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a b s t r a c t 

Contextual information triggers predictions about the content ( “what ”) of environmental stimuli to update an in- 

ternal generative model of the surrounding world. However, visual information dynamically changes across time, 

and temporal predictability ( “when ”) may influence the impact of internal predictions on visual processing. In this 

magnetoencephalography (MEG) study, we investigated how processing feature specific information ( “what ”) is 

affected by temporal predictability ( “when ”). Participants ( N = 16) were presented with four consecutive Gabor 

patches (entrainers) with constant spatial frequency but with variable orientation and temporal onset. A fifth 

target Gabor was presented after a longer delay and with higher or lower spatial frequency that participants 

had to judge. We compared the neural responses to entrainers where the Gabor orientation could, or could not 

be temporally predicted along the entrainer sequence, and with inter-entrainer timing that was constant (pre- 

dictable), or variable (unpredictable). We observed suppression of evoked neural responses in the visual cortex 

for predictable stimuli. Interestingly, we found that temporal uncertainty increased expectation suppression. This 

suggests that in temporally uncertain scenarios the neurocognitive system invests less resources in integrating 

bottom-up information. Multivariate pattern analysis showed that predictable visual features could be decoded 

from neural responses. Temporal uncertainty did not affect decoding accuracy for early visual responses, with the 

feature specificity of early visual neural activity preserved across conditions. However, decoding accuracy was 

less sustained over time for temporally jittered than for isochronous predictable visual stimuli. These findings 

converge to suggest that the cognitive system processes visual features of temporally predictable stimuli in higher 

detail, while processing temporally uncertain stimuli may rely more heavily on abstract internal expectations. 
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. Introduction 

Our interaction with the external environment is largely shaped
y our internal expectations ( Clark, 2013 ; Mechelli et al., 2004 ;
umford, 1992 ). In the primary visual cortex, percepts are decomposed

nto their fundamental features (such as edges, orientations, colours,
hapes) and dissociable correlates of such representational properties
an be decoded from neural signals ( Carlson et al., 2019 ; Pantazis et al.,
018 ). These features are the building blocks that determine the percep-
ual content – “what ” we perceive a stimulus to be. Perception of content
s largely modulated by higher level processes. Predictive processing
heories propose that an internal mental model of the surrounding envi-
onment is used to generate inferences about the external causes of the
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nvironmental energy impacting our senses ( Spratling, 2017 ). Support-
ng this view, responses in the visual cortex to predictable visual stimuli
ave reduced amplitudes and are processed at shorter latencies than
npredictable stimuli ( Hogendoorn and Burkitt, 2018 ). It is worth un-
erscoring that perception is spatio-temporal in nature since, in real life
ituations, environmental stimuli are temporally dynamic. Suppose you
ee a car coming toward you on the road. Even after determining all its
isual features ( “what ” you see, e.g., a pink Cadillac ), you will still need
o estimate when you and the car would intersect to avoid a collision.

hile certain stimuli are temporally regular (and hence temporally pre-
ictable), the temporal uncertainty of the natural environment is very
igh. 
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Studies on visual perception have paid relatively less attention to
emporal ( when ) than to content ( what ) predictability ( Demarchi et al.,
019 ; Kok et al., 2017 ; but see Nobre et al., 2007 ). The effect of temporal
ittering has been explored intensively in visual attention studies that
ocused on the estimation of the spatial location of a stimulus ( Coull and
obre, 1998 ). 

The role of timing in predictive processing in vision has mainly been
tudied in relation to the perception of objects in motion. The visual
ystem requires a certain amount of time to process incoming sensory
nformation ( Blom et al., 2020 ; Maunsell and Gibson, 1992 ). Yet, the
eurocognitive system must rapidly extrapolate the trajectory of mov-
ng objects to expedite actions. Predictive processing accounts propose
 compensatory mechanism to support such extrapolations: the system
enerates predictions about incoming stimuli, which trigger visual re-
ponses before the temporal onset of the actual stimulation. Research
n the perception of moving objects thus underscores that what and
hen stimulus properties are strongly interwoven and shape human per-
eption. Here we focus on the modulation of “expectation suppression ”
ffects ( Grill-Spector et al., 2006 ) to evaluate how predictive process-
ng of “what properties ” is affected by the manipulation of “when prop-
rties ”. Specifically, we test the hypothesis that temporal uncertainty
nhances predictive processing of stimulus content. We base this hy-
othesis on the theoretical claim that sensory systems require internal
redictions in order to deal with uncertainty in the external environ-
ent; increased uncertainty leads to increased reliance on predictive
rocessing ( Clark, 2013 ). 

Repetition suppression or, more generally, expectation suppression 1 

s a ubiquitous phenomenon in the processing of repeating stimuli - and
eveals some of the principles of predictive processing. Specifically, in
he setting of predictive coding ( Rao and Ballard, 1999 ; Srinivasan et al.,
982 ) repetition suppression is often cast in terms of a progressive re-
uction in the amplitude of evoked responses due to a reduction in pre-
iction errors. In other words, as sensory learning furnishes more ac-
urate predictions of predictable stimuli, the prediction error falls and
euronal responses are attenuated ( Garrido et al., 2009 ). However, this
uppression rests upon the predictability of successive stimuli, which,
tself, has to be inferred by the brain. In predictive coding, this infer-
nce is usually thought of in terms of the precision of prediction errors,
.e., an estimate of predictability ( Ainley et al., 2016 ; Auksztulewicz and
riston, 2016 ; FitzGerald et al., 2015 ; Haarsma et al., 2020 ; Kok et al.,
012 ; Pinotsis et al., 2014 ; Shipp, 2016 ; Spratling, 2017 ; Sterzer et al.,
018 ). 

