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Realization of nearly dispersionless bands with
strong orbital anisotropy from destructive
interference in twisted bilayer MoS2
Lede Xian 1,2, Martin Claassen3,4, Dominik Kiese5, Michael M. Scherer5, Simon Trebst 5,

Dante M. Kennes 1,6✉ & Angel Rubio 1,3,7✉

Recently, the twist angle between adjacent sheets of stacked van der Waals materials

emerged as a new knob to engineer correlated states of matter in two-dimensional hetero-

structures in a controlled manner, giving rise to emergent phenomena such as super-

conductivity or correlated insulating states. Here, we use an ab initio based approach to

characterize the electronic properties of twisted bilayer MoS2. We report that, in marked

contrast to twisted bilayer graphene, slightly hole-doped MoS2 realizes a strongly asymmetric

px-py Hubbard model on the honeycomb lattice, with two almost entirely dispersionless

bands emerging due to destructive interference. The origin of these dispersionless bands, is

similar to that of the flat bands in the prototypical Lieb or Kagome lattices and co-exists with

the general band flattening at small twist angle due to the moiré interference. We study the

collective behavior of twisted bilayer MoS2 in the presence of interactions, and characterize

an array of different magnetic and orbitally-ordered correlated phases, which may be sus-

ceptible to quantum fluctuations giving rise to exotic, purely quantum, states of matter.

https://doi.org/10.1038/s41467-021-25922-8 OPEN

1Max Planck Institute for the Structure and Dynamics of Matter and Center for Free Electron Laser Science, Hamburg, Germany. 2 Frontier Research Center,
Songshan Lake Materials Laboratory, Dongguan, China. 3 Center for Computational Quantum Physics, Simons Foundation Flatiron Institute, New York, NY,
USA. 4Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA. 5 Institute for Theoretical Physics, University of Cologne,
Cologne, Germany. 6 Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Information Technology,
Aachen, Germany. 7 Nano-Bio Spectroscopy Group, Departamento de Fisica de Materiales, Universidad del País Vasco, San Sebastián, Spain.
✉email: dante.kennes@rwth-aachen.de; angel.rubio@mpsd.mpg.de

NATURE COMMUNICATIONS |         (2021) 12:5644 | https://doi.org/10.1038/s41467-021-25922-8 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25922-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25922-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25922-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-25922-8&domain=pdf
http://orcid.org/0000-0002-9595-2404
http://orcid.org/0000-0002-9595-2404
http://orcid.org/0000-0002-9595-2404
http://orcid.org/0000-0002-9595-2404
http://orcid.org/0000-0002-9595-2404
http://orcid.org/0000-0002-1479-9736
http://orcid.org/0000-0002-1479-9736
http://orcid.org/0000-0002-1479-9736
http://orcid.org/0000-0002-1479-9736
http://orcid.org/0000-0002-1479-9736
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0002-9838-6866
http://orcid.org/0000-0003-2060-3151
http://orcid.org/0000-0003-2060-3151
http://orcid.org/0000-0003-2060-3151
http://orcid.org/0000-0003-2060-3151
http://orcid.org/0000-0003-2060-3151
mailto:dante.kennes@rwth-aachen.de
mailto:angel.rubio@mpsd.mpg.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Two-dimensional van der Waals materials constitute a ver-
satile platform to realize quantum states by design, as they
can be synthesized in many different stacking conditions1,

offer a wide variety of chemical compositions, and are easily
manipulated by back gates, strain and the like. Stacking two
sheets of van der Waals materials atop each other at a relative
twist has recently emerged as a vibrant research direction to
enhance the role of electronic interactions, with first reports on
twisted bilayer graphene2–6 and another van der Waals materials
stacked atop each other at a twist7–17 displaying features of cor-
related physics that afford a high level of control. In particular, bi-
, tri-, and quadruple-layer graphene18 as well as twisted few-layer
transition metal dichalcogenides (TMDs)19,20 are currently under
intense experimental scrutiny13,21–29. By forming a moiré
supercell at small twist angles, a large unit cell in real space
emerges for twisted systems, which due to quantum interference
effects leads to a quasi-two-dimensional system with strongly
quenched kinetic energy scales. This reduction in kinetic energy
scale, signaled by the emergence of flat electron bands, in turn
enhances the role of electronic interactions in these systems.
Therefore, twisted systems enable the realization of new corre-
lated condensed matter models, establishing a solid-state quan-
tum simulator platform30.

