
A LOW RANK AND SPARSE PARADIGM FREE MAPPING ALGORITHM FOR DECONVOLUTION OF FMRI
DATA
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ABSTRACT
Current deconvolution algorithms for functional magnetic resonance
imaging (fMRI) data are hindered by widespread signal changes
arising from motion or physiological processes (e.g. deep breaths)
that can be interpreted incorrectly as neuronal-related hemodynamic
events. This work proposes a novel deconvolution approach that
simultaneously estimates global signal fluctuations and neuronal-
related activity with no prior information about the timings of the
blood oxygenation level-dependent (BOLD) events by means of a
low rank plus sparse decomposition algorithm. The performance
of the proposed method is evaluated on simulated and experimental
fMRI data, and compared with state-of-the-art sparsity-based decon-
volution approaches and with a conventional analysis that is aware of
the temporal model of the neuronal-related activity. We demonstrate
that the novel low-rank and sparse paradigm free mapping algorithm
can estimate global signal fluctuations related to motion in our task,
while estimating the neuronal-related activity with high fidelity.

Index Terms— functional MRI, deconvolution, low rank and
sparse models, paradigm free mapping.

1. INTRODUCTION

Deconvolution algorithms of functional magnetic resonance imag-
ing (fMRI) data aim to estimate blood oxygenation level-dependent
(BOLD) events with no prior knowledge of their timing. These
algorithms can be specially useful when the information about the
timing of the neuronal activity that drives the BOLD events is un-
known, inaccurate or insufficient (e.g. resting-state, naturalistic
paradigms or clinical conditions). However, the performance of
existing deconvolution approaches can be hampered considerably
in presence of global, widespread signal changes due to head jerks,
hardware artefacts or prominent non-neuronal physiological events
(e.g. deep breaths) [1]. These global events are difficult to com-
pensate during data preprocessing [2] and can be misinterpreted
as neuronally related since their temporal signature can closely re-
semble the hemodynamic response function (HRF) assumed in the
deconvolution model to describe neurovascular coupling.

Most of the deconvolution algorithms adopt a simple linear time-
invariant model to estimate the neuronal-related signal by solving a
temporal regularized least-squares problem, either using `2- or `1-
norm terms, that operates at the voxel level [3–5], although a certain
spatial smoothness can also be considered [6].
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The aim of this work is to propose a new approach method for
the spatio-temporal deconvolution of fMRI data that is capable of
simultaneously estimating global signal fluctuations and neuronal-
related activity based on the low-rank plus sparse matrix decompo-
sition method [7]. We extend the formulation of our original sparse
paradigm free mapping (SPFM) [5] approach by using a regularized
estimator consisting of a structured sparsity promoting `2,1 + `1
norm and a low-rank promoting nuclear-norm, which allows the
simultaneous spatio-temporal mapping of global fluctuations and
neuronal-related activity without prior information about the tim-
ings of these events, hence providing a cleaner estimation of the
neuronal-related activity.

2. LOW-RANK AND SPARSE PARADIGM FREE MAPPING

Let us consider that the whole-brain fMRI data Y ∈ RN ×V where
N is the number of volumes and V is the number of voxels of the
acquisition can be decomposed into three terms, i.e.

Y = HS+ L+N, (1)

where the neuronal-related component HS is the convolution of
voxel-specific neuronal-related signals S with the Toeplitz matrix
H ∈ RN ×N with shifted HRFs in its columns (i.e. similar to
paradigm free mapping [5]), the global fluctuations can be captured
as the sum of P spatially widespread (i.e. global) low-rank com-
ponents L =

∑P
p=1 vpa

T
p where vp ∈ RN ×1 and ap ∈ RV ×1

denote their corresponding spatial and temporal signatures, and N
represents additional white Gaussian noise.

To estimate both the neuronal-related signals and the global com-
ponents, we propose to solve the following multivariate regularized
least-squares problem:

L̂, Ŝ = argmin
L,S
‖Y −HS− L‖2F + λL‖L‖∗

+ (1− ρ)‖SDS‖2,1 + ρ‖SDS‖1, (2)

where ‖ · ‖F denotes the Frobenious norm, the `2,1+`1-norm term
enforces temporal sparsity and spatial structure on the estimate of
the neuronal-related activity and ρ controls the tradeoff between both
terms [8], Ds = diag (λS1 , . . . , λSV ) is diagonal matrix with voxel-
specific regularization parameters that balances the sparsity of S and
data fidelity for each voxel, and the nuclear-norm ‖ · ‖∗ encourages
the estimation of low-rank components where λL controls the num-
ber of low-rank components.

