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Abstract: Disentangling the cellular anatomy that gives rise to human visual perception is one of
the main challenges of ophthalmology. Of particular interest is the foveal pit, a concave depression
located at the center of the retina that captures light from the gaze center. In recent years, there
has been a growing interest in studying the morphology of the foveal pit by extracting geometrical
features from optical coherence tomography (OCT) images. Despite this, research has devoted little
attention to comparing existing approaches for two key methodological steps: the location of the
foveal center and the mathematical modelling of the foveal pit. Building upon a dataset of 185 healthy
subjects imaged twice, in the present paper the image alignment accuracy of four different foveal
center location methods is studied in the first place. Secondly, state-of-the-art foveal pit mathematical
models are compared in terms of fitting error, repeatability, and bias. The results indicate the
importance of using a robust foveal center location method to align images. Moreover, we show that
foveal pit models can improve the agreement between different acquisition protocols. Nevertheless,
they can also introduce important biases in the parameter estimates that should be considered.

Keywords: optical coherence tomography; retina; fovea; retinal imaging

1. Introduction

The retina is a photosensitive tissue that covers the back of the eye. Its function is to
capture incoming light, encode visual information and transmit it to the brain. This complex
neurophysiological process involves the transduction of electromagnetic information into
chemical and electrical signals, and this is performed by specialized neurons that are
arranged into several neuronal layers in the retina. Photoreceptor cells, located at the back
of the retina, transform light into nerve impulses. Then, by means of a series of synapses
between retinal layers, these signals are combined until they are transmitted to the brain
through the optic nerve [1].

The part of the retina responsible for central visual perception is the macula, a 5.5-mm
diameter region that accounts approximately for the central 17◦ of the visual field [2,3].
Interestingly, visual capability is not uniform across the retina. In fact, visual acuity reaches
its maximum at the fovea, a highly specialized region at the center of the macula [4].
The singularity of the fovea is thought to be a consequence of its cellular architecture,
with an increased density of photoreceptors. Moreover, inner retinal layers are laterally
displaced, resulting in a concave depression called foveal pit [2]. That shape shows two
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main landmarks: the foveal center or point of minimum total retinal thickness (TRT), and
the foveal rim, which is the point of maximum TRT that delimits the foveal pit (Figure 1).
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Figure 1. OCT image acquisition process including A-Scan and B-scan generation. Basic anatomy of
the macula and differences between raster and star acquisition patterns.

The macula and, concretely, the fovea play a fundamental role in visual information
processing. Pathologies such as age-related macular degeneration (AMD) [5] or macular
holes can lead to severe visual impairment. Furthermore, structural grading of foveal
hypoplasia (i.e., not fully developed foveal pit) has been found to be correlated with worse
visual acuity [6]. For these reasons, the examination of these retinal structures is one of the
main concerns of ophthalmology.

Traditionally, the post-mortem histopathological study of the retina has been the
only way to know in detail the macro and microstructural alterations of the retina. In
recent decades, several retinal imaging techniques have been developed, making it possible
to examine retina pathology in-vivo. A particularly noteworthy imaging technology is
optical coherence tomography (OCT) [7]. Developed in the 1990s, OCT uses low-coherence
infrared light and interferometry to image the retina. In a simplified form, a series of light
pulses are emitted and the reflections that occur at the retina are examined. By measuring
the round-trip delay and intensity of these reflections, a depth vs. reflectivity profile of
the retina (A-Scan) is obtained [8] (Figure 1). Commercial OCT devices usually include
predefined protocols for the acquisition of B-scans, the most common being raster scans
(B-scans in parallel) and star scans (with B-scans arranged radially) (Figure 1).

OCT offers a non-invasive and quick way of examining the retina with a micrometer
resolution. From a clinical perspective, the visual inspection of OCT images aids the
diagnosis of ocular pathologies such as macular holes [9], uveitis [10] or glaucoma [11].
In addition, OCT images are also a valuable tool to quantitatively analyze the macular
morphology. The usual approach focuses on measuring retinal layer thicknesses. In
a research context, this methodology has been applied in healthy people to establish
normative databases [12,13], or to determine the effect of demographic factors on the
macula [14,15]. Interestingly, the thickness of inner retinal layers has been found to decrease
in patients with Parkinson’s disease [16], multiple sclerosis [17] or Alzheimer’s disease [18],
which points to OCT as a promising biomarker for neurodegenerative diseases.
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There are important pitfalls, however, in using thickness analysis to effectively describe
the fovea. First, most studies have used the so-called Early Treatment Diabetic Retinopathy
Study (ETDRS) sectorization, which divides the macular region into only nine sectors. The
low spatial resolution of this scheme does not effectively describe variations of the foveal
shape across individuals [19]. More importantly, it can be difficult to relate thickness values
to specific characteristics of the foveal pit.

