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Abstract
Many neuroimaging studies have shown that the hippocampus participates in a 
resting-state network called the default mode network. However, how the hip-
pocampus connects to the default mode network, whether the hippocampus con-
nects to other resting-state networks and how the different hippocampal subfields 
take part in resting-state networks remains poorly understood. Here, we examined 
these issues using the high spatial-resolution 7T resting-state fMRI dataset from the 
Human Connectome Project. We used data-driven techniques that relied on spatially-
restricted Independent Component Analysis, Dual Regression and linear mixed-
effect group-analyses based on participant-specific brain morphology. The results 
revealed two main activity hotspots inside the hippocampus. The first hotspot was 
located in an anterior location and was correlated with the somatomotor network. 
This network was subserved by co-activity in the CA1, CA3, CA4 and Dentate Gyrus 
fields. In addition, there was an activity hotspot that extended from middle to poste-
rior locations along the hippocampal long-axis and correlated with the default mode 
network. This network reflected activity in the Subiculum, CA4 and Dentate Gyrus 
fields. These results show how different sections of the hippocampus participate in 
two known resting-state networks and how these two resting-state networks depend 
on different configurations of hippocampal subfield co-activity.
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1  |   INTRODUCTION

One of the major neuroimaging discoveries of the past few 
decades is the observation that when a person is at rest, there 
are several sets of brain regions that become activated at dif-
ferent points in time (Smith et al., 2013; Fox et al., 2005; Van 
Den Heuvel & Pol, 2010). How these sets of regions connect 
to form whole-brain networks is one of the central questions 
of modern neuroscience research. Here, we focused on a 
brain structure called the hippocampus, a key region in many 
neurological and psychiatric diseases (Andersen et al., 2006; 
Duvernoy,  2005). While a large number of anatomical and 
functional connectivity studies have suggested that the hippo-
campus plays a role in a resting-state network called the default 
mode network (Aggleton, 2012; Blessing et al., 2016; Kahn 
et al., 2008; Libby et al., 2012; Qin et al., 2016; Ranganath 
& D'Esposito,  2001; Vincent et  al.,  2006), many aspects 
regarding the connectivity of the hippocampus to known 
resting-state networks remain unclear. For example, what 
section of the hippocampus connects with the default mode 
network? Given the extant evidence on the long-axis orga-
nization of hippocampal function (Fanselow & Dong, 2010; 
Moser & Moser, 1998; Poppenk et al., 2013; Ranganath & 
Ritchey, 2012; Strange et al., 2014), it is likely that only a spe-
cific section of the hippocampus fulfills this role. In addition, 
besides the regions of the default mode network, the hippo-
campus is typically associated with a set of anterior brain re-
gions. However, it is unclear whether these regions form part 
of a known resting-state network. Finally, the hippocampus 
has a complex internal structure that is composed out of var-
ious subfields with different cell morphology and projection 
targets (Aggleton, 2012; Insausti & Munoz, 2001; Rosene & 
Van Hoesen,  1977). Given proposed functional differences 
between the subfields (Marr, 1971; McClelland et al., 1995; 
Yassa et al., 2011), how do the different resting-state networks 
depend on the different subfields? Here, we approached these 
issues using functional connectivity (FC) derived from a high 
spatial-resolution 7T dataset from the Human Connectome 
Project (HCP). Using data-driven techniques, we first deter-
mined the precise location of hippocampal activity hotspots 
along the hippocampal long-axis, examined the FC between 
these hotspots and known resting-state networks and then 
studied the configuration of hippocampal subfield activity 
underlying the observed resting-state networks.

It is now well established that there is connectivity be-
tween the hippocampus and regions of the default mode net-
work (Fox et al., 2005; Fransson, 2005; Greicius et al., 2004; 
see Buckner & DiNicola, 2019, for a recent review). For ex-
ample, FC studies have shown that seeds placed in major de-
fault mode network regions like the precuneus and posterior 
cingulate cortex produce connectivity with the hippocampus 
(Fox et al., 2005; Fransson, 2005). However, the precise sec-
tion of the hippocampus that connects with these regions 

remains poorly understood. Anatomical studies on hippo-
campal connectivity in rodents have demonstrated that there 
are differences in connectivity between anterior (ventral) and 
posterior (dorsal) sections of the hippocampus (Fanselow 
& Dong, 2010; Poppenk et al., 2013; Strange et al., 2014). 
Specifically, these studies have found that anterior (ventral) 
hippocampus has direct connectivity with the amygdala and 
that this section of the hippocampus connects with regions 
of the medial and lateral temporal lobe through polysynaptic 
pathways. In addition, posterior (dorsal) hippocampus con-
nects with posterior midline regions like retrosplenial cortex, 
thalamus and mammillary bodies through the fornix path-
ways (Jones & Witter, 2007; Rosene & Van Hoesen, 1977). 
However, in humans, FC studies of hippocampal connectivity 
with default mode network regions have not found consistent 
results. Specifically, although a number of studies have found 
connectivity between seeds in posterior sections of the hippo-
campus and the regions of the default mode network (Adnan 
et  al.,  2016; Barnett et  al.,  2019; Kahn et  al.,  2008; Qin 
et al., 2016; Voets et al., 2014), other studies have concluded 
that seeds in anterior sections of the hippocampus connect 
with the default mode network (Blessing et al., 2016; Chase 
et  al.,  2015; Robinson et  al.,  2015; Vincent et  al.,  2006). 
Thus, while it is clear from these studies that the hippocam-
pus connects with regions of the default mode network, the 
precise section of the human hippocampus that is responsible 
for this connectivity remains unclear.

In addition, a common proposal is that besides the default 
mode network, the hippocampus has connectivity with a sec-
ond brain network (Aggleton, 2012; Kahn et al., 2008; Kahn & 
Shohamy, 2013; Ranganath & Ritchey, 2012). This so-called 
anterior network has been found to be composed out of re-
gions such as the amygdala, nucleus accumbens, orbitofrontal 
cortex and temporal pole (Aggleton, 2012; Kahn et al., 2008; 
Kahn & Shohamy, 2013; Ranganath & Ritchey, 2012). In FC 
studies, it has been observed that seeds in anterior and middle 
sections of the hippocampus connected with areas in this an-
terior network (Blessing et al., 2016; Kahn et al., 2008; Kahn 
& Shohamy, 2013; Qin et al., 2016). However, although these 
studies revealed that the hippocampus is likely connected to 
a second anterior network, it is not clear whether this net-
work can be associated with a previously identified reference 
resting-state network (e.g., Yeo et al., 2011). Linking this sec-
ond anterior network to one of the known reference resting-
state networks would enable a more broad interpretation of 
this network and may produce further insight into hippocam-
pal function during the resting state.

