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Abstract 

Missing data is one of the most common issues of the raw data in data analysis. Missing-

ness could be ignored if it is considered not to have a significant impact on the analysis. 

In other cases, imputation methods are applied to handle them as machine learning models 

performed on the data with missing values may have a drastic decrease of the quality with 

the existence of the missing points. This thesis aims to determine the accuracy of the 

predictions of single and multiple imputation methods on the energy data as well as con-

sidering the impact the weather variables have on them. 

To test the methods, the case study was conducted on four separate smart energy meter 

data from residential buildings located in Tartu, Estonia and each data set also comprised 

weather variables collected independently by the University of Tartu. The artificial miss-

ing values were entered in the clean data to examine the imputation techniques which 

allowed to compare the outcome with the original complete data set. The results demon-

strated the higher accuracy for multiple imputation methods as opposed to the univariate 

analysis and the importance of highly correlated variables for the prediction of missing 

points. 

We conclude that the increase of the variables included for the prediction of the analysis 

of the missing values is likely to increase the accuracy of the method as well. Despite 

multiple imputations appear to have the best accuracy, the challenges related to the con-

current missing values for all variables coming from the same sensor should be consid-

ered.  

   

Keywords: Big data, data analysis, treatment of missing data, energy meters, univariate 

imputation methods, multivariate imputation methods 
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1 Introduction 

1.1 Introduction 

The growth of data science and big data intensifies the importance of each of its steps 

starting from the collection of the data, its aggregation to the machine learning methods 

applied and communication. Understanding data DNA is vital as it can provide in-depth 

knowledge about the studied field for further analysis and detect numerous insights for 

future research. Certainly, humanity appears not to live without the word “data” anymore 

due to its joint establishment not only in statistics now, but it surrounds us in business, 

economics, and engineering and generally, in all possible modes. On the other hand, one 

crucial aspect of working with data is dealing with the difficulties one may encounter 

during the process which might be in the form of incomplete data sets. As the data is not 

supplied by solely one source, it will further need the collection of many sets and thus it 

is common that some gaps may appear in the end.   

Depending on how the faulty data is dealt with may have a huge impact on the further 

analysis helping to avoid any biases which might occur in accordance with the data 

incorrectness. It had been practicing for a considerable period, specifically at the end of 

the last century and beginning of the 21st century, that the missing points were deleted 

from the data without further investigations. Even nowadays, variations of deletion 

methods are utilised, and sometimes it might be the easiest decision to make, yet every 

case is required to have an individual approach. Simultaneously, there exist numerous 

methods to fill the gaps from the simplest ones to the complex ones based on machine 

learning. Consequently, it is vital to observe which methods perform the best and have 

the most accurate result when missing points are detected. In this master thesis, data gaps 

will be also referred to as “missing data”, “missing values”. 

This thesis takes a case study to examine the imputation methods to fill the gaps in the 

data set. For that purpose, four smart meter data were selected from the residential build-

ings connected to the District Heating (DH) system to test various scenarios. 
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1.2 Missing Data 

Customarily, the rows of the data set are defined as observations, measurements, subjects, 

or cases depending on the context [1]. For the case of smart energy metering of the resi-

dential buildings, each row specifies the hourly measured data for the provided variables 

such as Heating Consumption, Domestic Hot Water (DHW) Flow Temperature, DH Flow 

Temperature, DH Return Temperature, and so on. Whereas the columns section provides 

for us what is measured precisely, and they are denoted as variables. Yet, the data set is 

not always well-filled and distributed but rather comes with skewness, missing observa-

tions due to varied reasons, anomalies as well as different data structure errors required 

to be checked and treated. After all, fit it into a model we would like to build. 

One of the major aspects of these types of misleading errors we may encounter is the 

missing data in the set of values which can be spread out with different mechanisms.  

Missing data may hinder the full understanding of the phenomena we are interested in 

studying as the models either will not be performed properly or will not work at all. De-

spite the fact, there are existing techniques that can attempt to identify the core of the 

issue of missing values, they are unsuccessful, and missing data remains the main chal-

lenging task in data science. To point out, just removal of them will not lead to a better 

decision. Decision support systems such as neural networks, many computational intelli-

gence methods as well as widely applied support vector machines are predictive frame-

works and rely on the input data to predict an output. However, the presence of gaps in 

the data set makes it almost impossible to perform those prediction models [2]. 

Most research performed related to missing data is carried out in the social sciences in 

terms of surveys but not from an industrial or engineering perspective. Nevertheless, in-

tegration of the Internet of Things (IoT) and other smart technologies where they require 

the transmission of data over a frequent period of time may face intrinsic problems needed 

to be overcome.  

In terms of missing data patterns, they can be univariate where one variable comprises of 

missing observations while the rest is complete; monotone missing pattern occurs when 

the gaps in one variable causes gaps in other variables as well monotonically; arbitrary 

missingness where gaps appear at random order (Figure 1.1) [3]. 

The missing data mechanism was first introduced by Rubin [4] and there are three types 

of missingness. Let’s denote the complete data Ycom and it has two parts Ycom = (Yobs, 
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Ymiss) where the former is observed and the latter is missing values and Z is external 

causes. When Missing at Random (MAR) the distribution of the missing values does not 

depend on Ymiss (missing values) but does depend on the observed values and factor Z 

[3], [5]: 

P(R|Ycom) =  P(R|Yobs) (1.1) 

A special case of MAR is Missing Completely at Random (MCAR) and happens when 

the missingness does not depend on Yobs either and the only cause can be external (Z): 

P(R|Ycom) =  P(R) (1.2) 

But if the missing distribution does depend on Ymiss, it is another case named as Missing 

not at Random (MNAR). 

 

Figure 1.1: Missingness patterns: (a) univariate pattern, (b) monotone pattern, (c) arbitrary pat-

tern. Columns and rows represent variables and observations respectively [3] 

Figure 1.2 demonstrates the connection between complete variables (X), partially missing 

values (Y), missingness (R), and external factor (Z). 

Missing values are an integral part of most big data because the data is not delivered only 

from one source but aggregated from various sources. Besides, even within one 

measurement meter, there might be cases where those gaps appear for the recorded period. 

Hence, there is not any measurement, and it appears as an empty place or NA in the data 

set. The missing information is either erroneous (indicated as an error by the smart meter; 

comprising of NaN values) or missing measurements which is mentioned previously.  
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Figure 1.2: Three types of missingness presented by Rubin [3] 

There could be several reasons related to the missing data occurrence and possible origins 

are as followed:  

• The failure in the connection when the data is transmitted. Smart meters like any 

IoT sensors may need constant connection with the Internet through which the 

corresponding measured data is sent and when it fails to deliver it, the gaps will 

appear in the data set. 

• Another potential reason behind it could be the aggregation process of the data 

collected [6]. Not all the time the data is supplied by one department but may be 

collected from several of them. For this reason, during the procedure of merge 

from one of the departments delivering the data, there may be a failure at certain 

points leading to gaps for the respective time series. 

• When blackouts occur in the system the data will not be gathered from the build-

ings and thus that time could be stored as missing NA which implies missing ob-

servations as well for the corresponding period. 

1.3 Aim and objectives 

Currently, the most available study regarding the missing data is about social and eco-

nomic sciences implying that the data is gathered from the surveys and may happen due 

to the lack of response from the interviewees to certain questions. Hence, most of the 

tested interpolations of any types are on how to deal with the gaps in their own field. 

On the contrary, from the industrial perspective, the parameter is predominantly measured 

on a time basis meaning if there is malfunctioning occurring on the sensor then it may 

cause huge data loss if not tackled accordingly. On top of that, there are dedicated sensors 

which measure only one variable, such as humidity and carbon dioxide concentration, yet 
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there are also meters which record many variables at a time. Therefore, if one variable is 

failed to be measured then it causes the breakdown of detection of observations of other 

variables as well. Whereas the data collected from the buildings, as aforementioned, 

measure the energy-related variables of DH and by that, we may lose significant data 

about the behavior of the occupants which is a pivotal source for demand-side manage-

ment. Consequently, it should be considered to surmount the issue by applying the impu-

tation methods if the percentage of missingness are to be discovered high. 

What makes the current case study distinct is its aggregation of energy data with weather 

variables. It enables to carry out our analysis not only with univariate and multiple impu-

tation methods but also inspect how the weather data would facilitate solving the issue 

with missingness when gaps appear in the data set. 

The aim of the thesis is to investigate the accuracy of single and multiple filling the gap 

techniques in accordance with the energy data and the impact of weather variables on the 

prediction of missing points. This will allow us to analyse on which basis the missing 

data should be treated and more importantly, with what type of methods. 

In compliance with the aim, the following objectives are structured: 

• 4 residential building data sets will be pre-processed and treated separately 

• Correlation analysis will be performed in each data set for the energy and weather 

data to classify the relationship between variables 

• Univariate and multiple imputation methods will be performed with the time-gap 

and correlation-coefficient scenarios 

• The accuracy scores will be defined to identify the accuracy of each of the scenar-

ios 

Besides, the data set is delivered clean which means there is no missing data and that is 

instrumental as it allows us to enter artificial missing values and then compare the out-

come with the original data sets. 

1.4 Literature Review of Relevant Studies 

There are numerous textbooks and articles [1], [2], [7]–[9] with the discussion of the po-

tential origin of the data capture failure. Noticeably, they provided the cause from survey 

perspectives with a mechanical collection of the answers of the respondents. 
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Handling the missing data is essential to hinder the issues that may appear during the 

process of analysis and working with models and there exists an enormous number of 

possibilities to deal with them. According to [10], when the missingness in the data set is 

very small which can be between 10 % and 15%, then they simply can be removed with-

out a significant impact on the data set. However, it might create a bias if missing data is 

around one-third of the whole data set [11].  

Dealing with the missing data can be performed by deleting them with some changes to 

imputation which can have many variations. Deletion can vary from “complete deletion”, 

“list-wise deletion” and “complete case analysis” to “specific deletion” where for the first 

group the observations containing missing data in one or more of their attributes is de-

leted. On the contrary, for the latter, it can be specified with a certain limit of missingness. 

While “variable deletion” or “pairwise deletion” will delete the variables having missing 

data in one of its rows from the case, but includes it for the analysis of other variables in 

the case without missing observations [12]. Nevertheless, dealing with missingness may 

not be the best solution especially with big data sets and with a high proportion of missing 

values. Hence, imputation methods based on the existing values can replace the missing 

points in a mixed variety of ways. They can be simple such as mean, median, or more 

complex ones where the prediction model is built to fill the gaps in the data set. 

Mean imputation can be carried out by replacing the missing values with mean, median, 

or mode and its main drawback is if the data set is huge, it replaces all the gaps with one 

single value. Thus, the data shape and distribution may be altered as well [13]. Another 

type of single imputation is the k-Nearest Neighbours (kNN) method where the distance 

function determines the similarity of two points and replaces missing values by copying 

similar values from the data set [13]. Hot deck imputation takes the observed value with 

similar characteristics to the point where there is a missing value and substitutes it [14]. 

It means the data from the current data set is used to analyse and fill the gaps, while the 

cold deck can use data from other data sets as well.  

In terms of univariate imputations, one important aspect of the case study presented is it 

is a time-series data and hence it could be analyzed on its basis. There are numerous ways 

of filling the gaps techniques relying on inter-attributes dependencies implying multivar-

iate analysis. However, packages dedicated to univariate time-series imputation can be 

tedious to discover. In fact, some packages may have certain functions which can work 

with time-based data univariately such packages as zoo, forecast, spacetime [15], and xts 
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can handle them with certain inbuilt techniques [16]. Zoo package has some functions 

which can work with the missing data replacing them with either Linear Interpolation or 

Last Observation Carried Forward (LOCF) methods [17]. timeSeries and missRanger 

package also contain some very basic tools working with the missing data[18], [19].  

There is another package fully dedicated to the imputation of time-series data called im-

puteTS. It includes varied functions, namely interpolation, LOCF, weighted moving av-

erage as well as mean and mode. It has more options for visualizations for the observation 

of the imputations before and after the methods are applied. All these tools make this 

package suitable to work with the data when there are time-dependent data with missing 

values. 