To overcome these limitations, the foveal pit morphology can be analyzed. The main
objective of this approach is to study the fovea as a whole by computing a set of parameters
that describe foveal pit features such as slope, width or depth. Applying this analysis,
studies in healthy populations discovered important racial and sex differences in foveal pit
morphology [19–22]. Additionally, some studies investigated differences in the fovea of
patients with Parkinson’s disease [23–25], foveal retinopathy [26] and neuromyelitis optica
spectrum disorders [27].

Now that foveal pit morphology analysis is gaining attention it is important to es-
tablish a solid foundation for its methodology. In fact, several steps of the methodology
involve a series of choices for which there is little literature supporting the selection of one
method over another. One key step is the location of the foveal center, which is used as a
reference point to compute morphological parameters. Incorrect subject fixation during
acquisition can result in a misalignment between foveal and scan centers, which may lead
to incorrect parameter calculations. An accurate placement of the foveal center is therefore
crucial. However, not all studies included a step to locate the foveal center [20], and there
has not been much research into comparing different foveal center location approaches.
Common strategies include using the built-in function of Cirrus scanner [19,25], and using
the minimum thickness point of either the TRT map [22,28], or each B-scan [29,30].

Another critical step is the introduction of mathematical modelling for describing
the foveal pit with a set of equations. The theoretical goal of mathematical models is
twofold: smoothing the signal and parametrizing the foveal pit shape with the coefficients
of the model. These parameters complement the description of the foveal pit provided by
geometrical metrics such as slope and depth.

During the last decade, several models have been proposed to analyze foveal pit
morphology [23,28,30–33], which basically differ from each other in the selection of the
macular region to be modelled and the underlying mathematical equations of the model.
For instance, while the whole 2D thickness surface is modelled in [23], in [30,32,33] each
B-scan is fitted separately. Other approaches, aiming for a high fitting accuracy, go even
further by modelling independently either the two halves of a B-scan [31] or the region
between the foveal center and the rim [28]. In regard to the mathematical equations,
most models rely on Gaussian curves to account for the concave shape of the foveal pit.
These include the difference of two Gaussians [30], the combination of a Gaussian and a
polynomial term [23,32], the sum of three Gaussians [33] and a radial model based on the
second derivative of a Gaussian [31]. In addition, alternative approaches using cubic Bézier
curves [28] and P-splines have also been proposed [34].

Despite the plethora of models, there is no agreement on the convenience of using
mathematical models as a smoothing step before computing geometrical parameters,
which can be directly computed from raw TRT maps, as in [35–37]. Moreover, to our
knowledge, no study has compared the models or studied their potential benefits and
limitations comprehensively.

Against this background, the present study focuses on the two aforementioned key
aspects of foveal pit morphology analysis: the location of the foveal center and the appli-
cation of mathematical models to quantitatively define foveal pit morphology. First, we
compared four different strategies to locate the foveal center based on their capacity to
improve image alignment. Then, we investigated the advantages and disadvantages of
introducing a modelling step prior to the computation of morphological parameters. To
this end, six state of the art mathematical models and two smoothing approaches were
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compared in terms of fitting accuracy, parameter estimation bias and agreement between
different acquisition protocols (raster and star).

2. Materials and Methods
2.1. Study Subjects

For the present study, we used retinal OCT images from 185 healthy controls that were
acquired in a previous research project from Biocruces Bizkaia Health Research Institute
(Table 1). Although in the original project OCT images of both eyes were acquired, to
simplify and reduce the effect of inter-eye correlation, here only the OCT images of one eye
per subject was used. The selection of the included eye (right or left) was random.

Table 1. Demographic characteristics of the study participants.

