out in ethanol, which stabilized fructose against dehydration to HMF, allowing 

hydrodeoxygenation to take place. The ring-opening of fructofuranose lead to HD, 

further hydrogenated to 2,5-hexanediol, which ring closes to DMTHF. The achieved 

DMTHF yield reached 50 % at 103 bar and 175 °C.  

The conversion of DMTHF from HMF was studied by Gao et al. [20] using 

nitrogen-doped decorated copper-based catalyst (NC-Cu/MgAlO) reaching a DMTHF 

yield of 94.6 % at 220 °C after 200 min. Cyclohexanol was used as both hydrogen donor 

and solvent in N2 atmosphere. The surface basic sites promoted the activation of 

hydroxyl group in cyclohexanol and subsequent release of active hydrogen. Moreover, 

the highly dispersed Cu0 and Cu+ species efficiently transferred the hydrogen and 

activated both carbonyl and hydroxyl group. Recently, Chen et al. [70] achieved 97 % 

yield of DMTHF after 10 h of reaction under mild conditions (130 °C and 30 bar) 

catalysed by Ni/SBA-15. HMF was rapidly converted into DMF and in a second stage, 

the furan ring hydrogenation occurred in a slower rate.  

The aforementioned research results based on the production of DMTHF are 

summarized in Table 2.5. 

According to this background, an important effort has been carried out to study the 

hydrogenolysis of HMF to DMF and DMTHF with a variety of catalytic systems 

(monometallic and bimetallic catalysts based on noble and non-noble metals) in 

monophasic and biphasic systems using diverse solvents at different reaction 

conditions. However, most of the investigations are focused on batch type reactors, 

implying discontinuous systems. Considering the lack of research data for continuous 

systems, this PhD thesis focuses on the production of DMF and DMTHF in a continuous 
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fixed-bed reactor. This type of continuous process provide higher efficiencies and 

lower production costs [71] and are preferable for use on an industrial scale. 

Table 2.5. Catalytic activity of DMTHF production. 

Catalyst Feed Solvent P 
(bar) 

T 
(°C) 

Time 
(h) 

Yield 
(%) Ref. 

HI + Rh 
Fructose 
Glucose 
Cellulose 

Water + 
chloro-

benzene 
20.7 140 16 

81 
70 
54 

[67] 

H2SO4+Pd/C Fructose Water + 
EtOEt 27.6 130 12 70 [68] 

Sulfided Pt/C Fructose Ethanol 103 175 2 50 [69] 

NC-Cu/MgAlO HMF Cyclo- 
hexanol 1 (N2) 220 3.33 94.6 [20] 

Ni/SBA-15 HMF 1,4-dioxane 30 130 10 97 [70] 
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This PhD thesis focuses on the production of green biofuels. The Chapter 1 evidenced 

the need of replacing conventional petroleum-based fuels. Moreover, it was 

emphasized that green fuels produced from biomass are a promising alternative. In 

this sense, the recent studies on the production of DMF and DMTHF (biofuels which 

can be substitutive or additive of conventional fuels) were described in Chapter 2. 

The main objective of this PhD thesis is the development of advanced catalytic 

technologies for biofuels production from selective hydrogenolysis of 

biomass-derived platform molecule using a fixed bed reactor. This work aims to have 

an academic interest, being useful for the scientific community, and provide a 

contribution in the field of sustainable processes and applied catalysis in biorefineries, 

especially in the area of hydrogenolysis reactions. 

For this research, the hydrogenolysis of HMF to produce DMF and DMTHF was studied, 

due to the promising characteristics these biofuels present. Many studies have centred 

their attention on the study of catalysts based on noble metals, due to the suitable 

characteristics they present. However, the high price and reduced availability of these 

metals involve the need of studying new advanced catalytic systems based on 

non-noble metals. Moreover, most of the investigations carried out in this area are 

performed on batch type reactors. Nevertheless, from an industrial point of view, the 

continuous processes provide higher efficiencies and lower production costs. For these 

reasons, the current PhD thesis research will be carried out in a continuous fixed-bed 

reactor. Additionally, avoiding the use of noble metals will reduce the costs of the 

process. Therefore, Cu based catalysts will be synthetized due to the high 

hydrogenation capacity and C—O hydrogenolysis capacity this non-noble metal 

exhibits.  

In order to achieve the main objective of this thesis successfully, some partial goals 

were stablished using different active metals and catalyst support materials: 

• A continuous update of the new relevant published investigations will be 

carried out, once the state-of-the-art revision is included in the previous 

chapter. 
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• Set up and start up of the experimental lab scale facility in order to develop the 

corresponding activity studies. A precise functioning of the system is required 

to achieve reliable results.  

• Catalyst screening. Considering the low amount of investigations carried out in 

the hydrogenolysis of HMF in continuous fixed bed reactors, a screening of 

different catalysts will be carried out. Based on Cu/ZrO2, different catalysts will 

be synthetized and tested. On the one hand, the support will be modified by 

CeO2 to improve its characteristics. Moreover, the addition of Ru (noble metal) 

and Ni (non-noble metal) will be studied to see if their addition enhances the 

catalytic activity of the system.  

• A deep study of the catalytic behaviour of the most promising catalysts 

observed in the catalyst screening will be performed. An analysis of the 

correlation between the hydrogenolysis activity results and the catalysts 

physicochemical properties will be carried out. For this purpose, fresh and used 

catalysts will be examined by different characterization techniques (ICP-OES, 

N2-physisorption, H2-TPR, NH3-TPD, CHN, XRD, XPS and STEM). This extensive 

investigation should promote the comprehension of the factors affecting 

positively and negatively the hydrogenolysis reaction.  

• Ni-Cu bimetallic interaction study. The promising bimetallic Ni-Cu interaction 

will be profoundly studied in Ni-Cu/ZrO2 based catalysts. For this purpose, 

different metal content of Ni and/or Cu will be loaded to the support. 

Moreover, the impregnation method will be varied. On the one hand, both 

metals will be co-impregnated in the same step. On the other hand, the metals 

will be impregnated in sequential steps (first impregnating one metal and then 

the second metal).  

• Biomass-derived carbon as catalytic support. Biomass-derived carbon produced 

from agroforestry residues will be studied as catalytic support to examine the 

possible use of this valorised residue. The results obtained with the catalysts 

synthetized with biomass-derived carbon will be compared with the catalysts 

supported on commercial carbon to understand the potential of the valorised 

carbon.  



Objectives and scope of the thesis 

 

101 

Therefore, a selective and stable catalytic system for the hydrogenolysis of HMF to 

DMF and DMTHF could favour the intensification of biofuels production. Moreover, 

this PhD thesis focuses on the cost minimization of the process, employing non-noble 

metals and working on a fixed bed reactor. Nevertheless, the process is yet away from 

being scaled-up to the industry. 
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In this chapter the experimental procedure of the catalysts synthesis and the catalytic 

activity test have been described. Moreover, the analysis of the obtained products and 

the characterization techniques employed to understand the physicochemical 

characteristics of the catalysts have been outlined.  

4.1 Catalyst preparation 

The catalyst synthesis is one of the key factors in this PhD thesis. Wet impregnation 

method was employed for the preparation of the catalysts, due to its simplicity, low 

cost and fast preparation time this technique provides [1]. The synthetized catalysts 

were classified considering the employed support, discerning between ZrO2 based 

catalysts and carbon based catalysts. 

4.1.1 ZrO2 based catalysts 

Monometallic catalysts 

The catalysts were synthetized by wetness impregnation (WI) method. Zirconium 

nitrate, ZrO(NO3)·H2O (Sigma-Aldrich, 99 %), and the corresponding metal nitrate, 

Cu(NO3)2·H2O (Alfa Aesar, 98 %) or Ni(NO3)2·6H2O (Sigma-Aldrich 99.99 %), were 

dissolved in deionized water. The solution was stirred in a rotatory evaporator at room 

temperature for 2 h. Subsequently, it was warmed up to 60 °C and the water was 

evaporated employing a vacuum system. The samples were dried overnight at 110 °C 

and calcined in air at 250 °C for 2 h. An scheme is showed in Figure 4.1. 

The samples obtained with this method are denominated as xCuZr or yNiZr, where x 

and y represent the metal content (wt %) of Cu and Ni, respectively.  

Co-impregnated bimetallic catalysts 

The same method as explained for monometallic catalyst was performed to prepare 

bimetallic catalysts. The difference was that Zr, Ni and Cu nitrates were at the same 
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time dissolved in deionized water. The followed procedure was identical to the one 

described above.  

The samples are named as yNixCuZr, where x and y represent the metal content (wt %) 

of Cu and Ni, respectively. 

Figure 4.1. Catalyst preparation scheme. 
 

Bimetallic catalyst impregnated in sequential steps 

In this case, the metals were integrated in two steps. The first metal was incorporated 

following the aforementioned monometallic procedure precisely. After the 

impregnation, drying and calcination steps, the second metal was introduced. In this 

case, the remaining metal was impregnated, dried and calcined in the same conditions. 

Thus, in this case, the catalyst underwent a double calcination. 

The impregnation in sequential steps was employed for synthetizing bimetallic Ru-Cu 

and Ni-Cu catalysts. In the first case, Cu was added in a first step and Ru in a second 

step. The obtained catalyst was labelled as uRu-xCuZr, where u represents the metal 

content (%) of Ru. In the case of nickel, the catalysts prepared in two steps are 

designed as yNi-xCuZr when copper was first impregnated and as xCu-yNiZr when 

nickel was first impregnated. 

ZrO2 support modification with CeO2 

The ZrO2 support was modified by loading 5 and 20 wt% of CeO2. The zirconium and 

cerium nitrates, CeN3O9·6H2O (Alfa Aesar, 99.5 %), were dissolved in deionized water 
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and followed the procedure explained in monometallic catalyst section. The 

synthetized support was identified as zCeZr, where z represents the metal loading of 

CeO2. 

4.1.2 Carbon based catalysts 

In general, the impregnation procedure of these catalysts was similar to ZrO2 based 

catalysts. The main difference relied on the support preparation and the thermal 

treatment. 

Carbon support preparation 

Two different carbon supports were employed: commercial activated carbon 

(PanReac, granulated n°2) and biomass-derived carbon supplied by EnviroHemp 

company, based on different agroforestry resources. 40 wt % of kaolin (Merck) was 

added to improve the mechanical properties of these supports [2]. The kaolin was 

impregnated in the carbon by wetness impregnation to improve the mechanical 

characteristic of the carbons (WI). Subsequently, it was dried overnight and treated 

thermally in a N2 atmosphere at 500 °C for 2 h. The commercial carbon support was 

denominated as CC and biomass-derived carbon as BC. 

Carbon support preparation with acidic pretreatment 

The commercial and biomass-derived carbons were initially pretreated with acid. The 

support was stirred for 1 h at 80 °C in 10 wt % HNO3 solution [3]. The carbon was 

filtered and washed several times with deionized water. Subsequently, NaOH was 

employed to neutralize the solution. Finally, the carbon was treated at 180 °C in air for 

6 h to remove the volatile components [4].  

The pretreated carbon was mixed with kaolin and thermally treated as detailed above 

in “carbon support preparation” section. The treated commercial carbon support was 

denominated as TCC and treated biomass-derived carbon as TBC. 
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Monometallic catalysts 

Monometallic Ni and Cu catalysts were prepared by wetness impregnation. 15 wt % of 

metal was impregnated in non pretreated commercial and biomass-derived carbon. 

After drying overnight, the catalyst was thermally treated at 500 °C for 2 h at N2 

atmosphere. The obtained catalysts were denoted as Ni/CC, Ni/BC, Cu/CC and Cu/BC. 

Bimetallic catalysts 

Ni-Cu bimetallic catalysts were prepared varying the support: treated and non-treated 

commercial and biomass-derived carbon.  

15 wt % of Cu was impregnated in the support by wetness impregnation. After drying 

overnight, the catalyst was treated in N2 atmosphere at 500 °C for 2 h. In a second 

step, 15 wt % of Ni was loaded following the same method. Consecutively, the catalyst 

was dried overnight and thermally treated as mentioned above. The obtained catalysts 

were designated as Ni-Cu/CC, Ni-Cu/BS, Ni-Cu/TCC and Ni-Cu/TBC.  

4.2 Apparatus and procedure 

The synthetized catalysts were tested in a continuous fixed-bed reactor to examine 

their catalytic activity. In the following section, the reaction system and the analysis of 

the obtained products have been explained.  

4.2.1 Continuous reaction system 

The hydrogenolysis reaction of HMF was carried out in a continuous fixed-bed reactor 

in vapour-phase (Microactivity Reference PID Eng&Tech bench scale plant). Previous to 

the hydrogenolysis reaction, the catalytic bed was placed in the centre of the reactor. 

For that purpose, before and after the catalytic bed the reactor was filled with inert 

silicon carbide (SiC)). The catalyst (0.42 - 0.5 mm diameter particle size) was diluted in 

SiC (mcatalyst/mSiC = 1/9) to avoid temperature gradients in the catalytic bed. The 
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reaction system (schematized in Figure 4.1) was composed of three different sections: 

feed system, reaction system and condensation system (peltier). 

Feed system 

HMF (Sigma-Aldrich, 99 %) was diluted in 1-butanol (PanReac, 99.5 %) – 1.5 wt % – and 

fed to the reactor by a HPLC pump (Gilson), being the weight hour space velocity 

(WHSV - g HMF/gcat·h) in the reaction equal to 0.15 h-1. Simultaneously, 100 ml/min of 

H2 were flown into the reactor, measured by a mass-flow controller (Bronkhorst). In 

addition, N2 gas was also available for the heating and cooling steps.  

Reaction system 

The aforementioned feed was evaporated and mixed with H2 before incoming to the 

reactor, a stainless steel cylinder of 0.9 cm i.d. and 30 cm length. The catalytic bed was 

placed in the middle of the tube, which was thermally controlled placing a 

thermocouple in the centre of the catalytic bed. The catalyst was reduced before the 

beginning of the reaction, while working up to the reaction operating conditions.  

Liquid-Gas condensation 

After the reaction the vapour stream was flowed into the condenser where, by means 

of the peltier effect, the obtained products were separated as liquids from the H2. 

Figure 4.2. Continuous reaction system: pilote plant (left) and scheme (right) 
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4.2.2 Analysis 

The obtained liquid product and the feed were analysed by different chromatographs. 

On the one hand, a high-performance liquid chromatograph (HPLC 1260 Infinity 

equipped with a refractive index detector (RID) and Hi-Plex H column) was employed 

to analyse the HMF concentration. On the other hand, a gas chromatograph (Agilent 

6804 GC equipped with a flame ionization detector (FID) and using a SupraWax 280 

capillary column) was used to analyse other obtained products (DMF, DMTHF, etc.). 

Lastly, the identification of the unknown products was carried out by a GC-MS 

chromatograph (Agilent 6890 GC equipped with a mass selective detector – 5973 

Network – and using a DB-FFAP column). 

4.2.3 Measurement of the reaction progress 

The products were collected every hour and analysed by using the abovementioned 

analytical equipment. The obtained liquid at 23 h was analysed as the overall 

production during the night. The activity results were determined by HMF conversion 

and DMF or DMTHF yield, defined as follows (where N is the molar flow rate given as 

mol/min): 

conversion (%) =  NHMF
in −NHMF

out

NHMF
in · 100      (1) 

yield (%) =  
NDMF/DMTHF
out

NHMF
in · 100      (2) 

Figure 4.3. Chromatographs employed in the analysis: HPLC (left) and GC-FID (right) 
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4.3 Catalyst characterization 

In this last section, the characterization techniques utilized for the analysis of the 

physicochemical properties of the catalysts are described. These characteristics are 

important for the understanding of the catalytic activity. The utilized techniques are 

listed below: 

• Textural properties – N2 physisorption. 

• Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). 

• Temperature Programmed Reduction with Hydrogen (H2-TPR). 

• Temperature Programmed Desorption with Ammonia (NH3-TPD). 

• X-ray Diffraction (XRD). 

• Scanning Transmission Electron Microscopy (STEM). 

• X-ray Photoelectron Spectroscopy (XPS). 

• Elemental analysis (CHN). 

4.3.1 Textural properties – N2 physisorption 

N2-adsorption-desorption isotherms were obtained at -198 °C using an 

Autosorb-1-C/TCD (Quantachrome, USA) instrument to calculate the textural 

properties (surface area, pore volume, and average pore diameter). The calcined 

supports and catalysts were previously in situ outgassed at 150 °C for 4 h under high 

vacuum.  

Surface area was calculated using Brunauer, Emmet, and Teller (BET) method. 

Moreover, average pore diameter was determined employing Barret, Joyner, and 

Halenda (BJH) method applied to the desorption branch of the isotherms. 
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4.3.2 Inductively Coupled Plasma Optical Emission Spectroscopy 

(ICP-OES) 

The chemical composition of the calcined catalysts was determined by ICP-OES 

technique using a Perkin Elmer Optima 3300-DV equipment. Before the measurement, 

the samples (50-100 mg) were digested using a Milestone microwave digestion system 

(Ethos 1) in different acid solutions: 

∗ 2 mL of HCl (Panreac, 37 %), 3 mL of HNO3 (Panreac, 65 %) and 3 mL of HF 

(Panreac, 48 %) for catalysts employed in the initial screening. 

∗ 6 mL of HCl and 2 mL of HNO3 for bimetallic catalysts supported on ZrO2 and 

carbon supported catalysts. 

The digestion process consisted in heating the samples from room temperature to 

180 °C with a heating ramp of 7 °C/min and keeping the temperature for 30 min. 

Subsequently, the obtained liquid, which contains the complete decomposed sample, 

was filtered and diluted up to 100 mL with deionized water. Some samples were 

further diluted with deionized water to achieve a concentration of the solution within 

the instrument detection range. The final solution was analysed to calculate the 

metallic content present in the catalyst. 

4.3.3 Temperature-Programmed Reduction with Hydrogen (H2-TPR) 

The reducibility of the calcined catalysts was determined by H2-TPR. Measurements 

were carried out in a Micromeritics AutoChem 2920 II instrument equipped with a 

thermal conductivity detector (TCD). The samples were in situ pretreated heating them 

to 200 °C under helium atmosphere with a heating rate of 10 °C/min and maintaining 

the temperature for 2 h to desorb the physisorbed impurities. The samples were 

cooled down to 50 °C before heating the samples under a reducing atmosphere 

(5% v/v H2 diluted in Ar) up to 850 °C at a rate of 10 °C/min. The TCD recorded the 

changes in H2 concentration; therefore, the H2 consumption, corresponding to the 

reducibility of the surface species, could be examined. 
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4.3.4 Temperature-Programmed Desorption with Ammonia 

(NH3-TPD) 

The acidity of the fresh reduced catalysts was examined by NH3-TPD. Measurements 

were also performed in a Micromeritics AutoChem 2920 II instrument equipped with a 

TCD. Prior to the analysis, the calcined samples were in situ reduced at 275 °C for 1 h 

by flushing H2 (5 % v/v H2 diluted in Ar) to simulate the reduction conditions carried 

out before the activity tests. The physisorbed impurities were later desorbed by 

flowing He for 30 min. After this step, catalysts were cooled down to 100 °C, and NH3 

(10 % v/v NH3 diluted in He) was fed to the sample for 30 min. The physisorbed NH3 

was subsequently removed by increasing the sample temperature to 150 °C with He 

for 60 min. Finally, samples were heated up to 850 °C with He at a rate of 10 °C/min 

and the release of NH3 was recorded by the TCD. 

4.3.5 X-ray Diffraction (XRD) 

X-ray diffraction patterns of fresh reduced and used catalysts were obtained by using a 

Seifert XRD 3000 diffractometer equipped with a PW 2200 Bragg-Brentano u/2u 

goniometer, bent graphite monochromator, and automatic slit, using Cu K radiation 

(0.15418 nm) and 0.028° steps scanning. The samples were reduced ex situ before the 

measurements in a H2 flow for 1 h at 275 °C. The Scherrer equation was used to 

calculate the average crystallite size of the crystalline species. 

4.3.6 Scanning Transmission Electron Microscopy (STEM) 

Elemental maps of the samples were obtained to calculate the mean particle size of 

the catalysts. The catalysts were ex situ reduced before the measurements in a H2 flow 

for 1 h at 275 °C. On the one hand, a FEI Titan Cubed G2 60-300 transmission electron 

microscope at 300 kV was used, equipped with a Schottky X-FEG field emission 

electron gun, a monochromator, and a CEOS GmbH spherical aberration (Cs) corrector 

on the image side. On the other hand, a Super-X EDX system was used under a 
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high-angle annular dark-field (HAADF) detector for Z contrast imaging under STEM 

conditions (camera length of 115 mm) using a pixel size of 2 nm, a dwell time of 900 s, 

and an image size of 512 x 512 pixels. The TEM samples were prepared by dispersion 

into an ethanol solvent and maintaining the suspension in an ultrasonic bath for 

15 min. A drop of suspension was then spread onto a TEM Cu grid (300 mesh) covered 

by a perforated carbon film, followed by drying under vacuum. In addition, EDX 

microanalyses were carried out with a Super-X EDX system, using a probe current of 

240 pA and a semi-convergence angle of 10 mrad. HAADF STEM images were collected 

with an inner detector radius of 63.5 mrad.  

For the catalysts supported in carbon the morphology was studied by Transmission 

Electron Microscopy (TEM), using a FEI Talos F200X equipment (Thermo Fisher 

Scientific). This equipment combines outstanding high-resolution S/TEM and TEM 

imaging with industry-leading energy dispersive X-ray spectroscopy (EDS) signal 

detection, and 3D chemical characterization with compositional mapping. The samples 

were dispersed in ethanol and a drop of the suspension was put on a Cu grid (300 

mesh). 

The metallic dispersion was calculated from the measurement of the size of 200 

particles according to the method described by Borodziński and Bonarowska [5]. In the 

procedure, the atomic ratio of the particles is required. For monometallic catalysts, the 

atomic ratio of metallic Ni and Cu was employed. However, in the case of bimetallic 

catalysts, the atomic ratio was calculated based on the the assumption that the 

contribution of each metal to the atomic ratio is associated to the metallic content of 

Ni and Cu obtained by ICP-OES, as previously reported [6]. 

4.3.7 X-ray Photoelectron Spectroscopy (XPS) 

Prior to the measurements, the fresh catalysts were ex situ reduced at 275 °C for 1 h. 

Moreover, used catalysts were also characterized. The atomic ratios and the oxidation 

state of the surface species were studied using a VG Escalab 200R spectrometer 

equipped with a hemispherical electron analyser and an Al K1 (h = 1486.6) 120 W X-ray 
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source. A stainless-steel sample holder was used to deposit the samples. First, the 

samples were degassed at 300 °C in a pretreatment chamber. The spectrometer base 

pressure was typically 9-10 Torr (0.0133 bar). The spectra were collected with a pass 

energy of 20 eV, which is usually considered a high-resolution condition.  

4.3.8 Elemental analysis (CHN) 

Different carbons utilized as catalyst support were analysed by elemental analysis. 

Calibration samples were prepared as follows: 5 tin capsules were packed with 5 

acetanilide test samples varying in mass. The mass of samples was chosen so as to 

make the absolute content of the detected elements cover all their expected 

concentration range in the analysed samples. Samples to be analysed were placed in 

tin capsules, weighed and packed carefully. 

The prepared calibration and analysis samples were placed in the auto-sampler, from 

they were periodically tipped into a vertical quartz reactor heated at a temperature of 

980 °C with a constant flow of helium stream. A few seconds before introduction, the 

helium stream was enriched with high purity oxygen. The combustion gas mixture was 

driven through a tungsten oxide zone to achieve a complete quantitative oxidation, 

followed by a reduction step in a copper zone to reduce nitrogen oxides to nitrogen. 

The resulting components N2, CO2, H2O, were separated in a chromatographic column 

and detected by a TCD. The resulting signals, proportional to the amount of eluted 

gasses, were analysed by Callidus® software, which automatically provides the sample 

elemental composition report. 
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The hydrogenolysis of HMF to produce DMF and/or DMTHF has been widely studied in 

discontinuous systems operating in liquid phase, as it has been extensively described in 

the state of art (see Chapter 2). However, the need of continuous systems, which are 

preferable to be used on an industrial scale and provide higher efficiencies and lower 

production costs, encouraged the development of this PhD thesis. The lack of 

investigations in continuous systems required an initial catalyst screening. Copper was 

selected as principal active phase and zirconium as support, based on previous 

investigations [1]. Therefore, in this chapter CuZr based catalysts were modified with 

noble and non-noble metals to determine the most promising combination. 

5.1 Experimental. 

5.1.1 Catalyst preparation. 

Copper based CuZr catalysts with different metal loadings were prepared by wetness 

impregnation method following the procedure detailed in section 4.1.1 of Chapter 4. 

Additionally, the support was modified impregnating ceria employinh the same 

method, obtaining CeO2-ZrO2. Then, Cu was loaded to the new support by wetness 

impregnation, synthetizing CuCeZr catalysts. 

Moreover, noble (Ru) and non-noble (Ni) active metals were loaded to CuZr catalyst. 

The ruthenium was synthetized by sequential impregnation. This implies a previous 

impregnation of Cu onto the support, followed by drying and calcination steps. Then, 

Ru was loaded to the monometallic CuZr catalyst following the same procedure, 

obtaining Ru-CuZr. Conversely, nickel was co-impregnated with copper, involving the 

impregnation of both metals in the same step. The synthetized catalyst was denoted as 

NiCuZr catalyst. 
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5.1.2 Catalyst characterization. 

The physicochemical properties of the samples were analysed by N2-physisorption, 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), Temperature 

Programmed Desorption with ammonia (NH3-TPD), Temperature Programmed 

Reduction with hydrogen (H2-TPR), X-ray Diffraction (XRD) and X-ray Photoelectron 

Spectroscopy (XPS). 

Detailed information about the abovementioned characterization techniques is 

described in section 4.3. of Chapter 4. The support was firstly treated under air at 

250 °C for 2 h to be evaluated at the same conditions as the synthetized catalysts. 

Moreover, for those techniques at which it was not possible to reduce the catalyst in 

situ, the catalyst was previously reduced at 275 °C for 2 h at a flow of pure H2.  

5.1.3 Activity test. 

The activity tests were carried out in a continuous fixed-bed reactor, following the 

procedure detailed in section 4.2. of Chapter 4.  

5.2 Results and discussion. 

5.2.1 Optimal operating conditions. 

An initial catalytic screening was carried out in order to set the most optimal operating 

conditions, varying the temperature, H2 pressure and the need or not of the previous 

reduction of the catalyst. The obtained results are summarized in Table 5.1. 

Consequently, the subsequent activity experiments were carried out at the following 

operating conditions: T = 275 °C, P = 15 bar of H2, no pretreatment (reduction) of the 

catalysts and a WHSV (gHMF/gcat·h) of 0.15 h-1. It seems that the catalyst was completely 

reduced before the beginning of the reaction, while working up to the reaction 

operating conditions. Thus, there was no need of a previous reduction.  
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Table 5.1. Activity results after 6 hours-on-stream at different operating conditions at 
WHSV = 0.15 h-1. 

5.2.2 Cu loading. 

Monometallic catalysts with different mass percentage (15, 30 and 45 wt %) of Cu in 

ZrO2 were synthetized to investigate the effect of the metal content on the catalyst´s 

activity. 

5.2.2.1 Characterization for CuZr catalysts. 

The textural properties of the synthetized catalysts were analysed by N2-physisoption 

and the obtained results are summarized in Table 5.2. The bare support exhibited high 

BET surface area (137.6 m2/g). The addition of Cu onto the ZrO2 mesoporous support 

caused a decrease in the specific surface area of the catalysts, possibly due to the 

presence of CuO species blocking the pores, decreasing the total surface area [2]. In 

the case of 15CuZr catalyst, some pores were obstructed, reducing the total surface 

area and pore volume, but increasing the average pore diameter. In 45CuZr catalyst, all 

the textural properties were decreased, implying large particles of Cu and low 

dispersion of the metal. In Table 5.2 the real metallic content of the catalysts can be 

observed, which was lower than the nominal one. 

Catalyst 
Reaction conditions 

DMF 

(%) 
DMTHF 

(%) Temperature 
(°C) 

Pressure 
(bar) Pre-reduction 

1Ru15CuZr 200 15 Yes 9.1 2.5 

1Ru15CuZr 250 15 Yes 21.4 1.8 

1Ru15CuZr 275 15 Yes 25.2 1.6 

30CuZr 275 15 Yes 25.9 0.0 

30CuZr 275 20 Yes 25.9 0.0 

1Ru30CuZr 275 15 Yes 21.3 1.2 

1Ru30CuZr 275 15 No 21.7 3.6 

30CuZr 275 15 Yes 25.9 0.0 

30CuZr 275 15 No 26.3 0.0 
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Table 5.2. Textural, chemical and acidic properties for the CuZr catalysts. 

Catalyst BET a 

(m2/g) 
Pore volume a 

(cm3/g) 
Average pore 

diameter a (nm) 
Cu b 

(%) 
Desorbed NH3 

c 
(mmol/gcat) 

ZrO2 137.6 0.27 7.2 - 0.39 

15CuZr 35.1 0.09 10.7 13.0 0.18 

30CuZr 81.8 0.27 13.1 17.0 0.21 

45CuZr 52.0 0.04 4.2 28.4  0.10 
Determined by a N2-physisoption, b ICP-OES and c NH3-TPD. 

The acidity of the catalysts was studied by NH3-TPD and the obtained results are 

summarized in Table 5.2. The calcined ZrO2 support exhibited low acidity 

(0.39 mmol NH3/gcat). However, the amount of desorbed NH3 was modified when Cu 

was impregnated. 15CuZr and 30CuZr 

catalysts showed similar acidity, which was 

lower than the bare support. Probably, the 

incorporated Cu particles were partially 

covering some acidic sites of the support [3]. 

This effect was more notable when 45CuZr 

was analysed, possibly implying larger 

particles covering more acidic sites, which 

resulted in lower dispersion of Cu. This is in 

good agreement with the results obtained in 

textural properties. 

The reducibility of the catalysts was 

examined by H2-TPR and the results are 

described in Figure 5.1. The reaction 

temperature (275 °C) is outlined in the plot. 

The calcined CuZr catalysts showed a broad 

reduction peak within the temperature 

range 130-300 °C. It has been reported that 

particles strongly interacting with the 

support exhibited higher reduction 

temperatures than particles interacting 
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Figure 5.1. H2-TPR profiles for the CuZr 
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weakly with the support. It should be highlighted that the reduction peaks shifted to 

lower temperatures when Cu amount was increased from 15 to 45 %. This fact 

suggested that the reducibility of the catalysts improved, and the metal-support 

interaction was weakened, resulting in a lower metal dispersion in the case of 45CuZr 

catalyst [4]. This is in good agreement with the obtained results in N2-physisorption 

and acidity characterization.  