Whereas the flatting of band dispersions in two-dimensional
moiré superlattices results mainly from the localization of charge
density distributions by the moiré potential, a well-known alter-
nate pathway to flat bands can occur in certain lattices such as the
Lieb and the Kagome lattices. Here, purely geometric considera-
tions lead to the formation of perfectly localized electronic states
that have weight only on single plaquettes or hexagons, respec-
tively, and that are eigenstates of the kinetic Hamiltonian due to
destructive interference between lattice hopping matrix
elements31. To put it differently, linear combinations of the
macroscopically degenerate extended Bloch states in these systems
allows to form localized Wannier-like eigenstates (living on single
plaquettes or hexagons in the examples above) with no dispersion
(for a review on the subject see, e.g,32). Such flat band systems can
give rise to many interesting phenomena, such as the formation of
nontrivial topology when time-reversal symmetry is broken, or
other exotic quantum phases of matter due to their susceptibility
to quantum fluctuations and electronic correlations32.

Here, we demonstrate that both flat band mechanisms can be
engineered to coexist in twisted bilayers of MoS2 (tbMoS2): a
TMD of direct experimental relevance that has been extensively
studied from synthesis to applications33,34. We confirm that
families of flat bands emerge when two sheets of MoS2 in the 2H
structure are stacked at a twist12,35 due to moiré potentials. Our
large-scale ab initio based simulations show that while the first set
of engineered flat bands closest to the edge of the bandgap with
twist angles close to Θ ≈ 0∘ can be used to effectively engineer a
non-degenerate electronic flat band in analogy to a single layer of
graphene at meV energy scales, more intriguingly, the next set of
flat bands instead realizes a strongly asymmetric flat band px–py
honeycomb lattice36,37. Both of these families of bands should be
accessible experimentally via gating. The strongly asymmetric
nature of this px–py honeycomb lattice is in marked contrast to
the much-discussed case of twisted bilayer graphene, where an
approximately symmetric version of such a Hamiltonian is now
believed to describe the low-energy flat band structures found at
small twist angle38–42. The strongly asymmetric px–py honey-
comb model itself features two almost entirely dispersionless flat
bands that touch the top and the bottom of graphene-like Dirac
bands at the Gamma point, respectively. These flat bands in this
model originate from destructive interference, in analogy to flat
bands in the Lieb and the Kagome lattices31 discussed above, and
will be referred to as ultra-flat bands in the following discussion.

On top of that, the total bandwidth of the strongly asymmetric
px–py honeycomb effective model realized here (all four bands)
can be further flattened by decreasing the twist angle. In addition,
these ultra-flat bands can be topologically nontrivial in the pre-
sence of spin-orbital coupling (SOC)43. Although all the flat
bands discussed here originate from the Γ-point states of MoS2
and are not affected by intrinsic SOC (see Supplementary Fig. 3),
we expect that substrate engineering44 can be used to introduce
SOC coupling into these bands and invoke topologically non-
trivial behavior of the ultra-flat band states. Previously, the px-py
model was studied in the context of cold gases where exotic
correlated phases were predicted36,45,46, as well as in semi-
conductor microcavities47 and certain 2D systems such as orga-
nometallic frameworks48,49 and Bismuth deposited on SiC50 with
a focus on their nontrivial topology properties. Our findings
elevate tbMoS2 to an interesting platform where effects of ultra-
flat bands can be studied systematically in a strongly correlated
solid-state setting.

Notably, in the strong-coupling regime, the px–py model
amended by Hubbard and Hund’s interactions gives rise to a
spin-orbital honeycomb model which – depending on the specific
parameters and symmetries of the model – hosts magnetic, orbital
as well as valence-bond orderings, or even more exotic quantum
spin-orbital liquid phases51–53. With this, our work adds an
interesting type of lattice model – the highly asymmetric px–py
Hubbard model – to the growing list of systems that can effec-
tively be engineered using the twist angle between multiple layers.
This is particularly intriguing as we maintain the full advantages
that come with two-dimensional van der Waals materials, such as
relative simplicity of the chemical composition and controllability
of the material properties; e.g. of the filling (by a back gate),
electric tunability (by displacement fields) or the bandwidth of the
model (by the twist angle).