Sex Subjects
(Eyes) Age

Female 111 52.8 ± 11.9
Male 74 57.7 ± 11.2
Total 185 54.8 ± 11.9

The study participants were relatives or companions of the patients who attended the
Outpatient Ophthalmology and Neurology Consultations of the Cruces University Hospital.
Before study inclusion, all subjects underwent a screening protocol to exclude relevant
confounding factors potentially influencing retinal OCT measures. In case one of the two
eyes of a subject had to be excluded, the OCT of the other (healthy) eye was included. The
screening process consisted in a comprehensive questionnaire on neurological, systemic,
and eye-related diseases and an ophthalmological examination. We excluded any subject
with history of severe smoking (>20 cigarettes/day) or heavy alcohol use (>4 drinks/day for
men or >3 drinks/day for women), diagnosis of any type or grade of diabetes, uncontrolled
or resistant elevated blood pressure, obesity (body mass index > 30), history of consumption
of drugs or medications known to induce retinal toxicity, or chronic inflammatory systemic
diseases, or history of traumatic brain injury or neurological diseases. We also excluded
candidates with spherical equivalent refractive error > 4.00 diopters, >3.00 diopters of
astigmatism, or any other ocular condition potentially affecting OCT measures, as detailed
in the OSCAR-IB consensus criteria for retinal OCT quality assessment [38]. The study
protocol was approved by the regional Basque Clinical Research Ethics Committee. All
participants gave written informed consent prior to their participation in the study, in
accordance with the tenets of the Declaration of Helsinki.

2.2. Image Acquisition

Retinal images were acquired with a Spectralis Spectral Domain OCT scanner (Heidel-
berg Engineering, Heidelberg, Germany). All scans were centered on the macula with the
help of a visual fixation point within the OCT camera that the participant had to observe
during the acquisition. Each eye was scanned twice consecutively with two different
acquisition protocols of macular volume: raster scan (30◦ of the macula, 25 B-scans and
512 A-Scans per B-scan) and star scan (15◦ of the macula, 12 B-scans and 768 A-Scans per
B-scan). The axial resolution of the scanner was 3.87 µm. All images were acquired with
the Automatic Real-time Tracking (ART) mode averaging 49 B-scans per final B-scan. No
pupil dilation was used for acquisition. The working distance (fixed approximately at
19.5 mm) was controlled by immobilizing the patient in the chinrest with the forehead rest
properly and ensuring that the position is maintained during the whole acquisition

2.3. Image Processing Pipeline

Using the built-in software of the scanner (Heidelberg Eye Explorer 1.9.10.0, HRA
Spectralis Viewing Module 6.16.0) both the inner limiting membrane (ILM) and the Bruch’s
membrane (BM) were segmented from each B-scan (Figure 2a). All OCT images as well
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as their automatic segmentation were visually reviewed and segmentation errors inside a
3 mm radius region were manually corrected upon consensus between two OCT experts
(A.M.-G. and I.G.). Lateral scaling, influenced by axial length differences, was automatically
adjusted for each subject by the built-in software. As described in [39], the estimation uses
the Gullstrand schematic eye model [40] as reference and adjusts the lateral scale based on
each subject’s refractive error (considered when the eye is focused during acquisition) and
keratometry values. Images and layer segmentation data were exported to vol format for
posterior analysis.
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Figure 2. Main processing steps of the foveal pit morphology analysis pipeline. (a) Segmentation of the inner limiting
membrane (ILM) and the Bruch membrane (BM), (b) total retinal thickness (TRT) calculation, (c) location of the foveal center,
(d) fitting mathematical models, (e) computation of geometrical parameters.

All subsequent data processing was carried out using custom software developed in
MATLAB 2020b (MathWorks, Inc., Natick, MA, USA). Several external helping functions
were used throughout the analysis [41–43]. In the first place, the vol files were opened with
the OCT Layer Segmentation package of AUtomated Retinal Analysis (AURA) tools [44], an
open source MATLAB library for retinal image processing developed in [45]. Coordinates
of each A-Scan were retrieved from the vol data and transformed so that the x and y axes
represent the temporal to nasal, and inferior to superior directions, respectively. Left eyes
were flipped to match right eyes. From the retinal layer segmentation, which included the
point-to-point distances from the bottom of each B-scan image to the boundary of ILM and
BM, TRT was calculated as:

TRT = ILM − BM (1)

This step, which is equivalent to performing a flattening of the image where the BM is
set as a reference, is helpful to disregard the effect of the eye curvature and to set a common
flat reference to compute morphological parameters (Figure 2b). Combining the TRT values
obtained for each point (A-scan) of each slice (B-scan) a 2D TRT raw map of the entire
surface was obtained for each eye. These TRT maps were used to automatically determine
the foveal center and align the scans (Figure 2c). To this aim, four different strategies were
implemented and compared (see Section 2.3.1). The location of the foveal center was used
to center the TRT maps using a 2D translation.

Finally, centered TRT maps were resampled to two different patterns using triangulation-
based 2D cubic interpolation as implemented by griddata function in MATLAB 2020b:

• Regular grid of 3 × 3 mm2 and a spacing of 0.02 mm. This was used for foveal center
location method comparison (see Section 2.4.1).