X-ray diffraction patterns of fresh reduced 15CuZr and 45CuZr catalysts are shown in 

Figure 5.2. Additionally, the crystallite size of Cu° species are specified in the plot, 

which were calculated by the Scherrer equation. Both catalysts exhibited typical peaks 

associated to amorphous tetragonal ZrO2 (2Ɵ = 30.5°) [5,6] and metallic Cu (2Ɵ = 43.4°, 

50.6° and 74°) [7,8]. It can be observed that the crystallite size of 45CuZr catalyst was 

much larger than 15CuZr catalyst, implying a lower dispersion of Cu [9], which is in 

accordance with the previous characterization results.  

The obtained XPS results are summarized in Table 5.3. Cu⁰ /(Cu⁰ +Cu1⁺+Cu²+) ratio was 

calculate to identify the oxidation state of copper before and after the reaction. For 

this ratio calculation, different energy bands were employed. Cu2p binding energy 

shows a value of 934 eV for Cu²+. However, in this region it is not possible to 

distinguish between Cu⁰ and Cu1⁺, because both of them exhibit the same binding 

Figure 5.2. XRD patterns for the CuZr catalysts. 
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energy of 932 eV [10]. Therefore, CuLMM region was then analysed, where Cu⁰ and 

Cu1⁺ species present a peak at 335 eV and 337.5 eV [10,11], respectively. 

Table 5.3. XPS results for the CuZr catalysts. 

As it can be observed, the Cu/Zr surface atomic ratio of fresh reduced catalysts 

increased when higher Cu loadings were incorporated. After the activity test, a 

decrease of this ratio could be observed in all the catalysts, which is an indication of 

some sintering of the active metal or coke deposition taking place. This reduction was 

especially significant in the case of 45CuZr catalyst. The coke deposition was evidenced 

by the increase of C/Zr ratio after the reaction, remarkably for 45CuZr catalyst. Even if 

15CuZr catalyst showed the lowest Cu/Zr ratio, the observed metallic content 

(Cu⁰/total Cu) was elevated, implying high metallic Cu content on the surface. In 

general, the metallic to total Cu ratio suffered a slight increase after the reaction, 

implying the reduction of a certain amount of Cu, which is reasonable in a H2 

atmosphere. 

5.2.2.2 Activity results for CuZr catalysts. 

The catalytic results of CuZr catalysts with different metal loadings are plotted in 

Figure 5.3. It can be observed that 15CuZr and 30CuZr catalysts exhibited similar 

behaviour, reaching a maximum yield of around 25 % after 6 h on stream. However, 

higher loading of Cu (45 %) implied lower dispersion of metallic species and higher 

coke deposition, involving the deactivation of the catalyst after 3 h on stream. Even if 

the acidity is an important factor in the reaction, all the Cu monometallic catalysts 

exhibited equivalent acidity.  

Catalyst Cu/Zr Cu°/(Cu°+Cu1⁺+Cu²+) C/Zr 
Fresh reduced Used Fresh reduced Used Fresh reduced Used 

15CuZr 0.4 0.3 0.6 0.6 1.1 9.6 

30CuZr 0.5 0.3 0.3 0.4 1.7 17.8 

45CuZr 1.4 0.2 0.2 0.3 5.4 144.8 
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The similar selectivity results obtained for 15CuZr and 30CuZr catalysts suggest that 

the total amount of Cu in the catalytic system not a key factor. It seems that the Cu 

dispersion and metallic Cu species in the catalyst surface are playing a key role in the 

DMF production. Taking into account the obtained results, 15 wt % of Cu loading will 

be considered for further studies.  

5.2.3 CeO2 loading to ZrO2 support. 

The aim of in this section is to study the variation of the support characteristics by 

loading different amounts of CeO2. It has been previously reported that CeO2 can vary 

the acidity of ZrO2 and enhance the oxygen storage capacity, which results in a higher 

ability to deliver oxygen to the solid (adsorbed) carbon, implying a removal of the 

surface solid carbon [12,13]. Thus, the support was varied by impregnating cerium 
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nitrate in a first step and after drying and calcining the modified support, 15 wt % of Cu 

was loaded, obtaining Cu/CeO2-ZrO2 catalysts. The loaded ceria was 5 and 20 wt %. 

5.2.3.1 Characterization for CuCeZr catalysts. 

According to N2 adsorption-desorption results shown in Table 5.4, the calcined ZrO2 

exhibited higher BET surface area than CeO2. The presence of ceria on ZrO2 slightly 

reduced the surface area and pore volume due to the deposition of CeO2 on the pores 

of the support. Nevertheless, the increment of ceria in the catalyst from 5 to 20 wt % 

did not alter the surface area and pore volume (taking into account that the 

equipment experimental error is ±3 m2/g). However, the presence of higher amount of 

ceria decreased the pore diameter. Probably, the incorporation of more CeO2 favoured 

the formation of larger ceria particles. 

The addition of Cu onto CeZr support caused a decrease in the specific surface area, 

possibly due to the support´s pore blockage by CuO particles, as explained in CuZr 

characterization results. This reduction was not significant in the case of 15Cu20CeZr 

catalyst. It seems that the presence of high ceria loadings modified the way in which 

Cu was incorporated on the catalytic surface. 

Table 5.4. Textural, chemical and acidic properties for the CuCeZr catalysts. 

Catalyst BET a 

(m2/g) 

Pore 
volume a 

(cm3/g) 

Average pore 
diameter a  

(nm) 

Cu b 

(%) 
Ce b 

(%) 

Desorbed 
NH3 

c 
(mmol/gcat) 

ZrO2 137.6 0.27 7.2 - - 0.39 

CeO2 77.2 0.22 11.4 - - 0.45 

5CeZr 112.3 0.23 7.9 - 0.4 0.68 

20CeZr 114.1 0.21 3.7 - 2.4 0.53 

15CuZr 35.1 0.09 10.7 13.0 - 0.18 

15Cu/5CeZr 40.8 0.07 7.2 12.6 0.6 0.32 

15Cu/20CeZr 110.3 0.20 7.2 10.3 2.5 0.39 
Determined by a N2-physisoption, b ICP-OES and c NH3-TPD. 

The real metal content of the catalysts was determined by ICP-OES and the results are 

presented in Table 5.4. The real amount of ceria incorporated on the CeZr supports 
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was significantly inferior to the nominal one. This can be the explanation of the slight 

difference between the BET surface areas of ceria doped and non-doped zirconia 

supports. Probably, the surface of zirconium is hardly reactive with the cerium, i.e., the 

ZrO2-CeO2 interaction is weak, and therefore the CeO2 did not incorporate on ZrO2 

surface efficiently. These differences were also noticeable in the corresponding 

ceria-doped supported catalysts. Moreover, the Cu content decreased with the rise of 

the Ce loading. 

The acidity of the supports and catalysts was examined by NH3-TPD. CeO2 bare support 

showed higher acidity than ZrO2. Thus, the incorporation of ceria into ZrO2 increased 

the number of acid sites. However, an increase of CeO2 loading decreased the acidity. 

According to literature [14], this phenomenon 

could be probably related to the formation of 

Zr—O—Ce bonds generated by the interaction 

between ZrO2 and CeO2. The addition of Cu 

implied lower acidity than the corresponding 

supports and higher than the corresponding 

non-doped Ce catalysts counterparts. 

Temperature programmed reduction analyses 

were carried out in order to evaluate the 

reducibility of the calcined catalysts and the 

obtained results are summarized in Figure 5.4. 

The incorporation of ceria on the support implied 

a slight decrease in the reduction temperature. 

This shift to lower temperatures was more 

noticeable with higher ceria loading [15]. It seems 

that the presence of ceria declines the 

metal-support interaction, favouring its 

reducibility at the expense of a possible decrease 

of metal dispersion.  
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Figure 5.4. H2-TPR profiles for the 
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◊   Cu⁰ 
+   ZrO2 

Figure 5.5. XRD patterns for the CuCeZr catalysts. 
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The XRD patterns of fresh reduced 15CuZr and 15Cu5CeZr catalysts are shown in 

Figure 5.5. Peaks associated to CeO2 [16,17] were not registered, possibly due to the 

low loading and high dispersion, which generated small crystals that could not be 

detected by XRD. It is also important to remark that the average crystallite size of Cu° 

increased when CeO2 was used as ZrO2 modifier. This agglomeration phenomenon 

could be related to the reduction of metal-support interaction caused by CeO2 

addition, as H2-TPR results suggested. 

 

The surface atomic ratios and Cu species ratio obtained by XPS results are presented in 

Table 5.5. The CeO2 incorporation did not strongly alter the Cu/Zr ratio of the catalysts. 

However, it seems that higher Cu° surface content was achieved in absence of ceria.  

Table 5.5. XPS results for the CuCeZr catalysts. 

Catalyst 
Cu/Zr Cu°/ 

(Cu°+Cu1⁺+Cu²+) Ce/Zr C/Zr 

Fresh  
reduced Used Fresh  

reduced Used Fresh  
reduced Used Fresh  

reduced Used 

15CuZr 0.4 0.3 0.6 0.6 - - 1.1 9.6 

15Cu5CeZr 0.5 0.2 0.3 0.3 < 0.005 < 0.005 4.0 16.5 

15Cu20CeZr 0.3 0.3 0.4 0.4 < 0.005 < 0.005 1.7 4.5 
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The metallic content remained stable after the reaction. All the samples exhibited an 

increase in the C/Zr ratio, presumably due to coke formation. It is important to remark 

that high CeO2 content limited the coke production [18]. Lastly, not noticeable content 

of Ce was observed in the catalytic surface, which is in good agreement with ICP-OES 

and XRD results, where the cerium content was very low. 

5.2.3.2 Activity results for CuCeZr catalysts. 

 

The activity results of CeO2-ZrO2 based catalysts are summarized in Figure 5.6. It can be 

observed that the addition of ceria did not enhance the production of desired 

products. It is important to remark that the real Ce amount was lower than the 

nominal one. The good behaviour registered for the 15CuZr catalyst, could be due to 

two reasons: i) a better metal dispersion (see Figure 5.5), favoured by stronger 

metal-support interaction observed by H2-TPR, and ii) its low acidity, which reduced 

the C—C cleavage, avoiding ring opening products. The expected effect of cerium did 
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Figure 5.6. Activity results for the CuCeZr catalysts. 
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not improve the DMF yield. Therefore, bare ZrO2 was selected as support for the 

following sections.  

5.2.4 Ru addition as active phase. 

Ruthenium is a widely used noble metal for heterogeneous catalytic hydrogenation 

[19] and particularly for HMF hydrogenolysis [20]. In order to improve the catalytic 

activity of the most stable catalyst, 15CuZr, Ru was added in a second impregnation, 

obtaining Ru-Cu/ZrO2 catalyst. To examine the effect of Ru in the reaction, 1RuZr 

catalyst was also synthetized and tested.  

5.2.4.1 Characterization for RuCuZr catalysts. 

The obtained results by N2-physisorption are summarized in Table 5.6. As expected, 

the incorporation of metals decreased the surface area, probably due to the partial 

blocking of the pores [21]. 15CuZr catalyst exhibited much lower surface area and pore 

volume than 1RuZr catalyst, owing to the higher Cu metal loading [22]. However, 

monometallic Ru catalyst exhibited higher pore volume than the support, probably due 

to the obstruction of smaller pores, increasing the total pore volume. Lastly, adding Ru 

to monometallic 15CuZr catalyst implied a reduction on the surface area and pore 

volume, but the average pore diameter was enlarged. The pores with narrow diameter 

were possibly covered by metallic particles, increasing the average pore diameter. 

Table 5.6. Textural, chemical and acidic properties for the RuCuZr catalysts 

Determined by a N2-physisoption, b ICP-OES and c NH3-TPD. 

Catalyst BET a 

(m2/g) 

Pore 
volume a 

(cm3/g) 

Average pore 
diameter a  

(nm) 

Cu b 

(%) 
Ru b 

(%) 

Desorbed 
NH3 

c 
(mmol/gcat) 

ZrO2 137.6 0.27 7.2 - - 0.39 

15CuZr 35.1 0.09 10.7 13.0 - 0.18 

1RuZr 89.3 0.40 18.0 - 0.06 1.24 

1Ru15CuZr 22.0 0.07 12.1 10.9 0.26 0.20 
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The real metallic content was analysed by ICP-OES and the results are summarized in 

Table 5.6. The real ruthenium content was much lower than the nominal one, 

particularly in monometallic 1RuZr catalyst. It seems that copper enhanced the 

ruthenium deposition on the catalyst, implying higher Ru content in the bimetallic 

catalyst.  

The number of acidic sites was significantly increased when Ru was loaded to the 

support. Dasireddy et al. [23] suggested that high acidity could be associated with high 

dispersion of the metal species. However, the acid strength remained almost constant 

when a low amount of Ru was added to the 

CuZr catalysts. 

H2-TPR profiles of monometallic and bimetallic 

RuCuZr catalysts are plotted in Figure 5.7. 

Regarding 1RuZr catalyst, it showed a H2-TPR 

pattern with a broad reduction peak detected 

within the temperature range of 100-560 °C. 

The deconvolution of the aforementioned peak 

suggests a contribution of five peaks centred at 

205, 280, 335, 395 and 415 °C. According to the 

literature [24], the peak centred at 205 °C 

could be ascribed to the reduction of bulk RuO2 

to Ru⁰ [25], while the peaks registered at 

temperatures above 230 °C might be 

associated to the reduction of oxidized Ru 

species strongly interacting with the support. 

These reduction temperatures suggest that the 

low amount of Ru incorporated species were 

highly dispersed. This last fact corroborates the 

similar conclusion reached while interpreting 

the NH3-TPD results.  
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The H2-TPR profile of bimetallic 1Ru15CuZr catalyst is similar to the obtained one for its 

monometallic counterpart (15CuZr). A reduction temperature decrease of around 

20-40 °C was the most important difference observed in the H2-TPR profile of 

bimetallic catalyst [26]. This behaviour indicated that the presence of Ru in the catalyst 

improved the reducibility of the Cu species. 

The surface composition and oxidation state of different catalysts were examined by 

XPS and the results are presented in Table 5.7. The addition of Ru involved higher 

Cu/Zr ratio at the beginning of the reaction, apparently improving the dispersion of 

copper. However, the Cu⁰ content of the fresh reduced catalyst was not enriched. 

After the reaction, the Cu/Zr ratio of the bimetallic catalyst decreased considerably. 

Contrary to what it was expected, Ru did not avoid the coke deposition on the catalyst, 

furthermore, it enhanced the C/Zr ratio after the reaction. Coke was probably covering 

Cu particles, implying the reduction of Cu/Zr ratio. Moreover, sintering of copper could 

be also a reason of the decrease of this ratio. Lastly, the ruthenium surface exposition 

was higher in the bimetallic RuCuZr catalyst, which is in good agreement with the 

ICP-OES results.  

Table 5.7. XPS results for the RuCuZr catalysts. 

5.2.4.2 Activity results for RuCuZr catalysts. 

The activity results of RuCuZr catalysts are summarized in Figure 5.8. 1RuZr catalyst 

presented a total conversion of HMF but very low or negligible DMF or DMTHF yields. 

This means that the presence of Ru implied another reaction path that the HMF 

hydrogenolysis. The monometallic Ru catalyst probably breaked preferentially the C—

C bond instead of the C—O bond, which resulted in degradation products [25]. The 

1RuZr catalyst was the catalyst with the highest acidity. This characteristic favours the 

Catalyst 
Cu/Zr Cu°/ 

(Cu°+Cu1++Cu2+) Ru/Zr C/Zr 

Fresh  
reduced Used Fresh  

reduced Used Fresh  
reduced Used Fresh  

reduced Used 

15CuZr 0.4 0.3 0.6 0.6 - - 1.1 9.6 

1RuZr - - - - 0.08 0.85 1.2 14.6 

1Ru15CuZr 1.3 0.2 0.3 0.4 0.4 1.5 7.1 22.6 
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C—C bond cleavage of the HMF molecule and therefore, the presence of acid sites 

could cause the degradation or loss of one of the radicals present in the HMF 

molecule. This strong acidity could also explain the total HMF conversion and the 

negligible DMF and DMTHF yields. 