Finally, it is unclear how the different resting-state net-
works putatively associated with the hippocampus depend on 
its internal structure. The hippocampal formation t the Cornu 
Ammonis (CA1, CA2, CA3 and CA4), the Dentate Gyrus (DG)  
and the Subiculum (SUB) subfields. These subfields are rel-
atively small (in humans ∼1 mm in cross section; Insausti & 
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Amaral, 2003), and furthermore, they show an intricate pattern 
of folding that is preserved along the long-axis of the hippo-
campus (see Figure 1). The differences in cell morphology and 
connectivity of these subfields have motivated proposals re-
garding their functional differences (Marr, 1971; McClelland 
et al., 1995; Yassa et al., 2011). In line with such proposals, 
previous studies in monkeys and rodents have underscored the 
differences in anatomical connectivity between the CA1 field 
on the one hand, and the SUB on the other (Aggleton, 2012). 
Specifically, these studies have shown that anterior areas such 
as the amygdala, orbitofrontal cortex and nucleus accumbens, 
as well as medial and lateral temporal areas depend more on 
connectivity with the CA1 subfield, whereas posterior mid-
line areas such as the retrosplenial cortex, anterior thalamic 
nuclei and mammillary bodies are connected to the SUB 
(Aggleton, 2012; Rosene & Van Hoesen, 1977). In humans, a 

handful of studies have examined FC between the hippocam-
pal subfields and other brain regions (Dalton et al., 2019; de 
Flores et al., 2017; Shah et al., 2018; de Wael et al., 2018). 
However, the small-sized subfields pose technical challenges 
in MRI acquisition that have placed limits on the ability to 
distinguish fMRI activity between the individual subfields or 
on the ability to acquire images with whole-brain coverage 
(Carr et al., 2010). For example, some studies have looked at 
connectivity between the hippocampal subfields and regions 
within the medial temporal lobe (Dalton et  al.,  2019; Shah 
et  al.,  2018), whereas others used seeds in the hippocampal 
subfields that did not distinguish anterior from posterior hip-
pocampus (de Flores et al., 2017). Thus, these studies do not 
allow for a clear conclusion regarding the connectivity be-
tween subfields in anterior and posterior sections of the hip-
pocampus and the rest of the brain, and consequently, the way 

F I G U R E  1   Presentation of hippocampal anatomy in a given participant from the experiment. Panel A shows the location of the hippocampus 
(in orange) on the medial surface of the brain. Panel B shows the various hippocampal subfields that were detected using automatic segmentation 
procedures (see text for details) 

(a)

(b)
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the hippocampal subfields participate in known resting-state 
networks remains unclear.

In short, whereas it is clear that the hippocampus con-
nects to the default mode network, it remains unclear which 
section of the hippocampus connects to this network, 
whether the hippocampus connects to other resting-state 
networks, and how hippocampal subfields participate in 
the different resting-state networks potentially connected 
with the hippocampus. In the current study, we addressed 
these issues with an analysis approach that relied on four 
main steps. First, we relied on a data-driven approach 
called spatially-restricted group ICA to pinpoint the exact 
location of hippocampal activity hotspots during the rest-
ing state (Blessing et  al.,  2016; Formisano et  al.,  2004). 
We used a novel method to determine the optimal number 
of dimensions for the ICA. This data-driven approach of-
fers advantages over a traditional seed-based approach in 
which FC is calculated from seeds at brain locations that 
may or may not show activity in the resting state (see Zuo 
et al., 2010, for discussion). Second, we computed whole-
brain FC maps from these hippocampal activity hotspots 
using Dual Regression (Nickerson et  al.,  2017). These 
whole-brain FC maps therefore reflected the FC between 
the hippocampal hotspots identified in the previous step and 
the rest of the brain. Next, we correlated these whole-brain 
FC maps with the seven reference resting-state networks 
of Yeo et al.,  (2011) to examine the relationship between 
the activity hotspots detected inside the hippocampus and 
the resting-state networks in which they participate. Third, 
we computed group-level contrasts between the different 
FC maps using linear mixed-effect regression analyses that 
took into account the unique brain morphology of individ-
ual participants. Finally, we examined how the different 
hippocampal subfields contributed to the different resting-
state networks detected in the previous step. For this, we 
performed additional regression analyses of the individ-
ual participant's FC maps. Data analyses relied on the 7T 
dataset that is publicly available from the HCP (Van Essen 
et  al.,  2013). The 7T HCP dataset had 1.6  mm isotropic 
resolution and provided coverage of the whole brain. This 
dataset therefore leverages the high spatial resolution nec-
essary to compare signals from the hippocampal subfields 
with signals from the rest of the brain (Carr et al., 2010). 
All analyses were performed at participant-native resolu-
tions that minimized group blurring.

2  |   Methods

2.1  |  Participants

The HCP dataset consists of a large sample of participants 
with 3T acquisitions (N > 1,100) and a smaller sample with 

additional 7T acquisitions. The full HCP 7T dataset con-
sisted of 184 participants. Participants that did not meet spe-
cific HCP defined QC issues were removed from the study. 
Specifically, we removed those participants with anatomical 
anomalies (QC code A), segmentation problems in the struc-
tural pipeline (QC code B), head coil instabilities (QC code 
C) and prominent artefacts in the resting-state scans (QC code 
D). This resulted in the final set of 172 participants that were 
used for our analyses. Within this set, 104 participants were 
female, and the most common age range was between 26 and 
30  years (81 participants). The study was approved by the 
local IRB Committee (Comité de Ética de la Investigación 
y de Bienestar Animal) of the Universidad de La Laguna 
(CEIBA2017-270).