In brief, predictive coding accounts state that ascending prediction
rrors are used to update environmental models at higher hierarchi-
al levels, which then supply descending predictions to form predic-
ion errors via the comparison with stimulus information. The degree
o which an environmental event is predictable determines the preci-
ion or weight assigned to the prediction and prediction error lead-
ng to the notion of precision weighted prediction errors ( Bastos et al.,
012 ; Clark, 2013 ; Hohwy, 2013 ). Mathematically, precision weighting
imply affords more weight to more predictable sources of information
hereby enabling precise prediction errors to have more influence on
elief updating. Technically, this is sometimes referred to as Kalman
ain in Kalman filtering formulations of predictive coding ( Rao and
allard 1999 ). Physiologically, this is usually thought to be mediated
y changes in postsynaptic gain or excitability of the sort that medi-
tes attentional gain ( Feldman and Friston 2010 ). According to such a
ormulation, there are dual determinants of evoked responses; namely,
1 In many paradigms such as the roving mismatch paradigm, repetition sup- 

ression is apt for describing the successive reduction in the amplitude of evoked 

esponses to repeated stimuli. However, in the context of our design, the stimuli 

re not repeated but have certain attributes that can be predicted from previ- 

us stimuli. In this more general setting, it is probably better to think of the 

uppressive effects as mediated by predictions or expectations based upon past 

xperience; hence expectation suppression. 

n
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hanges in prediction error and changes in precision. To disentangle
hese determinants, we examined expectation suppression under differ-
nt levels of predictability. Our hypothesis was that expectation suppres-
ion would, itself, be attenuated when certain attributes (in the present
tudy the stimulus timing) were unpredictable. An interesting corollary
f precision weighted prediction errors in the brain is the representa-
ional sharpening that accompanies more precise priors and prediction
rrors ( Kok et al., 2012 ). This underscores our second hypothesis that
he ability to decode stimulus attributes from evoked neuronal responses
epends upon predictability. We addressed this hypothesis using multi-
ariate analyses and decoding accuracy. 

In the present MEG study, participants viewed four consecutive Ga-
or patches (henceforth entrainers ), then had to make a spatial frequency
udgment on a fifth target Gabor. Entrainers followed either a predictable
r unpredictable sequence of orientations and had either isochronous or
ittered onset times. Formally, our design can be thought of as a facto-
ial design with three factors. First, the stimulus factor with four levels
f entrainment ( entrainers 1 to 4, that are followed by the target, see
ig. 1 ). The remaining two factors constitute a 2 × 2 design in which
he spatial (the Gabor orientation reflecting the what factor) attributes
ere and were not predictable - and the stimulus onsets ( when factor)
ere (fixed SOA of 400 ms) and were not (average SOA of 400 ms ±
30 ms) predictable. This enabled us to examine the interaction between
xpectation suppression and predictability to test the hypothesis that
ifferent sources of predictability attenuated expectation suppression.
e planned four main analyses. Firstly, we expected neural responses

o entrainers to gradually decrease in amplitude across four-element se-
uences when orientations were predictable due to expectation suppres-
ion. Secondly, we hypothesized that if the cognitive system handles
emporal uncertainty by increasing its reliance on internal predictions,
xpectation suppression should be larger for onset-jittered compared to
nset-isochronous entrainers. Thirdly, we expected multivariate pattern
nalysis (MVPA; Pantazis et al., 2018 ; King et al., 2016 ; Cichy et al.,
014 : Grootswagers et al., 2017 ) to reveal increasingly high decoding
ccuracy of entrainer orientation for predictable entrainers, s, reflecting
he brain’s incrementally higher reliance on predictions for successive
abor orientations. Finally, we planned to analyze the time course of en-

rainer orientation classification results to understand how (both what

nd when ) predictability affects the stimulus specificity of the neural
esponses. 

. Methods 

.1. Participants 

From the initial set of twenty participants, we included data from
ixteen participants (7 females; age range: 19–31; M = 24.8; SD = 3.6)
n our analyses. Two participants were excluded from the study as
hey did not complete the whole experiment and two more were ex-
luded from the study due to excessive motion artifacts in their data.
he ethical committee and the scientific committee of the Basque Cen-
er on Cognition, Brain and Language (BCBL) approved the experi-
ent (following the principles of the Declaration of Helsinki). Partic-

pants gave written informed consent and were financially compen-
ated. The participants were recruited from the BCBL Participa web-
ite ( https://www.bcbl.eu/participa/ ). Participants did not present any
eurological or psychological disorders, and had normal or corrected to
ormal vision. 

.2. Experimental procedure 

A series of Gabor patches with variable orientations and spatial fre-
uencies (measured in cycles per degree [CPD] of visual angle) was pre-
ented. Stimuli were back-projected on a screen placed 60 cm from each
articipant’s nasion. The Gabors were presented in the center of the

https://www.bcbl.eu/participa/
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Fig. 1. Experimental design. A) Orientations 

and timing of upcoming entrainers and target 

are predictable ( what + when condition). B) Ori- 

entations of upcoming entrainers and target are 

not predictable but the timings are predictable 

( when condition). C) Orientation of upcoming 

entrainers and target are predictable but the 

timing is not predictable ( what condition). D) 

Orientations and timing of upcoming entrain- 

ers and target are not predictable ( random con- 

dition). Abbreviations: E1 – Entrainer 1, E2 –

Entrainer 2, E3 – Entrainer 3, E4 – Entrainer 4, 

ISI – Inter Stimulus Interval. 
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creen on a gray background, covering the central two degrees of the
isual field. Each trial began with a fixation cross (black color) followed
y four sequential Gabor patches (entrainers), each presented for 200 ms
ollowed by an interstimulus interval showing an empty gray screen. Af-
er a longer interstimulus interval, a fifth Gabor (target) was presented
or 200 ms. The entrainers had an intermediate spatial frequency (40
PD), while the target could have either a higher (60 CPD) or lower
20 CPD) spatial frequency. Participants were required to indicate if the
arget had a higher or lower spatial frequency than the entrainers using
 button press. 

Four properties of these sequences were experimentally manipulated
 Fig. 1 ): a) the orientation of the target was either horizontal or verti-
al; b) the spatial frequency of the target was either higher or lower than
he spatial frequency of the entrainers; c) the orientation of the target
as either predictable based on the orientations of previous entrainers

i.e., clockwise or counter/clockwise rotations of either 15 or 30°; e.g.,
ntrainers of 30, 45, 60, 75 and a target of 90°) or unpredictable (a ran-
om selection from a set of 15 or 30° rotations; e.g., 30, 75, 60, 45 and
 target of 90°); d) the timing of the interstimulus intervals (blank gray
creens) between the four entrainers and between the last entrainer (en-
rainer 4) and the target was either predictable (i.e., fixed interstimulus
ntervals of 200 ms between entrainers and 600 ms between entrainer 4
nd the target) or unpredictable (varying interstimulus intervals rang-
ng between 70 and 330 ms between entrainers and 370 and 850 ms
etween entrainer 4 and the target). 