The impregnation of Ru in CuZr catalyst implied the production of DMTHF, probably 

due to the valuable hydrogenation capacity of ruthenium [19]. This noble metal was 

able to hydrogenate the furanic ring, producing DMTHF from DMF. However, a 

decrease of the total yield after 3-4 h time on stream could be detected. It seems that 

the ruthenium is capable of slightly improving the catalytic production of desired 

products at the beginning of the reaction, probably due to the better dispersion of Cu 

observed in XPS results and better reducibility of this catalyst. Nonetheless, it suffered 

from high deactivation problems, observed in the low Cu/Zr ratio and high C/Zr ratio 

after reaction. Probably, the presence of Ru weakened the Cu-Zr interaction (see 

H2-TPR results), favouring the Cu sintering observed in XPS. Moreover, the coke 

deposition was also an important cause of deactivation. On this basis, the addition of 
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Figure 5.8. Activity results for the RuCuZr based catalysts. 
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Ru did not improve the catalytic activity of the catalyst. Therefore, monometallic 

15CuZr catalyst was selected for further studies. 

5.2.5 Ni addition on the active phase. 

Pandhare et al. [27] investigated a bimetallic nickel and copper catalyst supported on 

alumina in the hydrogenolysis of glycerol. They concluded that the interaction of the 

metals enhanced the hydrogenolysis of C—O bond and limited the cleavage of C—C, 

avoiding non desired products. Consequently, 15Ni15CuZr bimetallic catalyst was 

prepared by coimpregnation method, meaning that both metals were impregnated in 

the same step. Monometallic 15NiZr catalyst was also synthetized to understand the 

effect of this metal on the hydrogenolysis of HMF. 

5.2.5.1 Characterization results for NiCuZr. 

Textural, chemical and acidic properties of CuNi based support and catalysts are 

summarized in Table 5.8. 15NiZr catalyst showed smaller surface area than 15CuZr 

catalyst, which can be attributed to the pores blockage by the metallic Ni clusters 

present on the surface. This can be associated with the low dispersion of the metal 

[27]. Meanwhile, in the case of the Cu monometallic catalyst, the metal species were 

more dispersed in the support. In the case of 15Ni15CuZr catalyst, the surface area and 

pore volume were decreased compared to monometallic 15CuZr catalyst, probably 

due to the higher metal loading of the bimetallic catalyst.  

Table 5.8. Textural, chemical and acidic properties for the NiCuZr catalysts. 

 Determined by a N2-physisoption, b ICP-OES and c NH3-TPD. 

Catalyst BET a 

(m2/g) 

Pore 
volume a 

(cm3/g) 

Average pore 
diameter a  

(nm) 

Cu b 

(%) 
Ni b 

(%) 

Desorbed 
NH3 

c 
(mmol/gcat) 

ZrO2 137.6 0.27 7.2 - - 0.39 

15CuZr 35.1 0.09 10.7 13.0 - 0.18 

15NiZr 5.0 0.03 25.3 - 10.8 1.09 

15Ni15CuZr 18.1 0.03 7.7 12.4 13.2 0.35 
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Regarding the metal loading of the catalysts, the experimental value was found to be 

lower than the nominal content. This difference was higher in the case of 15NiZr 

catalyst, implying the better impregnation of Cu than Ni on ZrO2 in the case of 

monometallic catalysts. In the case of bimetallic catalyst, Cu content was almost 

identical to the content on monometallic catalyst, but Ni content was increased. It 

seems that copper improved the impregnation of nickel. 

The acidic properties were studied by NH3-TPD (see Table 5.8). The acidity was 

decreased when Cu was loaded onto the support. The incorporated Cu particles could 

be partially covering acid sites on the support, thus decreasing the catalyst´s total 

acidity [28,29]. However, the addition of Ni 

considerably increased this acidity. It seems 

that the high acidity was related to the 

presence of Lewis acid sites associated with 

the presence of Ni2+ [30]. The acidity 

calculated for the bimetallic catalyst was 

slightly lower than that of the support, 

probably due to a combination of the reasons 

explained above for monometallic catalysts. 

The H2-TPR profiles and their deconvolution 

for the monometallic and bimetallic catalysts 

are summarized in Figure 5.9. The 

monometallic Cu and Ni catalysts recorded 

three different peaks. 15NiZr catalyst 

registered reduction peaks at 270, 300 and 

380 °C, involving the need of higher 

temperatures for the complete reduction of 

nickel. This implied the formation of Ni2+ 

species at lower temperatures, which is in 

good agreement with the acidity results, 

where high acidity was related to the presence 
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of Ni2+. This species could be acting as Lewis acid sites. Reports in literature indicate 

that highly dispersed particles and those particles interacting weakly with the support 

recorded lower reduction temperatures. In contrast, bulk NiO or CuO and particles 

interacting strongly with the support registered higher reduction temperatures.  

Similarly, the H2-TPR profile of bimetallic catalyst can also be deconvoluted into three 

reduction peaks. When compared to the monometallic 15NiZr catalyst, all the peaks 

were shifted to lower temperatures. This observation seems to indicate that Cu 

facilitated the reducibility of Ni [31–33]. According to the literature [34], the first peak 

(200 °C) is related to the reduction of the Cu2+ species, and the last peak (320 °C) is 

related to Ni2+ reduction, while the intermediate peak (265 °C, in blue) could be 

associated with the reduction of Ni-Cu species. These results evidenced an interaction 

between Ni and Cu. 

The obtained X-ray diffraction patterns are plotted in Figure 5.10. The monometallic Cu 

catalyst registered defined peaks associated with metallic Cu crystallites with a size of 

50 nm. Conversely, a barely noticeable peak could be discerned in the XRD pattern for 

the fresh reduced 15NiZr catalyst, which could be ascribed to an amorphous structure. 

In the case of 15Ni15CuZr catalyst, a double-peak was registered at two different 

positions at around 2Ɵ = 44° and 51°. The most intense peak could be deconvoluted 
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into two peaks, at 2Ɵ = 43.7° and 44.1°, which are reflection angles between the 

registered diffraction peaks of pure Cu⁰ (2Ɵ = 43.4°) and Ni⁰ (2Ɵ = 44.7°), which 

involved an interaction between both metals [7], as observed in H2-TPR results. It can 

be noticed that the crystallite size of the phase richer in Cu was decreased to 40 nm, 

comparing with 15CuZr catalyst. Presumably, Ni enhanced the dispersion of Cu, 

reducing its crystallite size in the bimetallic catalyst.  

Table 5.9. XPS results for the NiCuZr catalysts. 

The oxidation state of the species formed after the catalyst preparation and their 

atomic ratios were studied by XPS for fresh reduced and used catalysts. The results are 

summarized in Table 5.9. The monometallic Cu catalyst recorded a higher metal-to-Zr 

ratio than 15NiZr catalyst, suggesting that a higher amount of surface metal was 

available in the 15CuZr catalyst, probably implying a better dispersion of Cu on ZrO2, as 

deduced in textural properties results. Moreover, the 15CuZr catalyst recorded a slight 

decrease in the Cu/Zr ratio after being used in the reaction, presumably owing to the 

coke deposition on the actives sites and/or metal sintering. Coke formation was 

confirmed by the C/Zr ratio, which was increased after the reaction for all the prepared 

catalysts. In the case of monometallic Ni catalyst, the decrease in the metal-to-support 

ratio (probably caused by sintering of Ni particles) and the increase in the C/Zr ratio 

after hydrogenolysis were more notable. It is important to note the low Ni⁰ content in 

the fresh reduced 15NiZr catalyst, which was consistent with the H2-TPR results, where 

high reduction temperature was observed. Coke deposition can also be associated 

with the high acidity [35] ascribed to the presence of Ni2+ Lewis acid sites. 

The bimetallic catalyst showed higher metal-to-support ratio of Ni and Cu, comparing 

to the respective monometallic catalysts. It seems that the interaction of both metals 

Catalyst 
Cu/Zr Cu°/ 

(Cu°+Cu1⁺+Cu²+) Ni/Zr Ni°/ 
(Ni°+Ni2⁺) C/Zr 

Fresh  
reduc Used Fresh  

reduc Used Fresh 
reduc Used Fresh  

reduc Used Fresh  
reduc Used 

15CuZr 0.4 0.3 0.6 0.6 - - - - 1.1 9.6 

15NiZr - - - - 0.2 0.1 0.2 0.3 5.0 20.7 

15Ni15CuZr 1.6 0.5 0.3 0.5 1.4 1.3 0.3 0.2 7.2 6.7 
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favoured their exposition on the catalyst´s support. Lastly, the C/Zr ratio of the used 

bimetallic catalyst was high, implying coke deposition on the active sites. 

5.2.5.2 Activity results for NiCuZr. 

The activity results obtained for NiCuZr based catalysts are summarized in Figure 5.11. 

15CuZr catalyst underwent a complete HMF conversion, whereas the monometallic Ni 

catalyst recorded a conversion over 90 %. The monometallic Cu catalyst reached a 

DMF yield of approximately 30 % and was found to be stable after 6 h on stream. In 

contrast, 15NiZr catalyst achieved a maximum yield of 20 % after 4 h time on stream 

but decreased after this time. In both cases no DMTHF was detected. The better 

performance of 15CuZr catalyst could be related to its greater BET area and its better 

reducibility providing a higher HMF conversion and DMF yield. Moreover, the higher 

acidity of 15NiZr catalyst could be favouring C—C cleavage [36], producing 

ring-opening products. The deactivation of this catalyst could be caused by coke 
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Figure 5.11. Activity results for NiCuZr catalysts. 
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deposition on the active sites and/or by possible particle sintering (determined by 

XPS). 

The activity results of bimetallic catalyst revealed a high yield of over-hydrogenated 

DMTHF product. The maximum yield was achieved after 4 h of reaction, with a total 

yield of DMF and DMTHF over 50 %. The good performance of this catalyst can be 

attributed to the interaction between Cu and Ni metals, as observed in the XRD and 

H2-TPR results. This is in accordance with the literature [3], where Ni-Cu phases were 

exhibited as extremely active for hydrogenolysis reactions. 

In view of the obtained results, a deeper understanding of NiCuZr catalysts will be 

carried out in the following chapter, considering that the interaction between Ni and 

Cu could be probably enhancing the production of desired products.  
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In the previous chapter a screening of different catalyst was tested. The effect of 

different supports and active metals was investigated. It was conclude that Ni-Cu 

bimetallic catalyst supported on ZrO2 was the most promising catalyst for the 

hydrogenolysis of HMF to produce desired DMF and DMTHF. In view of these results, 

this chapter offers a deep analyse of bimetallic NiCu/ZrO2 catalysts, studying the effect 

of metal loading and impregnation method.  

6.1 Experimental 

6.1.1 Catalyst preparation 

Monometallic Ni and Cu catalysts supported on ZrO2 were synthetized by wetness 

impregnation method following the procedure detailed in section 4.1.1 of Chapter 4. 

Moreover, bimetallic catalysts with different metal loadings were prepared by 

co-impregnation (one-step impregnation) and by sequential steps impregnation 

(two-steps impregnation), detailed in section 4.1.1 of Chapter 4. 

6.1.2 Catalyst characterization 

The physicochemical properties of the samples were analysed by N2 physisorption, 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), Temperature 

Programmed Reduction with hydrogen (H2-TPR), Temperature Programmed 

Desorption with ammonia (NH3-TPD), X-ray Diffraction (XRD), Scanning Transmission 

Electron Microscopy (STEM) and X-ray Photoelectron Spectroscopy (XPS). 

Detailed information about the abovementioned characterization techniques are 

described in section 4.3. of Chapter 4.  
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6.1.3 Activity test 

The activity tests were carried out in a continuous fixed-bed reactor following the 

procedure detailed in section 4.2. of Chapter 4.  

6.2 Results and discussion 

6.2.1 Catalyst characterization results 

The characterization results obtained by different techniques are described in this 

section. The supports were firstly thermally treated under air at 250 °C for 2 h to be 

evaluated at the same conditions as the synthesized catalysts. Moreover, for those 

techniques at which it was not possible to reduce the catalyst in situ, the catalyst was 

previously reduced at 275 °C for 2 h at a flow of of pure H2. 

6.2.1.1 Chemical and textural properties 

Table 6.1. Chemical and textural properties for the calcined support and catalysts. 

Determined by a N2-physisoption and b ICP-OES. 

Group Catalyst BET  
(m2/g) 

Pore  
volume a 

(nm) 

Average pore 
diameter a 

(nm)  

Cu 
(%)  

Ni 
(%) 

Support ZrO2 137.6 0.27 7.2 - - 

Monometallic 
15CuZr 35.1 0.10 10.7 13 - 

15NiZr 5.0 0.03 25.3 - 11 

Bimetallic  
(one-step  
Impregnation) 

7Ni7CuZr 5.5 0.05 32.1 5 6 

15Ni7CuZr 18.3 0.03 7.4 4.1 10 

15Ni15CuZr 18.1 0.03 7.7 12 13 
30Ni15CuZr 77.0 0.04 3.8 8 19 

Bimetallic  
(two-steps  
Impregnation) 

15Cu-15NiZr 18.5 0.13 29.6 11 8 

15Ni-15CuZr 12.3 0.03 10.0 8 11 

15Cu-30NiZr 30.0 0.02 4.2 18 22 

30Ni-15CuZr 18 0.02 5.2 12 30 
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Table 6.1 summarizes the textural properties and metal loading for the prepared 

catalysts determined from the N2 adsorption-desorption and ICP-OES characterization 

techniques, respectively. 

The calcined ZrO2 support showed the highest BET surface area and pore volume. 

These values decreased when Ni and/or Cu were impregnated because the porous 

structure of the support was blocked by metal deposition [1–3]. Comparing the 

monometallic catalysts, the 15NiZr catalyst showed a smaller surface area than the 

15CuZr, which can be attributed to the blocking of the pores by the metallic Ni clusters 

present on the surface. In turn, this can be associated with the low dispersion of the 

metal [3]. Meanwhile, in the case of the Cu monometallic catalyst, the metal species 

can be more dispersed in the support. In the case of bimetallic catalysts, the 

alternative method of impregnating first with Ni and then Cu provided a higher surface 

area, suggesting a better dispersion for the metals. 

Regarding the metal loading of the catalysts, the experimental value was found to be 

lower than the nominal content in most cases, and this difference became greater as 

the metal loading was increased. For bimetallic catalysts prepared by one-step 

impregnation, the incorporation of higher Ni loading (keeping the nominal Cu loading 

constant) meant lower Cu loadings. In the case of bimetallic catalysts impregnated in 

two steps, the second metal was better impregnated than the first, leading to a higher 

Cu loading when Ni was impregnated first, and a higher Ni loading when Cu was 

impregnated first. In these catalysts, in contrast to one-step impregnated catalysts, 

impregnating higher Ni loadings (keeping the nominal Cu loading constant) provided 

higher Cu loadings. Finally, it should be noted that the average pore diameter was 

higher than that in the support in some cases, especially for the 7Ni7CuZr and 15Cu-

15NiZr catalysts. This suggests that the smaller pores were filled by the incorporated 

metals, involving an increase in the average pore diameter [4]. 