Results
Ab initio characterization of twisted MoS2. We first characterize
the low-energy electronic properties of twisted bilayer MoS2 using
density functional theory (DFT) calculations (see Methods). DFT
in particular has established itself as a reliable tool to provide
theoretical guidance and to predict the band structure of many
twisted bi- and multilayer materials8,13,15. However, such a first-
principles characterization becomes numerically very demanding
as the twist angle Θ approaches small values and the unit cell
becomes very large entailing many atoms (of the order of a few
thousands and more). Nevertheless, it is that limit in which
strong band-narrowing effects and as a consequence prominent
effects of correlations are expected. The results of such a char-
acterization are summarized in Fig. 1. Note that atomic relaxation
has been shown to affect the electronic properties of twisted 2D
materials12,35,54. While for twisted bilayer graphene this effect is
only significant at twist angles smaller than 1 degree54, it
noticeably alters the low-energy band dispersions and charges
density localization for twisted transition metal dichalcogenides
bilayer (such as MoS2) even with relatively large twist angles
above 1 degree12,35. Therefore, we relax all the systems in our
DFT calculations. Panel (a) shows the relaxed atomic structure of
two sheets of MoS2 in real space, twisted with respect to each
other. A moiré interference pattern forms at a small twist angle
yielding a large unit cell, within which we identify different local
patterns of stacking of the two sheets of MoS2, indicated via areas
framed by cyan, magenta or purple dashed lines. The local
stacking arrangements of the respective areas are given in the
right sub-panels of the panel (a). Note that the BMo/S and the
BS/Mo regions are equivalent as they are related by C2 symmetry.
These equivalent BMo/S/BMo/S regions form a hexagonal network.
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In panel (b) we show the ab initio band structure of the twisted
material after relaxation, where we find two families of bands that
will become increasingly flat and start to detach from all other
bands, as the twist angle is lowered. We mark these bands by blue
and red color in panel (b), which shows results for decreasing
angles from Θ= 3.16∘–2.28∘. The bandwidth of these two ener-
getically separated groups of bands is summarized in panel (c) of
Fig. 1. We find that the bandwidth of these two bands shrinks
drastically as the angle is decreased, yielding bandwidths of the
order of 10 meV as the angle approaches Θ ≈ 2°. Similar features
are also shown in the work of Naik et al.35. The bandwidth and
the shape of the flat bands (in particular for the second set) in our
calculations are slightly quantitatively different from the previous
work probably because we relax the structure directly with DFT
while the authors of ref. 35 use a force-field approach. Note that
these flat bands near the top of the valence bands originate from
the states around the Γ point in the Brillouin zone of the primitive
unit cell of untwisted MoS2, with both S pz and Mo dz2 characters
(see Supplementary Fig. 2 for a DFT characterization of the
orbital contribution to the different bands). This is different to the
case of twisted WSe2, where the top valence flat bands originate
from the states around the K point in the Brillouin zone of the
primitive unit cell (dominated by W dx2�y2 and dxy orbitals),
which experience different interlayer moiré potentials compared
with those of the Γ-point flat bands discussed here leading to an
effective triangular lattice Hubbard model13. Since also in other
TMDs, such as MoSe2 and WS2, the top of the valence band in
the untwisted bilayer is also located at the Γ point in the Brillouin
zone55,56, the physics we discussed here transfers also to those
materials being twisted.

The upper bands in Fig. 1 (marked in blue) show a Dirac cone
at the K point and behave very similar to the bands found for
monolayer graphene (with the exception of a reduced

bandwidth). They are spin degenerate in nature, but feature no
additional degeneracy except at certain high symmetry points.
Instead, the next set of bands (marked in red) is essential to our
work. They too feature a Dirac cone at the K point, but also
feature two additional ultra-flat bands at the top and bottom in
addition to a band structure similar to graphene. The ratio
between the width of the ultra-flat and the flat bands decreases as
the angle is decreased, but saturates in our calculations as a twist
angle of Θ ≈ 2.28° is approached. We attribute this saturation to
lattice relaxation effects; note however that the overall bandwidth
keeps decreasing. To access this second set of bands we need to
empty the bands marked in blue first. The effects of this doping
are of minor quantitative nature (see Supplementary Fig. 5).