Here, we empirically set ρ = 0.8 to enforce structure in the
spatial domain and maintain the sparsity of the estimates. For each
voxel, λSi is set equal to the median absolute deviation estimate of
the noise standard deviation from the fine-scale wavelet coefficients
of the voxel time series (Daubechies, order 3). After the singular



Algorithm 1 LR+MV-SPFM algorithm using MFISTA-VA
1: input: Y,H
2: initialize: L0,S0,YS,0,YL,0,YA,0 = 0, c = ‖H‖2F
3: while not converged do
4: ZS = YS,k + (1/c) ∗ (Y −YA,k)
5: ZL = YL,k + (1/c) ∗ (Y −YA,k)
6: # L: singular-value soft thresholding (SVT)
7: Lk = SVTλL(ZS)
8: # S: proximity operator for the `2,1+`1 norm
9: Sk = proxDS(ZL)

10: # Update A
11: ZA = (Lk −YL,k) +H(Sk −YS,k)
12: Ak = YA,k + ZA

13: # Calculate MFISTA step size: tk =
1+

√
1+4∗t2

k−1

2

14: # Calculate ηk as in [9]
15: YS,k+1 = Sk + tk−1

tk+1
(Sk − Sk−1) +

tk
tk+1

(ZS − Sk) +
tk
tk+1

(ηk − 1)(ZS −YS,k)

16: YL,k+1 = Lk + tk−1
tk+1

(Lk − Lk−1) +
tk
tk+1

(ZL − Lk) +
tk
tk+1

(ηk − 1)(ZL −YL,k)

17: YA,k+1 = Ak+
tk−1
tk+1

(Ak−Ak−1)+
tk
tk+1

(ZA−Ak)+
tk
tk+1

(ηk − 1)(ZA −YA,k)

18: end while
19: output: Lk,Sk

value decomposition (SVD) of the data, we set λL to select P low-
rank components corresponding to the largest eigenvalues showing
a difference of at least 10% with respect to the next eigenvalue. The
optimization problem in 2 is solved via monotone FISTA with vari-
able acceleration (MFISTA-VA) [9] as shown in Algorithm 1.

3. RESULTS

3.1. Simulated data
We simulated 1000 voxels including two groups of 50 voxels with
a known BOLD signal, whereas the remaining voxels did not con-
tain any BOLD signal. For each voxel, we added noise of differ-
ent sources (motion-related, thermal and physiological noise) [5],
as well as two global low-rank components (see Figure 1A) with a
random voxelwise amplitude simulating widespread signal changes
due to two deep breaths [2] and motion-related spikes, respectively.
The performance of the proposed low-rank and multivariate sparse
paradigm free mapping (LR+MV-SPFM) algorithm was asssesed on
different signal to noise ratio (SNR) settings and with different ratios
of BOLD/Total number of voxels, and benchmarked four different
variations against the original univariate SPFM algorithm with regu-
larization parameter selected according to the Bayesian Information
Criterion (BIC) [5].

Figure 1B depicts the receiver operating characteristic (ROC)
curves with the sensitivity and specificity for the estimation of the
neuronal-related signal Ŝ for each simulation scenario. Regardless
of the simulated SNR and the BOLD/total voxels ratios, the ROC
curves demonstrate the proposed LR+MV-SPFM algorithm is more
specific and provides higher sensitivity in comparison with the orig-
inal SPFM method, except with the highest BOLD/total number of
voxels ratio and highest SNR where it seems that the multivariate
nature of the model prevents the algorithm from fitting accurately at
the voxel level. As expected, all variations of the proposed algorithm

exhibit lower sensitivity as the SNR is reduced while maintaining
the level of specificity. In addition, Figure 1C plots the error of the
low-rank component estimate obtained with the LR+MV-SPFM al-
gorithm for ρ = 0.8, showing that its estimate improves with a lower
BOLD-only / total voxels ratio.