6.2.1.2 Reducibility 

The H2-TPR profiles and their deconvolution for the monometallic and bimetallic 

catalysts are summarized in Figure 6.1 and Figure 6.2, respectively. The monometallic 
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15CuZr catalyst recorded three different peaks at temperatures of 195 ˚C, 205 ˚C and 

240 ˚C. Similarly, monometallic 15NiZr registered different peaks at higher 

temperatures (270 ˚C, 300 ˚C and 380 ˚C). Reports in the literature indicate that highly 

dispersed particles and those particles interacting weakly with the support record 

lower reduction temperatures. In contrast, bulk NiO and CuO and particles interact 

strongly with the support, recording high reduction temperatures [5–7]. 

 

 

 

 

 

 

 

 

 

 

 

 

The H2-TPR profiles for the bimetallic catalysts can also be also deconvoluted into 

three reduction peaks (see Figure 6.2). When compared to the monometallic 15NiZr 

catalyst, all of the peaks are shifted to lower temperatures. This observation seems to 

indicate that Cu facilitates the reducibility of Ni [8–10]. According to the literature [2], 

the first peak is related to the reduction of the Cu2+ species, and the last peak to Ni2+ 

reduction, while the intermediate peak (in blue) could be associated with the 

reduction of Ni-Cu species. Table 6.2 presents a summary of the peak temperature and 

contribution obtained from the deconvolution. 
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Figure 6.1. H2-TPR profiles for the 
monometallic catalysts. 
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Based on the results presented in Figure 6.2 and Table 6.2, the bimetallic catalysts 

impregnated in one step generally recorded a lower contribution for Ni-Cu reduction 

compared to samples prepared by the two-steps method. This suggests that 

impregnating metals in sequential steps can promote higher interaction between Ni 

and Cu species. Furthermore, in the case of the one-step impregnation of bimetallic 

catalysts, it seems that an increase in metal loading leads to a better reducibility for 

the catalyst (see Figure 6.2). The 7Ni7CuZr catalyst recorded the highest temperature 

peak at 335 ˚C, while, for the 30Ni15CuZr catalyst, this temperature peak decreased to 

250 ˚C. The difference in the reduction temperature can be attributed to a weaker 

metal support interaction in the latter catalyst, leading to lower reduction 

temperatures when metal loading is increased [7,11].  
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Interesting results were found when analysing the H2-TPR profiles for those catalysts 

impregnated in two steps; the reduction temperature differs depending on the 

impregnation sequence for the metals. Specifically, a better reducibility was observed 

when Ni was impregnated in a second step (highest temperature peak: 215 ˚C for the 

15Ni-15CuZr catalyst, and 235 ˚C for the 30Ni-15CuZr catalyst) (see Figure 6.2), while a 

higher reduction temperature was detected when Ni was impregnated first (250 ˚C for 

the 15Cu-15NiZr catalyst and 310 ˚C for the 15Cu-30NiZr catalyst). According to the 

literature [12], the metal impregnated in the first step records a stronger interaction 

with the support. When impregnating Ni first, there is a higher interaction between Ni 

and ZrO2, resulting in a higher reduction temperature. Moreover, impregnating Ni in 

the second step meant a higher contribution, and, therefore, higher interaction 

between both metals. Finally, higher Ni loading also involved higher interaction 

between Ni and Cu. 

Table 6.2. Deconvolution of H2-TPR profiles (maximum temperature of the reduction peaks 
and contribution in area %). 

6.2.1.3 Acidic properties 

The acidic properties were studied by NH3-TPD. Some authors have reported that high 

acidity favors C–C bond cleavage, leading to the formation of degradation and/or ring-

opening products [13,14]. This phenomenon needs to be avoided in this reaction. 

Group Catalyst 
Cu Ni-Cu Ni 

T  
(°C) 

Area 
(%) 

T  
(°C) 

Area 
(%) 

T  
(°C) 

Area 
(%) 

Bimetallic  
(one-step  
Impregnation) 

7Ni7CuZr 225 18 275 9 335 74 

15Ni7CuZr 250 52 270 24 340 24 

15Ni15CuZr 200 52 265 45 320 4 
30Ni15CuZr 250 84 270 12 320 5 

Bimetallic  
(two-steps 
Impregnation) 

15Cu-15NiZr 220 37 250 47 325 16 

15Ni-15CuZr 140 19 215 61 250 19 

15Cu-30NiZr 250 17 310 69 355 14 

30Ni-15CuZr 200 4 235 86 290 10 
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Table 6.3 shows that the ZrO2 support had low acidity, with a value of 

0.39 mmol NH3/gcat. In the case of monometallic catalysts, acidity decreased when Cu 

was loaded onto the support. The incorporated Cu particles could be partially covering 

acid sites on the support, thus decreasing the catalyst’s total acidity [15,16]. However, 

the addition of Ni considerably increased this acidity. It seems that the high acidity 

detected for the monometallic 15NiZr catalyst was related to the presence of Lewis 

acid sites associated with the presence of Ni2+ [17]. This is in good agreement with the 

H2-TPR results, where higher temperatures are needed to reduce this catalyst, 

involving the formation of Ni2+ species with stronger interaction with the support that 

can also act as Lewis acid sites. 

Table 6.3. Amount of NH3 desorbed in NH3-TPD. 
 

 

 

 

 

 

 

 

The acidity calculated for the bimetallic catalysts was similar to or lower than that of 

the support, except for the 7Ni7CuZr catalyst. In this last case, a similar effect to that 

found for the monometallic Ni catalyst may be taking place. The harder reducibility of 

this sample, as observed from the H2-TPR profiles, can be explained by the formation 

of Ni2+ species that strongly interact with the support and act as Lewis acid sites [18]. 

This fact is also in good agreement with the XPS results, where the Ni⁰/( Ni⁰+Ni2+) for 

the fresh-reduced catalyst is low when compared to the other bimetallic catalysts. The 

remaining bimetallic catalyst prepared in a single step recorded comparable or slightly 

Group Catalyst mmol NH3/gcat  

Support ZrO2 0.39 

Monometallic 
15CuZr 0.18 

15NiZr 1.09 

Bimetallic  
(one-step  
Impregnation) 

7Ni7CuZr 1.12 

15Ni7CuZr 0.41 

15Ni15CuZr 0.35 
30Ni15CuZr 0.38 

Bimetallic  
(two-steps  
Impregnation) 

15Cu-15NiZr 0.38 

15Ni-15CuZr 0.11 

15Cu-30NiZr 0.16 

30Ni-15CuZr 0.17 
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lower acidity values compared to the support. In the case of the bimetallic catalyst 

impregnated in two steps, the acidity was found to be even lower, except for the 

15Cu-15NiZr catalyst. The double calcination of these latter catalysts can obviously 

favor a decrease in the number of acid sites. 

6.2.1.4 XRD characterization of catalysts 

The XRD patterns for the fresh-reduced and used catalysts are shown in Figure 6.3 and 

Figure 6.4. The reflections detected in these diffraction patterns correspond to Cu⁰ 

(2θ = 43.4˚, 50.5˚ and 74.2˚) and Ni⁰ (2θ = 44.7˚, 52.1˚ and 76.3˚). Diffraction peaks 

ascribed to carbon were detected in the used catalysts (2θ = 35.8˚, and 60.1˚), which 

may be related to coke formation under reaction conditions [15,19–21]. A high peak at 

2θ = 35.9˚ was observed in some used catalysts. This peak was attributed to CSi, which 

was used to fix the catalytic bed. Moreover, the average Ni and Cu crystallite sizes for 

these catalysts were calculated by the Scherrer equation, and these data are 

summarized in Table 6.4. Concerning monometallic catalysts (see Figure 6.3) the fresh-

reduced 15CuZr catalyst registered defined peaks associated with metallic Cu 

crystallites with a size of 50 nm. After the reaction, they were transformed into small 

crystallites that could hardly be detected by XRD. A barely noticeable peak can be 

discerned in the XRD pattern for the freshly reduced 15NiZr catalyst, which can be 

ascribed to an amorphous structure. Moreover, peaks related to carbon deposition 

were observed in the used catalyst. 
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Table 6.4. Crystallite size of different catalysts. 

 

The reduced and used bimetallic 7Ni7CuZr catalyst impregnated in one step did not 

record any peaks related to Ni⁰ or Cu⁰. This means that this catalyst was composed 

mainly of small crystallites before the reaction, and that these crystallites did not 

recrystallize during the reaction. Similarly, the 15Ni7CuZr catalyst showed a small peak 

(2θ = 44.7˚) that may be related to metallic Ni crystallites with an average size of 

20 nm. After the reaction, Ni crystallites were not detectable by XRD (crystallite size 

< 5 nm). The interaction between Ni and Cu crystallites could not be observed in any of 

these cases.  

Group Catalyst 
Cu (nm) Ni (nm) 

Fresh 
reduced Used Fresh 

reduced Used 

Monometallic 15CuZr 50 < 5 - - 
15NiZr - - < 5 < 5 

Bimetallic  
(one-step  
Impregnation) 

7Ni7CuZr < 5 < 5 < 5 < 5 
15Ni7CuZr < 5 < 5 20 < 5 
15Ni15CuZr 40 35 10 15 
30Ni15CuZr < 5 < 5 15 10 

Bimetallic  
(two-steps  
Impregnation) 

15Cu-15NiZr 30 40 15 20 
15Ni-15CuZr 10 < 5 15 < 5 
15Cu-30NiZr 20 25 15 15 
30Ni-15CuZr 15 30 30 35 
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Figure 6.4. XRD patterns for the bimetallic catalysts 
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In contrast, the 15Ni15CuZr catalyst registered a double-peak in both the fresh-

reduced and used catalysts at two different positions 2θ= 43 - 44˚ and at 2θ˚= 51˚, 

which may be related to Ni-Cu crystallites. A comparison of crystallite size before and 

after the reaction showed that the size of the Cu-enriched crystallites decreased, while 

the size of those enriched in Ni increased. This finding suggests that a rearrangement 

of the crystallites occurred during the reaction, leading to smaller Cu-enriched 

crystallites and larger Ni-enriched crystallites. Finally, the crystallites observed in the 

30Ni15CuZr catalyst were enriched in Ni, decreasing in size from 15 nm to 10 nm after 

hydrogenolysis reaction. Cu crystallites 

were not detectable.  

The bimetallic 15Cu-15NiZr and 15Ni-

15CuZr catalysts impregnated in two steps 

recorded highly intensive signals ascribed 

to a Ni-Cu combination. The crystallite size 

increased slightly in the case of 15Cu-

15NiZr, probably due to the sintering of 

the metallic sites. When adding a higher Ni 

loading, i.e., 15Cu-30NiZr, the catalyst 

recorded a similar crystallite size before 

and after the reaction. This means that the 

crystallite structure was kept stable during 

the reaction. In contrast, the crystallites in 

the 30Ni-15CuZr catalyst grew, probably 

because of a sintering effect.  

To understand the difference in the crystal 

composition between pure Ni and Cu and 

bimetallic Ni-Cu, an enlarged graph for the 

fresh catalysts is reported in Figure 6.5. 

The monometallic Cu and Ni registered a 

diffraction peak at 2θ = 43.4˚ and 2θ = 

42.0 42.5 43.0 43.5 44.0 44.5 45.0 45.5 46.0

15CuZr

15NiZr

7Ni7CuZr

15Ni7CuZr

15Ni15CuZr

30Ni15CuZr

15Cu-15NiZr

15Ni-15CuZr

15Cu-30NiZr

30Ni-15CuZr

2θ

Figure 6.5. XRD enlarged graph (2Ɵ = 42.0 – 
46.0) for the monometallic and bimetallic 

catalysts. 
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44.7˚, respectively. The bimetallic catalysts recorded a reflection angle between these 

two limits, meaning that the crystallites were formed by both Ni and Cu metals. In the 

case of bimetallic catalysts impregnated in two steps, adding Cu in a first step 

produced crystallites enriched in Ni. Moreover, impregnating Ni in a first step provided 

Cu-enriched crystals. This is consistent with the Ni and Cu loadings measured by ICP-

OES. 

6.2.1.5 Morphological characteristics 

Table 6.5. Mean particle size for the bimetallic catalysts. 
 

 

 

 

 

 

The elemental maps for the most interesting bimetallic catalysts were obtained by 

Scanning Transmission Electron Microscopy, which was used to calculate the average 

size of the metallic particles. The maps for the fresh-reduced catalysts and the value of 

the average particle size are shown in the Supporting information (Figure 6.6) and 

Table 6.5, respectively. The elemental maps reflected the interaction between Ni and 

Cu ascribed to bimetallic particles. Moreover, an optimal dispersion of these particles 

in the support was observed. Regarding the mean particle size, the bimetallic catalysts 

impregnated in one step recorded a higher particle size than the catalysts impregnated 

in two steps, and, in this sense, lower particle sizes generally lead to a higher 

dispersion of active sites. However, the 15Cu-15NiZr catalyst did not follow this 

tendency; in spite of being synthetized in two steps, it showed similar particle sizes 

compared to those catalysts prepared in a single impregnation step. 

Group Catalyst Mean particle 
size (nm)  

Bimetallic  
(one-step  
Impregnation) 

15Ni15CuZr 55.5 

30Ni15CuZr 48.6 

Bimetallic  
(two-steps  
Impregnation) 

15Cu-15NiZr 44.7 

15Ni-15CuZr 22.9 

15Cu-30NiZr 26.9 

30Ni-15CuZr 20.9 
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d 

f 

e 

c 

a 

b 

Figure 6.6. STEM images for the bimetallic catalysts: a) 15Ni15CuZr; b) 30Ni15CuZr; c) 
15Cu-15NiZr; d) 15Ni-15CuZr; e) 15Cu-30NiZr; f) 30Ni-15CuZr. 
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6.2.1.6 Surface properties 

The oxidation state of the species formed after catalyst preparation and their atomic 

ratios were studied by XPS for fresh-reduced and used catalysts. The results are 

summarized in Table 6.6. The ratios between the metallic Cu and Ni and the sum of 

their ions were calculated to understand whether the species underwent oxidation or 

reduction during the reaction. The Ni⁰/Zr ratio was also calculated due to the 

importance of surface metallic Ni content in the product distribution. 

Table 6.6. XPS results for the monometallic and bimetallic catalysts. 

FR: fresh reduced; U: used. a Used catalyst operating conditions: T = 275 °C; PH₂ = 15 bar; time on stream: 
10 h. b Used catalyst operating conditions: T = 275 °C; PH₂ = 15 bar; time on stream: 24 h. c Used catalyst 
operating conditions: T = 275 °C; PH₂ = 15 bar; time on stream: 25 h. Cu total = Cu⁰+Cu1++Cu2+; Ni total = 
Ni⁰+Ni2+. 

Group Catalyst  Cu/Zr Cu⁰/  
Cutotal Ni/Zr Ni⁰/  

Nitotal 
Ni⁰/ 
Zr C/Zr 

Monometallic 

15CuZr 
FR 0.37 0.62 - - - 1.12 

U a 0.25 0.56 - - - 10.80 

15NiZr 
FR - - 0.15 0.17 0.03 4.96 

U a - - 0.07 0.24 0.02 35.68 

Bimetallic  
(one-step  
Impregnation) 

7Ni7CuZr 
FR 0.22 0.28 0.04 0.27 0.01 6.63 

U a      Only C 

15Ni7CuZr 
FR 0.27 0.27 0.58 0.44 0.26 63.09 

U a 0.62 0.43 0.35 0.30 0.11 260.7 

15Ni15CuZr 
FR 1.59 0.25 1.35 0.32 0.42 7.20 

U b 0.28 0.66 1.32 0.24 0.32 20.67 

30Ni15CuZr 
FR 0.51 0.31 0.44 0.44 0.19 4.19 

U b 0.43 0.52 0.23 0.29 0.07 78.92 

Bimetallic  
(two-steps  
Impregnation) 

15Cu-15NiZr 
FR 0.43 0.57 0.05 0.36 0.02 38.39 

U c 2.56 0.59 0.48 0.35 0.17 126.2 

15Ni-15CuZr 
FR 0.57 0.30 0.54 0.42 0.23 4.28 

U c 0.77 0.52 0.79 0.48 0.38 51.48 

15Cu-30NiZr 
FR 1.26 0.48 1.35 0.53 0.71 11.44 

U c 0.61 0.59 1.32 0.28 0.37 18.97 

30Ni-15CuZr 
FR 1.46 0.52 1.46 0.54 0.79 5.15 

U c 1.20 0.73 1.26 0.29 0.36 49.04 
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A comparison of the monometallic catalysts showed that the 15CuZr catalyst recorded 

a higher metal-to-Zr ratio than the 15NiZr catalyst, suggesting that a higher amount of 

surface metal was available in the 15CuZr catalyst. Moreover, the monometallic Cu 

catalyst recorded a slight decrease in the Cu/Zr ratio after being used in the reaction, 

presumably owing to the coke deposition on the active sites and/or metal sintering. 