Remarkably, this second family of flat bands is well-described
by an effective px–py tight-binding model on a honeycomb lattice,
depicted schematically in Fig. 2a, and conveniently described by
the following Hamiltonian:

H0 ¼ ∑
hi;ji;s

ðtσcyi;s � nk
ijn

k
ij � cj;s � tπc

y
i;s � n?

ij n
?
ij � cj;sÞ

þ ∑
hhi;jii;s

ðtNσ cyi;s � nk
ijn

k
ij � cj;s � tNπ c

y
i;s � n?ij n?

ij � cj;sÞ;
ð1Þ

where ci;s ¼ ðci;x;s; ci;y;sÞT with ci,x(y),s annihilating an electron with
px(y)-orbital at site i and with spin s= ↑, ↓. i; j

� �
( i; j
� �� �

) denotes
(next) nearest neighbors. For each sum in Eq. (1), the first term
describes the σ hopping (head to tail) between the p-orbitals and
the second term denotes the π hopping (shoulder to shoulder).
Furthermore, nk

ij ¼ ðri � rjÞ=jri � rjj, with ri being the position of

site i and n?
ij ¼ Unk

ij with U being the two-dimensional 90 degree

rotation matrix U ¼ 0 �1
1 0

� �
. Finally, tσ and tπ (tNσ and tNπ ) are

the nearest neighbor (next-nearest neighbor) hopping amplitudes

Fig. 1 Atomic and electronic structures of twisted bilayer MoS2. a Atomic structure of tbMoS2 at Θ= 3.15°. Local atomic arrangements of the three
different regions in the moiré unit cell are indicated in the right panels. The Mo (S) atoms are indicated with purple (yellow) balls. b Evolution of low-energy
band structures at the top of the valence bands of tbMoS2 with decreasing small twist angles. The first set and the second set of valence bands are
highlighted with blue and red lines, respectively. c Evolution of the bandwidth of the first set and the second set of valence bands with decreasing twist
angles. Inset: twist angle dependence of the ratio of the hopping amplitudes tπ and tσ in the px–py honeycomb lattice.
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for the σ-bonding term and π-bonding term, respectively.
Figure 2b, c depict the corresponding dispersions, density of
states, and wave functions in comparison to model predictions,
illustrating that the four moiré bands at low energies are well
captured by Eq. (1) upon the choice of hopping parameters
tπ= 0.25tσ, tNσ ¼ 0:07tσ and tNπ ¼ �0:04tσ . The density of states
exhibits a characteristic four van Hove singularities structure, with
two originating from the Dirac bands and two stemming from the
additional two ultra-flat bands. The small ratio between the
nearest neighbor hopping amplitudes tπ/tσ determines the residual
small dispersion in the ultra-flat bands we report. This ratio is
controllable by the twist angle, which is summarized in the inset of
Fig. 1c. All these parameters are related to the interlayer moiré
potential and are thus expected to be also affected and controllable
by the uniaxial pressure perpendicular to the layers as demon-
strated for twisted bilayer graphene4.

The flat band wavefunctions consist of atomic wavefunctions
from the pz orbital on S atoms and the dz2 orbital on Mo atoms.
Modulated by the moiré potential, the weighting of the atomic
wavefunctions and their modulus square (i.e., charge density)
vary at different atomic sites across the whole supercell, showing
distinct patterns for different flat band states at the K point in the
supercell Brillouin zone as shown in Panel (c) of Fig. 2. These
patterns of the charge density as well as the real and the
imaginary part of the total wavefunctions obtained from DFT
show features consistent with those of the px–py Hamiltonian of
Eq. (1). Note, that we call this the px-py Hamiltonian to connect
to established literature on the subject; whereas the actual moiré
wave functions are composed of pz and dz orbitals, they transform
like px, py orbitals according to the irreps of the reduced

symmetry group of the moiré supercell. Interestingly, the charge
density distribution of the top ultra-flat band state displays a
Kagome lattice structure. We have thus unambiguously estab-
lished twisted MoS2 to be a candidate system to realize a px–py
model on the honeycomb lattice with strongly asymmetric
hoppings tσ and tπ, giving rise to a new set of ultra-flat bands.