• Radial pattern with 2 mm radius, 24 angular directions and a spacing of 0.02 mm.
This was used for morphology analysis and mathematical model comparison (see
Section 2.4.2). This was calculated after using only the smooth + min method to locate
the foveal center, as it was the method that provided the best alignment.

Using radial data, the pit morphology models, and smoothing methods described in
Section 2.3.2 were used to adjust the TRT curves (Figure 2d). Models were adjusted based
on the non-linear least squares method as implemented in MATLAB with a maximum
number of 1000 iterations and a tolerance of 10−6 for both the residuals and the model
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coefficients. The initial values of the coefficients were manually fine-tuned and the option
achieving the best results in terms of fitting error was finally used.

Using TRT raw curves as well as the TRT curves obtained after applying the afore-
mentioned approaches, the geometrical parameters described in Figure 2e were computed
as follows:

• Central foveal thickness (CFT): the TRT value at the foveal center.
• Rim height: the point of maximum TRT in each angular direction.
• Rim radius: the lateral distance between the foveal center and the rim.
• Maximum slope: the maximum derivative value in the region from the foveal center

to the rim.

Parameters were estimated for all 24 angular directions and then averaged to obtain a
single value per parameter and subject.

2.3.1. Foveal Center Location

To locate the center of the fovea the methods described below were compared:

• None: assume the center of the acquired scan as the foveal center.
• Min: locate the foveal center at the A-Scan point of minimum TRT in the central

0.85 mm radius region.
• Interpolation + min: resample the central part of the TRT map to a regular grid of

0.85 × 0.85 mm2 and a 0.02 mm spacing using cubic interpolation. Then, locate the
foveal center at the grid point with minimum TRT.

• Smooth + min: resample the central part of the TRT map to a regular grid of 0.85 × 0.85 mm2

and 0.02 mm spacing, and smooth it before locating the foveal center at the grid point
with minimum TRT. We used the implementation of AURA Tools (foveaFinder.m
function) [44] to smooth the resampled TRT map by applying a filter with a 0.05 mm
radius circular kernel.

2.3.2. Foveal Pit Mathematical Modelling

The main characteristics of the compared foveal pit mathematical models are shown
in Table 2. Additionally, two smoothing methods were also applied with different degrees
of roughness: moving average with five to 60 averaged samples, and local estimated
scatterplot smoothing (LOESS) based on a second-degree polynomial with span in the
range 1–50%. The smoothing was applied to each B-scan separately.

Table 2. Characteristics of the compared mathematical models. The modelled region accounts for the
part of the data that is modelled by each fit of the model. The number of parameters refers to the
number of coefficients to be estimated in each fit.

Model Mathematical Principle Modelled
Region

Number of
Parameters

Dubis et al. [30] Difference of two Gaussians B-scan 6
Ding et al. [23] Polynomial surface and Gaussian TRT map & 8

Scheibe et al. [31] Second derivative of a Gaussian Radial $ 4
Liu et al. [32] Sloped piecemeal Gaussian B-scan 6

Yadav et al. [28] Cubic Bézier curves Center-rim *
Beyond rim *

2
3

Breher et al. [33] Sum of three Gaussians B-scan 9
& The whole 2D total retina thickness (TRT) map is adjusted in one fit. $ The fovea is modelled radially using the
foveal center as the reference. * The inner part of the B-scan (foveal center to rim) is fitted with two parameters
while the outer part (the rim and beyond) is adjusted with three.

All the approaches were used to compute the parameters described in Section 2.3.
However, the estimation of the CFT by the model proposed by Scheibe et al. [31] was
equal to the raw estimation as the model uses the foveal center as a fixed reference point.
Similarly, the model by Yadav et al. [28] uses both the foveal center and the foveal rim
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as fixed points and, therefore, did not affect the estimation of neither the CFT nor the
rim height.

2.4. Data Analysis
2.4.1. Foveal Center Location

Strategies to locate the foveal center were compared using the TRT maps of raster
(TRTraster) and star (TRTstar) acquisitions of the same eye. More specifically, the mean
absolute difference between both TRT maps was used as a measure of the alignment
dissimilarity (Dalign):

Dalign =
1

N2

N

∑
i=1

N

∑
j=1
|TRTraster[i, j]− TRTstar[i, j]| (2)

where i and j account for the x and y axes position in the grid, and N refers to the number
of points in each grid direction. This metric was computed for each eye and foveal center
location strategy. Then, the distributions were compared between methods to study which
of them provided the lowest dissimilarity and thus a better alignment. The normality of
each distribution was checked both numerically (Shapiro-Wilk test) and visually (Q-Q
plots). Due to deviations from normal assumption, Kruskal-Wallis test and Mann-Whitney
U test were used for groupwise and pairwise comparisons, respectively. The significance
level was set to 0.01.