Currently, several methods can handle missing data imputations for multivariate analysis 

such as missForest, Amelia, MICE, VIM, HMISC. Habitually, the data set comprises 

many variables and their impact on the other variables during the process of filling the 

gaps may differ. The existence of many algorithms designed for multivariate analysis 

arises the question about the efficiency of those methods compared to each other. It can 

be assessed from many perspectives such as time to compute, the size of the data set as 

well as on the richness of the data set [12].  

One of the studies [12] conducted research into multivariate imputation methods, namely 

VIM, missForest, MICE, and HMISC. In terms of the time consumption of the imputation 

process, HMISC performed better than others and VIM was concluded to be better for 

smaller data. Admittedly, for large data sets, HMISC and MICE are more suitable as well 

as when it comes to the accuracy of the data. Variance analyses show all the methods 

perform similarly, yet missForest was the worst among the four approaches.  

Similarly, another study [11] performs the analysis of imputation methods such as kNN, 

missForest, MICE, and Phylopars in life-history trait data sets. According to its result, 

kNN performed less well than the rest where MICE, missForest, and Phylopars showed 

virtually similar performance. Even though with the addition of some data MICE gave a 

better result than missForest, the latter does not require a deep knowledge about the data 

set to apply the method.  

Besides, in a study performed by Lia et al. [20], MICE faced some issues with nominal 

and ordinal data while missForest was among the top, yet faced some difficulties when 

there were not strong correlations between variables. 
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Nowadays as the data science importance is ascending, the requirement to handle the 

recorded data in a proper way to have a clean data frame is increasing aggressively. There 

are many inbuilt packages for software R such as VIM, AMELIA, MICE, and MCDA 

[21]. They are specifically devoted to the analysis of multivariate data and there must be 

more than one variable to be able to run and utilize these techniques. The above methods 

are applied to impute missing values which can be quite frequent while handling the data 

set and replacing the gaps with the predicted values. 

As it can be seen, there is not enough research done on the analysis of energy data with 

the most recent one based on the Danish case [22] where the methodologies of data anal-

ysis and clustering techniques were presented. The data was based on dwellings con-

nected to the DH System and thus its data for a year was considered. The whole process 

led to the typical hourly-based daily profiles of the buildings on heat consumption and 

temperatures. Despite taking into account the basics of handling the missing data, there 

was not a devoted analysis of the applied methods. 

The rest of the thesis is structured as follows: Section 2 is dedicated to the methodology 

and general principles of the imputation methods. Section 3 introduces the domain in 

which the aggregated four data sets are described with the provision of preliminary anal-

ysis and the correlation of the variables. Subsequently, the result and analysis of the pro-

posed scenarios on the case study with existing missing data filling methods are imple-

mented in Section 4 and we make a conclusion with future works at the end. 
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2 Methodology 

The whole process of data and its analysis was performed using the free software envi-

ronment and language for statistical computing and graphics “R”[23].  R software has 

become one of the main tools in data science and used by numerous researchers with 

different backgrounds and coming from different disciplines. Its simplicity to use and sole 

dedication for data analysis makes it a perfect tool to perform all data analysis steps along 

with Exploratory Data Analysis (EDA) and building models. It is open-source and free 

with varied packages for a variety of purposes. Besides, it is a cross-platform implying it 

is supported by many operating systems which makes it preferable due to its flexibility. 

Moreover, the most common methods in statistics such as hypothesis testing, variance 

analysis, regression methods, and descriptive statistics are inbuilt in the system [24]. 

First, the data was visualized for the whole data set length to identify the patterns and 

observe how the data was measured throughout the year for each data set independently. 

After, the correlation analysis was performed considering the combination of energy and 

weather data based on the Pearson correlation coefficient to create scenarios as a relation-

ship between variables. 

As the data is clean in terms of missing values, artificial missing data with 6 time-gap 

scenarios were introduced for each energy variable. This administrates to analyse how 

well the methods are performing with the predictions. 

Furthermore, single imputation techniques will be applied using the time series imputa-

tion called “Impute TS” (R package) provided with a mixed variety of interpolation meth-

ods to replace the missing values with artificially introduced missing data. Besides, it is 

one of the few methods which will impute the missing values in a univariate form while 

they are not enough available packages at the moment. Univariate means only one attrib-

ute is measured over time, hence, only one variable will be imputed to observe the change 

and be able to compare the outcome of each parameter[25]. 

The next step consists of the multiple imputation methods to predict the possible values 

of the gaps. Imputations for multivariate analysis follow mainly the following steps to get 

to predict and fill the missing points in the data set (Figure 2.1) [26]:  
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1. Imputation: Generate a set of m >1 values where each set will impute the missing 

values in the original data set by the default set value (m) and it will create corre-

sponding copies of the observed values. 

2. Analysis: Using complete-case methods, the analysis of the created m dataset is 

carried out. 

3. Combination: Pool – the process of integration of m analyses.  

 

               Figure 2.1: Main steps of multiple imputations [27] 

For multiple imputations MICE, Amelia, and missForest packages were selected. First 

and foremost, MICE and missForest are some of the most studied existing imputation 

methods for different research fields. While Amelia is one of the least investigated meth-

ods and hence, it was decided to check its accuracy against the other two methods and 

identify if it is appropriate to use to fill the gaps.  

MICE stands for Multivariate Imputation by Chained Equations. It is one of the widely 

used and researched multivariate analysis methods and was originally described by Bul-

len. The basic idea in R software is to create a copy of the original data set with missing 

values, say as m = 5, and after filling the gaps where the missing values occur, it treats 

each copy independently. Thus, all those copies are averaged to give a single data set with 

filled gaps [28]. The principle of the method is based on the following way: if we have 

X1, X2…Xk variables and X1 has some missing observations, then it will be regressed on 

the rest of the variables. After the prediction, the gaps in X are replaced by obtained val-

ues. If X2 has missing data in it, X1, X3, X4 to Xk columns will contribute to building the 

prediction model. Subsequently, the missing points are replaced with the estimated values 

[29], [30].  
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missForest (Figure 2.2) was initially proposed by Stekhoven et al. [31] due to the lack of 

methods which can handle working with both categorical and continuous variables based 

on a Random Forest. Missing values are treated as the response variables and resampling-

based classification with regression trees used to involve the observations from other var-

iables for the prediction of the missing values [20]. 

 

                  Figure 2.2: Illustration of the working mechanism of missForest [32] 

Amelia also performs multiple imputations to work with missing data and those kinds of 

methods can alleviate the bias while increasing the efficiency of the process. It is pre-

sented on bootstrap-based Expectation-Maximization with Bootstrapping (EBM) algo-

rithm and it can work with many variables. There are two assumptions stated as all vari-

ables are Multivariate Normal Distribution (MVN) and the observations are MAR [33] 

The univariate and multivariate imputation methods were tested for time-gap and corre-

lation-based scenarios. The latter was applicable only for multiple imputation methods as 

opposed to the single imputation methods. Because for single imputations only the data 

from a variable where the gaps appear are utilized to compute and fill the missing points. 

Following the analysis of the gaps, their accuracy was computed with an Root Mean 

Square Error (RMSE) value and Global Score (GS) was proposed as a measurement of 

the accuracy performance of each technique applied. 
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3 Data 

For the case study, four different data sets were selected from the buildings located 

in the city called Tartu (Estonia). Each data set contains 26 variables with hourly 

measured observations aggregated from two different sources. Smart meter detected the 

following parameters coming from the DH, which are DH Flow Temperature, DH Return 

Temperature,Volume (m3), Volumetric Flow Rate (l/h), Heating Power, Space Heating 

(SH) Flow Temperature, SH Return Temperature, and DHW Flow Temperature. For the 

sake of privacy, no extra information was revealed about the buildings and their types. 

Consequently, all the assumptions and conclusions were drawn purely based on the 

analysis and visualizations. 

Figure 3.1 provides the measurement setup and how the DH is designed. According to 

the scheme, we are to see the main variables measured by the smart meter. 

 

Figure 3.1: The measurement setup of the DH system for the provided data sets  

Where T1  – DH Flow Temperature (denoted as Fl_T in visualizations), ºC; T2 – DH 

Return Temperature (denoted as Ret_T in visualizations), ºC; T3 – SH Flow Temperature 
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(denoted as SH Fl_T in visualizations), ºC; T4 – SH Return Temperature (denoted as SH 

Ret_T in visualizations), ºC; T5 – DHW Flow Temperature (denoted as DHW Fl_T in 

visualizations), ºC, m – Volumetric Flow Rate (denoted as Vol Fl Rate in visualizations), 

l/h. (Heating Power is denoted as Power, Ambient Temperature as Temperature in the 

visualizations) 

The general overview scheme is about how the system is operated. However, not all the 

data presented in the set are useful or used for the analysis. In accordance with the scope 

of the study, the focus is on the smart meter data, excluding or neglecting most of the rest 

of the data with little or no impact on the main variables. 

3.1 Annual profile of data set variables 

In the meantime, as aforementioned the data set is the aggregation of two different sets. 

Therefore, the weather data from the weather station managed by the University of Tartu 

is applied with an hourly measurement of the parameters as well. It starts on January 1st, 

2019 throughout the year until 31 December 2019.  

Table 3.1: Smart Energy Meter and Weather Variables 

Name Unit 

Heating Power kWh 

DH Flow Temperature °C 

DH Return Temperature °C 

Volumetric Flow Rate l/h 

DHW Flow Temperature °C 

SH Flow Temperature °C 

SH Return Temperature °C 

Ambient Temperature °C 

Wind Speed m/s 

Wind Direction - 

Solar Irradiation Flux W/m2 

 

The set contains the annual Ambient Temperature, Wind Direction (WD), Wind Speed 

(WS), and Solar Irradiation Flux (SIF). Thus, the weather data was aggregated with the 
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smart meter data, primarily, to observe the correlations within the main variables and, 

after, they are applied in the process of prediction of the missing observations. A list of 

intrinsic smart meter and weather variables is provided in Table 3.1. 

Figure 3.2 illustrates the measured smart meter data throughout the year for Building I. 

One can see that at the beginning and the end of the year the Heating Power increases 

while the mid of the season witnesses a dramatic decrease of the corresponding usage 

plateauing at 0. This happens as the period falls approximately between the hours of 4000 

and 6000 which are virtually between June and September implying that it is not a heating 

season. According to the analysis of the annual measurement we can state that the heating 

season commences nearly at the end of September. Furthermore, it can be proved by the 

rise of the Heating Power consumption around that time.  

The rest of the parameters follow a similar pattern as there is no necessity to heat the 

buildings at the time. Hence, the DH Flow Temperature goes down during the summer as 

well. On the other hand, DHW Flow Temperature remains around 60 °C on average, 

fluctuating between 50 °C and 70 °C and one can say it is because DHW Flow Tempera-

ture is utilised for various purposes as showering and other machines in the house where 

hot water is required. However, for a specific period of time, the measurement outcome 

abruptly falls to almost 0 at the mid of November. This case (where the records are virtu-

ally 0) could be studied further by treating those measurements accordingly or applying 

some techniques so that it will not hinder or cause difficulties during the future analysis. 

Besides, a similar radical change is investigated in the DH Return Temperature as well. 

Customarily, they can be observed with an unaided eye and treated accordingly. 

The Building II measurements are substantially correlated and comparable to what is 

observed for Building I (Figure 3.3). During that same period, the overall consumption 

of the Heating Power drops to zero again and the rest of the variables illustrate the virtual 

correspondence, and all the temperatures coming from DH fall considerably due to the 

known reasons. However, what may seem out of the range or odd is the absence of DHW 

Flow Temperature for the corresponding building. The data set contains the column with 

DHW Flow Temperature, yet, with no measurements recorded. These are not gaps but 

gathered as 0 for the whole year. Consequently, we could assume that residents of the 

building rely on home-built boilers for DHW needs, and thus, there is no data for the 

variables. As a result, there is no possibility to even predict them as not even a small 

portion of raw data is provided to be able to fill the rest. 
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Figure 3.2: Smart meter data measurements of the primary variables at Building I 

 

Figure 3.3: Smart meter data measurements of the primary variables at Building II 
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One thing about which we have no knowledge is the type of the buildings where the smart 

meters are located. Thus, we can assume and observe their yearly or hourly based profiles 

and their corresponding usages. The measurement for Building III has also a similar 

pattern alike the first smart meter data as expected. Nevertheless, analysing it numerically 

we can state that at the highest the Heating Power consumption of Building I was well 

above 150 kW in January (around 514 hours which is the 21st day of the month) and the 

rest of the measurements during the heating season consumption on average was higher 

than 70 kW. In contrast, the data coming from the third smart meter at the peak displays 

more than 100 kW in September (seemingly when the heating season starts) for a short 

period of time (which is substantially higher than other measurements of that variables in 

Building III), and according to its appearance, it is likely to require further investigations 

to examine for its veracity. 