2.2  |  MRI acquisition parameters

As per the HCP reference manual, the functional data were 
collected on a 7T Siemens Magnetron scanner located at 
the Center for Magnetic Resonance Research (CMRR) 
at the University of Minnesota in Minneapolis, MN. The 
scanner uses the Nova 32-channel Siemens receive head 
coil with an incorporated head-only transmit coil that sur-
rounds the receive head coil from Nova Medical. Volumes 
were acquired using Gradient-Echo EPI. Each volume con-
tained 85 slices that were acquired with a multiband factor 
of 5. Slice thickness was 1.6 mm with no gap, the FOV was 
208 × 208 mm, and matrix size was 130 x 130, resulting 
in 1.6-mm isotropic voxels. The TR was 1,000  ms, echo 
time (TE) 22.2 ms, and the flip angle 45°. In each run, 900 
volumes were collected and lasted around 16  min. Runs 
alternated between phase encoding in the posterior-anterior 
(PA) and anterior-posterior (AP) direction. Head motion, 
cardiac and respiratory signals associated with each scan 
were not collected. Although four resting-state runs were 
collected for each participant, the current analyses used data 
from only the first two sessions (i.e. 32 min of resting-state 
per participant). This was done to limit the time and stor-
age requirements of the analyses, as well as because previ-
ous studies have demonstrated high test–retest reliability 
with rsfMRI scan durations of more than around 30 min per 
participant (Birn et al., 2013; Noble et al., 2017). During 
data acquisition, participants had to keep their eyes open 
by looking at a cross-hair on a dark background.

In addition, structural T1w and T2w images were 
available for each participant. Again as per the HCP ref-
erence manual, these images were acquired on a custom-
ized 3T Siemens Connectome Skyra scanner. The T1w 
images were acquired using a 3D-MPRAGE protocol TI/
TR/TE: 1000/2400/2.14 ms, flip angle = 80°, resulting in 
0.7 mm isotropic voxels. The T2w images were acquired 
using a 3D T2-SPACE protocol TR/TE: 3200/565 ms, flip 
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angle  =  variable, and also resulting in 0.7 mm isotropic 
voxels.

2.3  |  Preprocessing

We downloaded the Resting State fMRI 1.6mm/32k FIX-
Denoised (Compact) and Resting State fMRI FIX-Denoised 
(Extended) datasets for each participant. The datasets that 
we downloaded therefore consisted of already preprocessed 
functional data according to HCP minimal preprocessing 
pipelines (Glasser et al., 2013). Without going into details, 
a brief summary of these preprocessing steps is as follows. 
First, transformations that reduced head motion were esti-
mated using FSL MCFlirt, fieldmap and gradient distortion 
corrections were applied, and transformations from fMRI 
space to MNI space were estimated using non-linear trans-
formations. In order to minimize smoothing of the data due 
to repeated transformations, all these transformations were 
postponed, combined and applied in a single step using sinc 
interpolation. Next, the data in MNI space were temporally 
filtered using a 2000 s high-pass filter and automatically de-
noised using the FIX program (Griffanti et al., 2014; Salimi-
Khorshidi et  al.,  2014). Note that there is a long-standing 
discussion about the best method to deal with head motion 
in resting-state fMRI data (Van Dijk et  al.,  2012; Friston 
et al., 1996), and that generally speaking, ICA based meth-
ods like FSL FIX perform among the best on this issue (see 
Griffanti et al., 2014, for comparisons). We therefore think 
that head-motion issues were minimized in the HCP dataset. 
The final files were demeaned and had 1.6 mm isotropic res-
olution in MNI space. We then obtained participant-specific 
masks for CSF and WM from the wmparc atlas supplied by 
FreeSurfer and regressed out the signal from CSF and WM 
from the fMRI files.

For the structural data, we downloaded the 3T Structural 
Preprocessed and 3T Structural Preprocessed Extended 
packages. These packages contained the T1w and T2w im-
ages for each participant as well as the full FreeSurfer output 
and transformation matrices that were relevant for our down-
stream analyses (see below). For specific information on the 
preprocessing of these structural images, we refer to Glasser 
et al., (2013).

2.4  |  Analyses

The analyses were applied to the cleaned HCP dataset in four 
main steps: First, the segmentation of the hippocampal sub-
fields; second, the detection of activation clusters inside hip-
pocampus and their relationship with resting-state networks; 
third, group analysis of the obtained whole-brain connectivity 
maps; and fourth, an analysis of the relative contributions of 

the hippocampal subfields that underlie the obtained resting-
state networks.

2.4.1  |  Segmentation of hippocampal subfields

The full output from Freesurfer v5.3 (Dale et al., 1999) was 
available for each participant in the dataset. Automatic seg-
mentation of the hippocampal subfields was performed on 
this output using the Hippocampal Subfields and Nuclei of 
the Amygdala script (v21) with the 0.7 mm T2w image as 
the input (Iglesias et al., 2015). We focused here on five sub-
fields, namely, CA1, CA3, CA4, Dentate Gyrus (DG) and 
the Subiculum (SUB). In addition to these five standard sub-
fields, we also included the substructure Molecular Layer 
(ML; see Figure 1 for anatomical details of the structures in-
volved). The ML is a cell-free layer that is easily identified 
in histology and MR images. We included the ML in the re-
gression models (described below) because we hypothesized 
it would produce more accurate statistics. The ML occupies 
a key position with respect to the other subfields because 
it makes close contact with almost all other subfields (see 
Figure 1; see also Iglesias et al., 2015), and therefore includ-
ing this subfield in the analyses produces (partial) estimates 
for the major subfields that are more accurately localized. 
In addition, note also that for reasons of lack of sufficient 
contrast in MRI, it was difficult to separate CA2 and CA3 
regions, and therefore, the CA3 region also included the CA2 
region (Iglesias et al., 2015). Finally, all automatic segmen-
tations were visually checked for QC issues by identifying 
the overlap between the dark band in the T2w image and the 
detected ML by the segmentation algorithm. No issues were 
detected in this way.