2.4.2. Foveal pit mathematical modelling

Models and smoothing methods were evaluated based on three metrics:

• Fitting error: to measure how well each model adjusted the data. For that, the root
mean square error (RMSE) between the TRT maps obtained without using any model
(TRTraw) and the TRT maps derived after fitting (TRTmodel) was used:

RMSE =

√√√√√ 1
N2

N

∑
i=1

N

∑
j=1

(TRTraw[i, j]− TRTmodel [i, j])2, (3)

where i and j account for the x and y axes position in the grid, and N refers to the
number of points in each grid direction.

• The absolute agreement between raster and star: to assess the capability of each
approach to increase the agreement between two different acquisitions of the same eye
(raster and star). It was evaluated for each morphological parameter by the intraclass
correlation coefficient (ICC) based on a single measurement and 2-way mixed-effects
model (ICC (2,1)), see [46] for a detailed explanation). Along with the mean ICC,
95% confidence intervals were computed based on the percentile bootstrap method
resampling the data 104 times.

• Estimation bias: to determine the effect of the modelling/smoothing step on each
parameter estimate. It was evaluated using the relative bias, which is the relative
difference between the estimation of each parameter before (xraw) and after applying
any model or smoothing (xmodel):

Bias (%) = 100
xmodel − xraw

xraw
, (4)

where x accounts for the mean value of the parameter in an eye. The four analyzed
parameters were: CFT, rim height, rim radius and maximum slope. Both the RMSE
and the estimation bias were computed separately for raster and star scans.
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3. Results
3.1. Foveal Center Location

The median and the interquartile range of the alignment dissimilarity (Dalign) for the
four foveal center location methods were 5.6 [4.7, 6.9] µm (none), 4.9 [4.2, 5.9] µm (min),
4.5 [4.0, 5.1] µm (interpolation + min), and 4.0 [3.7, 4.4] µm (smooth + min). As shown in
Figure 3a, the distributions were skewed to the right and failed the normality assumption.
All four methods were statistically significantly different (Kruskal-Wallis test, p = 10−42).
The smooth + min method achieved the best performance. In fact, this strategy showed a
clear improvement over both min and interpolation + min methods (Mann-Whitney U test,
p = 10−23 and p = 10−13, respectively). In addition to the overall improvement, it proved to
be useful to remove outliers with a high misalignment error. An example of one of these
cases is shown in Figure 3b.
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Figure 3. (a) The distribution of the alignment dissimilarity (Dalign) for each foveal center location
method. The boxes inside each violin are centered in the median and account for the interquartile
range. (b) The eye with the largest misalignment observed. There is a 0.35 mm distance between the
scan center (red cross) and the foveal center located by the smooth + min method (green cross).

3.2. Foveal Pit Mathematical Modelling

Model comparison results are presented in Tables 3 and 4. Regarding the smoothing
methods, for simplicity, only the results related to LOESS are presented as it systematically
outperformed the moving average in terms of ICC and bias. More concretely, two repre-
sentative cases of LOESS are shown, which correspond to a low (span = 20%) and a high
(span = 50%) degree of smoothing.

The agreement between raster and star estimations without using any model was
excellent for both the CFT (ICC = 0.976) and the rim height (ICC = 0.990). The rim radius
(ICC = 0.894) showed a good agreement, while the maximum slope (ICC = 0.307) presented
the worst results. The low agreement of the maximum slope was due to a systematic higher
estimation in star scans (see Figure S1).

Regarding mathematical modelling, except for the model by Liu et al. [32], all models
fitted the data with a RMSE smaller than 6 µm, with the model presented by Yadav et al. [28]
fitting the data best. Representative cases of different fitting errors are shown in Figure 4.
On the other hand, the fitting error was higher for star scans, which visually looked noisier
(Figure S2).
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Table 3. The root mean square error (RMSE) and the intraclass correlation coefficient (ICC) of each foveal pit
modelling approach.