Depending on the timing and orientation of the entrainers and tar-
et, trials were divided into four conditions ( Fig. 1 ): (i) in the what + when

ondition, both the timing and the orientations of successive entrainers
 and the final target Gabor -were predictable; (ii) in the when condi-
ion, timing was predictable but orientations were unpredictable. (iii)
n what condition, successive entrainers and target orientations were
 t  

3 
redictable but timing was unpredictable; (iv) in the random condition
oth orientations and timing were unpredictable. 

A total of 160 trials were presented in each condition (80 horizontal
nd 80 vertical targets, randomly assigned 80 high and 80 low spatial
requencies) for a total of 640 trials per participant. 80 localizer trials
or horizontal and vertical targets were also acquired while participants
imply fixated the center of the screen. 

On each trial, participants had to indicate whether the target had a
igher or a lower spatial frequency [CPD] than the preceding entrainers.
articipants responded by pressing a button with their left or right hand,
ith the response hand counterbalanced across participants. A short op-

ional break (participants pressed the button when they were ready to
ontinue) was available after every 12 trials, and a longer mandatory
reak took place every 60 trials (the MEG researcher pressed a button
rom the operating console to pause and restart the presentation). 

.3. Data acquisition and preprocessing 

MEG data were acquired in a magnetically shielded room using the
hole-scalp MEG system (Elekta-Neuromag, Helsinki, Finland) installed
t the BCBL ( http://www.bcbl.eu/bcbl-facilitiesresources/meg/ ). The
ystem is equipped with 102 sensor triplets (each comprising a magne-
ometer and two orthogonal planar gradiometers) uniformly distributed
round the head of the participant. Head position inside the helmet was
ontinuously monitored using four Head Position Indicator (HPI) coils.
he location of each coil relative to the anatomical fiducials (nasion,

eft and right preauricular points) was defined with a 3D digitizer (Fas-
rak Polhemus, Colchester, VA, USA). This procedure is critical for head
ovement compensation during the data recording session. Digitaliza-

ion of the fiducials plus ~300 additional points evenly distributed over
he scalp of the participant were used during subsequent data analysis to

http://www.bcbl.eu/bcbl-facilitiesresources/meg/
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Fig. 1. Continued 
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p  
patially align the MEG sensor coordinates with T1 magnetic resonance
rain images acquired on a 3T MRI scanner (Siemens Medical System,
rlangen, Germany). MEG recordings were acquired continuously with
 bandpass filter of 0.01–330 Hz and a sampling rate of 1 kHz. Eye move-
ents were monitored with two pairs of electrodes in a bipolar montage
laced on the external canthus of each eye (horizontal electrooculogram
EOG)) and above and below the right eye (vertical EOG). Similarly,
lectrocardiogram (ECG) was recorded using two electrodes, placed on
he right side of the participant’s abdomen and below the left clavicle. 

Continuous MEG data were pre-processed off-line using the temporal
ignal-Space-Separation (tSSS) method (Taulu & Simola, 2006) which
uppresses external electromagnetic interference. MEG data were also
orrected for head movements, and bad channel time courses were re-
onstructed in the framework of tSSS. Subsequent analyses were per-
ormed using Matlab R2014b (Mathworks, Natick, MA, USA). 

.4. Behavioural data 

Behavioural responses to the spatial frequency [CPD] task (on the
arget) were evaluated in terms of accuracy and Response Times (RTs)
or all four conditions ( what + when, when, what, and random ). Trials with
esponse times longer than 1500 ms were considered to be outliers and
ere removed from the analysis. The mean RT and standard deviation
as computed for each experimental condition. 

.5. Sensor level event-related fields (ERFs) 

MEG trials were corrected for jump and muscle artifacts using stan-
ard automated scripts based on the Fieldtrip toolbox ( Oostenveld et al.,
011 ) implemented in MATLAB 2014B Heartbeat and EOG artifacts
ere identified using Independent Component Analysis (ICA) and lin-
4 
arly subtracted from the MEG recordings. The ICA decomposition (30
omponents extracted per participant) was performed using the FastICA
lgorithm. ICA components maximally correlated with EOG and ECG
ecordings were automatically removed. On average, two components
ere removed per participant. The artifact-free data were bandpass fil-

ered between 0.5 and 45 Hz. Trials were segmented time-locked to each
f the entrainers (entrainers 1, 2, 3, and 4) and the target. The trial seg-
ents were grouped together for each entrainer and target, and then

veraged to compute the ERFs. For each planar gradiometer pair, ERFs
ere quantified at every time point as the Euclidean norm of the two
radiometer signals. Baseline correction was also applied to the evoked
ata based on the 400 ms of data prior to the onset of the fixation cross
resented at the beginning of each trial. 

In brief, we will first describe the analysis of the sensor level data
o establish expectation suppression and its interactions with different
inds of predictability. We then move on to a more detailed analy-
is of the functional anatomy of expectation suppression using source
onstructed data. We applied an ANOVA to sensor-level data to ex-
lore the influence of our experimental factors on visual ERFs. First,
e extracted ERF amplitudes in the set of five occipital sensors that
ad shown maximum response to the visual localizers. We then selected
he time window classically associated with the initial visual evoked
esponse (85–135 ms post stimulus). A three-way repeated measures
NOVA was computed in JASP ( JASP Team, 2020 ) with these ampli-

ude values as dependent variables and the following factors: entrainer
four levels; corresponding to entrainers 1, 2, 3, 4); what (two levels;
redictable/unpredictable entrainer and target orientations); and when

two levels; predictable/unpredictable timing of entrainers and target).
Significant interactions (specifically, the triple interaction “entrainer

 what ∗ when ”) were further investigated through theoretically relevant
airwise comparisons. Pairwise comparisons between conditions were
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erformed using a cluster-based permutation test (Maris & Oostenveld,
007). A randomization distribution of cluster statistics was constructed
or each subject over time and sensors and used to evaluate whether
onditions differed statistically over participants. In particular, t-values
ere computed for each sensor (combined gradiometers) and each time
oint during the 0–270 ms time window, and were clustered if they had
-values that exceeded a t-value corresponding to the 99.99th percentile
f Students t-distribution, i.e. a two-tailed t -test at an alpha of 0.01,
nd were both spatially and temporally adjacent. Cluster members were
equired to have at least two neighboring channels that also exceeded
he threshold to be considered a cluster. The sum of the t-statistics in
 sensor cluster was then used as the cluster-level statistic, which was
hen tested by permuting the condition labels 1000 times. 