2.4.2  |  Detection of activation clusters inside 
hippocampus and relationship with resting-
state networks

In the next step, we attempted to find those areas of the 
hippocampus that were activated in the context of existing 
resting-state networks. To this end, we first transformed 
each participant's aparc + aseg atlas from FreeSurfer space 
to HCP's MNINonLinear space with nearest neighbour in-
terpolation. We then multiplied the participant's cleaned and 
denoised 4D fMRI data in MNI space by the bilateral and 
binarized version of the participant-specific hippocampal 
mask extracted from the aparc + aseg atlas. This operation 
therefore produced participant-specific 4D fMRI datasets 
that only contained changes in the intensity values within 
the bilateral hippocampus. We then performed group ICA 
on this spatially restricted dataset using FSL Melodic v3.15 
with a specific number of dimensions. This specific number 
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of dimensions was determined by an optimization procedure 
that maximized, across a range of different dimensions, the 
relationship between a set of obtained independent compo-
nents (ICs) and the seven resting-state networks found by 
Yeo et  al.,  (2011). In other words, this procedure assumed 
that ICA produced a set of ICs where some of these com-
ponents were associated with known resting-state networks. 
The goal of the procedure was therefore to find the specific 
dimension that optimizes the relationship between a set of 
ICs and their corresponding resting-state networks. The main 
advantage of this procedure is that it resolves the typical is-
sues of deciding the dimensionality of the ICA and the sub-
sequent determining of the status of obtained ICs as signal 
or noise in a single step (e.g. Salimi-Khorshidi et al., 2014).

Specifically, this procedure involved the following three 
main operations. First, srICA was performed on the same 
dataset at dimensions ranging from 1 to 15 in a stepwise 
fashion. In the next step, whole-brain group-level FC maps 
corresponding to each IC in each dimension were obtained 
using Dual Regression (Nickerson et al., 2017). In the Dual 
Regression procedure, each IC map was first regressed 
against each participant's cleaned and denoised 4D fMRI 
data, and the resulting time courses for each IC map were 
then regressed for a second time against the same fMRI data-
set. In the final step of Dual Regression, the regression coef-
ficients of the whole-brain participant-specific FC maps were 
Fisher-transformed into Z-values. Whole-brain group-level 
FC maps for each dimension were then computed from the 
participant-specific FC maps using a one-sample group-mean 
t test implemented in FSL randomise with default settings. 
These whole-brain group-level FC maps for each dimension 
were then correlated with the seven well-known resting-state 
networks found by Yeo et al., (2011) using the fslcc function 
from FSL. Given that the FC maps directly correspond to the 
different activation clusters inside the hippocampus detected 
by the srICA procedure (the ICs), the correlation between a 
given FC map and a given reference network therefore indi-
cates the degree to which a given activation-cluster partici-
pates in that reference network.

This produced 15 correlation-matrices (one for each di-
mension) of size n × m, where n refers to the number of ICs 
and ranges from 1 to 15 and m refers to the number of refer-
ence resting-state networks, here 7. In the final step, these 15 
correlation matrices were each subjected to an algorithm that 
output an IC if its maximum correlation with a given resting-
state network was above a threshold (rmax > 0.4) and if this 
maximum correlation was sufficiently higher than the second 
highest correlation ( r

max

r
max2

 > 1.3), both within the same IC and 

within the same resting-state network. As an example, con-
sider an srICA with a dimension of 2, and that the FC map 
(obtained with Dual Regression) corresponding to activation 
cluster denoted by IC0 correlates {0.1, 0.5, 0.2, 0.3, 0.2, 0.1, 

0.1} with the seven resting networks and that the FC map 
corresponding to IC1 correlates {0.1, 0.1, 0.1, 0.2, 0.1, 0.3, 
0.1} with these networks. In this case, the algorithm would 
output IC0 because its maximum correlation with resting-
state network 2 is higher than 0.4, and because this correla-
tion is sufficiently different from the next highest correlation 
within the same IC (i.e. 0.5

0.3
 > 1.3) and within the same net-

work (i.e. 0.5

0.1
 > 1.3). Note that parameters for the correlation 

threshold and the ratio were manually set at values that pro-
duced sensible results. In future studies, we will attempt to 
further automate this aspect of the procedure. Following the 
standard idea that ICA at larger dimensions produces more 
fractionated components, we then chose the lowest dimen-
sion at which this algorithm produced the largest number of 
ICs. This procedure therefore detected in a data-driven fash-
ion the optimal number of dimensions for which the srICA 
produced the largest number of clusters of voxels inside the 
hippocampus that showed both strong and unique correla-
tions with known resting-state networks.

2.4.3  |  Group-level analyses of whole-brain FC

The goal in the next step of the analysis was to establish 
the statistical reliability of the co-activity of the individual 
brain regions identified as connected to each activation-
cluster inside the hippocampus (i.e., the IC) across all par-
ticipants. To this end, we first intersected the whole-brain 
participant-specific FC maps obtained with Dual Regression 
with the participant-specific aparc + aseg atlas computed by 
FreeSurfer. We used 42 bilateral areas in the aparc + aseg 
atlas (excluding large areas like brainstem and cerebellum for 
which a single mean value may not be representative). We 
then extracted the mean Z-score value for each area and for 
each participant. These data were then subjected to a regres-
sion model of the form:

where hemisphere was a co-factor with two levels (left versus 
right), FC_map was a discrete variable with number of lev-
els equal to the number of ICs identified in the previous step, 
brain_region was a factor with number of levels equal to the 
sum of the number of cortical and subcortical regions in the 
aparc + aseg atlas (here 42) and participant was a random factor 
with number of levels equal to the total number of participants 
(i.e. 172). The dependent variable Z was the average Z-value for 
the cortical and subcortical regions obtained from each partic-
ipant's aparc+aseg file. Note that by modeling the participant 
as a random factor, we took into account individual participant 
variation in the estimation of the mean Z-score value that pro-
vided us with more accurate estimates as opposed to simply 
averaging the mean Z-score values across all participants. In 

(1)
Z = hemisphere + FC_map × brain_region + rand (participant),
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addition, because the average Z-scores were obtained from the 
areas in the participant-specific Desikan–Killiany atlases, this 
is a volume-based group-analysis that takes into account the 
unique morphology of each participant's brain. It is therefore 
not subject to common concerns in volume-based group analy-
ses that assume that each participant's brain morphology is the 
same (see Anticevic et al., 2008; Glasser et al., 2013, for discus-
sion of this issue).