Apart from that, the observations from Building III follow the same model by decreasing 

when the heating season terminates and rising by the start of the new heating season 

(Figure 3.4). Based on the Heating Power consumption, one could presume that it might 

be a small building with a heating meter built for data analysis. Otherwise, the DHW 

Flow Temperature records show the drop of the temperature in summer as well which 

was not the case for the aforementioned residential housings. In addition, there are also 

some measurements to seem to vary considerably in DH Return Temperature and DH 

Flow Temperature in winter (between 1500 hours and 2000 hours) than the rest of the 

data for the specific period. Yet, it might be considered within the normal range of ober-

vations if they are separated and analysed for the month where those measurements (po-

tential outliers) are identified. 

The illustration of the last building (Figure 3.5), Building IV, does not provide any nov-

elty regarding the measurements since the form of the heating season is certainly met here 

as anticipated. In terms of the Heating Power consumption, on average it utilised more 

than 10 kW compared to the Building I, while the mean temperature DHW is almost 10 

°C less than the one in Building I. However, in contrast to the Building III measurements, 

for both Building I and Building IV the DHW Flow Temperature remains stable across 

the year. 
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Figure 3.4: Smart meter data measurements of the primary variables at Building III 

 

Figure 3.5: Smart meter data measurements of the primary variables at Building IV 
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Hourly profiles of the Heating Power and other variables facilitate to derive the very 

initial idea about how the observations are recorded. Besides, it identifies if there are rare 

observations or patterns in the data since simply looking at the big data does not aim to 

observe those abnormalities.  

On the other hand, visualizations help to institute to “torture” the data and realise what 

are the following steps to take. For instance, at the first glance, we are to make 

assumptions that first, second, fourth smart meters might be collecting data from larger 

residential buildings, at the meantime the third metering is responsible for considerably 

smaller construction type than others. 

 

Figure 3.6: Multiple boxplots of Heating Power for four buildings for comparison 

Figure 3.6 demonstrates the summary of Heating Powers for all the smart meter data 

based on a 5 number summary. As it can be seen from both Table 3.2 and the illustration, 

the Heating Power consumption of the first and last buildings is comparably higher than 

the ones in the middle. Apart from that, the medium of the data distribution in Building 

IV is the highest among all, while minimum consumption equals zero at each smart meter 

variable simply proving that there was no Heating Power in the summertime. 
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Table 3.2: Summary of the distribution of the Heating Power 

Smart 

Meter 

Minimum, 

kW 

Lower 

Quartile, kW 

Median, 

kW 

Upper 

Quartile, kW 

Maximum, 

kW 

Building I 0 5.9 14.95 33 173 

Building II 0 0 20.7 31.4 75.2 

Building III 0 0 12.6 18.7 97.3 

Building IV 0 6.1 25.35 47.4 269.2 

 

 

Figure 3.7: Meteorological data throughout the year gathered by the weather station of the Uni-

versity of Tartu 

Regarding the points laying out of the range, it is easy to notice that Building II does not 

show any observations on this matter. It means every measurement is within the Inter-

quartile Range (IQR) and does not exceed the minimum value or drops below the 

minimum observation. On the contrary, the same variable in other buildings contains pos-

sible outliers, or at least the analysis of the boxplot technique detects the presence of those 

points. Especially, the first and last groups are shown to have a considerable quantity of 

them. Yet, markedly, this is the image of the whole year data and thus, may need a 

separate monthly investigation. Within that context, some observations may fit the range 

and would be excluded from being anomalies. 
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The weather data for all the data set is the same as the case study buildings are located in 

the same city. Hence, Figure 3.7 displays the Ambient Temperature, Wind Speed, and 

SIF measurement annually. As anticipated, due to its geographical location it tends to be 

colder and go sub-zero regarding the Ambient Temperature during winter months and 

late autumn. In contrast, spring and summer witness the increase of the temperature 

reaching up to 30 °C at peak. According to [34], the maximum average temperature is 

around 23 °C which is mostly set in July. In terms of Wind Speed, it fluctuates 

considerably going from virtually no wind up to 11 m/s during December. Additionally, 

SIF tends to be substantially higher starting from around April to October. All these 

weather variables are helpful for the investigation of the smart meter data as their 

consumption may directly correlate with some of the weather data. It could be expected 

that the Heating Power and DH Flow Temperature would be high-negatively correlated 

with the Ambient Temperature. 

Table 3.3: Mean weather variables for each season in Tartu 

Season Temperature, °C Wind speed, m/s Solar Irradiation Flux, 

W/m2 

Winter  -1.4 4 23 

Spring 7 3.5 164 

Summer 17 3 407 

Autumn 7 3 66 

 

Table 3.3 summarizes the mean weather variables divided into four seasons. This way we 

could detect the actual measurements and changes due to some considerable alterations 

within the seasons. 

Before proceeding on with any mode of analysis, it is essential to check for the variable 

types and gaps the data set may contain. Completion of these steps will first allow us to 

see with what variable types we will deal with and then select methods for implementation 

of various analyses.  

All variables and their respective hourly observation numbers are the same for four data 

sets. Hence, one assessment for one of the sets is sufficient to identify the data type and 

select the required parameters. At the first glimpse, each set has 26 variables and 8410 

observations measured where not all data is useful for analysis. Consequently, solely the 
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data from smart meter and weather data are selected to perform the next steps. Therefore, 

the whole data set consists of completely quantitative values. 

There are statistical methods to identify the gaps based on if they are MAR, MCAR, or 

MNAR and require some hypothesis before running them. Therefore, it might be 

cumbersome and necessitate a certain amount of time. Whereas the visualizations make 

it easier to observe as there are currently numerous techniques to perform them. 

 

 

Figure 3.8: The missingness plotting outcome for Building I 

Applying one of the existing methods we can obtain the first result related to Building I. 

Preliminary result display that using the following plotting technique where the outcome 

is divided into two sections, we can state that no missing value was detected for Building 

I. Figure 3.8 shows that the left side is empty where the portion of missingness in the 

variables would be displayed. However, data set as a combination of both smart meter 

and weather data appear to not have any gaps for the corresponding measurements. 

Hence, each variable in the smart meter and weather data is complete for the first set of 

observations. 

Using similar plotting and analysis methods we will derive the required summary for the 

rest of the buildings. All the techniques come to terms with no missingness for all of the 

data set. The following illustration demonstrates the possibility of the gaps in the second 
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set of data which proves what was stated previously (Figure 3.9). The rest of the 

illustrations for other data sets are provided in Figure A and Figure B in Appendix. 

 

Figure 3.9: Examining of gaps in Building II applying an alternative plotting mode 

3.2 Correlation analysis 

Initially, having a clear vision about the connection between variables could be a produc-

tive start providing essential hints and an overview about how the measured elements are 

correlated with each other. In data science tools, there are numerous modes of obtaining 

a correlation matrix for the analysis and understanding of the connections. Thus, it dis-

plays the correlation coefficients based on which some conclusions can be drawn and take 

directions for the following steps.  

The chart can show the interconnection based on the coefficients where there can be both 

positive and negative correlations between the elements of a dataset. 

Another method that illustrates the relationship between variables is a scatter plot which 

indicates the correlation between chosen points by building a plot spreading the observa-

tions to the x and y-axis respectively as well as being instrumental to detect outliers. It is 

also helpful during the process of building polynomial multiple regression models.  
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3.2.1 Building I. Correlation analysis 

Correlation analyses are carried out applying the Pearson correlation formula. According 

to the formula and its coefficient definitions, we can summarize the output as in Table 

3.4 

Table 3.4: Association strength and their corresponding correlation coefficients for Pearson 

correlation formula (Note: “-” sign represents only the coefficient being negative) [35]. 

Association strength Correlation coefficient (𝑟) 

Positive Negative 

Strong 𝑟 > 0.5 𝑟 < - 0.5 

Medium 0.3 < 𝑟 < 0.5 - 0.3 > 𝑟 > -0.5 

Weak 𝑟 < 0.3 𝑟  > -0.3 

 

Figure 3.10 illustrates the correlogram plot displaying the variable associations within 

Building I so that we can identify if those values are correlated; if so, whether it is a 

negative or positive correlation. The knowledge about variable relationships is to be in-

strumental for further analysis. A blue color displays a positive correlation, and red color 

is for a negative correlation. The color intensity and the size of the shape are proportional 

to the correlation coefficients. The legend on the right side gives an understanding of how 

the colors are described for the correlation analysis.   

As we can see on the correlogram, there is a high positive correlation within the variables 

from the smart meter data, namely DH Return Temperature, Heating Power, DH Flow 

Temperature and SH Flow, and SH Return Temperatures. Each of the correlation 

coefficients is higher than 0.5. All data from the smart meter is positively highly 

correlated but DH Return Temperature. It was shown it has negative correlations with 

other measured variables as expected. In contrast, the only variable from the weather 

station that appears to have a strong relationship with DH data is the Ambient 

Temperature. Hence, it is certain that when the outdoor temperature increases the DH 

Flow Temperature and Volumetric Flow Rate drop, leading to the decrease of the Heating 

Power consumption as well. The rest of the weather data demonstrated weak or no 

correlation for all of the cases.  
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Figure 3.10: Correlogram of Building I data between the smart meter and weather variables 

Using the quantitative analysis, we were able to draw the exact correlation coefficients 

for each pair and it is provided in Table 3.5. It summarizes all the relationship coefficients 

following a similar pattern as the above-provided correlogram. The greener the 

coefficient, the stronger the coefficient positively. The redder the colour, the stronger the 

connection between variables in a negative way. Hence, it can be summarised that all the 

data for Building I from the smart meter are almost highly correlated with each other 

along with the Ambient Temperature. 

Table 3.5: Correlation matrix for the aggregation of smart meter and weather data for Building I 

 

 

 

 

Volume 1.00

Power -0.19 1.00

Flow T -0.47 0.62 1.00

Return T 0.00 -0.60 -0.56 1.00

DHW Flow_T -0.15 0.15 0.24 -0.13 1.00

SH Flow T -0.30 0.62 0.78 -0.55 0.16 1.00

SH Return T -0.36 0.55 0.75 -0.39 0.14 0.95 1.00

Ambient T 0.28 -0.60 -0.77 0.58 -0.17 -0.94 -0.87 1.00

WS -0.09 0.13 0.11 -0.20 0.04 0.12 0.10 -0.11 1.00

WD -0.03 0.03 0.03 -0.07 -0.02 0.04 0.03 -0.06 0.12 1.00

SIF -0.02 -0.09 -0.19 0.17 0.00 -0.38 -0.31 0.50 0.05 -0.04 1.00

Volume Power Flow T Return T DHW Flow_T SH Flow T SH Return T Ambient T WS WD SIF
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3.2.2 Building II. Correlation analysis 

Furthermore, the same analysis was performed for Building II. Here, we attempted to 

display the singular connection between two variables selecting them arbitrarily: one 

from smart meter data and another from weather data. The result is illustrated in Figure 

3.11. Here the scatter plot can be used to observe the linear regression between two 

variables which are the Ambient Temperature and DH Flow Temperature. However, what 

we seek is the relationship they have, and it can be straightforwardly identified by the 

number displayed within the plot. It equals -0.82 and the figure illustrates the winter time 

when there is a high correlation between these variables. Consequently, it is a negative 

correlation implying that when the outdoor temperature is low the DH Flow Temperature 

is high and vice versa. 