Four different comparisons were carried out. In the first comparison,
e contrasted ERFs for the when and the what + when conditions. This

omparison evaluated the effect of orientation predictability when the
iming of the entrainers and target were predictable. In the second com-
arison, we compared ERFs for the random and what conditions. This
omparison evaluated the effect of orientation predictability when tim-
ng was unpredictable. These two comparisons mainly focused on the
ain effect of orientation predictability (i.e., the what manipulation)

evealed by expectation suppression. 
We then compared the ERFs for the what + when and what conditions.

ere we directly contrasted these two predictable orientation conditions
o evaluate the effect of temporal predictability on stimulus predictabil-
ty. The final comparison contrasted ERFs in the when and random condi-
ions. This comparison was performed to analyze the effect of temporal
redictability in the absence of orientation predictability. 

.6. Source level event-related fields (ERFs) 

Source reconstruction mainly focused on the statistically more re-
iable effects observed at the sensor-level. In the present experimental
cenario, we expected to find the strongest modulation of visual evoked
esponses for the last entrainer of each predictable series, when both
hat and when expectations would be highest. 

MEG-MRI co-registration was performed using MRIlab (Elekta Neu-
omag Oy, version 1.7.25). Individual T1-weighted MRI images were
egmented into scalp, skull, and brain components using the segmenta-
ion algorithms implemented in Freesurfer (Martinos Center of Biomed-
cal Imaging, MQ; Dale et al., 1999 ). The source space was defined
s a regular 3D grid with a 5 mm resolution and the lead fields were
omputed using a single-sphere model for 3 orthogonal source orien-
ations. The lead field at each grid point was reduced to its first two
rincipal components. Whole brain source activity was estimated using
 linearly constrained minimum variance (LCMV) beamformer approach
 Veen et al., 1997 ). Both planar gradiometers and magnetometers were
sed for inverse modeling. The covariance matrix used to derive LCMV
eamformer weights was estimated from the pre- and post-stimulus data
n the pre-stimulus (from 400 ms prior to fixation cross onset) to post-
timulus (400 ms after the presentation of the target) time range. 

The LCMV beamformer focused on the (baseline corrected) evoked
ata in the time period 85–125 ms post-stimulus (when ERF peak am-
litude across participants at the sensor level was largest). A non-linear
ransformation using the spatial-normalization algorithm (implemented
n Statistical Parametric Mapping SPM8: Friston et al., 1994 ) was em-
loyed to transform individual MRIs to the standard Montreal Neuro-
ogical Institute (MNI) brain. Transformed maps were further averaged
cross participants. Freesurfer’s tksurfer tool was used to visualize the
rain maps in MNI space. For each condition (at entrainer 4, E4), we
btained the source value and the MNI coordinates of local maxima
sets of contiguous voxels displaying higher source activation than all
ther neighbouring voxels; Bourguignon et al., 2018 ). 

Source activity was compared between conditions (e.g., when vs.
hat + when, random vs. what, what vs. what + when and when vs . random )
y extracting a peak value within a 5 mm sphere around the common lo-
5 
al maximum in the source space. We used t-tests to evaluate differences
etween conditions across participants. 

.7. MVPA (Multivariate pattern analysis) 

A MVPA approach ( Pantazis et al., 2018 ; King et al., 2016 ;
ichy et al., 2014 : Grootswagers et al., 2017 ) was used to evaluate the
timulus-specificity of the visual neural response across time in the ex-
erimental conditions. To validate our method we decoded both the
eature of interest in the present experimental manipulation (i.e., the
abor orientation) and a control feature of that same stimulus (i.e., its

patial frequency, or CPD). 
Time-resolved within-subjects MVPA was performed to decode the

eatures (i.e., the orientation and spatial frequency) of all the Gabors
i.e., E1, E2, E3, E4 and T) from the MEG data. For E1, E2, and E3,
ata were segmented from 50 ms prior to 250 ms after the onset of the
ntrainers. The time interval between E4 and the target was longer than
he time interval between the rest of the entrainers. For this reason, for
4, the data was segmented from 50 ms prior to 600 ms after the onset
f the entrainer. For the target, the data was segmented from − 400 ms
o 550 ms. 

The data were down sampled to 200 Hz prior to the classification
rocedure. Then the data were classified separately for the orientation
nd spatial frequency of the Gabor using a linear support vector ma-
hine (SVM) classifier with L2 regularization and a box constraint of 1.
he classifiers were implemented in MATLAB 2014B using the LibLin-
ar package ( Fan et al., 2008 ) and the Statistics and Machine Learning
oolbox (Mathworks, Inc.). To decode the orientation of each Gabor, we
sed class labels derived from the target (e.g. horizontal vs vertical ori-
ntation or high vs low spatial frequency). Classification was performed
eparately at each time point. In other words, the class labels (i.e., hori-
ontal vs. vertical, higher vs. lower spatial frequency) were derived from
he target orientation. For example, if the target orientation was hori-
ontal, then all the preceding Gabor orientations in the corresponding
ondition were labelled as horizontal. A similar rationale was applied
o classifying spatial frequency. 

To improve classification, we also performed multivariate noise nor-
alization ( Guggenmos et al., 2018 ). The time-resolved error covari-

nce between sensors was calculated based on the covariance matrix of
he training set and used to normalize both the training and test sets in
rder to down-weight MEG channels with higher noise levels. 

Pseudo-trials were generated to improve SNR by averaging trials
ver bins of 10, without overlap ( Dima and Singh, 2018 ). This pseudo-
rial generation was repeated 100 times based on random ordering of the
ata to generate trials with a higher signal to noise ratio. Five-fold cross-
alidation was used to evaluate classifier performance. The data were
andomly partitioned into five sets, of which four were used to train the
lassifier and one was used for testing. The process was repeated until
ach set (fold) had been left out once, and classifier accuracy was then
veraged across folds. The trial averaging and cross-validation proce-
ure was repeated 25 times to yield more stable estimates. 

Cluster corrected sign permutation tests (one-tailed) ( Dima et al.,
018 ) were applied to the accuracy values obtained from the classifier
ith cluster-defining threshold p < 0.05, corrected significance level i.e.,

luster-alpha p < 0.01. 