The main interest in this model was in the interaction term 
FC_map × brain_region. This interaction provided a test of 
the null-hypothesis that brain regions would be activated in 
the same way across the different FC maps. In the case that 
the interaction term was significant (defined as p < .05), we 
performed post-hoc comparisons where we contrasted the co-
activity of each brain region with the mean of the co-activity 
values of all other brain regions for each IC (i.e. an ‘effect’ 
contrast). This therefore produced a list of cortical and sub-
cortical regions for each IC that showed reliable co-activity 
with this IC relative to the mean of all other brain regions.

Mixed-effect regression modeling relied on the lme4 
package (v1.1.23; Bates et  al.,  2007) implemented in R 
(v4.0.0). ANOVA tables (Type III) were computed directly 
from the output of the mixed-effect regression models using 
the lmerTest package (v3.1–2; Kuznetsova et  al.,  2017). 
p-values in these models were calculated using the 
Satterthwaite correction for the degrees of freedom. Post-hoc 
testing was performed using the emmeans package (v1.4.6; 
Lenth et al., 2018) when the interaction term was significant 
(p <  .05). p-values were adjusted for multiple comparisons 
using the Bonferroni method. Results were visualized using 
the ggseg (v1.5.4; Mowinckel & Vidal-Piñeiro,  2019) and 
ggpubr packages (v0.3.0; Kassambara, 2018).

2.4.4  |  Relative contributions of the 
hippocampal subfields

The goal in the final step of the analysis was to determine 
the relative contributions of the hippocampal subfields in 
the various putative resting-state networks detected in pre-
vious steps. Specifically, we attempted to obtain a list that 
ranked each hippocampal subfield with respect to its rela-
tive contribution in the FC maps that represented the resting-
state networks. This was achieved by first intersecting the 
participant-specific hippocampal subfield masks (described 
above) with each participant-specific whole-brain FC map. 
The resulting average Z-values for each hippocampal sub-
field and each participant were then fitted to the same sta-
tistical model as described in Equation 1. In this model, the 
term brain_region now referred to the six hippocampal sub-
fields. As before, our specific interest was in the interaction 
term of the model (FC_map × brain_region) that provided 
a test of the null-hypothesis of whether the six hippocampal 

nuclei were activated in the same way across the various FC 
maps. However, the post hoc tests that were performed when 
this interaction term was significant differed from those de-
scribed above. Specifically, in order to determine the rela-
tive contribution of the subfields to the different resting-state 
networks, we first performed pairwise comparisons of all six 
hippocampal subfields within each FC map. This produced 
a list of 15 pairwise comparisons with a test statistic (i.e. the 
z-ratio; see below) that reflected the degree to which the co-
activity of a given subfield differed from another subfield. 
These pairwise test-statistics were then summed, ordered and 
thresholded at >0 for each hippocampal subfield to produce 
a ranked estimate of the relative contribution of each sub-
field to each putative resting-state network connected to the 
hippocampus.

3  |   RESULTS

3.1  |  Detection of activation clusters inside 
hippocampus and relationship with resting-
state networks

The procedure for finding the optimal number of dimen-
sions for the ICA returned that across Dimensions 1–15, 
Dimension 10 was the lowest dimension at which the largest 
number of ICs and their corresponding whole-brain FC maps 
were strongly and uniquely connected to different resting-
state networks. Specifically, we found that for Dimension 
10, two ICs were connected to different networks: IC0 was 
correlated r = 0.49 with the somatomotor network and IC1 
was correlated r = 0.56 with the default mode network (see 
Table 1 for an overview of the correlations of these ICs with 
all networks, and see Table S1 for the results of a correla-
tion analysis restricted to only those cortical voxels included 
in the reference networks, which yielded similar results). 
As can be seen in Supplementary Figure S1, strong correla-
tions (r > 0.40) were frequently found for these two networks 

T A B L E  1   Table of correlations of the FC maps with resting-state 
networks

Correlation with FC maps

Yeo et al., (2011), 7 networks IC0 IC1

1 - Visual 0.13 0.12

2 - Somatomotor 0.49 0.27

3 - Dorsal attention 0.05 0.02

4 - Ventral attention and salience 0.00 0.03

5 - Limbic 0.06 0.04

6 - Executive control 0.02 0.17

7 - Default mode 0.23 0.56

The grey shade indicates the highest correlation, both row and columnwise.
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across all dimensions, suggesting that the detection of these 
two networks was not idiosyncratic to Dimension 10. In ad-
dition, as can be seen in Supplementary Figure S2, we also 
examined Dimensions 20 and 30, and this did not lead to the 
detection of new networks. We can therefore conclude that 
for our data, the specific clusters of voxels detected by the 
ICA using Dimension 10 for IC0 and IC1 were optimal in 
connecting with known resting-state networks.

A visual presentation of the location of these clusters of 
voxels along with their whole-brain group-level FC map com-
puted with Dual Regression is presented in Figure 2. A full 
overview of all 10 ICs from Dimension 10 and their FC maps 
is shown in Supplementary Figure S3. In these whole-brain 
FC maps (right column), it can be appreciated that the two 
ICs have relatively contrasting FC with the rest of the brain. 
In addition, a further visualization in surface space of the two 
ICs with their projected location on the hippocampal long-
axis is presented in Figure 3. Here, it can be seen that whereas 
IC0 (correlated with the somatomotor network), is located in 
a more anterior section of the hippocampus, IC1 (correlated 
with the default mode network) is located from middle to 
posterior locations along the hippocampal long-axis.

3.2  |  Group-level analyses of whole-
brain FC

Group-level analyses revealed those regions that were re-
liably co-activated in the FC maps that corresponded to 
IC0 and IC1 (see Figure  4a for the [model-derived] es-
timated marginal-mean values for each region by IC). 
Specifically, Linear Mixed-effect Regression analyses taking 

participant variability into account revealed a main effect of 
Hemisphere (F(1,28,640)  =  132.6, p  <.0001), suggesting 
higher co-activity values in the left versus the right hemi-
sphere. In addition, there was a main effect of Brain Region 
(F(41,28,640) = 251.6, p <.0001), suggesting that co-activity 
values differed between the different brain regions of the 
Desikan–Killiany atlas. Furthermore, there was a main ef-
fect of IC (F(1,28,640) = 4,659.4, p <.0001), suggesting that 
co-activity values differed between the different FC maps. 
Important for our present purposes, there was a significant in-
teraction between Brain Region and IC (F(41,28,640) = 209.7, 
p <.0001), suggesting that average co-activity values for each 
brain region differed between the ICs.