Correlations and magnetic properties. We now study the role of
electronic interactions. As the highly-anisotropic px-py orbital
structure constitutes the essential novelty of twisted bilayer MoS2,
we focus on quarter filling (one electron per sublattice in the Moié
unit cell) where orbital fluctuations can be expected to be crucial.
This filling fraction is straightforwardly accessible in the experi-
ment via back gating, and we defer a discussion of the half-filled
case to Supplementary Note 1. To proceed, we assume purely
local electronic interactions, which can be generically para-
meterized in terms of the Hubbard-Kanamori Hamiltonian:

HU ¼U∑
i;α
niα"niα# þ ðU � 2JÞ∑

i
nixniy þ J ∑

i;s;s0
cyixsc

y
iys0cixs0ciys

þ J ∑
i;α≠β

cyiα"c
y
iα#ciβ#ciβ"

ð2Þ
for two orbitals with rotational symmetry. More realistic mod-
elling should include long-range interactions. However, for our
choice of commensurate quarter filling, any longer-ranged com-
ponent of the Coulomb interaction at strong-coupling will serve
merely to renormalize the effective spin-orbital interactions of the
resulting Kugel-Khomskii model and we therefore concentrate on
purely local interactions for simplicity. Furthermore, our DFT

Fig. 2 px-py honeycomb model for twisted bilayer MoS2. a Illustration of the model: in a honeycomb lattice composed of sublattices A and B, there are two
orthogonal orbitals (px and py) at each of the two sublattice sites. The solid and the dashed lines denote the py and the px orbitals, respectively, and the red
and the blue color denotes the positive and the negative side of the orbital, respectively. b Fitting the dispersion of the px-py model to the second set of
valence bands of tbMoS2 calculated with DFT for tbMoS2 at 2.65°. The left panel shows the corresponding density of states displaying the signature four-
peak structure. c Charge density, real and imaginary parts of the wave function calculated with DFT for the states in the two quasi-flat bands 1 and 4 shown
in (b). The isosurface of the charge density is colored yellow. The positive and the negative parts of the isosurfaces of the wave function are colored in pink
and purple, respectively. The solutions of the corresponding states from the px–py model are indicated with the blue and red ovals and agree with the DFT
results.
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calculations suggest tπ ≈ 0.25tσ and only weak next-nearest
neighbor hopping at small twist angles; we therefore neglect
next-nearest neighbor hopping in the analysis below (see Sup-
plementary Fig. 4 for a comparison of the band structures with
and without next-nearest neighbor hopping). An ab initio based
characterization of the values of U and J requires numerically
expansive Wannierzation of the wave functions and is unfortu-
nately beyond the scope of this work. However, by substrate
engineering22 it is likely that a whole range of values can be
accessed and therefore it is useful to vary these parameters to
explore all possible phases accessible in experiments to make
concrete predictions. Vice versa given a future experimental
observation our results can be used to estimate the strength of
correlations.

Figure 3c depicts the local density of states as a function of
Hubbard U and Hund’s exchange J interactions, calculated via an
exact diagonalization study of Eqs. (1) and (2) for a cluster
depicted schematically in (a). Clear evidence of a charge gap
beyond U/tσ ~ 4 at small J signifies the onset of a correlated
insulator which could be directly observed via transport and
scanning tunnelling microscopy. The behavior of the gap is
depicted in Fig. 3b as a function of U, J and signifies that charge
fluctuations are strongly suppressed for large U. Establishing the
existence of a charge gap motivates to set up a strong-coupling
Hamiltonian routinely employed for the types of systems under
scrutiny here.

In this regime, a natural follow-up questions concerns possible
orderings of the orbital and magnetic degrees of freedom. The
corresponding strong-coupling Kugel-Khomskii Hamiltonian57–59

for the px-py model at quarter filling is given in refs. 51–53 and

reads:

H ¼ ∑
hiji

1
U � 3J

ξ1ij tσ tπ �Qij � ðt2σ þ t2πÞðPxy
ij þ Pyx

ij Þ
h i

� 1
U þ J

ξ0ij tσ tπQij þ 2t2σP
xx
ij þ 2t2πP

yy
ij

h i

þ 1
U � J

ξ0ij tσ tπðQij � �QijÞ � 2t2σP
xx
ij � 2t2πP

yy
ij � ðt2σ þ t2πÞðPxy

ij þ Pyx
ij Þ

h i
:

ð3Þ
Here, ξ1ij ¼ 3=4þ SiSj denotes the projector onto triplet states,

whereas ξ0ij ¼ 1=4� SiSj selects the singlet spin states instead.
Note that the orbital operators, for example Qij, are bond
dependent, giving rise to a strong spatial anisotropy of the
resulting spin-orbit model. To be more precise following ref. 52,
the operators Qij and �Qij describe processes where orbital
occupations of sites i and j are reversed, that is they are defined
as Qij ¼ ðτþi τþj þ τ�i τ

�
j Þ=2 and �Qij ¼ ðτþi τ�j þ τ�i τ

þ
j Þ=2, with

τ ±
i ¼ n?

ij τi ± iτ
y
i where τi ¼ ðτzi ; τxi ; τyi Þ

T
. The orbital projection

operators can then be expressed as Pxx
ij ¼ ð1þ nk

ijτiÞð1þ nk
ijτjÞ=4,

Pyy
ij ¼ ð1� nk

ijτiÞð1� nkijτjÞ=4, Pxy
ij ¼ ð1þ nk

ijτiÞð1� nk
ijτjÞ=4 and

Pyx
ij ¼ ð1� nk

ijτiÞð1þ nk
ijτjÞ=4, where e.g. Pxx

ij selects states where

the superposition ðpxex þ pyeyÞnk
ij is occupied on nearest neighbor

sites i and j connected by the bond nk
ij.

To study its ground state phase diagram using the ab initio
parameters found in the previous section, we employ a mean-field
analysis of competing for orbital orderings with ferromagnetic
and antiferromagnetic spin order. Note, that the simplifying

Fig. 3 Charge gap and correlations for twisted bilayer MoS2 at vanishing temperature. a depicts the 16-orbital cluster geometry employed for exact
diagonalization of the Hubbard-Kanamori Hamiltonian. b depicts the charge gap as a function of Hubbard U and Hund’s exchange J interactions, calculated
for the 16-orbital cluster and extracted from (c) the local density of states, which is readily accessible via scanning tunnelling microscopy. A well-defined
charge gap develops beyond U/tσ ~ 4 at small J that scales linearly with the Hubbard interaction U. Vertical gray dotted lines indicate phase transitions to
charge-ordered states at large J/U, coinciding with a closing of the charge gap.
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assumption of vanishing temperature – a standard one in
condensed matter research – still allows to draw conclusions
for the low-temperature physics accessible in experiments as
fingerprints of the phases we discuss extend into this regime as
well. To this end, we note that on the bipartite honeycomb lattice
the SU(2) invariant spin sector would, on its own, order either
ferro- or antiferromagnetically, depending on the sign of the
exchange couplings. As an Ansatz, we therefore assume that one
of the respective states is stabilized and decouple the spin from
the orbital degrees of freedom by replacing SiSj with its
expectation value 〈SiSj〉= ±1/4 such that ξ1ij ¼ 1; ξ0ij ¼ 0 for

ferromagnetic spin order and ξ1ij ¼ ξ0ij ¼ 1=2 for Neél order.
After such a mean-field decoupling corresponding to the

ground state in the spin sector, we analyze the ground states of
the resulting Hamiltonian for the orbital degrees of freedom,
which we approximate as classical vectors. We use an iterative
energy minimization combined with simulated annealing techni-
ques (see Methods) to converge the mean-field equations and find
the phase diagram summarized in Fig. 4. Panel (a) shows the
energy of ferromagnetic and antiferromagnetic spin configura-
tions from which the magnetic phase diagram can be read off.
This is given in the upper part of the plot and we find
antiferromagnetic ordering with an intermittent ferromagnetic
phase at intermediate ratios of 0.1 < J/U < 1/3. In the lower part of
the plot, we show the corresponding subsidiary orbital order.
From our simulations, we identify three different configurations
of orbital vectors τ, which can be classified according to their
projection on a single definite plane in space, shown in the lower
left of the plots: (1) ferro-orbital (FO) nematic order5,6,60–62,
where the vectors on all lattice sites align in parallel to the xz-

plane. Quantum mechanically, finite values of hτx=zi i indicate an
imbalance of the occupation of px and py orbitals, breaking

rotation symmetry and thereby motivating the notion of a
nematic state. (2) AFO nematic order; each vector is aligned anti-

parallel with its nearest neighbors corresponding to hτx=zi i≠ 0 on
each sublattice, but without finite projections τyi on individual
sites. (3) FO magnetic order; all vectors order along the y-axis,
such that hτyi i≠ 0, which, in the quantum mechanical system,
would indicate time-reversal symmetry breaking. The inclusion of
quantum fluctuations can change this picture and more exotic
ground states may emerge. For example, for our ab initio band
structure parameters, a noncollinear spin dimer phase is
predicted in a certain range of interaction couplings and even a
quantum spin-orbital liquid is found in its proximity53. Since
these exotic phases primarily occur for weak Hund’s coupling and
strong orbital anisotropies, the assumptions made for our
calculations can therefore be justified for sizable JH and modest
distances to the isotropic tσ= tπ point.