 

 

Figure 3.11: Visualisation of the DH Flow Temperature vs Ambient Temperature in Building II. 

Scatter plot applied for a linear regression check 

The benchmarking of the correlation coefficients given in Table 3.6 was obtained 

statistically, while the solo coefficient provided for the Ambient Temperature and DH 

Flow Temperature are computed within the plot. What is significant is the precision of 
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both methods and their calculations are the same. However, the plotting technique is 

cumbersome and time-consuming compared to the statistical summary. 

 

Figure 3.12: The correlation chart of Building II variables. (Variables distributions are in diago-

nal; Bottom of the diagonal displays bivariate analysis; Top of the diagonal shows the correla-

tion coefficients and significance level as stars) 

According to the correlation coefficients in Table 3.6 and Figure 3.12, we can detect a 

similar pattern as it happened in Building I. Yet, the relationship between the smart meter 

variables in accordance with each other seemed to be significantly strong where the r 

value was at least 0.92 for the correlations for Heating Power usage with other variables. 

Similar relationships are detected for the correlation of other variables as well. In the case 

of the connection of DH Return Temperature with SH Flow and SH Return Temperatures, 

it was virtually equal to 1. Regarding the weather data, there is a strong negative 

correlation between each variable of smart meter data with the Ambient Temperature and 

more than 0.9 for each case. What makes the current benchmarking different from the 
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previous analysis is the medium correlation of SIF with the smart meter data where it is 

around -0.35.  

One can see in Figure 3.12 that the high correlation in Heating Power with DH Flow and 

DH Return Temperatures during winter time when the system is operating. Whereas SH 

Flow and SH Return Temperatures have a correlation coefficient of almost 1 and this 

might occur since it is the same heat exchanger and hence, they both have the same tem-

perature drop. Besides, the relationship between the Ambient Temperature and the smart 

energy meter data is pivotal because when the gap appears in the energy meter, the only 

weather variable which is highly correlated with the energy data is the Ambient Temper-

ature. This relationship provides an opportunity to fill the gaps solely based on the 

weather data and this high correlation betwen Ambient Temperature and the energy data 

is valid excluding the not heating season. 

Table 3.6: Correlation matrix for the aggregation of smart meter and weather data for   

Building II 

 

3.2.3 Building III. Correlation Analysis 

The correlation analysis result of Building III was particularly close to those of Building 

II (Table 3.7). Correlation values of smart meter data variables for each type of 

benchmarking were more than 0.9 and positively correlated.  

In contrast to the DHW Flow Temperature correlation coefficients in Building I, the same 

parameters for Building III showed a strong positive correlation with energy meter 

variables. Even though, there may not be a high relationship in real life as usage of the 

DHW does not depend on the season or other parameters, but for the current data set it 

appeared to have a strong correlation and hence linear relationship was identified with 

smart meter data and the Ambient Temperature.  

 

Volume 1.00

Power -0.44 1.00

Flow T -0.27 0.92 1.00

Return T -0.45 0.99 0.94 1.00

SH Flow T -0.42 0.99 0.96 1.00 1.00

SH Return T -0.42 0.98 0.96 1.00 1.00 1.00

Ambient T 0.36 -0.93 -0.86 -0.91 -0.91 -0.90 1.00

WS -0.09 0.17 0.16 0.17 0.17 0.17 -0.11 1.00

WD -0.05 0.04 0.00 0.03 0.03 0.03 0.06 0.12 1.00

SIF -0.05 -0.37 -0.35 -0.35 -0.35 -0.35 -0.50 0.05 -0.04 1.00

Volume Power Flow T Return T SH Flow T SH Return T Ambient T WS WD SIF
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Table 3.7: Correlation matrix for the aggregation of smart meter and weather data for  Building 

III 

 

 

Outdoor temperature with SIF has respectively strong and medium correlations with 

heating meter variables. However, the rest of the weather variables did not have any high 

correlation coefficients with the energy data. Figure 3.13 shows the same correlogram as 

for Building I applying the same rules regarding the colour and the size of the shapes. 

 

Figure 3.13: Correlogram of Building III data between the smart meter and weather variables 

3.2.4 Building IV. Correlation analysis  

On the other hand, one can see in the profile of DH Flow Temperature and Heating Power 

correlation with DH Return Temperature that there is the same strong relationship but 

negative. A similar pattern can be identified for DH Return Temperature with SH Flow 

and SH Return Temperatures as well. Repeatedly, no connection of DHW Flow 

Volume 1.00

Power -0.43 1.00

Flow T -0.27 0.91 1.00

Return T -0.41 0.98 0.94 1.00

DHW Flow_T -0.41 0.97 0.95 0.99 1.00

SH Flow T -0.41 0.98 0.94 1.00 1.00 1.00

SH Return T -0.41 0.98 0.95 0.99 1.00 1.00 1.00

Ambient T 0.37 -0.87 -0.80 -0.86 -0.83 -0.84 -0.84 1.00

WS -0.09 0.15 0.14 0.15 0.15 0.15 0.15 -0.11 1.00

WD -0.05 0.00 -0.03 0.00 -0.01 -0.01 -0.01 -0.06 0.12 1.00

SIF 0.06 -0.38 -0.33 -0.37 -0.36 -0.36 -0.36 0.50 0.05 0.04 1.00

Volume Power Flow T Return T DHW Flow_T SH Flow T SH Return T Ambient T WS WD SIF
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Temperature with other variables was identified, neither was the weather data except the 

Ambient Temperature which had high negative correlations with DH variables. 

The correlation coefficient between the Ambient Temperature and the smart meter data 

ranges between 0.66 – 0.86 (Figure 3.14). Despite including the summer season for the 

analysis, high correlations are still maintained. This occurs due to the strong correlation 

during the heating season between the Ambient Temperature and the energy variables 

and hence, if only the cold period was considered, then coefficient would near 1. 

Table 3.8 and Figure 3.14 the correlation analysis of Building IV. Unlike in Building II 

and Building III, there are not the same level of strong correlations around 0.9 to 1 be-

tween smart meter data and the Ambient Temperature. Yet, the coefficients are similar to 

those of Building I where there was a high correlation within smart meter variables, and 

it is mostly between positive 0.6 to 0.7.  

 

Figure 3.14: The correlation chart of Building IV variables. (Variables distributions are in diag-

onal; Bottom of the diagonal displays bivariate analysis; Top of the diagonal shows the correla-

tion coefficients and significance level as stars) 
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On the other hand, one can see in the profile of DH Flow Temperature and Heating Power 

correlation with DH Return Temperature that there is the same strong relationship but 

negative. A similar pattern can be identified for DH Return Temperature with SH Flow 

and SH Return Temperatures as well. Repeatedly, no connection of DHW Flow Temper-

ature with other variables was identified, neither was the weather data except the Ambient 

Temperature which had high negative correlations with DH variables. 

The correlation coefficient between the Ambient Temperature and the smart meter data 

ranges between 0.66 – 0.86 (Figure 3.14). Despite including the summer season for the 

analysis, high correlations are still maintained. This occurs due to the strong correlation 

during the heating season between the Ambient Temperature and the energy variables 

and hence, if only the cold period was considered, then coefficient would near 1. 

Table 3.8: Correlation matrix for the aggregation of smart meter and weather data for  

Building IV 

 

 

Volume 1.00

Power -0.25 1.00

Flow T -0.51 0.56 1.00

Return T 0.14 -0.61 -0.58 1.00

DHW Flow_T -0.09 -0.08 -0.01 0.12 1.00

SH Flow T -0.36 0.69 0.70 -0.69 -0.04 1.00

SH Return T -0.29 0.66 0.69 -0.72 -0.03 0.99 1.00

Ambient T 0.30 -0.66 -0.71 0.70 0.12 -0.87 -0.86 1.00

WS -0.08 0.12 0.09 -0.18 0.06 0.13 0.14 -0.11 1.00

WD -0.04 0.04 0.02 0.00 0.03 0.02 0.01 -0.06 0.12 1.00

SIF 0.01 -0.16 -0.16 0.24 0.02 -0.35 -0.35 0.50 0.05 -0.04 1.00

Volume Power Flow T Return T DHW Flow_T SH Flow T SH Return T Ambient T WS WD SIF
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4 Result and Analysis 

In the data sets of the case study, as it was examined previously there were no missing 

values in any of the four data sets. In order to test the various imputation methods, we are 

required to introduce missing values. This can be implemented artificially and with 

certain consequences for each variable in each set of data.  

4.1 Introduction of artificial NA values to data sets 

A period of two weeks was chosen for each variable in the smart energy meter for each 

data set to enter the gaps. For the sake of simplicity and to avoid any inconveniences that 

might affect the output result, it was decided to select two weeks without any outliers by 

applying the boxplot technique to test for anomalies on variables individually. So that all 

the data seemed to be normally distributed within their range. It means 6 variables from 

smart energy meter data from 4 total sets were selected summing up to 48 weeks (Heating 

Power, DH Flow Temperature, DH Return Temperature, SH Flow Temperature, SH 

Return Temperature, DHW Flow Temperature). However, he selected weeks are not the 

same for each case.  

One can see in Figure 4.1 five boxplots illustration of DH Flow and DH Return 

Temperatures, SH Flow and SH Return Temperatures, and DHW Flow Temperature in 

Building I. 2 weeks of January in DH Return and DH Flow Temperatures, 2 weeks of 

April in SH Flow and SH Return Temperatures, and 2 weeks of July in DHW Flow Tem-

perature were chosen and then tested. No outlier was identified for any of the variables 

which was the preliminary necessity before commencing to proceed on the next steps. As 

it can be observed, the selection of weeks was decided depending on the cleanliness of 

the two weeks and vary from variable to variable and data sets as well. Implying 2 weeks 

of January picked for DH Return Temperature of Building I may not be the same for the 

rest of the buildings as they are considered on an individual basis. The rest of the boxplot 

figures for other buildings are provided in Figure C, Figure D, and Figure E in Appendix.  
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Figure 4.1: Outlier analysis based on a boxplot summary of the smart energy meter data in 

Building I. 

Furthermore, a total of 30 hours of the gap were introduced in the following scenarios: 

15 gaps of  2 consecutive (uninterrupted) hours each, 10 gaps of 3 consecutive (uninter-

rupted) hours each, 6 gaps of 5 consecutive (uninterrupted) hours each, 5 gaps of 6 

consecutive (uninterrupted) hours each, 3 gaps of consecutive (uninterrupted) hours each, 

2 gaps of consecutive (uninterrupted) hours each. Each of the combinations sums up to 

total of 30 hours (Table 4.1). This way, we entered 6 different time-gap based scenarios 

for each variable within their selected individual weeks but with various consecutive 

number gaps following those rules. 

Table 4.1: Introducing the gaps with total 30 hours gaps with various combinations 

  Total 30 hours missingness scenarios 

15 gaps of 2 

hours 

10 gaps of 3 

hours 

6 gaps of 5 

hours 

5 gaps of 6 

hours 

3 gaps of 10 

hours 

2 gaps of 15 

hours 
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Figure 4.2: Input of missing points in DH Return Temperature of Building I 

For demonstration purposes, the DH Return Temperature in Building I was considered to 

show the missingness when the gaps are introduced and how they are distributed. Initially, 

15 gaps of 2 hours were introduced in the DH Return Temperature while all other 

variables from smart energy meter and weather data did not undergo any alterations. Fur-

thermore,  portion of missingness in DH Return Temperture accounted for 0.81 %. As 

can be expected, the share (percentage) of the gaps remains unchanged for all time-gap 

scenarios. One can observe in Figure 4.2 that the percentage of missing points is 8.9 % 

which is solely in DH Return Temperature for two weeks period only, whereas the 

complete observations of DH Return Temperature without missing rows consist of  91.1 

% of the variable. On the contrary, the other variables are fully complete with no gaps, 

and thus there is no corresponding yellow column on the left “Missing data” plot. 