Further exploration of this interaction with post-hoc tests 
revealed the list of regions for a specific IC where one region 
was significantly more co-activated compared with the mean co-
activity of all other regions. As can be seen in Table 2, IC0 and 
its corresponding FC map revealed regions typically associated 
with the somatomotor network like sensorimotor cortex (pre- and 
postcentral gyrus) and the amygdala. In addition, Table 3 showed 
that IC1 and its corresponding FC map had high co-activity val-
ues in areas typically associated with the default mode network 
like posterior midline areas (isthmus cingulate, precuneus) and 
medial frontal areas (medial orbital frontal, frontal pole). A vi-
sual presentation of these results is shown in Figure 4b,c.

3.3  |  Relative contributions of the 
hippocampal subfields

Statistical analyses of the relative contribution of the hip-
pocampal subfields in the two FC maps revealed a main 

F I G U R E  2   Results from group spatial ICA restricted to the hippocampal region (left panels under heading srICA) and Dual Regression (right 
panels under heading DR) in the two detected ICs (a,b). The maps under DR show whole-brain group-level FC maps using the hotspots detected 
using the ICs as seeds. Note that IC0 correlated with the somatomotor network and IC1 with the default mode network. IC and FC maps are 
corrected and thresholded Z maps at Z > 4 



3386  |      EZAMA et al.

effect of Brain Region (F(5,3,944)  =  1,183.8, p  <.0001), 
suggesting that there were differences in co-activity between 
the subfields. Furthermore, a main effect of IC was found 
(F(1,3,944) = 262.0, p <.0001), suggesting differences in co-
activity between the different ICs. Again, important for our pre-
sent purposes, there was a significant interaction between Brain 
Region and IC (F(5,3,944) = 1,464.1, p <.0001), indicating that 
the subfields were not co-activated in the same way across the 
different FC maps. Further exploration of this interaction using 
pairwise tests within each IC and then ranking the six subfields 
revealed the relative contribution of each hippocampal subfield. 
Specifically, as can be seen in Table 4, for IC0 (correlated with 
the somatomotor network) summed z-ratios were in descend-
ing order ranked CA4, CA3, CA1 and DG. Similarly, Table 4 
showed that for IC1 (correlated with the default mode network), 
summed z-ratios were ranked CA4, DG and SUB (see also 
Figure 5a for the [model-derived] estimated marginal mean val-
ues for each subfield by IC and Figure 5b for a visual presenta-
tion of the summed z-ratios for each subfield by IC).

3.4  |  Complementary analyses

In two further analyses, we attempted to examine these re-
sults in more detail. First, we examined to what extent the co-
activity in the different subcortical and cortical areas found 
for the different ICs would depend on the hemisphere. To this 
end, we modelled the data using Equation 1 but also included 
the triple interaction term hemisphere × FC_map × brain_
region to examine whether the FC_map  ×  brain_region 
interaction would depend on the hemisphere. The results 
of this analysis revealed that the triple interaction between 
hemisphere  ×  FC_map  ×  brain_region was significant 
(F(41,28,557) = 4.92, p <.0001). As can be seen in Tables S3 
and S4, generally, the same set of regions was detected be-
tween both hemispheres albeit with slight differences in de-
tection accuracy (the full output of the regression is reported 
in Table S2). Given that the focus of our paper is not on hem-
ispheric differences in hippocampal FC, we do not discuss 
this issue further.

F I G U R E  3   Surface projection of activity hotspots along the hippocampal long-axis seen in a medial-sagittal view for the left (a) and right 
hemisphere (b). Note how there is a bilateral activity hotspot in the anterior section of the hippocampus (IC0 correlated with somatomotor network, 
red colour) and a bilateral activity hotspot that extends from middle to posterior sections (IC1 correlated with default mode network, green colour)  

(a)

(b)
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In addition, we examined in further detail the areas that 
had different co-activity between IC0 and IC1. Specifically, 
we performed post-hoc tests on the same model from 
Equation 1 where for each area we now contrasted co-
activity from IC0 and IC1 (and vice versa) using pairwise 
post-hoc tests that were corrected for multiple compari-
sons using the Bonferroni correction. As can be seen in 
Tables S5 and S6, the contrasts between these two ICs fur-
ther highlighted the involvement of IC0 in the somatomotor 
network (predominantly activity in primary sensorimotor 
areas) and IC1 in the default mode network (strong activity 
along midline regions).

4  |   DISCUSSION

In the current study, we attempted to discover the precise an-
atomical location of hippocampal activity hotspots during the 
resting state, the resting-state networks that are functionally 
connected to these hotspots and the configurations of hip-
pocampal subfield activities that underlie these hotspots. To 
do this, we relied on data-driven analysis techniques applied 
to the high spatial-resolution 7T resting-state fMRI dataset 
from the HCP. We found that group spatial ICA restricted 
to the hippocampus revealed two activity hotspots at dif-
ferent points along the hippocampal long-axis. These two 

F I G U R E  4   Overview of model-derived estimated marginal means for whole-brain group-level FC for the two ICs in areas from the Desikan–
Killiany atlas (a), as well as contrast effects in subcortical (b) and cortical structures (c), where IC0 shows the contrast of each region reliable 
more co-activated than the mean co-activity of all other regions within IC0 (top row), and IC1 shows the contrast of each region reliable more 
co-activated than the mean co-activity of all other regions within IC1 (bottom row). Note how IC0 connects to regions of the somatomotor network 
and how IC1 connects with regions of the default mode network 

(a)

(c)

(b)
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activity hotspots were functionally connected with two dif-
ferent sets of brain regions. One activity hotspot was located 
in an anterior section along the hippocampal long-axis and 
connected with anterior areas like the amygdala and orbito-
frontal cortex, as well as with sensorimotor cortex and medial 
and lateral temporal areas. This network was highly corre-
lated with the well-known somatomotor network (r = 0.49). 
Another hotspot consisted of an extended area of activities 
that spanned from middle to posterior locations along the 
hippocampal long-axis and connected mainly with posterior 
midline areas like the posterior cingulate, precuneus and ret-
rosplenial cortex (isthmus cingulate), as well as with medial 
orbitofrontal and inferior parietal cortex. This network was 
found to correlate with the well-known default mode network 
(r = 0.56). Furthermore, we found that these two activity hot-
spots associated with different resting-state networks were 
composed out of different hippocampal subfield configura-
tions. Specifically, the somatomotor network relied strongly 
on activity in the CA4, DG, CA1 and CA3 subfields (and less 
on SUB), whereas the default mode network relied mostly on 
activity in the CA4, DG and SUB subfields (and less on CA1 
and CA3).