Model
RMSE (µm) ICC

Raster Star Central Foveal
Thickness Rim Height Rim Radius Maximum Slope

None - - 0.976 [0.966, 0.983] 0.990 [0.987, 0.992] 0.894 [0.865, 0.919] 0.307 [0.236, 0.381]
Dubis et al. 3.6 ± 0.7 4.1 ± 0.7 0.988 [0.984, 0.992] 0.995 [0.994, 0.996] 0.949 [0.934, 0.962] 0.968 [0.957, 0.977]
Ding et al. 5.3 ± 0.9 5.9 ± 0.9 0.988 [0.984, 0.992] 0.995 [0.994, 0.997] 0.957 [0.945, 0.966] 0.969 [0.958, 0.977]

Scheibe et al. 2.6 ± 0.6 3.2 ± 0.6 - 0.995 [0.994, 0.997] 0.949 [0.933, 0.962] 0.956 [0.939, 0.969]
Liu et al. 11.5 ± 2.7 11.5 ± 2.7 0.987 [0.983, 0.991] 0.994 [0.992, 0.996] 0.961 [0.949, 0.970] 0.959 [0.944, 0.971]

Yadav et al. 1.6 ± 0.3 2.5 ± 0.4 - - - 0.958 [0.943, 0.970]
Breher et al. 2.9 ± 0.6 3.6 ± 1.3 0.986 [0.979, 0.990] 0.995 [0.993, 0.996] 0.941 [0.924, 0.955] 0.958 [0.942, 0.971]

LOESS_20 0.9 ± 0.1 1.7 ± 0.3 0.985 [0.980, 0.989] 0.994 [0.992, 0.996] 0.901 [0.875, 0.924] 0.953 [0.936, 0.966]
LOESS_50 5.9 ± 1.5 6.5 ± 1.6 0.989 [0.984, 0.993] 0.995 [0.994, 0.997] 0.960 [0.947, 0.970] 0.986 [0.981, 0.990]

RMSE results are in format mean ± standard deviation while ICC results are given in format mean [95% confidence interval]. A dash
symbol (-) is used when the model does not affect the estimation of the parameter (no change in the ICC).

Table 4. The estimation bias of each foveal pit modelling approach.

Model

Bias (%)

Central Foveal Thickness Rim Height Rim Radius Maximum Slope

Raster Star Raster Star Raster Star Raster Star

Dubis et al. 1.3 ± 1.3 1.4 ± 1.9 −0.2 ± 0.2 −0.5 ± 0.3 −7.8 ± 3.7 −8.2 ± 4.1 −14.1 ± 4.1 −34.0 ± 9.7
Ding et al. 1.1 ± 1.4 1.2 ± 2.1 −0.5 ± 0.3 −0.8 ± 0.3 −7.8 ± 3.8 −8.1 ± 4.1 −13.9 ± 3.9 −33.9 ± 9.7

Scheibe et al. - - −0.1 ± 0.3 −0.3 ± 0.3 −3.8 ±2.4 −3.5 ± 2.4 −19.8 ± 4.2 −38.6 ± 7.8
Liu et al. −1.1 ± 1.2 −1.1 ± 1.8 −3.6 ± 0.9 −3.9 ± 0.9 35.0 ± 7.4 36.4 ± 8.0 −5.3 ± 4.6 −27.1 ± 9.8

Yadav et al. - - - - - - −9.1 ± 4.8 −29.7 ± 11.9
Breher et al. 0.8 ± 1.1 0.9 ± 1.8 −0.4 ± 0.2 −0.6 ± 0.2 −6.5 ± 2.9 −6.6 ± 3.2 −11.9 ± 3.4 −32.1 ± 9.4

LOESS_20 0.3 ± 0.5 0.4 ± 1.4 −0.1 ± 0.1 −0.4 ±0.1 −0.1 ± 0.9 −0.1 ± 1.5 −9.1 ± 2.3 −29.2 ± 10
LOESS_50 6.0 ± 2.7 6.6 ± 3.3 −0.3 ± 0.3 −0.5 ± 0.3 2.2 ± 2.7 2.5 ± 2.8 −28.8 ± 6.1 −46.6 ± 8.2

Bias values are in format mean ± standard deviation. A dash symbol (-) is used when the model does not affect the estimation of the
parameter (no bias).
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maximum slope substantially, while a high degree of smoothing introduced an overesti-
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Figure 4. Illustrative cases of different model fitting accuracies measured by the root mean square error (RMSE). (a) An
accurate fit. (b) Underestimation of slope in a sharp pit. (c) Overestimation of the central foveal thickness (CFT) due to
over-smoothing. The aspect ratio has been adjusted for visualization purposes.

Overall, introducing the modelling step improved the ICC values. This improvement
was only noticeable for the rim radius, and especially the maximum slope, where the
agreement improved substantially above an ICC of 0.95. The improvement of the ICC came
at the cost of an estimation bias that varied between parameters: a slight overestimation of
CFT, a minimal underestimation of the rim height, and a more substantial underestimation
of both rim radius and maximum slope.