. Results 

.1. Behavioural results 

On each trial, participants were asked to evaluate if the spatial fre-
uency of the target (cycles per degree) was lower or higher than that
f the entrainers. This stimulus dimension was not directly related to
he experimental manipulation of timing ( when ) and Gabor orientation
 what ). 
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Table 1 

Accuracy and Reaction Times (RTs) for each condition. 

what + when when what random 

Accuracy (Mean ± SD%) 96.56 ± 3.49 95.89 ± 4.71 96.00 ± 3.80 96.56 ± 3.33 

Reaction Times (Mean ± SD ms) 727.5 ± 204 737.4 ± 203 741.4 ± 204 752 ± 207 ms 
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Table 1 presents the accuracy and reaction time (RTs) for all four
onditions. We found no significant differences in behavioural accuracy.
owever, temporal predictability elicited faster RTs ( what + when > what

 when > random ). We fit a Linear mixed model ( lmer : R function) with
articipants and observations as random effects and what (orientation:
redictable or not), when (timing: predictable or not) and their interac-
ion as fixed effects. We observed an effect of when ( t = –2.794, p < 0.05).
rientation predictability ( what ) did not elicit statistically significant ef-

ects ( t = –1.557), probably due to that fact that, in order to perform the
ask, participants had to actively pay attention to the spatial frequency
imension of the target. 

.2. Sensor-level MEG results 

Next, we report the analysis of evoked responses to the four entrain-
rs, where visual predictions were incrementally built up. Note that
here was no explicit task related to orientation. We first analysed the
mplitude of the initial visual evoked response for 5 occipital sensors
the ones showing maximum response to the localizers) to determine
ow the two-by-two experimental design modulated visual responses
cross entrainers. In the three-way ANOVA (details in Table 1 ), we ob-
erved a significant main effect of entrainer ( p < 0.001) on the peak
mplitudes of ERFs. Interestingly, this factor interacted with the factor
hat ( p < 0.001), suggesting that Gabor orientation predictability af-

ected visual-evoked responses differently across entrainers. We should
oint out that a main effect of what ( p < 0.001) supported the observa-
ion that orientation predictability influenced visual processing. Impor-
antly, the interaction between the three factors, i.e., entrainers, what

nd when , was significant ( p = 0.004) . This triple interaction underlines
he fact that timing uncertainty influenced the development of visual
redictions across the sequence of four entrainers. 

Fig. 2 shows the sensor-level ERFs time-locked to the onset of each
ntrainer (E1, E2, E3, and E4) and target (T) for the when and the
hat + when conditions. Here, we can see the influence of orientation
redictability (expectation suppression effect) when timing was also pre-
ictable. The amplitude of the ERFs was significantly higher ( p < 0.01,
luster based permutation test) in the when than the what + when condi-
ion for E2, E3, and E4, but not for E1 and T. The amplitude enhance-
ent for the when compared to the what + when condition emerged in

he (expected) 95–105 ms, 96–110 ms, and 97–121 ms time intervals
or E2, E3, and E4, respectively. These clusters were located in occipital
ensors for all four entrainers. 

Fig. 3 shows the sensor-level ERFs for the random versus the what

onditions. This comparison highlights the expectation suppression ef-
ect when timing was not predictable. The amplitude of the ERFs was
ignificantly higher ( p < 0.01) for the random compared to the what con-
ition for E2, E3, and E4 but not for E1 and T. The amplitude enhance-
ent for the random compared to the what condition emerged within

he 95–119 ms, 94–123 ms, and 96–127 ms time intervals for E2, E3,
nd E4, respectively. These clusters were also clearly distinguishable in
ccipital sensors for all the entrainers. 

Since both comparisons involving expectation suppression were sig-
ificant from entrainer 2 onward, we compared the two orientation pre-
ictable conditions with ( what + when ) and without ( what ) temporal pre-
ictability. This comparison highlights how temporal predictability af-
ects visual predictive processing. Fig. 4 shows that initial early evoked
ctivity at E1 (0–75 ms, preceding the peak reflecting the visual evoked
esponse) is similar for both conditions. As we move across entrain-
6 
rs, these early differences increase and reach statistical significance
 p < 0.001), but this effect vanishes at the target. This differential pre-
timulus activity demonstrates that results for the two orientation pre-
ictable conditions depend on temporal predictability. Here, it is worth
oting that we used the same baseline time period (the 400 ms before
he fixation cross at the beginning of the whole trial) to test the effects
f all four entrainers (E1 to E4) and the target (T). Since our focus in
his analysis was on early evoked responses to the visual stimulus, which
howed robust expectation suppression effects across all predictable en-
rainers (see Figs. 2 and 3 ), we selected the time window from 75 to
35 ms, corresponding to the initial ERF peak reflecting early visual
rocessing, for statistical comparison. Across the four entrainers an ef-
ect emerged only at E4, where the amplitude suppression was larger
or the what than for the what + when condition in a cluster spanning the
06–124 ms time interval. This cluster was located in occipital sensors
 Fig. 4 ). 

The differences that emerged between the two orientation pre-
ictable conditions ( Fig. 4 ) across the entrainment sequence could be
ue to carry-over effects from an earlier difference in baseline activ-
ty. To evaluate this hypothesis we also compared the two orientation
npredictable conditions ( when and random ). Here, we expected simi-
ar differential baseline activity in the 0–75 ms time interval, but no
ifference at the peak of the visual response for any entrainer. Fig. 5
hows the sensor level comparison of the ERFs for the when and random

onditions. Differences in the initial activity time-locked to the Gabor
atch are evident at E2, E3, and E4 within the 0–75 ms time range ( p <
.001, compare Figs. 4 and 5 ). This difference is not evident at E1 or T.
ince evoked responses to all the entrainers (E1, E2, E3, and E4) and T
ere baseline corrected using the same activity period before the fixa-

ion cross at the beginning of the trial, this effect could reflect temporal
redictability affecting ongoing brain activity before the initial visual
esponse to each Gabor entrainer. Importantly, we focused on the effect
f temporal predictability on the peak visual response. In the selected
ime window 75–135 ms we did not observe any statistically reliable
ffect at any entrainer. This null effect is in line with the triple inter-
ction observed in the initial overall ANOVA ( Table 1 ), supporting the
dea that temporal predictability affects visual predictive processing. 