Coke formation was confirmed by the C/Zr ratio, which was observed to increase after 

the reaction for all the prepared catalysts. In the case of the monometallic Ni catalyst, 

the decrease in the metal-to-support ratio (probably caused by the sintering of Ni 

particles) and the increase in the C/Zr ratio after hydrogenolysis were more notable, as 

well as their observation in the XRD results. It is important to note the low Ni⁰/( 

Ni⁰+Ni2+) ratio for the fresh-reduced Ni monometallic catalyst, which was consistent 

with the H2-TPR results, where a high reduction temperature was observed. Coke 

deposition can also be associated with the high acidity [22] ascribed to the presence of 

Ni2+ Lewis acid sites (as shown by the NH3-TPD results). 

The catalysts prepared by one-step impregnation behaved differently depending on 

the Ni and Cu loading. Both the 7Ni7CuZr catalyst and the 15NiZr catalyst recorded a 

low Ni⁰/( Ni⁰+Ni2+) ratio in the fresh-reduced state. This finding closely matches the H2-

TPR and NH3-TPD results, whereby these catalysts presented higher reduction 

temperatures and higher acidities. The used 15NiZr catalyst was completely covered by 

carbon, according to the high acidity observed in its NH3-TDP. A high carbon deposition 

was also observed for the 15Ni7CuZr catalyst. In addition, note should be taken of the 

high Ni⁰/Zr ratio of the 15Ni15CuZr catalyst, which decreased after the reaction, 

indicating that Ni was oxidized during the reaction. In this sense, the butanol or water 

produced as a byproduct during the hydrogenolysis reaction could oxidize the Ni 

species to NiO during the reaction, as reported previously [23–25]. The high Cu/Zr ratio 

detected in the fresh-reduced catalyst fell sharply after the reaction. Finally, the 

30Ni15CuZr catalyst recorded lower metal-to-support ratios, and a decrease in these 

ratios after the reaction, probably because of the inaccessibility of the metallic sites 

after being partially covered by carbon deposits. Indeed, a high C/Zr ratio was 

observed for this catalyst after reaction, which was ascribed to a high coke deposition 

on its surface. 
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Concerning the bimetallic catalysts synthetized in two steps, the 15Cu-15NiZr catalyst 

recorded the highest carbon deposition, which was consistent with its higher acidity 

(see Table 6.3. Moreover, this catalyst recorded low metal-to-support ratios before the 

reaction, which increased after 25 h on stream; this could be explained by the carbon 

deposition on the catalyst support, implying that less support was accessible after the 

reaction. A similar effect was observed for the 15Ni-15CuZr catalyst, where higher 

metal-to-support ratios were obtained in the used catalysts. Moreover, metals were 

reduced during the reaction. When impregnating a higher amount of Ni (for the 15Cu-

30NiZr and 30Ni-15CuZr catalysts), higher Ni/Zr ratios were obtained, which in turn 

slightly decreased after the reaction. In the case of the reduced 30Ni-15CuZr catalyst, 

the metal-to-support ratio was higher than that of the 15Cu-30NiZr catalyst. In both 

cases, Ni⁰/Zr was high at the beginning of the reaction, but Ni was partially oxidized 

during the reaction, and, therefore, a lower ratio was recorded after the reaction. As 

explained before, either the solvent or the water produced during the reaction could 

be the agents responsible for metallic Ni oxidation. 

6.2.2 Activity results 

6.2.2.1 Monometallic catalysts 

 

 

 

 

 DMTHF DMF HMF

Figure 6.7. Conversion and yield for the monometallic catalysts 
(operating conditions: T = 275 °C and PH₂ = 15 bar) 

 
            

 
           

 

1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

0

10

20

30

40

Yi
el

d 
(%

)

15CuZr

Co
nv

er
sio

n 
(%

)

Time on stream (h)
1 2 3 4 5 6 7 8 9 10

0

25

50

75

100

0

10

20

30

40

Yi
el

d 
(%

)

15NiZr
Co

nv
er

sio
n 

(%
)

Time on stream (h)



Chapter 6 

 

168 

The activity results for the monometallic catalysts are summarized in Figure 6.7. The 

15CuZr catalyst underwent a complete HMF conversion, whereas the monometallic Ni 

catalyst recorded a conversion of over 90 %. The 15CuZr catalyst recorded a DMF yield 

of approximately 30 %, and was found to be stable after 10 h on stream. In contrast, 

the 15NiZr catalyst reached a maximum yield of 20 % after 4 h time on stream, but 

decreased to 10 % after 10 h reaction time. In both cases, no DMTHF was detected. 

The better performance of the 15CuZr catalyst could be related to its greater BET area 

and its better reducibility providing a higher HMF conversion and DMF yield. 

Moreover, the higher acidity of the 15NiZr catalyst can favour C–C cleavage, producing 

ring-opening products [26]. The deactivation of this catalyst could be caused by the 

coke deposition on the active sites (determined by XPS and XRD characterization 

techniques) and/or by possible particle sintering (as observed from the data derived 

from XPS). 

6.2.2.2 Bimetallic catalysts impregnated in one step 

 

The activity results for bimetallic catalysts impregnated in one step are summarized in 

Figure 6.8. For the 7Ni7CuZr and 15Ni7CuZr catalysts, the reaction was stopped after 

10 h due to the poor total yield and the observed deactivation after 7 h on stream. In 

both cases, a small amount of DMTHF was detected in the first reaction hours. The 

high carbon deposition may cover the active metal sites, and, thus, result in the 

deactivation of the catalysts. In contrast, impregnating higher amounts of Ni and Cu 

(15Ni15CuZr and 30Ni15CuZr catalysts) provided higher yields for the desired products 

during 24 h of reaction time (the figures for the conversion and yields at 23 h are the 

averages for the overall production during the night). The good performance of these 

catalysts can be attributed to their higher interaction between Cu and Ni metals, as 

observed in the XRD results. Therefore, there seems to be a close relationship between 

the DMTHF and DMF yield obtained and the Ni-Cu interaction formed in each catalyst 

(Figure 6.10). The high DMTHF production associated with the 15Ni15CuZr catalyst at 

the beginning of the reaction (40 % yield of DMTHF at 4 h of reaction time) can be 

linked to the high metallic Ni content on the surface of the catalyst detected by XPS, 
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which has a high hydrogenation capacity. After the reaction, the catalyst showed some 

Ni oxidation, which may be responsible for the decrease in the production of DMTHF, 

which seems to take place through DMF hydrogenation. Finally, the 30Ni15CuZr 

catalyst recorded a maximum DMF yield of 25 %, which remained almost constant 

after 24 h of reaction. As regards the aforementioned catalyst, a small production of 

DMTHF was observed at the beginning of the reaction. This may be due to the smaller 

amount of metallic Ni observed by XPS and the lower dispersion of the metals due to 

larger crystallites, compared to the 15Ni15CuZr catalyst. 

 

6.2.2.3 Bimetallic catalysts impregnated in two steps 

Figure 6.9 shows the activity results for the bimetallic catalysts impregnated in two 

steps. The high production of DMF and DMTHF is probably related to the interaction of 

Ni and Cu (Figure 6.10). Moreover, the yields for the desired products are higher than 

 DMTHF DMF HMF

Figure 6.8. Conversion and yield for the bimetallic catalysts impregnated in one step 
(operating conditions: T = 275 °C and PH₂ = 15 bar) 
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that found for the bimetallic catalysts impregnated in one step. This can be ascribed to 

the lower particle size of these catalysts. The 15Cu-15NiZr catalyst reached a maximum 

DMF yield of 50 % after 8 h of time on stream, which then fell to 10 % after 25 h, 

probably due to the sintering of metal particles and/or coke deposition on the active 

sites. Furthermore, this catalyst hardly produced any DMTHF. In contrast, the 15Ni-

15CuZr catalyst recorded a lower deactivation after 25 h time on stream; reaching a 

maximum DMF yield of 70 % after 8 h. The higher yield observed in this catalyst may 

be related to its smaller bimetallic Ni-Cu particles with higher dispersion. In addition, 

the higher metal-to-support ratio observed by XPS may enhance the production of the 

desired products. 

 

The 15Cu-30NiZr and 30Ni-15CuZr catalysts recorded high yields of DMTHF. The higher 

metallic Ni surface content observed by XPS produces higher DMTHF due to the 

1 2 3 4 5 6 7 8 9 10 23 24 25
0

20

40

60

80

100

0

15

30

45

60

75

Yi
el

d 
(%

)

15Cu-15NiZr

Co
nv

er
sio

n 
(%

)

Time on stream (h)

1 2 3 4 5 6 7 8 9 10 23 24 25
0

20

40

60

80

100

0

15

30

45

60

75

Yi
el

d 
(%

)

15Cu-30NiZr

Co
nv

er
sio

n 
(%

)

Time on stream (h)

1 2 3 4 5 6 7 8 9 10 23 24 25
0

20

40

60

80

100

0

15

30

45

60

75

Yi
el

d 
(%

)

15Ni-15CuZr

Co
nv

er
sio

n 
(%

)

Time on stream (h)

1 2 3 4 5 6 7 8 9 10 23 24 25
0

20

40

60

80

100

0

15

30

45

60

75

Yi
el

d 
(%

)

30Ni-15CuZr
Co

nv
er

sio
n 

(%
)

Time on stream (h)

Figure 6.9. Conversion and yield for the bimetallic catalysts impregnated in two steps 
 (operating conditions: T = 275 °C and PH₂ = 15 bar). 
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hydrogenating capacity of Ni [27]. Both catalysts showed a similar tendency, achieving 

high DMTHF yields at the first stage of the reaction, and high DMF yields after 23 h of 

time on stream. As indicated by the results obtained from XPS (see Table 6.6), Ni was 

partially oxidized during the reaction, presumably suppressing its DMF hydrogenation 

capacity and producing DMF instead of DMTHF. However, the 15Cu-30NiZr catalyst 

recorded a lower DMTHF yield during the reaction. This can be ascribed to the lower 

Ni/Zr and Cu/Zr ratios observed in XPS; with higher Ni loading implying lower particle 

size, which resulted in a better dispersion for the catalyst. Additionally, the interaction 

of Ni-Cu observed in the H2-TPR profiles became stronger when the Ni loading was 

increased. These two considerations can explain the better performance of the 

catalysts with higher Ni loadings. 

As noted, there seems to be a close relationship between the Ni-Cu interactions 

observed in H2-TPR deconvolution profiles and the maximum yield obtained (the sum 

of DMF and DMTHF production).  

 

 

 

 

 

 

 

 

6.2.2.4 Study of the evolution of the catalytic system over the 

reaction 

As discussed above, some catalysts produced DMTHF at the beginning of the reaction, 

probably due to the presence of Ni metal active sites. However, the lower Ni°/Ni2+ 
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ratio observed in the used catalysts suggests a progressive Ni oxidation process during 

the reaction, which decreases the hydrogenation capacity. To confirm these results, 

different activity tests were carried out by using the 15Cu-30NiZr catalyst for different 

on stream times (see Table 6.7). The used catalyst at these different reaction times 

was then characterized by XRD and XPS techniques to observe the evolution of the 

catalyst properties. 

Table 6.7. XRD results for the 15Cu-30NiZr catalyst tested at different reaction times. 

The XRD results summarized in Table 6.7 show that the Ni and Cu crystallites followed 

a similar pattern during the first 10 hours of reaction time, showing a slight decrease in 

the contribution of the Ni crystallites. This suggests that some Ni crystallites lose some 

crystallinity during the reaction. After 25 h of reaction time, this decline became more 

significant. In addition, this trend is comparable to the DMTHF yield profile observed 

during the activity tests. Specifically, a higher DMTHF yield was observed at the 

beginning of the reaction, where Ni crystallites remained almost stable, and DMTHF 

production decreased while Ni crystallites became less crystalline. 

Table 6.8. XPS results for the 15Cu-30NiZr catalyst tested at different reaction times. 

 

Time on stream (h) Cu/Zr Cu⁰/ 
(Cu⁰+Cu1++Cu2+) Ni/Zr Ni⁰/ 

(Ni⁰+Ni2+) Ni⁰/Zr 

Fresh-reduced 1.26 0.48 1.35 0.53 0.71 

3 h 1.22 0.50 1.34 0.46 0.62 

6 h 1.21 0.49 1.26 0.40 0.50 

10 h 0.71 0.49 1.22 0.34 0.41 

25 h 0.61 0.59 1.02 0.28 0.37 

Time on stream (h) 
Crystallite size (nm) Contribution (%) 

Cu Ni Cu Ni 

Fresh-reduced 30 10 16 84 

3 h 25 10 15 85 

6 h 30 10 20 80 

10 h 25 10 22 78 

25 h 25 15 44 56 
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Finally, the XPS technique was used to understand the change in the oxidation state of 

metallic species during the reaction, and the results are summarized in Table 6.8. In 

general, a difference is found between the Cu and Ni oxidation-reduction trends. Cu 

was reduced during the reaction due to the H2 atmosphere inside the reactor. 

However, Ni underwent an oxidation process during the reaction, which could be 

observed from the decrease in the Ni0/Zr ratio during the reaction, and may be the 

reason for the observed decrease in DMTHF production. In fact, when the metallic Ni 

on the surface was oxidized, its hydrogenating capacity was reduced, which means the 

hydrogenation process for DMF to produce DMTHF was limited. 

In general, bimetallic catalysts recorded a better performance and stability than their 

monometallic counterparts. This is probably due to the presence of the Ni-Cu 

interaction. In addition, impregnating Ni and Cu metals in sequential steps was found 

to lead to higher Ni-Cu interaction, smaller particles size and lower acidity. These lower 

acidity values possibly prevented C—C cleavage and avoided the production of 

ring-opening products. Moreover, the lower acidity involved less coke deposition, 

which resulted in lower catalyst deactivation. Another important conclusion is that 

metallic Ni deposited onto the surface of the catalyst was responsible for DMTHF 

production. This Ni was partially oxidized during the reaction, leading to a loss in 

hydrogenating capacity, which limited the hydrogenation step of DMF to DMTHF. 

Finally, impregnating Ni in a second step involved better reducibility and enhanced 

dispersion for the metals. Despite the fact that at the begin of the reaction higher Ni 

loading implied higher production of desired products, after 25 h of reaction, 

15Ni-15CuZr and 30Ni-15CuZr catalysts reached similar DMF yield (around 70 %). For 

this reason, and trying to avoid the use of excess of metal, 15Ni-15CuZr catalyst will be 

considered for further investigations. 
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In the previous chapter the interaction between Ni and Cu in bimetallic Ni-Cu/ZrO2 

catalysts was investigated. Based on the results observed, carbon supports will be 

examined in the following chapter. Commercial carbon and biomass-derived carbon 

will be employed as catalytic support for monometallic Ni and Cu and bimetallic Ni-Cu 

catalysts.  