3.2. Experimental data
Nine healthy subjects were scanned in a 3T MR scanner (Siemens)
in ten MRI sessions. T2*-weighted multi-echo fMRI data was
acquired with a multiband (MB) multiecho gradient echo planar
imaging sequence (340 scans, 52 slices, Partial-Fourier=6/8, voxel
size=2.4x2.4x3 mm3, TR=1.5 s, TEs=10.6/28.69/46.78/64.87/82.96
ms, flip angle=70o, MB factor=4, GRAPPA=2). During the fMRI
acquisition, subjects performed a motor task consisting of five differ-
ent movements (left-hand finger tapping, right-hand finger tapping,
moving the left toes, moving the right toes and moving the tongue).
These conditions were randomly intermixed every 16 seconds, and
were only repeated once the entire set of stimuli were presented.
For this work, only the first two sessions were selected to evaluate
the algorithm. Data preprocessing consisted of optimally combin-
ing the echo time datasets, detrending of up to 5th-order Legendre
polynomials, spatial smoothing (3 mm FWHM) and normalization
to signal percentage change. The analysis was performed with the
novel LR+MV-SPFM algorithm with ρ = 0.8 and the selection of
λL and DS described in section 2.

Figures 2A-F depict the results of the LR+MV-SPFM algorithm
in a representative dataset. For this subject and session, the proposed
approach estimated P = 3 global low-rank components whose time
series ap and spatial maps vp are shown in Figures 2C and 2F,
respectively. Figure 2A shows the Euclidean norm of the motion
displacements (E-norm), DVARS and global signal (GS) time series,
whereas 2B displays the grayplots of the preprocessed data (RAW),
estimated low-rank component and estimated neuronal-related com-
ponent in grey matter (GM) and white matter (WM) voxels. The
first low-rank component captures signal fluctuations related to
head movements and susceptibility artefacts during the ’moving
the tongue’ condition, suggesting that the subject moved the head
while performing the tongue movement task. The second low-rank
component has a time series that closely follows the global signal
and its spatial map actually delineates major arteries and draining
veins that strongly contribute to the global signal, whereas the third
component is clearly related to global physiological fluctuations.
Among participants, the number of low-rank components ranged
between 1 and 5.

Furthermore, Figures 2D and 2E illustrate the time series of
the estimated neuronal-related signal for a representative voxel (see
cross in the first map) and the maps for several individual events of
the tongue movements and right hand finger tapping conditions, re-
spectively. The LR+MV-SPFM maps reveal clusters of activity in
similar regions to those inferred with general linear model analy-
ses (p < 0.001). Notably, the LR+MV-SPFM maps still depict the
tongue areas of the motor cortex bilaterally despite the timing of the
first low-rank component followed the tongue condition.

Finally, Figure 2G depicts the ROC curves of the MV-SPFM and
LR+MV-SPFM, both using ρ = 0.8, and the original SPFM algo-
rithm using the GLM maps of each event thresholded at a p = 0.001
as the ground-truth. The ROC curves of the five motor task con-
ditions show that both the MV-SPFM and the LR+MV-SPFM ap-
proaches provide higher sensitivity at the cost of a reduced speci-
ficity, and that the higher complexity involved in estimating the low-
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Fig. 1. Simulation results. A) An example of the simulated signals for the different SNR conditions; B) ROC curves for the estimation of
the neuronal-related signal with: SPFM using BIC (SPFM BIC), SPFM with no low-rank estimation and no spatial regularization (SPFM,
ρ = 1), MV-SPFM with no low-rank estimation (MV-SPFM, ρ = 0.8), the LR+MV-SPFM algorithm with only the L1-norm (LR+SPFM,
ρ = 1), and the LR+MV-SPFM algorithm (ρ = 0.8). C) Estimation error of the low-rank components for different ratios of BOLD/total
number of voxels.

rank component does not diminish the accuracy in deconvolving the
neuronal-related component of the signal.

4. CONCLUSIONS

This work introduces a novel formulation for the deconvolution of
BOLD fMRI data using a low rank and sparse algorithm that cap-
tures global fluctuations due to motion artefacts or physiological sig-
nals that typically reduce the accuracy of neuronal related estimates
of currently used algorithms.

Future work will consider the evaluation on resting-state data,
robust approaches for selecting the regularization parameters [10],
extending the proposed formulation for multi-echo acquisitions [11]
and describing the neuronal-related signal in terms of its innovation
signals [6, 12].
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Fig. 2. A) Euclidean norm of the motion displacements (E-norm) (blue), DVARS (black) and global (grey) signals of the fMRI data;
B) Grayplots of grey matter (GM) and white matter (WM) of the preprocessed fMRI data, the estimated low-rank and neuronal-related
components; C) Time series and F) maps of the estimated low-rank components; D) Time series and E) maps of the neuronal-related activity.
G) ROC curves of the five conditions for the three algorithms tested: SPFM, MV SPFM and LR+MV SPFM (red, dark-purple and dark-green
dots correspond to the subject in Fig. 2). The colour bands in the plots with time series denote the timing of the different conditions.
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