As shown in Figure 5, the LOESS curve illustrates the relationship between the in-
troduced bias and the ICC. Especially for the maximum slope, the ICC increased rapidly
as a function of bias and reached a point from which it improved only slightly. In that
bivariate comparison, models introducing a higher bias did not always improve the ICC
proportionally. For instance, the model proposed by Scheibe et al. [31] introduced the
highest bias on the estimation of the maximum slope (−19.8%) but did not improve the
ICC values of approaches with a smaller bias. An example of that underestimation is
shown in Figure 4b. On the other hand, LOESS smoothing performed similarly to most
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of the models. More specifically, a small degree of smoothing was enough to improve the
ICC of the maximum slope substantially, while a high degree of smoothing introduced an
overestimation of the CFT (Figure 4c).
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4. Discussion

We hereby present a quantitative comparison of strategies for locating the foveal
center and mathematically modelling the foveal pit. To the best of our knowledge, this
is the first comprehensive analysis of these two key steps of the foveal pit morphology
analysis pipeline. The results highlight the importance of using a robust method to locate
the foveal center. In addition, we described two opposed features of mathematical models:
the capacity to improve the agreement between different acquisitions of the same eye, and
the risk of introducing a bias in parameter estimations

Relying on the foveal center located during acquisition can result in large misalignment
errors (Figure 3b). Importantly however, we showed that the alignment can be improved
by including an automatic foveal center location step in the processing pipeline. Among
the compared strategies, the approach of smoothing the TRT map before locating the
foveal center (smooth + min) achieved the best results in terms of alignment similarity. This
might be attributed to two aspects: resampling and smoothing. First, in raster images
with a relatively small number of B-scans (in this case 25), resampling the data to a higher
resolution grid might help locate the foveal center in cases where the central B-scan does
not capture it. Second, the filtering operation aggregates information across adjacent pixels
and is probably more robust against segmentation errors.

The appropriateness of mathematical models to characterize the foveal pit is subject
to debate, and not all researchers choose to implement it. In principle, the introduction of a
mathematical model would be justified by two different goals: noise reduction (to obtain
a smooth representation of the data) and parametrization (to characterize the foveal pit
morphology based on the coefficients of the model).

As regards the first, the excellent agreement of both CFT and rim height indicates
that thickness metrics are sufficiently robust to characterize the foveal pit and may not
require denoising. The rim radius showed a lower yet good agreement that might be
explained by its susceptibility to segmentation errors. In fact, at the foveal rim there is little
thickness variation and a slight bump due to noise may change the point of maximum
thickness—and therefore the radius—substantially. Finally, the poor agreement of the
maximum slope might indicate that slope metrics are intrinsically noisier. We observed
star scans to have a higher degree of wiggliness, which resulted in an overestimation of
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the maximum slope and therefore a worse agreement. This might be a consequence of the
interpolation error when resampling the star pattern, which has a non-uniform sampling
density. Importantly, the application of mathematical modelling or smoothing improved
the agreement, which might justify the introduction of a smoothing/modelling step for
calculating slope metrics when dealing with noisy data.

This improvement, however, came at the cost of introducing a fitting error and a bias
in the estimation. In previous studies, models were compared based on their fitting error.
For instance, in [32,33] authors compared their models to the model by Dubis et al. [30]
reporting a lower fitting error. Similarly, in [28] authors demonstrated that their model fitted
the data better than the previous models proposed by Dubis et al. [30] and Ding et al. [23].
These differences were also observed in this study. For denoising purposes, however, rather
than fitting the data as well as possible, the goal is to introduce the smallest possible bias
that improves reliability. Given that there is no ground truth to use as a reference, we
approach the matter from the following premise: at similar agreement, the method with
the lowest bias is preferable.

The first proposed model (Dubis et al. [30]) showed a high bias in the estimation
of both rim radius and maximum slope, which is in line with its known difficulties in
capturing foveal asymmetries accurately [32]. The model of Ding et al. [23] relies on only
eight parameters to model the entire TRT map, which can impose important restrictions
on the model and result in the observed underestimation of rim radius and maximum
slope. As regards the radial model by Scheibe et al. [31], it achieved a low fitting error but
underestimated the maximum slope the most. This could be due to a lack of flexibility
of the model in capturing different foveal shapes. The model proposed by Liu et al. [32]
obtained the best results regarding the maximum slope with a near maximum ICC value
and the smallest bias among the models. However, it also showed the highest fitting error
and a large bias for the rim radius. This is probably because it was designed to account
for flat pit bottoms by fitting only the foveal pit region using a piecewise model. This
design complicates the model adjustment and underperforms with data covering a wider
foveal area (2 mm radius). The model with the highest fitting accuracy (Yadav et al. [28])
showed good performance as it fits the inner part of each side of the B-scan separately. It
should be considered, however, that the model uses the foveal center and the foveal rim as
a reference, which means that any metric derived solely from those landmarks (e.g., CFT,
rim height, or rim radius) is estimated as if no model were applied. Moreover, the fitting
of cubic Bézier curves has considerable complexity compared with the simple equation
fitting required for the other models. The sum of three Gaussians used in Breher et al. [33]
presented rigidity in both rim radius and maximum slope. We observed the model fitting
to be highly sensitive to the initial coefficient estimation, which might be a consequence
of the high number of coefficients (nine). Interestingly, we observed that a simple LOESS
smoothing might be enough to reduce the noise substantially without introducing a high
bias. The bias–agreement trade-off was evident in the ICC vs. bias curve of LOESS, as an
over-smoothing can reach a high agreement by distorting the estimation.