7.1 Experimental 

7.1.1 Catalyst preparation 

Four different supports were prepared. The first two supports were synthesized as 

explained in Chapter 4 (section 4.1.2.): Carbon support preparation, obtaining 

commercial carbon (CC) and biomass-derived carbon (BC). These supports were 

employed to synthesize monometallic and bimetallic catalysts. The prepared catalysts 

were labelled as Ni/CC, Ni/BC, Cu/CC, Cu/BC, Ni-Cu/CC and Ni-Cu/BC. 

Additionally, another two supports were synthesized as explained in Chapter 4 

(section 4.1.2.): Carbon support preparation with acidic pretreatment. The obtained 

supports were denominated as treated commercial carbon (TCC) and treated 

biomass-derived carbon (TBC). Due to stability problems detected on monometallic 

catalysts, these supports with acidic treatment were only employed as supports for the 

bimetallic catalysts. The obtained catalysts were designated as Ni-Cu/TCC and 

Ni-Cu/TBC. 

7.1.2 Catalyst characterization 

The physicochemical properties of the samples were analysed by elemental analysis 

(CHN), Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), 

N2-physisorption, Temperature Programmed Desorption with ammonia (NH3-TPD), X-

ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and X-ray 

Photoelectron Spectroscopy (XPS). 
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Detailed information about the abovementioned characterization techniques are 

described in section 4.3. of Chapter 4.  

7.1.3 Activity test 

The activity tests were carried out in a continuous fixed-bed reactor following the 

procedure detailed in section 4.2. of Chapter 4.  

7.2 Results and discussion 

7.2.1 Catalyst characterization results 

The characterization results obtained by different techniques are described in this 

section. The supports were firstly thermally treated under an inert atmosphere of N2 at 

500 °C for 2 h to be evaluated at the same conditions as the synthesised catalysts. 

Moreover, for those techniques at which it was not possible to reduce the catalyst in 

situ, the catalyst was previously reduced at 275 °C for 2 h at a flow of pure H2. 

7.2.1.1 Elemental analysis (CHN) 

Table 7.1. Elemental analysis for the carbon supports determined by CHN analyses. 

   a Bare carbons (without kaolin). b Calculated by difference. 

The elemental composition of the different bare carbon materials (without the 

addition of kaolin) obtained from the CHN analyses are summarized in Table 7.1. 

Oxygen was determined by difference. Commercial and biomass-derived carbon 

showed similar composition, with a slight difference in H content. In contrast, the 

Carbon C (%) H (%) N (%) O b (%) 

Commercial carbon a 80.29 0.85 0.61 18.25 

Treated commercial carbon a 69.83 2.00 0.98 27.19 

Biomass-derived carbon a 77.67 2.61 0.38 19.34 
Treated biomass-derived carbon a 67.76 1.41 0.94 29.89 
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treated commercial and biomass-derived carbon exhibited higher oxygen content, 

compared to the untreated supports, implying the oxidation of the material [1], 

probably due to the fact that HNO3 is a good oxidation agent. This effect has been 

previously reported in literature [2]. 

7.2.1.2 Chemical and textural properties 

The textural properties determined by N2-physisorption of different supports and 

catalysts are summarized in Table 7.2 and Table 7.3, respectively.  

Table 7.2. Textural properties for the thermally treated supports (obtained from 
N2-physisorption). 

The commercial and biomass-derived carbons (without kaolin) exhibited comparable 

BET surface areas (higher than 970 m2/g). However, biomass-derived carbon showed 

higher pore volume and pore diameter. In both materials, the acidic treatment did not 

alter significantly the textural properties. Lastly, the addition of kaolin reduced the 

total surface area, which may be related to the poor surface area observed for the 

bare kaolin (18 m2/g).  

Support BET  
(m2/g) 

Pore volume 
(nm) 

Average pore 
diameter (nm)  

Commercial carbon  
(without kaolin) 
 

991 0.05 1.8 

Commercial carbon 
 

767 0.01 1.9 
Treated commercial carbon 
(without kaolin) 
 

964 0.04 2.2 

Treated commercial carbon 
 

744 0.09 2.4 
Biomass-derived carbon 
(without kaolin) 
 

977 0.47 3.5 

Biomass-derived carbon 
 

715 0.11 2.5 
Treated biomass-derived 
carbon (without kaolin) 
 

912 0.47 3.6 

Treated biomass-derived 
carbon 
 

482 0.29 4.0 

Kaolin 
 

18 0.09 21.6 
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The monometallic catalysts showed a decrease in the specific surface area (ranged 

from 240 to 310 m2/g) when compared with the supports, most probably as a 

consequence of a partial blockage of the support´s pores by metal deposition [3]. This 

effect is more remarkable in the case of the bimetallic catalysts (120-190 m2/g), 

associated to the higher metal loading of these catalysts, involving larger obstruction 

of the porous structure. This was also observed by Andrade et al. [4]. In general, 

catalysts supported on the biomass-derived carbon showed lower BET surface area. 

This trend was more noticeable for the monometallic catalysts. 

Table 7.3. Chemical and textural properties for the monometallic and bimetallic catalysts. 

  Obtained from  a N2-physisorption and b ICP-OES. 

The real metal contents of the catalysts, studied by ICP-OES (see Table 7.3), were 

similar to the nominal ones, except for bimetallic catalysts supported in non 

pretreated carbons. The higher carbon concentration of these supports, determined in 

CHN analysis, could favour the metal deposition. The catalysts were thermally treated, 

firstly after the deposition of Cu and then after the deposition of Ni. These two thermal 

treatments implied some thermal decomposition of part of the carbon, resulting in 

higher metal loading than the nominal one.  

7.2.1.3 Acidic properties 

The surface acidity of the bare supports and catalysts was investigated by the NH3-TPD 

characterization technique. The results are summarized in Figure 7.1.  

Catalyst BET a 

(m2/g) 
Pore volume a 

(nm) 
Average pore 

diameter a (nm)  
Cu b 

(%)  
Ni b 

(%) 
Ni / CC 309 0.09 3.1 - 15 

Ni / BC 241 0.12 3.6 - 16 

Cu / CC 282 0.06 2.7 15 - 
Cu / BC 311 0.19 4.1 15 - 
Ni-Cu / CC 143 0.05 3.3 21 23 

Ni-Cu / TCC 190 0.04 2.8 16 16 

Ni-Cu / BC 135 0.08 3.8 22 22 

Ni-Cu / TBC 119 0.05 3.4 14 17 
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The commercial carbon without kaolin exhibited a lower acidity compared to the 

biomass-derived carbon in absence of kaolin. The addition of kaolin decreased 

significantly the acidity of the biomass-derived carbon [5], probably due to the fact 

that bare kaolin presented a low acidity. Moreover, the treatment decreased the 

acidity of both commercial and biomass-derived carbons. It is important to remark that 

even if the difference in the acidity of pure commercial (0.64 mmol NH3/gcat) and 

biomass-derived carbon (1.42 mmol NH3/gcat) is significant, after the impregnation of 

kaolin the acidity is almost identical in both carbons (0.62 and 0.64, respectively). A 

similar effect was observed with the treated carbons, where the addition of kaolin 

involved final similar acidities, around 0.44 mmol NH3/gcat.  

The impregnation of Ni in the supports enhanced the acidity of the monometallic 

catalysts. It has been extensively reported that the non-reduced Ni+2 species act as 

Lewis acid sites, increasing the total acidity of the catalyst [6,7]. The higher acidity of 

the catalyst supported on biomass-derived carbon is in good agreement with the 

results observed in XPS (explained below) where a larger content of Ni+2 was observed 

on the catalyst surface, involving an increase in the acidity. By contrast, the 

monometallic copper catalysts exhibited lower acidities than the supports. Cu particles 
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could be covering or could have reacted with the acidic sites, reducing the total acidity 

of these catalysts [4]. 

The bimetallic catalyst showed similar acidities than the supports. Presumably, even if 

some acidic sites were covered by metallic species, the presence of nickel cations 

implied the existence of Lewis acid sites, which compensated the loss of the original 

supports acid sites [8,9]. 

7.2.1.4 XRD characterization of the catalysts  

The X-ray diffraction patterns of the fresh reduced and used catalysts are depicted in 

Figure 7.2 for monometallic catalysts and and Figure 7.3 for bimetallic catalysts. 

Moreover, the average crystallite size of the metallic phases, calculated by Scherrer 

equation, are summarized in Table 7.4. 

The diffraction patterns of monometallic nickel catalysts displayed diffraction peaks at 

2Ɵ = 44.5 °, 51.8 ° and 76.4 °, ascribed to metallic Ni [10]. Similarly, Cu based catalysts 

exhibited diffraction peaks at 2Ɵ = 43.3 °, 50.4 ° and 74.1 °, attributed to metallic Cu 

[10]. The catalyst supported on commercial carbon exhibited a lower crystallite size, 

implying a better dispersion of Cu on this support. The nickel based monometallic 

catalysts presented a lower crystallite size than the Cu based catalysts [11]. After 
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Figure 7.2. XRD patterns for the monometallic catalysts (× C, *Cu2O, ◊ Cu⁰, ○ Ni⁰). 
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reaction, all the monometallic catalysts exhibited similar crystallite size to the initial 

ones, revealing a good stability of the metallic phases in these catalysts.  

 

Table 7.4. Crystallite size (nm) for the monometallic and bimetallic catalysts. 

Catalyst Fresh reduced Used 
Ni Cu Ni Cu 

Ni / CC 20 - 20 - 

Ni / BC 15 - 10 - 

Cu / CC - 40 - 35 
Cu / BC - 45 - 45 
Ni-Cu / CC 10 a 15 a 

Ni-Cu / TCC 10 30 10 35 

Ni-Cu / BC 15 a 5 (NiO) 15 (CuO) 

Ni-Cu / TBC 15 20 15 25 
                     a Ni-Cu crystallites 

The bimetallic catalysts exhibited peaks among the diffraction peaks of Ni and Cu (as 

can be observed in Figure 7.4), evidencing a possible interaction of the metals. The 

catalysts supported on the non-treated carbon exhibited a homogeneous peak 

ascribed to Ni-Cu crystals with small crystallites of 10-15 nm. In the case of the 

bimetallic catalysts supported on treated carbon, two peaks can be identified, 
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Ni-Cu / BC used

Figure 7.3. XRD pattern for the bimetallic catalysts (× C, # NiCu, ◊ Cu⁰, CuO, ○ Ni⁰, ●NiO).  
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attributed to an alloy richer in Cu and an alloy richer in Ni. In this samples, the alloy 

richer in Cu presented larger crystallite size (20-30 nm), that increased during the 

reaction, which is probably attributable to the sintering effect during the reaction. On 

the contrary, the alloy richer in Ni exhibited stable crystallites of 10-15 nm. The 

evidence of two different Ni-Cu alloys in the catalyst has been previously reported 

[4,12]. It should be remarked that even if there are two peaks, they are located at an 

intermediate position, implying the formation of Ni-Cu alloy and not crystals of pure Ni 

and pure Cu. 

 

 

 

 

 

 

 

 

7.2.1.5 Morphological characteristics 

The morphology, size and dispersion of the metallic particles of the most interesting 

catalysts were investigated by TEM. The dispersion and mean particle size were 

calculated according to the procedure described by Borodziński and Bonarowska [13] 

and are summarized in Table 7.5. Additionally, the corresponding histograms and 

profiles of the accumulated frequencies are displayed in Figure 7.5. 

41 42 43 44 45 46 47 48

NiCu

Ni-Cu / CC fresh reduced

Ni-Cu / TCC fresh reduced

Ni-Cu / BC fresh reduced

2Θ

Ni-Cu / TBC fresh reduced

Figure 7.4. XRD patterns for the fresh reduced bimetallic catalysts (enlarged graph). 
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The monometallic Ni and Cu catalysts exhibited similar dispersion and particle size in 

the fresh reduced samples. However, the particle size was enlarged during the 

reaction, decreasing the total dispersion of these catalysts. The increase on the size 

could be related to the sintering of metallic particles. This effect was more evident in 

the case of the Cu/CC catalyst.  

In the case of the bimetallic catalysts, there is a noticeable difference in the dispersion 

and particle size of fresh reduced catalyst supported on the commercial and 

biomass-derived carbon. It seems that commercial carbon is able to disperse more 

efficiently the particles, increasing the active metal exposition on the surface. 

Nevertheless, the particle grew along the reaction in the case of the bimetallic catalyst 

supported on commercial carbon, implying a reduction of the dispersion in this this 

catalyst. 

Table 7.5. Dispersion and metallic particle size for the most relevant fresh reduced and used 
catalysts. 

Catalyst Dispersion (%) dmean (nm) 

Ni / CC 
Fresh reduced 5 23 

Used 4 32 

Cu / CC Fresh reduced 5 26 
Used 3 42 

Ni-Cu / CC 
Fresh reduced 11 12 

Used 5 27 

Ni-Cu / BC 
Fresh reduced 4 30 

Used 3 36 

7.2.1.6 Surface properties 

The elemental composition (see Table 7.6) and oxidation state (see Table 7.7) of the 

catalysts before (fresh reduced) and after (used) the reaction were examined by the 

XPS technique. The carbon content increased in all the used catalysts, probably due to 

coke deposition on the surface during the reaction, which can imply a deactivation of 

the catalysts.  
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Table 7.6. Elemental composition for the monometallic and bimetallic catalysts. 

Catalyst C Ni Cu Ni/Cu Others a 

Ni / CC 
Fresh reduced 30.2 27.7 - - 42.1 
Used 37 21.2 - - 41.8 

Ni / BC 
Fresh reduced 28.5 4.5 - - 67.0 
Used 31.3 4.8 - - 64.1 

Cu / CC 
Fresh reduced 31.6 - 18.5 - 49.9 
Used 46.1 - 11.7 42.2  

Cu / BC 
Fresh reduced 35.1 - 9.8 - 55.1 
Used 49.7 - 10.1 - 40.2 

Ni-Cu / CC 
Fresh reduced 13.0 21.4 19.2 1.1 46.4 
Used 18.3 23.4 10.1 2.3 48.2 

Ni-Cu / TCC 
Fresh reduced 14.4 25.6 10.7 2.4 49.3 
Used 23.4 21.0 11.1 1.9 44.5 

Ni-Cu / BC 
Fresh reduced 24.1 23.6 8.9 2.7 43.4 
Used 39.5 19.9 7.8 2.6 32.8 

Ni-Cu / TBC 
Fresh reduced 46.3 10.3 3.1 3.3 40.3 
Used 53.7 8.6 4.0 2.1 33.7 

a Others: O, Al, Si. 

The surface metal content in the monometallic catalysts was higher when the 

commercial carbon was employed as support. The higher BET surface area observed 

with the N2-physisorption technique and the higher C content in this support detected 

in the CHN analysis could be favouring the higher deposition of the active phase on the 

catalyst surface. In the case of the catalysts supported on the commercial carbon, the 

metallic content decreased after reaction, possibly as a result of coke deposition on 

the metallic sites, and also probably due to metal particles sintering on the surface, 

although the average particle size measure by XRD does not change significantly. This 

is in good agreement with the results obtained by the TEM technique. 

The bimetallic catalysts supported on the treated biomass-derived carbon exhibited 

lower surface metal contents, probably resulting from a decrease of the metallic 

particles dispersion, involving poorer metal contents on the surface. In general, the 

metal contents of the bimetallic catalysts declined after the reaction. This was 

presumably caused by coke deposition and by the sintering. The ratio of Ni/Cu was 

higher than the bulk ratio obtained in ICP-OES results, suggesting an enrichment of Ni 
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in the catalysts surface, an effect that has been previously observed [10]. The 

impregnation of Ni in the second step could favour the higher exposition of this metal 

on the surface. 