Figure 4.3 and Table 4.2 summarise the 15 gaps of 2 hours scenario of DH Return Tem-

perature in Building I where the time and date the missing points occur, and their 

visualizations are provided. Following this, we enter 30 hours gaps for DH Flow 

Temperature, Heating Power, SH Flow, and SH Return Temperatures with 2 hours 

consecutive missingness for all of the datasets. After, 3 hours, 5 hours, 6 hours, 10 hours, 

and 15 hours scenarios were implemented the same way. 
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Table 4.2: Dates and times for which 2 hours gaps are introduced in DH Return Temperature of 

Building I 

Date Time 

1 January 2019 02:00 – 04:00 

1 January 2019 18:00 – 20:00 

3 January 2019 00:00 – 02:00 

4 January 2019 05:00 – 07:00 

4 January 2019 17:00 – 19:00 

5 January 2019 13:00 – 15:00 

6 January 2019 14:00 – 16:00 

8 January 2019 20:00 – 22:00 

9 January 2019 – 10 January 2019 23:00 – 01:00 

11 January 2019 04:00 – 06:00 

12 January 2019 01:00 – 03:00 

12 January 2019 21:00 – 23:00 

13 January 2019 11:00 – 13:00 

14 January 2019 00:00 – 02:00 

14 January 2019 15:00 – 17:00 

  

4.2 Univariate Imputation Methods 

As the gaps were inputted with certain orders, the next step is to apply imputation 

techniques in order to observe how they perform. For that purpose, univariate imputation 

techniques were tested at first. Specifically, starting from the simplest ones as Mean and 

Median with LOCF and NOCB growing into more complex computation methods such 

as Interpolation, Moving Average. Each method was performed for 6 time-gap scenarios 

in each variable and after, their accuracy was computed using an RMSE to analyse their 

performance. RMSE was calculated only for the places where the missing points were 

introduced. In other words, 30 artificial gaps were considered for the calculation of RMSE 

and it was computed in the following way: 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖 − 𝑥𝑖̂)

230
𝑖=1

30
 

(4.1) 

Where 𝑖 − variable i,  𝑥𝑖 − an observed value, 𝑥𝑖̂ − a predicted value. 

Table 4.3 summarizes the result of all the scenarios applied to fill the gaps in the DH 

Return Temperature in Building I based on 2 hours, 3 hours, 5 hours, 6 hours, 10 hours, 

15 hours gaps with a total of 30 hours gaps. For demonstration purposes, the analysis of 

DH Return Temperature in Building I continued to be examined and illustrated for all the 

scenarios. Other variables of four data sets followed the same scenarios with the same 

methods. 

 

Figure 4.3: 15 gaps of 2 consecutive hours representation of DH Return Temperature 

One can see in Table 4.3 that Mean, Median, Linear Weighted Average (k=8 which means 

in total 8 values: 4 above and 4 below the gap values are contributed to the computation 

of the missing point)  demonstrated the best accuracy for 15 gaps of 2 consecutive hours 

having RMSE score of  2.32 °C, 2.30 °C, and 2.44 °C respectively, whereas the accuracy 

of the moving average techniques with the different size of windows was slightly lower 

(average of 2.51 °C of four variations) compared to the best methods for the given sce-

nario. On the contrary, NOCB, LOCF, and Spline Interpolation showed the worst accu-

racy when they replaced the gaps with calculated values (respective 3.68 °C, 2.98°C, and 

3.10 °C) 

At the opposite side of the table, one can observe 2 gaps of 15 consecutive hours. As 

opposed to 15 gaps of 2 consecutive hours, the accuracy of Spline Interpolation improved 
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considerably reaching 2.38 °C which was more than twice as less as of 10 hours gaps 

result. Thus, it happened to be the best accuracy for this condition. Whereas Mean and 

Median remained to have better RMSE along with Moving Average group and its varia-

tions. On the other hand, LOCF and NOCB perpetuated to display one of the least accu-

rate techniques throughout the time-gap scenarios. Besides, for most cases, the wider the 

width of the Moving Average window, the better the result of RMSE. Even though it is 

not true for all the scenarios, but the trend is met for the majority of the cases.  

Table 4.3: RMSE of univariate imputation methods applied for the DH Return Temperature 

gaps introduced artificially 

 

 

At first, it was expected that the accuracy would get gradually better by the increase of 

the hour gaps meaning that RMSE for 15 hours gap should be considerably smaller than 

for 2 hours gap (the smaller the RMSE vslue, the better the accuracy). Yet, this 

anticipation was not met for almost any of the methods but Spline Interpolation, and one 

can see the consistent decrease or increase was not detected either. Therefore, the RMSE 

value fluctuates increasing and decreasing without certain order. 

Overall, for DH Return Temperature in Building I, Mean, Median, and Linear Weighted 

Average (k=8) showed the best accuracy for all the scenarios having a total sum of 14 °C 

each. In contrast, Spline, despite peaking at the top at the end, it decreased substantially 

having a total of 23.8 °C for the sum of 6 scenarios. Regarding the highest RMSE values, 

2 hours gap 3 hours gap 5 hours gap 6 hours gap 10 hours gap 15 hours gap

Linear Interpolation 2.81 2.48 2.42 2.40 2.77 2.80

Spline Interpolation 3.10 3.72 4.03 4.83 5.76 2.38

Stineman Interpolation 2.86 2.46 2.46 2.49 2.96 2.92

LOCF 2.98 3.00 2.78 2.92 3.59 4.46

NOCB 3.68 3.18 3.08 3.09 3.65 2.94

Moving average k =2 2.80 2.53 2.47 2.31 2.83 2.86

Moving average k =4 2.48 2.39 2.15 2.22 2.78 2.74

Moving average k =6 2.42 2.39 2.36 2.20 2.33 2.74

Moving average k =8 2.37 2.44 2.37 2.24 2.20 2.79

Exp.weighted avrg k=2 2.76 2.43 2.44 2.35 2.80 2.89

Exp.weighted avrg k=4 2.56 2.27 2.25 2.29 2.76 2.81

Exp.weighted avrg k=6 2.54 2.26 2.28 2.24 2.54 2.77

Exp.weighted avrg k=8 2.56 2.27 2.25 2.29 2.76 2.81

Lin.weighted avrg k=2 2.77 2.46 2.44 2.32 2.82 2.87

Lin.weighted avrg k=4 2.50 2.31 2.18 2.24 2.76 2.76

Lin.weighted avrg k=6 2.44 2.31 2.30 2.18 2.34 2.73

Lin.weighted avrg k=8 2.40 2.33 2.30 2.18 2.13 2.73

Mean Value 2.30 2.62 2.40 1.97 2.16 2.60
Median Value 2.32 2.63 2.37 1.97 2.18 2.63

Imputation Method Return Temperature

ROOT MEAN SQUARE ERROR (RMSE)
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LOCF and NOCB scored second and third after Spline with values of 19.7 °C and 19.6 

°C accordingly. 

Figure 4.4 shows the best and worst three methods compared to the original data for 15 

gaps of 2 hours. For the sake of simplicity and to better observe the alterations, only the 

first 50 hours were presented, where the dark grey represents the original week without 

any missing points in January for DH Return Temperature in Building I. Their respective 

missing points are provided in Table 4.2. 

 

Figure 4.4: Univariate imputation methods filling the gap performance of DH Return Tempera-

ture on 15 gaps of 2 hours. The original week, 3 worst, and 3 best methods illustrations 

As it is provided in Table 4.2, first, the missing points appear between 00:00 – 02:00  at 

midnight, which can be seen as the discrepancy of the line plots at around that time in 

Figure 4.4. The measured DH Return Temperature was 35.03 °C and 40.4 °C for the first 

2 hours gap. Thus, Mean, Median and Linear Moving Average (k=8) filled those gaps 

with 38.95 °C (Mean), 38.87 °C (Median Interpolation) and 36.9 °C, 36.85 °C (Stineman 

Interpolation), whereas LOCF, NOCB, and Spline Interpolation computed and replaced 

those gaps with 36.11 °C, 35.81 °C, and 36.01 – 36.65 °C respectively. In the same way, 

the other two gaps, which were between 18:00 – 20:00 on February 15 and 00:00 – 02:00 

on February 17, were filled with all the applied methods carrying out the univariate 

imputations. 

Linear and Stineman Interpolations for the taken precise example did not fill the gaps 

with high accuracy compared to those of Mean, Median, and Linear Weighted Average 
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(k=8). However, for other variables within the same data set as well as for variables in 

other data sets, Linear and Stineman Interpolations demonstrated the best accuracy among 

all the univariate imputation methods tested. 

4.3 Physical Computation 

The next step consists of the computation based on the physical knowledge we have, and 

we attempted to calculate DH Return Temperature applying the Heating Power formula: 

𝑄 =  𝑉̇𝜌𝑤𝑐𝑤(𝑇𝐹𝑙𝑜𝑤 − 𝑇𝑅𝑒𝑡𝑢𝑟𝑛) 

 

(4.2) 

Where 𝑉̇ − Volumetric flow rate [l/h], 𝜌𝑤 − density of water [kg/m3], 𝑐𝑤 − specific heat 

capacity of water [J/kg °C], 𝑇𝐹𝑙𝑜𝑤 − DH Flow Temperature [°C], 𝑇𝑅𝑒𝑡𝑢𝑟𝑛 −  DH Return 

Temperature [°C]. 

One can see that there is a correlation between DH Flow Temperature, DH Return Tem-

perature, and Heating Power. Consequently, this allows us to calculate from this relation-

ship DH Return Temperature applying the physical formula. Yet this scenario is instru-

mental only for these three variables as there is not enough physical knowledge about the 

rest of the variables. The core idea of performing this case is to test if the multiple impu-

tation techniques are good enough in their predictions to find the correlation between 

these variables (e.g., as if they can identify this physical relationship between DH Flow 

Temperature, DH Flow Temperature and Heating Power) and demonstrate the similar 

results. Hence, the scenario was based on as if when there is a gap in DH Return Temper-

ature other variables are complete which allowed us to perform the computation. 

Knowing that we have gaps in DH Return Temperature which we introduced artificially, 

using we can fill them by calculating those points mathematically. Hence, our final 

formula would be: 

𝑇𝑅𝑒𝑡𝑢𝑟𝑛 = 𝑇𝐹𝑙𝑜𝑤 −  
𝑄

𝑉̇𝜌𝑤𝑐𝑤

 
(4.3) 

 

Initially, the Heating Power was calculated on an hourly basis as the data set is structured. 

This was carried out to test if the Heating Power in the data set has the same values as 

Heating Power computed applying the existing formula. Hence, despite having a slight 
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alteration which was negligible, it was virtually the same having an RMSE value of 0.22 

°C. 

Table 4.4: Comparison of the DH Return Temperature measured and computed using the physi-

cal formula for the first 20 hours in January 

 

After, as all the needed measurements are provided in the data set along with the constant 

values, the physical calculation was performed to observe the change within the measured 

and computed DH Return Temperatures. Table 4.4 summarizes the first 20 hours of the 

data set to compare the output result of the two methods. One can see that the gaps are 

shaded in blue which was between 02:00 and 04:00 in the morning in January, second 

consecutive gap took place in the evening of 18:00 to 20:00. Hence, according to the 

table, the measured DH Return Temperature at midnight was 35.03 °C and 40.4 °C, which 

later was substituted with missing points. According to the calculations, those missing 

points would be filled with the exact same values as they were measured. The same was 

displayed for the second gap: 38.02 °C and 39.69 °C for both measured and computed 

observations. This method can be valuable if we have the required variables to compute 

the missing points and apply them to examine the accuracy of software-based prediction 

Time 
Measured Return Temperature 
[°C] 

Calculated Return 
Temperature [°C]  

00:00 38.95 38.95 

01:00 36.11 36.11 

02:00 35.03 35.03 

03:00 40.4 40.4 

04:00 35.81 35.81 

05:00 35.24 35.24 

06:00 41.29 41.29 

07:00 35.08 35.08 

08:00 37.13 37.13 

09:00 36.25 36.25 

10:00 36.62 36.62 

11:00 37.72 37.72 

12:00 36.71 36.71 

13:00 36.6 36.6 

14:00 34.97 34.97 

15:00 36.79 36.79 

16:00 33.97 33.97 

17:00 37.45 37.45 

18:00 38.02 38.02 

19:00 39.69 39.69 
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methods. This would give us an opportunity, in case there is missing data, to observe how 

accurate the predictions as the mathematical solution of the gaps should be closer to the 

recorded observations. 