.3. Source level ERFs 

We next identified the brain regions underlying the relevant effects
bserved at the sensor level. Source activity was estimated around the
eak amplitude of the sensor-level ERFs in the 85–125 ms interval.
hole-brain maps of source activity were created for each condition

 what + when, when, what and random ) and entrainer 4 (E4), i.e., the stim-
lus where the difference between what + when and what was statistically
ignificant ( Fig. 6 ). 

Source activity was localized in bilateral occipital regions for all con-
itions and compared to baseline at the group level. The first local max-
ma emerged in visual association areas (Brodmann Area 18: BA 18,
verage coordinate [–3, –76, –2]) of the left occipital cortex in all con-
itions. 

For this local maximum we evaluate the amplitude of source activity
cross conditions, following the same rationale described for the sensor-
evel analyses. Fig. 6 A shows the brain maps representing maximum
eak activity in the source space. Fig. 6 B shows source amplitudes with
he corresponding standard error. Source amplitude was significantly
igher for the when than the what + when condition ( t = 4.16, p < 0.05)
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Fig. 2. Sensor level ERFs for the when and what + when conditions. A) For each condition (red, when ; blue, what + when ) and stimulus (Entrainer 1 [E1], E2, E3, E4 

and Target [T]), we show the average of the event related fields (ERFs) in representative channels located above occipital regions (MEG02042/3, MEG2032/3, 

MEG2342/3, MEG2122/3, and MEG1922/3). Below we also report the ERF difference between the when and what + when (black line) conditions. gray boxes represent 

time points where the amplitude of the ERFs was higher ( p < 0.01, cluster-based permutation test) for the when than the what + when condition. B) Sensor maps of the 

7 
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Fig. 3. Sensor level ERFs for the what and random conditions. For each condition (orange, what ; green, random ) and stimulus (Entrainer 1 [E1], E2, E3, E4 and Target 

[T]), we showed the average of the Event Related Fields (ERFs) gray boxes represent time points where the amplitude of the ERFs was higher ( p < 0.01, cluster-based 

permutation test) for the random than the what condition. B) Sensor maps of ERF differences between the random and what conditions in temporal windows ([0.090 

– 0.100], [0.100 – 0.110], [0.110 – 0.120] and [0.120 – 0.130] s) around the amplitude peak value. Sensors showing significant differences ( p < 0.01, cluster-based 

permutation test) are highlighted

8 
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Fig. 4. Sensor level ERFs for the what + when and what conditions. A) For each condition (orange, what ; blue, what + when ) and stimulus (Entrainer 1 [E1], E2, E3, E4 

and Target [T]). gray boxes represent time points where the amplitude of the ERFs (in the [0.075 – 0.135] s window) was higher ( p < 0.05, cluster-based permutation 

test) for the what + when than the what condition. B) Sensor maps of the ERF difference between the what + when compared to the what condition in temporal windows 

([0.090 – 0.100], [0.100 – 0.110], [0.110 – 0.120] and [0.120 – 0.130] s) around the amplitude peak value. Sensors showing significant differences ( p < 0.01, 

l b d ) h hl h d

9 
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Fig. 5. Sensor level ERFs for the when and random conditions. A) For each condition (red, when ; green, random ) and stimulus (Entrainer 1 [E1], E2, E3, E4 and 

Target [T]). B) Sensor maps of the ERF differences between the when and the random conditions in temporal windows ([0.090 – 0.100], [0.100 – 0.110], [0.110 –

0.120] and [0.120 – 0.130] s) around the amplitude peak value. Sensors showing significant differences ( p < 0.01, cluster-based permutation test) are highlighted. 

10 
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Fig. 6. A) Brain maps representing source activity for each condition ( what + when, when, what , and random ) at Entrainer 4 (E4). We included a view of the medial 

surface and the occipital lobe of the left (LH) and the right (RH) hemispheres. B) The mean source activity in BA18 (Brodmann Area 18: xyz MNI coordinate: –3, 

–76, –2) in the four conditions at E4. Asterisks indicate significant differences across conditions. 
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nd for the random compared to the what condition ( t = 5.20, p < 0.05) at
4 . Crucially, these values were higher for the what + when than the what

ondition ( t = 2.38, p < 0.05), while no difference emerged between the
hen and random conditions. Overall, the present results confirm the
ffects observed at the sensor-level, providing a candidate location for
he generation of the expectation suppression effects reported at the
ensor level. 

.4. MVPA results 

The ERF analyses showed that the expectation suppression effect
rew incrementally larger across the four entrainers, demonstrating that
rientation predictability reduced visual processing costs, possibly due
o increased reliance on internally generated expectations. To further
orroborate the hypothesis that the visual system developed expecta-
ions for successive Gabor orientations during the entrainer sequence,
e performed the following analyses. We first checked whether the ori-

ntation of perceived Gabors could be decoded by applying a tempo-
al decoding approach to each entrainer (as a control we performed
he same analysis to decode the spatial frequencies of these Gabors).
VPA showed that only those conditions with predictable orientations

 what + when and what ) revealed above-chance and statistically signifi-
ant decoding accuracy values compared to the conditions where ori-
ntation was not predictable (see Supplementary Figures 1 and 2 for
he comparison what + when vs. when and what vs. random , respectively).
ig. 7 shows the decoding accuracy of predictable orientations in con-
itions with ( what + when ) and without ( what ) temporal predictability.
ere, we see how target orientation becomes increasingly decodable
cross entrainers (especially at E3 and E4; t -test between peak decod-
ng accuracy at E1 and E4 across participants and conditions, p < 0.01)
nd is strongest at the target. By contrast, decoding values for spatial
requencies (high vs. low CPD) were significant only at the target. This
as expected since the CPD of the target could be predicted from the

ntrainers, which had intermediate spatial frequencies; this provided a
ood baseline for target orientation decoding effects. 