Regarding the use of model coefficients as parameters to characterize the foveal pit
morphology, it is often desirable that those parameters correspond to specific features of
the foveal pit so that a clear interpretation can be derived from the analyses. In this sense,
the coefficients of the model of Scheibe et al. [31] can be considered the most intuitive,
as they describe aspects of the fovea such as steepness. On a second level, some of the
coefficients defined in [23,30,32] can still be interpreted. Finally, values defining Bézier
curves [28] or the sum of three Gaussians [33] might be the most complicated to interpret.

It must be pointed out that there are multiple possible ways to analyze the foveal pit
and we did not cover the entire spectrum. Thus, future studies should focus on extending
the analyses presented here to other foveal pit parameters, and other modelling and
smoothing approaches.
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Limitations of the Study

The analysis of foveal center location methods is likely to be highly influenced by the
specific scanner used in this study (Spectralis). The image centering process applied by
other scanners could possibly be different and the obtained results might not extrapolate.

We did not correct the display distortion (introduced by stacking A-Scans in parallel
instead of following the fan-beam acquisition pattern), which can notably influence the
foveal pit parameter estimation [33]. Similarly, the ocular magnification problem derived
from axial length differences was only partially assessed by relying on the lateral scale
calculation performed by Spectralis, which might not apply a complete correction [39].

On the other hand, segmentation is an important source of errors. Although all images
were individually inspected and obvious errors were corrected, small errors might still
influence the results.

More importantly, the use of raster and star acquisition patterns serves to evaluate the
agreement between different acquisition protocols but is not an ideal test-retest metric as
some systematic differences between both acquisition methods might affect the results.

It also needs to be considered that, since we only included subjects with no ocular
lesions, the obtained conclusions might not hold when the retinal structure is altered
by ocular diseases. In fact, pathologies such as macular edema or AMD can lead to an
abnormal foveal pit and segmentation errors. Critically, the foveal center location methods
studied here rely on finding the minimum thickness point of a concave foveal pit and,
therefore, might underperform if the foveal pit is severely altered or cannot be reconstructed
correctly (due to segmentation errors). Similarly, foveal pit mathematical models have been
designed to adjust the shape of a concave foveal pit and might not work equally when that
assumption is not met.

Finally, we restricted the foveal modelling to a 2 mm radius region to ensure that even
wide foveal pits were covered. Choosing a different value is likely to influence the fitting
error and parametrization results.

5. Conclusions

Altogether, the results indicate that studies analyzing macular thickness or foveal pit
morphology (which use the foveal center as the origin of coordinates) would benefit from
including a foveal center location step in the processing pipeline. Moreover, to locate the
foveal center robustly, we suggest resampling and smoothing the data prior to locating the
foveal center as the point of minimum thickness (smooth + min method).

On the other hand, careful thought is advised when using mathematical models to
analyze foveal pit morphology. To this end, the following rationale can be adopted: if the
goal is to parametrize the foveal pit using the coefficients of a model, choose the model
whose coefficients are easiest to interpret or relate best to the research question. If no model
parametrization is desired (e.g., when studying basic parameters such as maximum slope
or rim height) try to determine if denoising is required. For this, the general principle of
looking at the data can help decide whether a smoothing step is necessary. If so, consider
using a simple smoothing approach and how potential biases might affect the parameters
under study.
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.3390/e23060699/s1, Figure S1: Scatterplot of raster vs. star estimation of each parameter without
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Raw total retinal thickness curves of the same eye obtained from raster and star acquisition protocols,
Figure S3: Intraclass correlation coefficient (ICC) as a function of the introduced bias in star scans
for rim radius and maximum slope. Files results_1.csv and results_2.csv: final data supporting the
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