4.4 Multiple Imputation 

Multiple imputations were performed applying several techniques coming from different 

packages which are MICE, Amelia, and MissForest. As the name suggests, multiple 

imputation methods operate with a data frame as opposed to the univariate imputation 

methods where only one single variable was considered at a time. 

All multiple filling the gap techniques follow the same missing point consecutiveness on 

6 time-gap scenarios applied for univariate analysis. Apart from that, as it is a data frame, 

it was decided to include weather variables as well. Because depending on the correlation 

between variables which was performed previously, their accuracy varies considerably. 

Consequently, focused on the correlation analysis of the variables, the following 

additional scenarios were created for multiple imputation methods: 

• Scenario I: Only highly correlated variables are included for the imputation where 

the correlation coefficient is more than 0.5 for both negative and positive correla-

tions 

• Scenario II: Combination of high and medium correlated variables are applied to 

fill the gaps with a correlation coefficient of higher than 0.3 for both negative and 

positive correlations 

• Scenario III: Including all variables with high, medium, and small correlations 

4.4.1 Scenario I. Multiple imputations of highly correlated variables  

The variables with a Pearson correlation coefficient higher than 0.5 (Heating Power, DH 

Flow Temperature, SH Flow Temperature, and DHW Flow Temperature) were included 

for the computation of the first scenario based on Table 3.5, in addition to the first 

conditions where two weeks of 30 hours gap were selected for each variable in each data 

set. Besides, only the Ambient Temperature from weather variables was included for 

predictions as had a high coefficient of 0.58 and positively correlated. Table 4.5 

summarizes the accuracy rate of each multivariate technique regarding the 6 different 

consecutive gap scenarios of DH Return Temperature. 

 



  -43- 

Table 4.5: RMSE of multiple imputation methods with solely highly correlated variables 

Imputation Method 

ROOT MEAN SQUARE ERROR (RMSE) 
RETURN_T 

2 hours 
gap 

3 hours 
gap 

5 hours 
gap 

6 hours 
gap 

10 hours 
gap 

15 hours 
gap 

MICE 2 weeks: High cor-
relations 3.34 3.00 3.16 2.30 3.03 2.84 

Amelia 2 weeks: High 
correlations 2.82 3.23 2.87 3.56 3.19 3.77 

missForest 2 weeks: 
High correlations 1.42 1.76 1.80 1.96 1.46 1.60 

 

One can see that for 2 hours gap missForest demonstrated the best accuracy having an 

RMSE of 1.42 °C which was well above two times better than that of MICE imputation. 

Throughout the gap scenarios, missForest remained to show the best RMSE value, every 

time being less than 2 °C in total, whereas Amelia and MICE had substantially worse 

accuracy than missForest. For shorter gaps, Amelia performed better than MICE. In 

contrast, the bigger the consecutive gaps, the worse the RMSE value of Amelia. 

 

 

Figure 4.5: Illustration of multiple imputation techniques with highly correlated variables for the 

first 50 hours of the week of 15 gaps of 2 hours in DH Return Temperature of Building I for two 

weeks period 
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Figure 4.5 illustrates how the multiple imputation methods filled the gaps in the first 50 

hours of January of DH Return Temperature in Building I. The week was shortened to 

demonstrate the result on a smaller scale to better observe the alteration. As it can be seen 

in the plot, for the first gap between 02:00 and 04:00, the closest predictions were from 

MICE which filled the gap with 35.34 °C and 38.83 °C respectively in accordance to the 

original data of 35.03 °C and 40.04 °C. Similar results were predicted by missForest as 

well with 37.92 °C and 40.22 °C. Whereas Amelia showed a slightly different outcome 

of 42.92 °C and 37.83 °C. For the second gap between 19:00 and 21:00, missForest 

performed better than others. Even though MICE predicted the values of first gaps (02:00 

– 04:00) with higher accuracy, the accuracy worsened for further predictions and this is 

the reason why it had an RMSE of around 3.34 °C for 15 gaps of 2 hours which was the 

worst for that case.  

4.4.2 Scenario II. Multiple imputations of highly and medium corre-
lated variables  

Furthermore, the combination of both strong and medium correlations was selected based 

on Table 3.5. Hence, the coefficient must be higher than 0.3. 

Table 4.6: RMSE of multiple imputation methods with high and medium correlated variables 

Imputation Method 

ROOT MEAN SQUARE ERROR (RMSE) 

RETURN_T 

2 hours 
gap 

3 hours 
gap 

5 hours 
gap 

6 hours 
gap 

10 hours 
gap 

15 hours 
gap 

MICE 2 weeks: High and 
Medium Correlations 

2.20 2.57 2.69 2.52 2.91 2.45 

Amelia 2 weeks: High 
and Medium Correla-
tions 

2.25 2.52 2.23 2.42 2.65 2.69 

missForest 2 weeks: 
High and Medium Corre-
lations 

1.27 1.43 1.59 1.69 1.15 1.44 

 

Based on Table 3.5, we can conclude that there are 5 variables (Heating Power, DH Flow 

Temperature, SH Flow Temperature, SH Return Temperature, and Ambient Tempera-

ture) highly and medium correlated with DH Return Temperature. Compared to the first 

scenario, one can observe the addition of SH Return Temperature with a coefficient of 

0.39 and it was absent for the first case.  
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One can see in Table 4.6 that missForest performed the best among three multiple 

imputation methods with a total RMSE of 8.57 °C in comparison with MICE and Amelia 

15.3 °C and 14.8 °C respectively. For individual gaps, for almost all the cases missForest 

had almost two times higher accuracy than others. Whereas MICE and Amelia showed 

virtually similar RMSE values throughout the time-gap scenarios. 

In comparison with how the observations were predicted in the scenario I, one can observe 

the same process for scenario II (Figure 4.6). This time, all methods performed better than 

in the case of the first scenario. For instance, the predicted values using missForest for 

the first gap were 35.88 °C and 40.4 °C as the original data set appeared to be 35.03 °C 

and 40.4 °C. Despite not having the same sharp accuracy as missForest, MICE and 

Amelia had better results as well compared to the previous scenario with only high cor-

related variables.   

 

 

Figure 4.6: Illustration of multiple imputation techniques with high and medium correlated vari-

ables for the first 50 hours of the week 15 gaps of 2 hours in DH Return Temperature of Build-

ing I for two weeks period 

4.4.3 Scenario III. Multiple imputations all correlated variables 

Table 4.7 summarizes the RMSE values of multiple imputation methods with all 

correlations included with a condition of each of them being greater than 0. Hence, all the 

variables contributed to predict the missing values and replace them with those 
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predictions. As anticipated, missForest performed better than other techniques. On the 

other hand, MICE and Amelia did not interchange the worst accuracy throughout the 

scenarios unlike for the previous cases. Total RMSE values for 6 scenarios of time-gaps 

for MICE, Amelia, and missForest were 13.9 °C, 12.8 °C, and 8.41 °C respectively. 

Hence, at almost each of the scenarios, missForest demonstrated two times better overall 

accuracy for DH Return Temperature in Building I. On top of that, multivariate imputa-

tion methods appear to be variable sensitive. In other words, it implies that with the 

increase of the number of variables in the analysis of the missing points, the overall 

accuracy also improves for the scenario, and it is summarised and can be identified in 

Table 4.8. 

Table 4.7: RMSE of multiple imputation methods with all variables (correlation coefficient 

greater than 0) 

Imputation Method 

ROOT MEAN SQUARE ERROR (RMSE) 

RETURN_T 

2 hours 
gap 

3 hours 
gap 

5 hours 
gap 

6 hours 
gap 

10 hours 
gap 

15 hours 
gap 

MICE 2 weeks: All corre-
lations 2.40 2.13 2.41 2.55 1.78 2.64 

Amelia 2 weeks: All cor-
relations 1.92 1.98 2.33 2.37 1.75 2.45 

missForest 2 weeks: All 
correlations 1.28 1.54 1.54 1.53 1.04 1.48 

 

On the other hand, as it happened with univariate analysis as well, there was not any 

descending or ascending order by the increase of the hour gaps. For instance, one can see 

in Table 4.7 that for 2 gaps of 15 hours, the accuracy of missForest was 1.48 °C, while 

for 15 gaps of 2 hours RMSE showed 1.28 °C. The intermediate scenarios fluctuate 

without any specific order. The same could be observed using Amelia and MICE with no 

consistency. 

Table 4.8: Total RMSE values of each method at each scenario for two weeks 

 

 

 

 

 

Imputation methods Total RMSE 

value, [°C] 

Scenario I 

MICE: High correlation 17.67 
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Table 4.9: Total RMSE values of each method at each scenario for two weeks (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Illustration of multiple imputation techniques with all correlated variables for the 

first 50 hours of the week of 15 gaps of 2 hours in DH Return Temperature of Building I for two 

weeks period 

Last but not least, the illustration of three methods on how they filled those gaps within 

the first 50 hours of 15 gaps of 2 hours in January for DH Return Temperature in Building 

I is displayed in Figure 4.7. Similarly, to the previous scenarios, the prediction performed 
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Amelia: High correlation 19.44 

missForest: High correlation 9.99 

Scenario II 

MICE: High and Medium correlations 15.33 

Amelia:  High and Medium correlations 14.76 

missForest:  High and Medium correlations 8.57 

Scenario III 

MICE All: All correlations 13.91 

Amelia All: All correlations 12.79 

missForest: All correlations 8.41 
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by missForest was better for most of the cases. It predicted the first 2 hours gap with 

35.76 °C and 40 °C, the result of Amelia showed the following with 37.83 °C and 38.08 

°C, whereas MICE filled those gaps with 40.22 °C and 41.73 °C (the original data was 

35.03 °C and 40.4 °C respectively for the gap happening between 02:00 to 04:00 in the 

morning). One can see that a similar pattern was perpetuated and that is the reason for 

having those accuracy rates for each of the methods.  

4.5 Weather Variable Correlations only 

One issue that could be encountered during the process of provided multiple imputation 

methods might be the inability of having full data with just losses of measurements in one 

variable only. In other words, as the predictions are made for the smart energy meter 

variables where missing values were introduced to only one of the variables at a time, 

while in real life if there is to be a gap for example in Heating Power then there are gaps 

for that period for all the variables in the smart meter. This happens because some fail in 

the sensor recordings leads to the loss of all the observations for that precise time. Hence, 

if it is a real-life scenario, then the only way we could predict those missing values would 

be relying on the weather data. Because they would be the only remaining data for the 

case study, assuming the rest of the smart energy meter observations were lost as well. 

As a result, for this scenario, only the observations measured from the weather station are 

considered. Moreover, it was shown multiple times that the only variable having a strong 

correlation with the energy data was the Ambient Temperature which was predominantly 

high-negatively correlated for all cases. Despite the weak connection between other 

weather variables with the energy meter data, it was decided to include all of them for the 

analysis without the need of dividing them into correlation groups unlike was carried out 

for the previous three scenarios. 

The result of the computation is summarised in Table 4.10 for DH Return Temperature 

in Building I. Alike all the scenarios performed earlier, missForest had a better accuracy 

showing the best RMSE value for each time-gap scenario. Whereas the accuracy of MICE 

was worse than Amelia and missForest for all time scenarios but for 5 gaps of 6 hours. 

The total RMSE values of MICE, Amelia, and missForest were 18.9 °C, 18 °C, and 12.1 

°C. One can detect that there was not a considerable change for the first two methods as 

their total accuracy remained around the same number. On the other hand, the prediction 

of missing values in accordance only with weather variables worsened the RMSE value 
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of missForest substantially.  It was discovered that missForest was more variable sensitive 

than other multivariate imputation methods used together for the scenario. 