Notably, decoding accuracy (at E3 and E4) was reliable within the
ime period of the initial evoked response (75–200 ms) for the two orien-
ation predictable conditions whether timing was predictable or not. No
tatistical difference between the two predictable conditions emerged in
11 
his time interval. This indicates that the neural representation of the vi-
ual stimulus was preserved independently of the amplitude of the ERF
esponses. This analysis also showed that decoding accuracy was higher
or Entrainer 4 in a later time interval (525–595 ms, p < 0.05) for the
hat + when than the what condition. This indicates that visual represen-

ations were actively maintained for a longer time period when timing
as isochronous, while the effect lasted for less time when timing was

ittered. 
It could be argued that the increase in decoding accuracy for the ori-

ntation of the target observed across entrainers could be due to the fact
hat entrainer orientations gradually approached a horizontal/vertical
rientation, making them representationally more similar to the target. .
e argue that this is not the case based on two facts. For one. if this had

een the case, we should have found large decoding accuracy even at
he first entrainer. The orientation of the first (compared to following)
ntrainer was closer to the horizontal vs. vertical orientation contrast,
hile being orthogonal to the target (if E1 was horizontal, the target
ould be vertical). The classifier should also have picked up this disso-

iation at the first entrainer (since the classifier was blind to the actual
rientation of the stimuli in any two classes and was simply trained to
valuate whether two classes of data were different). This was not the
ase (with weak and unstable accuracy for E1), indicating that the clas-
ifier was instead picking up increasing “orientation expectation ” across
he sequence of entrainers. Second, if the classifier had detected overall
isual similarity (not specific to orientation) between entrainers and the
arget, we would have expected a similar trend of increasing accuracy
o also emerge in decoding spatial frequencies (CPD). However, at E4
ecoding accuracies for spatial frequency consistently showed chance
evel accuracy. 

. Discussion 

In the present study we report robust expectation suppression effects
or predictive processing of visual Gabors. Across a series of four en-
rainers, we observed incrementally larger suppression of visual evoked
esponses when Gabor orientations were predictable, accompanied by
ncrementally improved decodability for predictable Gabor orientations.
mportantly, these effects were modulated by temporal predictability:
xpectation suppression of evoked responses was larger when the tim-



S. Nara, M. Lizarazu, C.G. Richter et al. NeuroImage 239 (2021) 118314 

Fig. 7. Time-resolved decoding accuracy for the what + when condition (blue line) and what condition (orange line) time-locked to Entrainer 1 (E1), E2, E3, E4 and 

Target (T). The coloured dots under the curves indicate the statistical significance of decoding accuracy across time. The gray box at E4 in Orientation shows the 

statistical significant differences ( p < 0.05) between what + when and what. 
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ng of the entrainers was jittered, while decodability of visual responses
as less sustained for jittered timings. These findings indicate that the
eurocognitive system invested less resources in visual analysis in tem-
orally uncertain scenarios due to precision weighting, i.e., higher re-
iance on internal predictions. 

.1. Expectation suppression effects 

The goal of our study was to evaluate how visual expectation differ-
ntially modulates prediction error depending on changes in precision
eighting due to variable temporal predictability. We mainly focused
n the expectation suppression effect ( Walsh et al., 2020 ), and in con-
rast to previous studies ( Auksztulewicz et al., 2018 ; Utzerath et al.,
017 ), (i) we did not use mismatched stimuli, and (ii) we made sure
hat participants were not aware of the experimental manipulations in
he study. Given the much debated interaction between attention and
redictive processing ( Kok et al., 2012 ), we developed an experimen-
al design which aimed to control for strategic effects related to the
rocessing of the Gabor orientation (the task required that participants
nstead focus on spatial frequencies, which were the same across condi-
ions). While the orientation manipulation was noticeable, it is impor-
ant to underscore that our participants did not report having observed
ny temporal jitter of the visual stimuli in the temporally unpredictable
onditions. 

There are several studies in which reduced neural responses for pre-
ictable stimuli have been found during passive viewing ( Alink et al.,
010 ), as well as when stimuli are fully task irrelevant ( Den Ouden
t al., 2009 ). This supports the contention that expectation suppres-
ion does not vary whether or not participants engage with the task.
owever, some authors have reported no effects from expectation sup-
ression of sensory activity when stimuli were unattended ( Larsson and
mith, 2012 ). These findings suggest that contextually predictable stim-
li may not result in any suppression of early visual neural responses
 John-Saaltink et al., 2015 ). In the present study, we found expecta-
ion suppression effects when the orientation of the entrainers was pre-
ictable and showed that these effect increased incrementally across
he entrainer sequence. We interpret this effect as demonstrating that
he visual system develops increasingly strong expectations for the spe-
ific orientation of upcoming Gabors across sequences: the stronger the
xpectation for a Gabor orientation, the larger the suppression of the
isual response. This effect was significant in the evoked responses of
he second, third and fourth entrainers ( Figs. 2 and 3 ) and was present
n conditions both with and without temporal predictability. 
12 
This visual evoked response possibly originated in visual area 2
V2), the area which showed reduced activity for predictable stimuli
ompared to unpredictable stimuli ( Fig. 6 ). The source location of the
resent effect could reflect some sort of top-down activity generated in
n extrastriate region projecting to the primary visual cortex (V1). This
ossibility should, however, be further validated (possibly by employing
irect brain recordings in non-human primates) with additional connec-
ivity analyses to investigate the bidirectional interaction between V1
nd V2 and determine if the flow of information in the top-down direc-
ion is enhanced for content predictable conditions. 

It is worth noting that this incremental effect was not mirrored in the
ehavioural responses, which probably reflect later decision processes.
n addition, expectation suppression effects evident during the entrainer
equence vanished at the presentation of the target Gabor (where partic-
pants had to perform the task). At the target, it is possible that neural
esources were largely invested in processing the task-relevant spatial
requency difference between the target and the preceding entrainer
abors. This task likely interacted with and washed out the on-going
eural expectation effects, which were observed for entrainers. It would
e interesting to evaluate how the different features of the target Ga-
or (orientation and spatial frequency) were processed in future stud-
es. This could be achieved by using a delayed cueing task in which
articipants receive a random post-target cue after target presentation
ndicating whether they should perform an orientation or spatial fre-
uency discrimination task. Another option would be to avoid the use
f any task, i.e., employ a passive viewing paradigm, to determine if the
xpectation suppression effect is nevertheless preserved. 

.2. The interaction between stimulus features and temporal predictability 

We observed a repetition suppression effect in evoked responses
ithin an early time interval, i.e., at 85–125 ms. The analysis of the
mplitude of this initial evoked response showed that there was a signif-
cant interaction between the what and when dimensions of visual stim-
li. This interaction was mainly driven by the increased suppression of
eural responses to temporally jittered vs. isochronous predictable stim-
li. It seems that the visual system generates a reduced response to an
ncoming stimulus whose onset is unpredictable compared to a stimulus
hose timing is certain. It could be argued that the visual system is not

capable of preparing ” for a temporally unpredictable stimulus. This can
e supported by the fact that the effects observed in the evoked peaks at
round 100 ms are preceded by a large difference between temporally
redictable and unpredictable conditions independently from stimulus
ontent predictability ( Figs. 4 and 5 ). 
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Table 2 

Repeated measure ANOVA with the factors entrainer (four levels, one for each en- 

trainer), what (two levels: orientation predictable or not) and when (two levels: tim- 

ing predictable or not). 