These results clarify the exact section of the hippocam-
pus that plays a role in the default mode network. Although 
previous studies had demonstrated that the hippocampus is a 
pertinent node in the default mode network, studies had re-
ported inconsistent evidence regarding the precise section of 
the hippocampus that fulfills this role (Blessing et al., 2016; 
Kahn et  al.,  2008; Qin et  al.,  2016; Vincent et  al.,  2006). 
The current results suggest that a rather large section of the 
hippocampus that spans from middle to posterior locations 

along the hippocampal long-axis is co-activated with regions 
of the default mode network. These results are in line with 
anatomical connectivity studies in rodents that have found 
that default mode regions like the retrosplenial cortex project 
mostly to posterior regions in the hippocampus (Rosene & 
Van Hoesen, 1977; Strange et al., 2014) and with FC stud-
ies in humans that have found that posterior seeds in the 
hippocampus connected with default mode regions like the 
posterior cingulate and the precuneus (Adnan et  al.,  2016; 
Barnett et al., 2019; Kahn et al., 2008; Qin et al., 2016; Voets 
et al., 2014). However, our results seem at odds with previous 
studies that have concluded that seeds in anterior sections of 
the hippocampus connected to default mode regions (Blessing 
et al., 2016; Chase et al., 2015; Robinson et al., 2015; Vincent 
et al., 2006). Although the current study was not designed to 

T A B L E  2   Cortical and subcortical areas showing reliable co-
activity with IC0 (correlated with somatomotor network) relative to 
the mean co-activity value of all other areas. p-values corrected for 
multiple comparisons using Bonferroni correction

Region Z-ratio p-Value

Amygdala 41.94 <2.225E-308

Postcentral 40.02 <2.225E-308

Paracentral 29.07 3.672E-184

Hippocampus 28.55 1.098E-177

Superior temporal 25.49 9.978E-142

Bankssts 22.64 8.040E-112

Parahippocampal 20.08 4.427E-88

Precentral 19.99 3.157E-87

Fusiform 12.53 2.226E-34

Medial orbitofrontal 10.72 3.553E-25

Frontal pole 10.02 5.469E-22

Temporal pole 8.82 5.069E-17

Middle temporal 8.34 3.331E-15

Cuneus 7.09 5.786E-11

T A B L E  3   Cortical and subcortical areas showing reliable co-
activity with IC1 (correlated with default mode network) relative to 
the mean co-activity value of all other areas. p-values corrected for 
multiple comparisons using Bonferroni correction

Region Z-ratio p-Value

Isthmus cingulate 40.55 <2.225E-308

Precuneus 29.75 8.776E-193

Hippocampus 27.56 1.373E-165

Inferior parietal 21.71 6.866E-103

Rostral anterior cingulate 21.54 2.931E-101

Posterior cingulate 14.52 3.992E-46

Superior frontal 8.85 3.841E-17

Postcentral 8.57 4.487E-16

Transverse temporal 5.79 3.020E-07

Parahippocampal 5.72 4.762E-07

Cuneus 5.12 1.351E-05

Paracentral 4.39 4.955E-04

Caudal middle frontal 4.20 1.181E-03

Medial orbitofrontal 3.82 5.826E-03

Middle temporal 3.63 1.267E-02

T A B L E  4   Relative contributions of each hippocampal subfield 
within the different resting-state networks (indicated by IC). Rankings 
based on the sum of pairwise z-ratio differences for all substructures 
within a given IC

Subnucleus IC Summed z-ratio Rank

CA4 0 152.06 1

CA3 0 118.21 2

CA1 0 62.63 3

DG 0 57.68 4

CA4 1 162.81 1

DG 1 113.69 2

SUB 1 32.19 3
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resolve this discrepancy, we speculate that a combination of 
issues related to low spatial resolution and spatial smoothing 
to move signal from hippocampal body to anterior sections 
as well as uncertainties in classifying medial frontal regions 
as part of the default mode network versus the somatomotor 
network could have led to these conclusions. Clearly, further 
targeted studies need to be conducted to resolve this issue. 
In sum, the current results provide further information about 
the precise anatomical location of hippocampal activities that 
connect to the default mode network and further underscore 
the idea that the hippocampus is functionally organized along 
its long-axis (Fanselow & Dong, 2010; Poppenk et al., 2013; 
Strange et al., 2014).

The current data also indicated that besides the default 
mode network, the hippocampus was connected to a second 
resting-state network. Specifically, the anterior hotspot re-
vealed a whole-brain FC map that was strongly and uniquely 
correlated with the somatomotor network (r  =  0.49; Yeo 
et  al.,  2011). The somatomotor network is a mostly corti-
cal network that includes primary and sensory-motor areas 
as well supplementary motor areas (Yeo et  al.,  2011). The 
observation of the hippocampus as connected with this so-
matomotor network makes sense in the context of what is 
currently known about hippocampal function. Specifically, 
current research points to a role for the hippocampus, and 
especially its CA1 and CA3 subfields, in the processing of 
discriminatory sensory information (Bakker et  al.,  2008; 
Hainmueller & Bartos,  2020; Pereira et  al.,  2007; Yassa 
et  al.,  2011). Why the sensory-motor areas preferentially 
connected to the anterior section of the hippocampus is 
less clear. Connectivity of the anterior hippocampus is typ-
ically associated with an anterior hippocampal network 
that includes amygdala, orbitofrontal cortex and regions in 
the anterior temporal lobe (Aggleton,  2012; Ranganath & 
Ritchey,  2012). This network has been associated with the 

processing of perceptual, semantic and affective properties 
of items (Ritchey et al., 2015). In line with this proposal, our 
results also showed FC between the anterior hippocampus 
and the amygdala, orbitofrontal areas and temporal pole (see 
Table 2). The current results therefore suggest that in addition 
to the aforementioned regions, this anterior hippocampal net-
work also has strong FC with primary sensory areas. Overall, 
the current results highlight the role of the hippocampus in 
the processing of sensory-motor information and that more-
over, the hippocampus plays a role in the somatomotor as 
well as the default mode network.