Table 4.10: RMSE of multiple imputation methods with solely weather variables 

Imputation Method 

ROOT MEAN SQUARE ERROR (RMSE) 

RETURN_T 

2 hours 
gap 

3 hours 
gap 

5 hours 
gap 

6 hours 
gap 

10 hours 
gap 

15 hours 
gap 

MICE: Weather Varia-
bles 3.23 3.49 2.97 2.99 3.02 3.20 

Amelia: Weather Varia-
bles 3.14 3.17 2.96 3.19 2.92 2.62 

missForest: Weather 
Variables 2.54 2.19 1.98 1.62 1.65 2.12 

 

 

Figure 4.8: Illustration of multiple imputation techniques with only weather variables for the 

first 50 hours of the week of 15 gaps of 2 hours in DH Return Temperature of Building I for two 

weeks period 

Figure 4.8 shows a similar analysis as was performed previously for the first 50 hours of 

the week on 15 gaps of 2 hours for DH Return Temperature in Building I. For the given 

period, none of the methods appears to show a constant better result, yet the total accuracy 

for all of the time scenarios was predicted better by applying missForest, despite the wors-

ened RMSE value compared to the previous scenarios. 
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4.6 Multiple Imputation on eight weeks data 

In the beginning, for all types of scenarios performed, two weeks without outliers were 

selected to hinder further obstacles. Next, now for the sensitivity analysis, those weeks 

are to be extended into eight weeks to observe how the multiple imputations accuracy 

will be altered with the expansion of the data set from which they can learn. This implies 

that instead of 336 observations from 11 smart energy meter data weather variables, it 

will now rely on 1344 observations with the same number of variables.  

The same gap positions and their 6 time-gaps scenarios are preserved so that they will 

have the same conditions and the only distinction is the number of data they can apply to 

predict the missing points. Besides, three scenarios for multiple imputation analysis 

suggested considering the correlation analysis will be used as well. Consequently, alike 

two weeks of multiple imputation analysis, the following scenarios are to be 

demonstrated: 

• Scenario I with eight weeks: Only highly correlated variables are included for the 

imputation where the correlation coefficient is more than 0.5 for both negative 

and positive correlations 

• Scenario II with eight weeks: Combination of high and medium correlated varia-

bles are applied to fill the gaps with a correlation coefficient of higher than 0.3 for 

both negative and positive correlations 

• Scenario III with eight weeks: Including all variables with high, medium, and 

small correlations 

4.6.1 Scenario I. Multiple imputations of highly correlated variables  

The first scenario applies the same multivariate methods but with eight weeks keeping 

the same missing points positions. After applying the techniques, the RMSE value of each 

of them is computed on the time-gap scenarios. Table 4.11 summarizes the accuracy of 

each combination of scenarios for DH Return Temperature in Building I and one can 

identify, regardless of alteration of scenarios and other modifications, missForest is still 

performing more accurately than the two others with an average of 1.53 °C. On the 

contrary, the analysis of MICE and Amelia on highly correlated variables displayed three 

times less accuracy than missForest. 

As opposed to the previous scenario, where only the weather variables were included, it 

is more appropriate to compare the current case with a similar scenario where the 
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conditions were the same, but the weeks were shorter (two weeks). One can observe that 

the extension of the weeks had a slight positive change on missForest improving the total 

accuracy by 0.77 °C (respective 9.99 °C for two weeks and 9.20 °C for eight weeks). On 

the other hand, for the rest of the methods, the total accuracy RMSE value worsened for 

MICE from 17.7 °C to 21.1 °C and for Amelia from 19.4 °C to 22.1 °C. 

Table 4.11: RMSE of multiple imputation methods with solely highly correlated variables for 

eight weeks period 

Imputation Method 

ROOT MEAN SQUARE ERROR (RMSE) 

RETURN_T 

2 hours 
gap 

3 hours 
gap 

5 hours 
gap 

6 hours 
gap 

10 hours 
gap 

15 hours 
gap 

MICE 8 weeks: High cor-
relations 

3.74 3.72 3.23 3.31 3.25 3.80 

Amelia 8 weeks: High 
correlations 

3.96 3.91 3.19 3.23 3.54 4.28 

missForest 8 weeks: 
High correlations 

1.25 1.58 1.70 1.85 1.27 1.54 

 

 

Figure 4.9: Illustration of multiple imputation techniques with highly correlated variables for the 

first 50 hours of the week of 15 gaps of 2 hours in DH Return Temperature of Building I for 

eight weeks period 

Figure 4.9 illustrates the same gap-filling process for the first 50 hours on 15 gaps of 2 

hours for DH Return Temperature in Building I and in accordance with this, Table 4.12 

displays those exact points where the values were predicted for the first 50 hours as well. 
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Table 4.12: The predicted values of multiple imputation methods for the first three gaps on 15 

gaps of 2 hours. 

DH Return Temperature, Building I 

Hours Original data [°C] MICE [°C] Amelia [°C] MissForest 

[°C] 

02:00 35.03 41.55 40.59 39.7 

03:00 40.4 36.58 41.91 39.89 

18:00 38.02 40.09 33.49 37.92 

19:00 39.69 39.88 38.01 39.56 

00:00 43.82 37.85 37.45 42.9 

01:00 38.48 39.28 41.8 38.21 

 

4.6.2 Scenario II with eight weeks. Multiple imputations of highly 
and medium correlated variables 

Furthermore, similarly, for the second scenario with eight weeks, multivariate analysis 

for high and medium correlation variables was carried out. Table 4.13 contains the RMSE 

values of three methods and one can observe that with the addition of medium correlation 

observations, the accuracy of the predictions of the methods improved compared to 

scenario I for eight weeks.  

Table 4.13: RMSE of multiple imputation methods with high and medium correlated variables 

for eight weeks period 

Imputation Method 

ROOT MEAN SQUARE ERROR (RMSE) 

RETURN_T 

2 hours 
gap 

3 hours 
gap 

5 hours 
gap 

6 hours 
gap 

10 hours 
gap 

15 hours 
gap 

MICE 8 weeks: High and 
Medium Correlations 

2.15 2.37 2.38 2.78 2.83 2.96 

Amelia 8 weeks: High 
and Medium Correla-
tions 

3.72 3.84 3.59 3.08 3.62 3.48 

missForest 8 weeks: 
High and Medium Cor-
relations 

0.87 1.03 1.23 1.35 1.01 1.21 
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MICE performed better than Amelia for all time-gap scenarios unlike all other scenarios 

analysed previously and the total accuracy for DH Return Temperature improved from 

21.1 °C to 15.5 °C compared to the eight weeks data with only highly correlated analysis. 

The same pattern was recorded for Amelia and missForest too by 0.8 °C and 2.49 °C 

accuracy improvement as well, respectively. 

In comparison with the scenario of high and medium correlation for two weeks, MICE 

and Amelia worsened the accuracy, despite having more data observations to predict and 

increase the RMSE values as opposed to missForest where better accuracy was detected 

than in the previous scenarios. 

 

Figure 4.10: Illustration of multiple imputation techniques with high and medium correlated 

variables for the first 50 hours of the week of 15 gaps of 2 hours in DH Return Temperature of 

Building I for eight weeks period 

Similarly, Figure 4.10 demonstrates the illustration of three methods predictions with 

high and medium correlations for the first 50 hours on 15 gaps of 2 hours for DH Return 

Temperature in Building I for eight weeks. It is readily detectable that the orange line 

representing Amelia has a greater distortion than those of MICE and missForest which is 

also proved by their accuracy result provided in Table 4.13. 
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4.6.3 Scenario III with eight weeks. Multiple imputations of all cor-
related variables  

The last scenario of this group is on all correlated variables included for prediction 

analysis for eight weeks. For the previous scenarios, the result was predominantly im-

proved by the addition of variables to the analysis. The result of this scenario is provided 

in Table 4.14 and compared to the previous case, where there was a clear leader and 

outsider, despite missForest showing the best accuracy result, this time the least accurate 

result for the time-gap scenario was interchanging between MICE and Amelia as it 

happened for almost all other scenarios. 

Table 4.14: RMSE of multiple imputation methods with all correlated variables for eight weeks 

period 

Imputation Method 

ROOT MEAN SQUARE ERROR (RMSE) 

RETURN_T 

2 hours 
gap 

3 hours 
gap 

5 hours 
gap 

6 hours 
gap 

10 hours 
gap 

15 hours 
gap 

MICE 8 weeks: All cor-
related variables 

2.05 2.27 2.85 4.94 2.92 2.75 

Amelia 8 weeks: All cor-
related variables 

2.74 2.69 2.56 2.30 2.59 2.85 

missForest 8 weeks: All 
correlated variables 

1.25 1.44 1.35 1.41 1.04 1.46 

 

In general, as opposed to the total RMSE values of two weeks, eight weeks accuracy did 

not demonstrate the same variable sensitivity. In other words, for two weeks of analysis, 

each of the methods performed better by the addition of variables where they had the best 

accuracy rate when all the correlated variables were considered. In contrast, the same 

consistency was not observed for eight weeks RMSE values as can be seen in Table 4.15. 

Even though one can see that by expanding the window with the data set and hence having 

more data, the accuracy bettered for all the respective correlation scenarios in missForest. 

However, MICE and Amelia showed the opposite outputs each of them decreasing their 

RMSE values for all of the scenarios of eight weeks.  

Hence, one can conclude that the prolongation of the week and thus more observations to 

learn might be beneficial for missForest, but there was not a substantial difference when 

the week was expanded. In the meantime, the two other techniques worsened their 

accuracies. 
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Figure 4.11: Illustration of multiple imputation techniques with all correlated variables for the 

first 50 hours of the week of 15 gaps of 2 hours in DH Return Temperature of Building I for 

eight weeks period 

The illustration of the methods of the first 50 hours on 15 gaps of 2 hours with all 

correlated variables for DH Return Temperature in Building I is given in Figure 4.11. 

Likewise in scenario II for eight weeks, Amelia had the least accurate RMSE value and 

it can be readily observed in the plot denoted by orange, while the yellow (missForest) 

appears to be the closest to the original data. 

 

Table 4.15: Total RMSE values of each method at each scenario for two and eight weeks 
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Table 4.16: Total RMSE values of each method at each scenario for two and eight weeks (con-

tinued) 

 

4.7 Global Score 

After all the scenarios have been implemented, we are required to come up with a formula 

to assess which method performed and showed the best accuracy across all data sets. As 

was discussed earlier, overall, mainly two methods were proposed based on univariate 

and multivariate analysis. For each of them, 6 time-gap scenarios were created and for 

multiple imputation methods additional seven scenarios were carried out with alterations 

of correlation coefficient variables and the prolongation of the week. Hence, we shall 

observe by proposing a formula which would suggest the best method for four data sets 

with all their variables where those techniques were applied. 

As a result, the following GS is suggested which would first obtain the sum of each 

method for time-gap scenarios in each variable and then, normalise them based on their 

corresponding specific variable analysis. In other words, each method applied for that 

variable is divided by the least accurate method in that variable. Consequently, sum of 

each normalised RMSE value for that specific method for each variable in each of the 

data set would give us the GS we aim to reach: 

missForest: High correlation 9.99 9.20 

Scenario II 

MICE: High and Medium correlations 15.33 15.47 

Amelia:  High and Medium correlations 14.76 21.33 

missForest:  High and Medium correlations 8.57 6.71 

Scenario III 

MICE All: All correlations 13.91 17.79 

Amelia All: All correlations 12.79 15.74 

missForest: All correlations 8.41 7.94 
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𝐺𝑆 =
∑ 𝑅𝑀𝑆𝐸𝑖(𝑅𝑒𝑡𝑢𝑟𝑛_𝑇)

6
𝑖=1

𝑚𝑎𝑥 (∑ 𝑅𝑀𝑆𝐸𝑖(𝑁))6
𝑖=1

+
∑ 𝑅𝑀𝑆𝐸𝑖(𝐹𝑙𝑜𝑤_𝑇)

6
𝑖=1

𝑚𝑎𝑥 (∑ 𝑅𝑀𝑆𝐸𝑖(𝑁))6
𝑖=1

+
∑ 𝑅𝑀𝑆𝐸𝑖(𝑃𝑜𝑤𝑒𝑟)

6
𝑖=1

𝑚𝑎𝑥 (∑ 𝑅𝑀𝑆𝐸𝑖(𝑁))6
𝑖=1

+  
∑ 𝑅𝑀𝑆𝐸𝑖(𝐷𝐻𝑊_𝐹𝑙𝑜𝑤_𝑇)

6
𝑖=1

𝑚𝑎𝑥 (∑ 𝑅𝑀𝑆𝐸𝑖(𝑁))6
𝑖=1

+
∑ 𝑅𝑀𝑆𝐸𝑖(𝑆𝐻_𝐹𝑙𝑜𝑤_𝑇)

6
𝑖=1

𝑚𝑎𝑥 (∑ 𝑅𝑀𝑆𝐸𝑖(𝑁))6
𝑖=1

+
∑ 𝑅𝑀𝑆𝐸𝑖(𝑆𝐻_𝑅𝑒𝑡𝑢𝑟𝑛_𝑇)

6
𝑖=1

𝑚𝑎𝑥 (∑ 𝑅𝑀𝑆𝐸𝑖(𝑁))6
𝑖=1

 

 

(4.4) 

Where 𝑖 − the number of time-gap of scenarios, which is used for all the cases such as 15 

gaps of 2 hours, 10 gaps of 3 hours, etc., 𝑁 − number of the imputation methods applied 

for the variable analysis.  