Discussion
We have established that twisted bilayer MoS2 is a promising
platform to realize the orbital anisotropic px–py Hubbard model
by employing large-scale ab initio calculations. We find that
families of flat bands emerge where the first family of flat bands
shows s-orbital character and the second family is an intriguing
realization of a strongly asymmetric px–py Hubbard model both
on a honeycomb lattice, adding a lattice with nontrivial almost
perfectly-flat bands due to destructive interference to the growing
list of systems that can be engineered in twisted heterostructures.
The symmetry of these flat bands is inherited from the hexagonal
lattice formed by the equivalent BMo/S and BS/Mo regions. At an
even smaller angle, the sequence in the family of flat bands found
with respect to their orbital character continues. Our analysis
shows that the low-energy DFT band structures in this system can

Fig. 4 Magnetic phase diagram for twisted bilayer MoS2. a Classical ground state energy per orbital in units of Δ ¼ t2σ=U, assuming ferro- (blue) or
antiferromagnetic (red) order for the spin degrees of freedom. We take the ab initio parameters, tπ= 0.25tσ and use an iterative energy minimization. The
lower panel determines the phase boundaries for the orbital degrees of freedom given the energetically more favorable spin order shown in the top panel.
At J/U= 0.1 we find the spin order to change from AFM to FM, with AFO nematic order for the orbital degrees of freedom remaining stable in agreement
with ref. 53. b Configurations of orbital vectors are found at the end of iterative minimization. Note that we display the projection of τ to the plane in R3

(indicated by the axis shown in the bottom left), such that nematic states with finite contributions only in xz direction ((1) & (2)) can be distinguished from
magnetic states (3) which point perpendicular, i.e along the y-axis.
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be well captured by a free electron gas model modulated by a
simple harmonic potential that has hexagonal (D6) symmetry,
which is consistent with a recent study63. This simple model
further shows that the next family would exhibit a d-orbital
character on the honeycomb lattice. Such a lattice would effec-
tively realize a multi-orbital generalization of a Kagome lattice – a
prototypical model for quantum spin liquids. However, at such
small angles strong relaxation is likely to become dominant,
prohibiting access to this regime and potentially spoiling its
experimental realization. Currently, the ab initio characterization
of such small angles is numerically too exhaustive and this work
sparks a direct need for novel computational methods to tackle
this question.

Furthermore, our combined exact diagonalization and strong-
coupling expansion approaches classify the magnetic and orbital
phase diagrams, however, the inclusion of quantum fluctuations
stipulates an intriguing avenue of future theoretical research.

Indeed, previous theoretical works provide some evidence for a
quantum spin liquid in the SU(4)-symmetric Kugel-Khomskii
model on the honeycomb lattice64, the square lattice as a related
system without frustration65 and studied the role of perturbations
that break SU(4) symmetry and isotropy53 In twisted MoS2, this
regime would in fact map to larger twist angles, where the ani-
sotropy of the px-py model is less pronounced, as well as to a
regime of vanishing Hund’s coupling, placing such a putative
quantum spin liquid at the transition between FO nematic and
AFO nematic phases.

In addition, by proximity or variations in the chemical com-
position of the twisted bilayer, it might be possible to induce spin-
orbit coupling splitting of the ultra-flat bands at the top and
bottom of the asymmetric px–py dispersion. Such a bandgap
opening would induce interesting topological properties66 in a
highly tunable materials setting.