Furthermore, the current results revealed that these two 
different resting-state networks relied on different contribu-
tions from the individual hippocampal subfields. Specifically, 
the results showed that the anterior hotspot that was con-
nected to the somatomotor network depended primarily on 
activity in the CA1, CA3 and CA4/DG subfields (and less on 
SUB) and that the middle/posterior hotspot that was part of 
the default mode network depended primarily on SUB and 
CA4/DG subfields (and less on CA1 and CA3). These re-
sults are consistent with anatomical studies that have shown 
that the CA1 subfield connected more to anterior areas like 
the amygdala, orbitofrontal cortex and nucleus accumbens, 
as well as medial and lateral temporal areas, and that the 
SUB subfield was more connected to posterior midline 
areas such as the retrosplenial cortex, anterior thalamic nu-
clei and mammillary bodies (Aggleton, 2012; Rosene & Van 
Hoesen, 1977). Similarly, these results are in line with previ-
ous FC studies that have shown that posterior pre- and para-
subiculum were connected to retrosplenial cortex (Dalton 
et al., 2019) and that CA1 was connected with the amygdala 
(de Flores et  al.,  2017). Taken together, the current results 
suggest that different resting-state networks depend on dif-
ferent configurations of hippocampal subfield co-activity and 
that there are dissociations in connectivity between the CA1 

F I G U R E  5   Group-level co-activity values for each hippocampal subfield in each IC from model-derived estimated marginal means (a) and 
summed z-ratios that indicate the strength of co-activity of each subfield within a given resting-state network (IC). Note how for IC0 (somatomotor, 
red colour), there is strong co-activity for CA4/DG, CA1 and CA3, and how for IC1 (default mode, green colour), there is strong co-activity in 
CA4/DG and SUB. Note also ML is listed for reasons detailed in the text 

(a) (b)
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and CA3 subfields on the one hand and SUB on the other 
(Aggleton, 2012).

The observation that different resting-state networks 
depended on different configurations of hippocampal co-
activity raises the question of why this may be the case. 
One possible explanation is in terms of a difference in the 
degree to which these two networks rely on the processing 
of externally generated sensory information. Specifically, 
the somatomotor network involves activity in the primary 
sensory-motor cortex and consequently suggests that this 
network is involved in the processing of externally gener-
ated sensory information. By contrast, the default mode 
network is typically considered to reflect processing of en-
dogenous information (Buckner & DiNicola, 2019). Thus, 
in line with existing ideas about the role of the CA sub-
fields in terms of processing incoming sensory informa-
tion described above (Bakker et al., 2008; Hainmueller & 
Bartos, 2020; Pereira et al., 2007; Yassa et al., 2011), our 
results suggest that the CA subfields may be more func-
tionally relevant for the processing of external incoming 
sensory information, whereas the SUB subfield is espe-
cially relevant for the processing of internally generated 
information. Future task-based studies that place different 
demands on internal versus external generated information 
may shed further light on this issue.

Before concluding, one final issue deserves attention. 
A recent set of studies has examined the FC between the 
hippocampus and the rest of the brain using a new tech-
nique called Connectopic Mapping (Haak et  al.,  2018; 
Margulies et  al.,  2016; Przeździk et  al.,  2019; de Wael 
et al., 2018). This technique addresses a fundamental lim-
itation of the ICA technique that assumes that the observed 
data reflect a mixing of underlying sources in a linear man-
ner (Friston,  1998). Instead, the new technique does not 
make such an assumption and is able to detect non-linear 
shapes (manifolds) in a similarity matrix representation of 
the data (Haak et  al.,  2018). Consistent with other stud-
ies mentioned earlier (Strange et  al.,  2014), these studies 
have observed that there are differences in the connectivity 
between the anterior and posterior sections of the hippo-
campus. However, these studies also show that this con-
nectivity does not change abruptly along the hippocampal 
long-axis but instead changes gradually in a smooth man-
ner. These results are consistent with the results observed 
here. Specifically, our results show that within this smooth 
gradient of connectivity along the hippocampal long-axis, 
there are particular hotspots that become activated during 
the resting state and that connect to specific brain net-
works. A combination of spatially-restricted ICA used here 
and Connectopic Mapping could be used to provide fur-
ther insight into the precise connectivity between activity 
hotspots in the hippocampus and the rest of the brain.

To conclude, the current study used a data-driven tech-
nique with high spatial-resolution 7T resting-state fMRI 
data with 172 participants to explore the FC of the hippo-
campus during the resting state. We found that there were 
two activity hotspots in the hippocampus: One that occu-
pied an anterior section along the hippocampal long-axis, 
and second one that extended from middle to posterior lo-
cations along the hippocampal long-axis. These two activ-
ity hotspots inside the hippocampus were connected to two 
known resting-state networks: The somatomotor network 
and the default mode network. Finally, our results revealed 
that these two resting-state networks relied on different 
hippocampal subfield configurations: Whereas the soma-
tomotor network relied strongly on CA1, CA3 and CA4/
DG fields and less on SUB, the default mode network re-
lied strongly on SUB and CA4/DG fields and less on CA1 
and CA3. These results therefore clarify the exact section 
of the hippocampus that connects to the default mode net-
work, show that the hippocampus is connected to two dis-
tinct resting-state networks, and that these two different 
resting-state networks rely on different configurations of 
hippocampal subfield co-activity. One avenue for future 
research is to determine whether these specific configura-
tions of hippocampal subfield activity are affected by par-
ticular task-based settings and whether they can serve as a 
biomarker for pathology in clinical settings.
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