Sum of Squares df Mean Square F P 

entrainer 2.607e − 22 3 8.691e − 23 42.299 < 0.001 

what 3.430e − 23 1 3.430e − 23 65.203 < 0.001 

when 2.969e − 24 1 2.969e − 24 2.376 0.144 

entrainer ∗ what 2.572e − 23 3 8.572e − 24 18.503 < 0.001 

entrainer ∗ when 8.851e − 25 3 2.950e − 25 0.860 0.469 

what ∗ when 3.032e − 25 1 3.032e − 25 0.833 0.376 

entrainer ∗ what ∗ when 2.277e − 24 3 7.589e − 25 5.073 0.004 

Note. Type III Sum of Squares. 

Table 3 

Statistically significant classification accuracy for orientation angle and spatial frequencies (CPD) of the target Gabors across entrainers and target for the orien- 

tation predictable conditions. Time intervals indicate the windows in which accuracy was statistically above chance. n.s.: not significant. 

Feature Condition E1 E2 E3 E4 Target 

Orientation angle what + when 135 - 150 ms (56.82%) –20 - –10 ms (57.41%) 100 - 125 ms (63.07%) 95 - 215 ms (70.46%) 95 - 450 ms (78.95%) 

what 140 - 165 ms (56.88%) n.s. 125 - 160 ms (60.20%) 100 - 170 ms (68.32%) 95 - 275 ms (75.29%) 

Cycles per degree (CPD) what + when n.s. n.s. n.s. n.s. 80 - 550 ms (97.73%) 

what n.s. n.s. n.s. n.s. 85 - 550 ms (97.19%) 
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However, at around 100 ms, when the initial visual evoked response
s peaking, a difference emerges between the two content predictable
onditions ( what + when vs. what , Fig. 4 ) but not between the two con-
ent unpredictable conditions ( when vs. random , Fig. 5 ; see also Fig. 6 ).
f the reduced response found for temporally unpredictable stimuli in
he what condition (compared to what + when ) had only been driven by
he inability of the visual system to prepare for the timing of a visual
timulus (regardless of its visual properties), one would have expected
 similarly larger visual response in the random condition (compared to
hen ) as well. One potential explanation for the larger suppression of

he early evoked response in the temporally unpredictable what condi-
ion is that the visual system assigns more weight to abstract internal
redictions and less to sensory evidence when temporal uncertainty is
igher. This evidence highlights differential precision weighting of pre-
iction error in different timing scenarios and would support theoretical
laims suggesting that predictive mechanisms are essential for reducing
ncertainty about the external environment ( Clark, 2013 ). 

.3. Stimulus specific neural activity 

Expectation suppression effects provided evidence for reduced visual
rocessing for expected stimuli, but did not provide evidence for expec-
ations of specific visual representations. Our second hypothesis eval-
ated if decoding stimulus attributes from evoked neuronal responses
epends upon predictability. We thus used multivariate pattern analysis
o evaluate whether expectations regarding Gabor orientation increased
cross entrainers. Our results show that decoding accuracy for Gabor
rientations increased across entrainers when successive entrainer and
arget orientations were predictable ( Fig. 7 ). This indicates that stimu-
us predictability is a crucial factor in enhancing the accuracy of orien-
ation decoding during the presentation of entrainers. In fact, when the
timulus is not predictable, decoding accuracy remains at chance level
Supplementary Figures 1 and 2). 

Temporal predictability did not affect the decodability of the pre-
icted visual stimulus in the earlier time interval, when the early visual
voked response emerged. This indicates that the representation of the
abor orientation was stable and preserved independently of the am-
litude of the related evoked response. On the other hand, temporal
redictability differently affected orientation decoding in a later time
nterval (525–595 ms), showing that the orientation representation of
he fourth entrainer was maintained active for a longer period of time if
he timing of the stimulus was predictable. In other words, this suggests
13 
hat the visual system invests more resources and prolongs processing of
timulus features when the temporal onset of the visual stimulus is pre-
ictable. This difference mirrors the evoked effects, where we observed
tronger visual responses to temporally predictable than temporally un-
redictable conditions. The decoding results thus reinforce our hypothe-
is that prediction error responses are precision-weighted differently for
rocessing expected/temporally predictable visual stimuli, compared to
xpected/temporally uncertain visual stimuli. 

A side note regarding the decoding of spatial frequency: this feature
as constant across entrainers and conditions thus leading to chance

evel decoding for all four entrainers. At the target, however, spatial
requency showed very high decoding accuracy (around 97–98%), even
igher than orientation decoding, within the time interval related to the
nitial evoked response (~100 ms). Spatial frequency effects were also
vident slightly earlier and lasted longer than the orientation effects.
ince our task focused on the difference in spatial frequency between the
ntrainers and target, the neural system likely maintained information
egarding the spatial frequency of the target active for a longer interval
hat information regarding the orientation of the target, thus obscuring
r interfering with any on-going expectation suppression effects due to
abor orientation. 

onclusions 

In the present study we investigated the effect of temporal pre-
ictability on visual predictive processing. Our results show that tempo-
al predictability modulates processing of expected visual features. We
ound increased suppression of visual evoked responses for temporally
npredictable relative to temporally predictable visual stimuli. This may
emonstrate that the brain assigns less weight to evidence emerging at
he sensory level when timing is uncertain. 

Tables 2 and 3 

ata and code availability statement 

The MATLAB scripts used for analyzing the data, the preprint ver-
ion of the manuscript along with high resolution figures can be ac-
essed through the Open Science Foundation repository (OSF). ( https://
sf.io/bj6rd/?view_only = 68c79ba57d5940fabd8b06c244c39a74 ). Due
o the size of the whole dataset (~ 15 GB per participant) and given
imited public storage options available, we uploaded the raw and
reprocessed data from one representative participant. However, the
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ull dataset is available upon requests directed to Dr. Nicola Molinaro
n.molinaro@bcbl.eu) or Sanjeev Nara (s.nara@bcbl.eu). The full data
et could then be shared through the private BCBL secured institutional
ervers temporarily available for big data transfer. 
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