It should be noted that GS does not have a unit as it is a sum of the accuracies of Tem-

peratures and Heating Power. Hence, GS is computed for all data sets and after they are 

summed to obtain the final outcome. GS of four data sets for each of the methods and 

scenario performed are summarised in Table 4.17. One can see that the table is divided 

into four sections according to the methods and scenarios applied. 

The first is the GS of univariate imputation methods starting from Linear Interpolation to 

Mean and Median which was based on the time series package and the functions within 

that package. The total sum of all RMSE values of four data sets and their total 23 

variables upon which filling the gaps techniques were applied was provided in the GS 

section. The colour pattern for most of the univariate analyses is around orange and 

yellow implying they are one of the least accurate when compared to multiple imputation 

methods. As expected, univariate techniques analyse only the variable itself and thus 

filling the gaps based on the observation of those variables excluding the impact of other 

data in the set. According to the result, one can observe Mean and Median finished with 

the least accurate result not only for the section but for all types of methods with 19.6 and 

20 GS values, respectively. This happened due to the replacement of the gaps with the 

same value for all the missing points and subsequently, decreasing the accuracy. LOCF 

and NOCB were not far from the previous methods, despite showing high accuracy for 

certain variables at times. On the other hand, the Moving Average and its variations 

showed similar outcomes predominantly ranging between the GS score of  9 and 10. 

Whereas, Linear and Stineman Interpolations displayed the best accuracy for univariate 

imputation methods with the score of respectively 8.54 °C and 8.67 °C. 
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Table 4.17: Total GS of all imputation methods with every scenario applied 

 

 

 

Imputation Method Global Score 

Univariate Imputation Methods 

Linear Interpolation 8.54 

Spline Interpolation 13.81 

Stineman Interpolation 8.67 

LOCF 12.11 

NOCB 12.99 

Moving average k =2 9.49 

Moving average k =4 9.48 

Moving average k =6 9.98 

Moving average k =8 10.83 

Exp.weighted avrg k=2 9.31 

Exp.weighted avrg k=4 9.14 

Exp.weighted avrg k=6 9.08 

Exp.weighted avrg k=8 9.14 

Lin.weighted avrg k=2 9.37 

Lin.weighted avrg k=4 9.26 

Lin.weighted avrg k=6 9.46 

Lin.weighted avrg k=8 9.89 

Mean Value 19.62 

Median Value 19.96 

Multivariate Imputation methods for two weeks data 

MICE 2 weeks: High correlations  7.18 

Amelia 2 weeks: High correlations 6.66 

missForest 2 weeks: High correlations 4.69 

MICE 2 weeks: High and medium correlations 6.68 

Amelia 2 weeks: High and medium correlations 6.48 

missForest 2 weeks: High and medium correlations 4.61 

MICE 2 weeks: All correlated variables 6.15 

Amelia 2 weeks: All correlated variables 5.78 

missForest 2 weeks: All correlated variables 4.29 

Multivariate Imputation methods for two weeks data based only on weather 
data 

MICE Weather 13.93 

Amelia Weather 14.84 

missForest Weather 8.39 

Multivariate Imputation methods for eight weeks data 

MICE High 8 weeks: High correlations 8.58 

Amelia High 8 weeks: High correlations 8.94 
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Table 4.18: Total GS of all imputation methods with every scenario applied (continued) 

 

The second part is dedicated to multiple imputation methods for two weeks period, the 

same as for single imputations. Furthermore, three scenarios depending on the correlation 

coefficients were tested. One can identify that the GS values were considerably improved 

compared to the previous section, especially missForest had less GS value than the score 

of Linear Interpolation which performed the best for its corresponding section. Another 

consistency was noticed for the addition of more variables where the result bettered each 

time. This means with all the correlated variables multiple imputation methods showed 

the best score than for the scenario with only strong or string and medium correlations. 

For instance, MICE, Amelia, and MissForest improved by 1.03 °C, 0.51 °C, and 0.4 °C 

at the last scenario in accordance with the first case. Hence, each method appeared to be 

variable sensitive for the proposed combinations. 

On top of that, one of the tested experimental cases was the physical computation on DH 

Return Temperature. It was performed considering the physical formula and was useful 

only for DH Return Temperature, DH Flow Temperature, and Heating Power. The idea 

was to examine if the multivariate analysis would be able to identify that correlation yet 

one can see that the results were not as accurate as the physical computation. This is 

because the physical computation result was virtually the same as the measurements, 

while multiple imputation methods had considerably worse accuracy than that of formula-

based calculation. 

Whereas the third section demonstrated the analysis on the scenarios where only weather 

variables were used for the prediction of the gaps. Therefore, according to their GS score, 

they were not as successful as in the case of the contribution of smart energy meter 

variables. It is readily observed that their score dropped by two times compared to the 

scenario where the energy data correlation was included. In addition to that, despite 

examining the case with many variables, weather-based multiple imputations, in 

missForest 8 weeks: High correlations 4.57 

MICE 8 weeks: High and medium correlations 8.11 

Amelia 8 weeks: High and medium correlations 8.95 

missForest 8 weeks: High and medium correlations 4.37 

MICE 8 weeks: All correlated variables 7.98 

Amelia 8 weeks: All correlated variables 8.04 

missForest 8 weeks: All correlated variables 4.03 
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particular MICE and Amelia showed one of the worst GS values along with Mean, 

Median, and Spline Interpolation. 

At last, the GS score of the same multiple imputation methods for eight weeks period is 

computed. It is more relatable to compare the result with the second section where there 

were the same conditions but fewer data of two weeks. It is shown that the only method 

which had an improvement was missForest, yet there was not a considerable increase. On 

the other hand, the GS value of MICE and Amelia witnessed decreases compared to the 

GS value of two weeks period. 

However, taking into account the particular features of the smart energy meters which 

record all the variables at once, when the missing point appears in one of them then there 

will be missing values for all the variables of the smart meter for that time. Hence, the 

best-performing methods of univariate imputations can be compared solely to the analysis 

when only the weather data was contributing to the prediction of the missing points in 

multiple imputations. Consequently, as one can see Linear and Stineman Interpolations 

(the best GS values among single imputation methods) have GS values of 8.54 and 8.67. 

Whereas the best GS value for weather data correlation-based multiple imputations was 

missForest with a GS value of 8.39. As a result, there was not a substantial increase in the 

accuracy compared to the univariate imputation methods when the multiple imputations 

applied using only the correlation between the variable with missing points and the 

weather data. 

 

 

 

 

 

 

 

 

 



  -61- 

5 Conclusion and future work 

The thesis aimed to assess univariate and multivariate imputation methods on energy data 

along with the impact of the weather variables on an accuracy basis with the proposed 

Global Score (GS). The study suggested that, generally, multivariate analysis is more 

accurate in the prediction and can be more flexible as it composes the examination of the 

many variables and their effect on the missing points. Whereas the essence of the working 

mechanism of some sensors may cause some barriers to the way of applying the methods.  

The effectiveness of the gap-filling techniques was assessed, first, by Root Mean Square 

Error (RMSE) value, initially, and then summarised by the proposed GS value which is 

the sum and normalised score of each variable in each data set. For univariate analysis, 

the methods using the observations around the gaps appear to have better accuracy than 

the ones which replace the points with the same value across the data set. On the contrary, 

LOCF and NOCB which consider only the nearest two points around the gap displayed 

one of the least accurate RMSE values. Whereas Linear and Stineman Interpolations had 

the best GS value among univariate imputation techniques and none of them demon-

strated consistent increase or decrease when the gap size widened remaining with a total 

30 hours gap for all time-gap scenarios. 

For multivariate imputations, three different scenarios were examined with high 

correlations, high and medium correlations, and all correlated variables included. The 

output proposes that all of the methods had better accuracy than any of the univariate 

imputations, particularly with more than two times better GS scores compared to the best 

methods in univariate analysis.  

For sensitivity analysis, MICE, Amelia, and missForest were examined as previously. 

However, this time the range of the extracted two weeks was expanded into eight weeks 

providing more data to be used for the prediction of the gaps. Furthermore, significant 

improvements were not identified, while for some of the methods, the accuracy even 

worsened. 

However, when one gap appears in the smart energy meter data this creates the gap for 

all other variables measured by the sensor. Consequently, in real life, the implementation 

of the first three multiple imputation scenarios might be difficult or even impossible to 

achieve. For this reason, the next method on weather variables correlations were 
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implemented as if the data from the smart meter was lost they could be the only variables 

to rely on and predict the missing observations. Because the weather data was measured 

in the weather station and thus it is not related to the issue the energy sensor may face. 

The outcome suggests that, despite the Ambient Temperature having strong correlations 

with the energy data, standalone with other weather variables with negligible correlation 

coefficients, the scenario demonstrates virtually the same accuracy as the univariate tech-

niques. Specifically, the best performed for single imputation case, Linear Interpolation, 

is comparable to the best multivariate weather variables-based method (which is miss-

Forest). 

Apart from that, the physical computation can be a solution, when there are known pa-

rameters and existing mathematical formulas, and hence, the gaps can be replaced by the 

computations. On one hand, it may provide a basis upon which other machine learning 

prediction methods can be assessed for accuracy as the physical calculation shall fill the 

gaps with more accurate values. As the results demonstrate, the multiple imputation meth-

ods are not ideally intelligent meaning that they are not capable of predicting the exact 

values of the missing points. On the other hand, for the case study, where all energy var-

iables are gathered from the same sensor, the gaps appear for all variables in those missing 

points. Subsequently, this method faces the same barrier as the multiple imputation meth-

ods for correlation coefficient-based scenarios. 

In conclusion, the imputation of the missing data can be promising. Despite multiple im-

putation methods with the correlated variables demonstrating the highest accuracy, for 

the real-time case when the data is lost, the only method that manages to fill those gaps 

could be with the help of other correlated variables. If the major goal is to fill the gaps 

with proper accuracy and the missing data is significant, those correlated variables must 

come from other sensors or data sources which are not physically connected to the set 

where missing points occur. 

In a further development of the proposed methods, other existing packages can be exam-

ined with certain scenarios, and if possible more data about the building characteristics 

and occupants could be integrated into the data analysis. This might facilitate the new 

findings.  
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Appendix 

 

 

Figure A: Missing points distribution of Building III 

 

Figure B: Missing points distribution of Building IV 
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Figure C: Outlier analysis based on boxplot summary of the smart energy meter data in 

Building II. (2 weeks: March in DH Return Temperature, May in DH Flow Temperature, March 

in SH Flow Temperature, April in SH Return Temperature) 

 

Figure D: Outlier analysis based on boxplot summary of the smart energy meter data in 

Building III. (2 weeks: January in DH Return Temperature, May in DH Flow Temperature, De-

cember in SH Flow Temperature and SH Return Temperatures, and DHW Flow Temperature) 
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Figure E: Outlier analysis based on boxplot summary of the smart energy meter data in 

Building IV. (2 weeks: January in DH Return and DH Flow Temperatures, April in SH Flow 

and SH  Return Temperatures, July in DHW Flow Temperature) 

 

 