Table 7.7. Oxidation state of Ni and Cu for the monometallic and bimetallic catalysts. 

Catalyst Ni⁰ / (Ni⁰ + Ni²⁺) Cu⁰ /  
(Cu⁰ + Cu¹⁺ + Cu²⁺) 

Ni / CC 
Fresh reduced 0.84 - 
Used 0.70 - 

Ni / BC 
Fresh reduced 0.41 - 
Used 0.71 - 

Cu / CC 
Fresh reduced - 0.58 
Used - 0.10 

Cu / BC 
Fresh reduced - 0.24 
Used - 0.56 

Ni-Cu / CC 
Fresh reduced 0.80 0.27 
Used 0.30 0.51 

Ni-Cu / TCC 
Fresh reduced 0.69 0.36 
Used 0.47 0.49 

Ni-Cu / BC 
Fresh reduced 0.19 0.22 
Used 0.22 0.22 

Ni-Cu / TBC 
Fresh reduced 0.40 0.29 
Used 0.39 0.25 

To understand the oxidation state of nickel and copper, the ratio of Ni⁰ or Cu⁰ to the 

total metal content was studied. In monometallic catalysts supported on the 

commercial carbon elevated Ni⁰ or Cu⁰ contents were observed. They decreased after 

the reaction, indicating some oxidation of the metallic particles. The water generated 

as by-product or the solvent (1-butanol) could be favouring this oxidation of the 

metallic species [14]. On the contrary, the catalysts supported on the biomass-derived 

carbon exhibited lower Ni⁰ or Cu⁰ contents, but these contents were increased during 

the reaction, involving a reduction of the oxide species. This can be assigned to an 

easier reducibility due to a lower interaction with the support in the H2-rich 

atmosphere.  

The bimetallic catalysts supported on the commercial carbon showed high Ni⁰ and Cu⁰ 

contents. After reaction, Ni was oxidized and conversely, Cu was reduced. On the 
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contrary, catalyst supported on biomass-derived carbon presented low metallic 

contents, which remained almost identical after the reaction. In general, it seems that 

if there is a high exposition of reduced species in the catalyst surface, some species are 

oxidized during the reaction. 

It is important to highlight that the oxide phases detected in XPS was not observed in 

the XRD results, except for the bimetallic catalyst supported on biomass-derived 

carbon. This fact indicates that the oxide species were highly dispersed on the catalyst 

surface [12,15]. 

7.2.2 Activity results 

In all the studied catalysts the achieved HMF conversion was 100 % under the 

operating conditions of 275 °C and 15 bar of H2 (WHSV = 0.15 h-1). The objective was to 

study the desired products yields along the time-on-stream. 

The acidity is an important property in this reaction. High acidity can promote C—C 

cleavage encouraging ring opening products [16]. This effect needs to be avoided. 

However, it has been reported that acidic sites can promote the activation of carbonyl 

group and favour the hydrogen transfer reaction [17,18]. Therefore, a controlled 

surface acidity is crucial in this process. 

7.2.2.1 Monometallic catalysts 

The activity results of the monometallic catalysts are summarized in Figure 7.6. Ni 

based catalysts exhibited high yields of DMTHF at the beginning of the reaction. 

However, this production was reduced after 5 h of reaction, enhancing the production 

of DMF. Ni⁰ on surface seems to be responsible of the hydrogenation of C=C bond, 

producing DMTHF. This nickel tends to oxidize during the reaction, possibly loosing the 

hydrogenating capacity. Therefore, at the end of the reaction, the obtained product 

was DMF. On the contrary, Cu based catalysts were not able to produce DMTHF.  
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In general, the catalysts impregnated in the commercial carbon were more active in 

the production of the desired products at the beginning of the reaction. This fact could 

be explained by the higher metallic content observed on the surface of this catalysts. 

Moreover, the lower acidity could favour the prevention of C—C cleavage, avoiding 

ring-opening products and favouring the production DMF and DMTHF.  

All the monometallic catalysts exhibited deactivation problems, except the Ni/BC. This 

effect was more pronounced in the case of Cu based catalysts. Probably, the sintering 

effect observed in the TEM images (which was more evident in the case of Cu/CC) and 

coke deposition observed in the XPS results could be responsible of the deactivation of 

these catalysts. 

 

Figure 7.7. Conversion and yield for the monometallic catalysts  
(operating conditions: T = 275 °C and PH₂ = 15 bar) 
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Figure 7.6. Conversion and yield for the monometallic catalysts  
(operating conditions: T = 275 °C and PH₂ = 15 bar) 
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7.2.2.2 Bimetallic catalysts 

The obtained HMF conversion and DMF-DMTHF yields when using bimetallic catalysts 

are outlined in Figure 7.7. In general, there is no significant difference between 

catalysts supported on non-treated and treated carbons. This can be considered as a 

positive aspect, implying an easier synthesis of the catalyst, avoiding the previous 

treatment of the support. Moreover, bimetallic catalysts exhibited better stability than 

the corresponding monometallic catalysts, probably due to the interaction between 

the Ni and Cu metals [14]. 

 

The catalysts supported on commercial carbon exhibited higher production rate of the 

desired DMF and DMTHF, probably due to their higher metal content observed in the 

surface of the catalysts by XPS and their higher dispersion calculated from TEM images. 

Figure 7.8. Conversion and yield for the bimetallic catalysts 
(operating conditions: T = 275 °C and PH₂ = 15 bar) 
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Moreover, a higher DMTHF yield was detected in these catalysts, which may be related 

to the metallic Ni⁰ available on the catalyst surface. Even if at the beginning of the 

reaction catalysts supported on commercial carbon exhibited better catalytic 

performance, the results at the end of the reaction time tested (25 h) were similar for 

all the bimetallic catalysts, exhibiting reasonable stability and achieving a DMF yield 

around 50 % in all the cases. This is in good agreement with the observed results from 

the TEM images, where similar particle size and dispersion were detected after the 

reaction for all the bimetallic catalysts.  

The loss of the catalytic production of DMTHF of catalysts supported on commercial 

carbon during the reaction has been previously reported [14]. This effect was related 

to the oxidation of Ni⁰ during the reaction, missing the hydrogenating capacity of the 

furan ring, therefore producing DMF. This is in good agreement with the XPS results, 

where the catalysts supported on commercial carbon exhibited the oxidation of Ni 

after reaction. 

 

 

 

 

 

 

The relation between the DMTHF production at the beginning of the reaction (average 

yield of DMTHF during the first 3 h of reaction) and the metallic Ni content on fresh 

reduced catalyst surface (calculated from the total Ni amount and the Ni⁰ ratio) was 

plotted in Figure 7.8. It can be observed that there is a linear and positive correlation 

between both parameters. Moreover, it is clear that the catalysts supported on 
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commercial carbon exhibited an elevated Ni⁰ content on the surface, producing higher 

DMTHF at the beginning of the reaction. The higher metallic Ni⁰ content could be 

related to the interaction between metal and support, enhancing the exposition and 

the stability of the metal.  

Moreover, the metallic Cu on the surface seems to be important in the total 

production of DMF and DMTHF during the first stage of the reaction. There is a strong 

correlation between the metallic Cu content on the surface and the total mean 

production of DMF and DMTHF during the first 10 h of reaction (see Figure 7.9). It 

seems that metallic content of both Cu and Ni are important for the hydrogenolysis of 

HMF. Cu⁰ involves high hydrogenolysis to desired products, while Ni⁰ enhances the 

hydrogenation of C=C bond, obtaining higher DMTHF yield. 

 

 

 

 

 

 

In general, the reached conversion of HMF in all the tested catalysts was 100 %. The 

complete conversion permitted the comparison of the total yield of desired products 

obtained by different catalysts. However, this condition can limit the interpretation of 

the deactivation of the catalysts. 

The bimetallic catalysts, regardless of the support, showed a better balance of the acid 
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yield above 50 % was reached after 25 hours-on-stream in all the bimetallic catalysts. 

For further stability tests, it should be taken into account the coke deposition observed 

in all the catalyst. 

The monometallic nickel catalysts were able to produce DMTHF. Conversely, Cu based 

catalysts were not able to produce DMTHF. This implied the need of Ni to hydrogenate 

the C=C bond. In general, monometallic catalysts showed high yields to desired 

products at the beginning of the reaction. However, they were deactivated (except 

Ni/BC), probably due to the sintering of metallic active sites. This effect was more 

severe in the case of copper based catalysts. 

The commercial carbon exhibited higher Ni and/or Cu surface content and Ni⁰ and/or 

Cu⁰ surface content than the biomass-derived carbon. This involved higher yields of 

desired products at the beginning of the reaction. However, similar results were 

obtained with both supports after 25 hours-on-stream. 

Lastly, it is important to remark that the metallic content of Cu presented a strong 

relation with the total production of DMF and DMTHF at the first phase of the 

reaction. Similarly, metallic Ni is correlated with the hydrogenation capacity of C=C 

bond of the catalyst.  
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In the current PhD thesis, an exhaustive study of different catalytic systems for the 

hydrogenolysis of HMF has been carried out. After a preliminary study of Cu/ZrO2 

based catalyst modification, a deeper study of bimetallic Ni-Cu/ZrO2 catalysts has been 

carried out, implying the understanding of the possible interaction of the non-noble 

active metals. Lastly, the use of biomass-derived carbon was studied as catalyst 

support. 

In this Chapter 8, the most significant conclusions achieved in this PhD dissertation will 

be summarized. 

Cu/ZrO2 based heterogeneous catalysts screening. 

The main objective of this work was to study the effects of different possible 

modifications of Cu/ZrO2 based catalyst on the activity of HMF hydrogenolysis towards 

DMF and DMTHF. The main conclusions achieved can be summarized as follows: 

1. 275 °C and 15 bar of H2 pressure were selected as the most suitable operating 

conditions. Moreover, there was no need of a previous reduction step of the 

catalyst before the reaction. 

2. Elevated Cu loading (45 wt %) implied lower dispersion of the metallic species, 

reducing the catalytic activity. 15 wt % of copper was selected as the optimum 

loading, reaching a maximum DMF yield of 25 % after 6 h on stream.  

3. The incorporation of CeO2 to the support did not have the desired effect: it did 

not enhance the production of desired products. The reason for this could be 

that wetness impregnation method did not incorporate ceria on ZrO2  

efficiently. 

4. The incorporation of Ru in CuZr implied the production of DMTHF, probably 

due to the higher hydrogenation capacity of this noble metal. The ruthenium 

slightly improved the catalytic production of the desired products, reaching a 

total yield of 30 % of DMF and DMTHF after 3 hours-on-stream. However, it 

was deactivated, possibly due to Cu sintering and coke deposition. Therefore, 

the Ru incorporation did not improve the catalytic activity of the catalyst.  
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5. The use of bimetallic Ni-Cu/ZrO2 catalyst, prepared in a single co-impregnation 

step, allowed achieving high yields of the desired products, especially DMTHF. 

The maximum yield was achieved after 4 hours-on-stream, with a total yield of 

DMF and DMTHF over 50 %. Cu and Ni interaction observed in the XRD and 

H2-TPR results could be the reason why the hydrogenolysis reaction was 

favoured.  

The role of Ni and Cu interaction on the bimetallic Ni-Cu/ZrO2 catalytic system. 

This work proved that bimetallic Ni-Cu/ZrO2 enhanced the hydrogenolysis of HMF to 

desired DMF and DMTHF, comparing with their monometallic counterparts. Moreover, 

the relevance of the impregnation method was evidenced, involving the modification 

of the physicochemical characteristics of the catalysts and thus, the activity results. 

The main conclusions attained are the following ones:  

6. The use of bimetallic catalysts involved higher production of DMF and DMTHF, 

possibly due to the interaction between Ni and Cu. Ni-Cu could be favouring 

the higher activity and stability observed in these catalysts.  

7. Sequential step impregnation lead to higher Ni-Cu interaction, smaller particle 

size and lower acidity (possibly preventing C—C cleavage and avoiding 

ring-opening products). These promising characteristics implied higher 

production of desired products. Most of the catalysts synthetized by this 

method showed a yield of DMF above 70 % after 25 hours-on-stream.  

8. Metallic Ni deposited onto the surface of the catalyst was responsible for 

DMTHF production. This Ni was partially oxidized during the reaction, leading 

to a loss in the hydrogenating capacity, which limited the hydrogenation step of 

DMF to DMTHF. This effect was noticeable in the case of 30Ni-15CuZr, where 

the maximum DMTHF production (55 %) was reached after 7 hours-on-stream. 

However, the yield of this product decreased with time, while increasing the 

production of DMF. At the end of the reaction time tested (25 h), DMF reached 

a yield of 70 % with no production of DMTHF. 

9. The impregnation of Ni in a second step (sequential impregnation) involved the 

better reducibility and it enhanced the dispersion for both metals. These 
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valuable characteristics implied a higher exposition of metallic Ni on the 

surface, involving, as explained above, higher DMTHF production at the 

beginning of the reaction.  

Biomass-derived carbon as catalyst support in bimetallic Ni-Cu catalysts. 

The utilization of carbon obtained from agroforestry residues makes the catalytic 

system greener. The successful utilization of this non-conventional catalytic support 

would benefit the use of carbon obtained from agroforestry processes, and it would 

reduce the cost of the catalytic system. The most relevant conclusions of this chapter 

are summarized as follows: 

10. The bimetallic catalysts, regardless the support, showed a better balance of the 

acid sites and the metallic sites (Ni-Cu active species) to end with a stable 

catalytic behaviour. A DMF yield above 50 % was reached after 

25 hours-on-stream in all the bimetallic catalysts.  

11. Even if the bimetallic catalysts impregnated in commercial carbon exhibited 

higher yields of the desired products at the beginning of the reaction, similar 

results were achieved with commercial and biomass-derived carbons at the end 

of the reaction. This promising result implies the possibility of employing 

biomass-derived carbon as catalytic support. 

12. The acidic treatment and the later neutralization processing did not alter the 

catalytic activity of the catalysts. This suggests that there is no need of the 

pretreatment of the carbon support, involving a simpler synthesis of the 

catalysts. 

13. The monometallic catalysts supported on commercial carbon exhibited higher 

yields to the desired products due to the higher metal content and lower 

acidity offered by these catalysts. The maximum yield observed in these 

catalysts was around 70 % after 7 hours-on-stream. However, they exhibited 

deactivation problems, probably due to the sintering effect and coke 

deposition on the catalyst surface. 
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14. Nickel based monometallic catalysts were able to produce the 

over-hydrogenated product, DMTHF, unlike monometallic Cu catalysts, 

implying the need of Ni for the hydrogenation of C=C bond. 

15. There is a correlation between the metallic Cu content on the catalyst surface 

and the total DMF and DMTHF production at the first stage of the reaction. 

Moreover, metallic Ni content on the catalyst surface is correlated with the 

hydrogenation capacity of C=C bond of the catalyst, involving the production 

of DMTHF. 

In a near future, the results of this work could be complemented with the 

corresponding kinetic study. This kinetic study, together with a more detailed 

identification of the unknown by-products, would allow carrying out a preliminary 

basic engineering study of DMF-DMTHF production. Therefore, a techno-economic 

comparison with the current oil-based conventional processes could be performed, 

assessing the viability of the process. 

Moreover, instead of using synthetic HMF, this platform molecule produced from real 

biomass could be tested, making the process more realistic. The use of real biomass 

will probably cause difficulties on the catalytic system activity and stability, due to the 

impurities this real biomass presents.  
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