Methods
Details on ab initio calculations. We calculate the electronic properties of twisted
bilayer MoS2 with ab initio methods based on density functional theory (DFT) as
implemented in the Vienna ab initio Simulation Package (VASP)67. We employ
plane-wave basis sets with an energy cutoff of 550 eV and pseudopotentials as
constructed with the projector augmented wave (PAW) method68. The exchange-
correlation functionals are treated at the generalized gradient approximations
(GGA) level69. The supercell lattice constants are chosen such that they correspond
to 3.161Å for the 1 × 1 primitive cell of MoS2. Vacuum spacing larger than 15Å is
introduced to avoid artificial interaction between the periodic images along the
z-direction. Because of the large supercells, a 1 × 1 × 1 k-grid is employed for the
ground state and the relaxation calculations. For all the calculations, all the atoms
are relaxed until the force on each atom is less than 0.01 eV/Å. Van der Waals
corrections are considered with the method of Tkatchenko and Scheffler70. We
extract the real and the imaginary parts of the DFT wavefunctions with the
VASPKIT code71.

Details on exact diagonalization. Exact diagonalization calculations were per-
formed for the electronic tight-binding model in Eq. (1) with Hubbard-Kanamori
interactions defined in Eq. (2). All calculations were performed for a two-orbital
eight-site cluster with periodic boundary conditions at quarter filling, corre-
sponding to eight spin-1/2 particles in sixteen orbitals. Rotationally symmetric
Kanamori interactions are adopted, with U 0 ¼ U � 2J . As the magnitudes of the
Hubbard U and Hund’s exchange J interactions cannot be reliably predicted for a
Moié supercell from first principles, all presented results are shown as a function of
U, J. Calculations of the single-particle Green’s functions and local density of states
are performed starting from the ground state in the total momentum Ktot= 0 and
total spin Sz= 0 sectors, using the Lanczos method and continued-fraction
representation, and a spectral broadening (imaginary part of the self-energy) of
η= 0.1 is imposed.

Details on minimization procedure for classical Hamiltonian. Metropolis Monte
Carlo simulations are a prime tool for the investigation of classical spin models,
since they allow for off-diagonal, spatially anisotropic spin couplings to be inclu-
ded, even when one-spin terms, such as magnetic fields, are involved. Here we
employ a special variant of the algorithm to the mean-field version of (3), keeping
in mind that the ‘spins’ used in the simulation are approximations to orbital
operators τ. First, a lattice site i is randomly chosen, and its respective gradient field

hi=∇iH is computed for the current spin configuration {τi}. Second, a random
orientation τ0i for the vector at site i is proposed and the weight

g ¼ min e�βðτ0i�τiÞhi ; 1
� �

; ð4Þ
is computed for an effective inverse temperature β. Performing several Metropolis
updates with increasing values of β we are able to efficiently lower the energy of a
random initial configuration, minimizing the odds to converge to a local minimum
by only allowing optimal updates (i.e. τi=−hi) right from the start. After Na

sweeps over the full lattice, the so-obtained configuration is ameliorated by No

optimization sweeps, where the randomly selected spin is rotated anti-parallel to
the local gradient field such that the energy is deterministically lowered in every
step and we converge as close to the global energy minimum as possible. Hence,
this algorithm is reminiscent of Monte Carlo simulations with simulated annealing,
but at zero temperature where thermal fluctuations are frozen out.

To benchmark our implementation we have carried out the minimization
procedure in the isotropic limit tσ= tπ for Na=No= 105, where the optimization
sweeps are terminated when the energy change after one sweep, ϵ, becomes small
(usually ϵ ≤ 10−10). Mapping out the phase diagram for both the FM, 〈SiSj〉= 1/4,
as well as the AFM, 〈SiSj〉=−1/4, spin sector on a lattice with N= 1250 spins
subject to periodic boundary conditions we find the result in Fig. 5, which is
consistent with the one presented in ref. 52. For J < 0 the AFM spin sector has lower

energy, with the orbitals forming a ferro-orbital (FO) nematic state where hτx=zi i≠ 0
and hτyi i ¼ 0. For J > 0 one finds the FM spin sector (for which the orbital degrees
of freedom restore their rotation invariance) to dominate as long as J < 1/3, where

the AFM sector takes over again and establishes a FO magnetic state, i.e. hτx=zi i ¼ 0
and hτyi i≠ 0.

Data availability
The raw data sets used for the presented analysis within the current study are available
from the corresponding authors on reasonable request.

Code availability
The tailored developed codes used in this work can be provided from the corresponding
author on reasonable request. Ab initio calculations are done with the code VASP
(version 5.4.4).
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