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1. INTRODUCTION

1.1. Motivation and objectives of this thesis

Since it appeared, quantum mechanics has allowed us to understand a very wide range
of phenomena and has also proven successful in creating useful applications. Many of
these stem from the field of solid-state physics, since it explains how semiconductors or
magnetism in solids work on a fundamental level.

The very well-known transistor, for example, which usually serves as a switch or as
an amplifier of electrical signals, is a semiconductor device whose design relies on the
knowledge of the energy-bands of semiconductors. Without them, current microproces-
sors would not exist.

Other applications arise from the understanding of light-matter interactions or stimulated
emission of light, which are also related to solid-state physics. For example, laser diodes
are a semiconductor device which, when subjected to an electrical current, emit light of
a certain wavelength. The wavelength of the coherently emitted light depends on the
semiconductor material. Laser diodes are used as the sources of light in fiber optics com-
munication.

How quantum mechanics has shed light on the theoretical grounds of these previously
unexplained behaviours presented by nature is called by some authors the ‘First Quantum
Revolution’. This is in contrast to the ‘Second Quantum Revolution’ [1], which is now
developing at a very fast rate, and which aims at engineering artificial systems that take
advantage of purely quantum phenomena, such as superposition, entanglement, the un-
certainty principle, etc. The Second Quantum Revolution usually refers to the emerging
technologies in the fields of quantum computation, quantum metrology, quantum com-
munication and quantum control, among others, all of which are backed up by Quantum
Information Theory. Although Quantum Information Theory sets to studying the new
ways of transmitting and processing information using Quantum Mechanics, it is also
finding applications in describing entanglement in many-body physics.

Some of these fields, like quantum computation or quantum metrology appeared because
of the advantages that quantum mechanics provides over their classical counterpart. As
an example, we have Shor’s algorithm that turns the problem of factoring any integer into
its primes into a problem solvable in polynomial time, when using a quantum computer.
Another example can be found in quantum cryptography, where cryptographic keys are
‘provably immune to attack’ [1], thanks to Heisenberg’s uncertainty principle.
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However, the underlying Quantum Information Theory is far from being complete and
still poses open problems of diverse mathematical connections [2]. One of them is the
Mutually Unbiased Bases problem, which will be the object of study in this thesis.

Although we will give formal definitions later, we say that two bases in a Hilbert space
are mutually unbiased when the probability of transitioning from any vector of one basis
to any vector of the other basis is the same independently from which two vectors we
choose. Mutually unbiased bases generally play an important role when trying to find or
hide information [3]. For example, mutually unbiased bases are useful in quantum cryp-
tography in order to maximize the uncertainty relations that make these protocols safe
[4]. Additionally, when trying to determine the full quantum state of a system, i.e, when
performing quantum state tomography, one must perform a series of measurements where
it is desirable to use mutually unbiased bases to minimize the statistical spread.

In short, mutually unbiased bases are a useful tool in Quantum Information Theory but,
how many there exist in a certain Hilbert space is not fully known. In this thesis we would
like to give an introduction to the Mutually Unbiased Bases problem in a different man-
ner than usual. We will approach it via the Bloch representation, because it draws a more
geometrical picture of the problem. Also, we will try to minimize the amount of mathe-
matical background necessary to understand the problem, as it can get a bit complex in
the existing literature. Finally, regarding content, we will limit ourselves to the study of
some known results, that is, existence of mutually unbiased bases in a Hilbert space of
prime dimension.

1.2. Dirac notation and basic notions for finite dimensional Hilbert spaces

In this section we will present the notation and basic properties that will be used through-
out the entire thesis taking inspiration from the Lecture Notes on Quantum Computation
by John Preskill [5].

A Hilbert space H is a vector space over the complex numbers C which also has an
inner product that maps any two vectors to a complex number [6]. Let |ψ⟩ denote a vector
of the Hilbert space and ⟨φ|ψ⟩ the inner product.

The inner product satisfies the following properties

1) It is positive definite if the product is taken between one vector and itself

⟨ψ|ψ⟩ > 0, if |ψ⟩ ≠ 0.

2) It is linear in its second argument

⟨φ| (a |ψ1⟩ + b |ψ2⟩) = a ⟨φ|ψ⟩ + b ⟨φ|ψ⟩ .
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3) It is conjugate symmetric
⟨φ|ψ⟩ = ⟨ψ|φ⟩∗ .

Combining the second and third properties we get

(a ⟨φ1| + b ⟨φ2|) |ψ⟩ =
(︂
⟨ψ| (a |φ1⟩ + b |φ2⟩)

)︂∗
=

(︂
a ⟨ψ|φ1⟩ + b ⟨ψ|φ2⟩

)︂∗
=

= a∗ ⟨ψ|φ1⟩
∗ + b∗ ⟨ψ|φ2⟩

∗ = a∗ ⟨φ1|ψ⟩ + b∗ ⟨φ2|ψ⟩ ,

that is, the inner product is antilinear in its first argument.

Finally, let me introduce the outer product |φ⟩ ⟨Ψ|, which is an operator that acts on a
vector in the following way (︂

|φ⟩ ⟨Ψ|
)︂
|ϕ⟩ = (⟨Ψ|ϕ⟩) |φ⟩ .

Therefore, the outer product |Ψ⟩ ⟨Ψ| between one normalized vector |Ψ⟩ and itself is a pro-

jector because
(︂
|Ψ⟩ ⟨Ψ|

)︂2
= |Ψ⟩ ⟨Ψ|. To see this, first note that

(︂
|Ψ⟩ ⟨Ψ|

)︂
|ϕ⟩ = ⟨Ψ|ϕ⟩ |Ψ⟩.

Now, let
(︂
|Ψ⟩ ⟨Ψ|

)︂2
act on the same vector |ϕ⟩:(︂

|Ψ⟩ ⟨Ψ|
)︂2
|ϕ⟩ =

(︂
|Ψ⟩ ⟨Ψ|

)︂(︂
|Ψ⟩ ⟨Ψ|

)︂
|ϕ⟩ = ⟨Ψ|ϕ⟩

(︂
|Ψ⟩ ⟨Ψ|

)︂
|Ψ⟩ = ⟨Ψ|ϕ⟩ ⟨Ψ|Ψ⟩ |Ψ⟩ .

Since we defined |Ψ⟩ as a normalized vector, that is, ⟨Ψ|Ψ⟩ = 1, we obtain(︂
|Ψ⟩ ⟨Ψ|

)︂2
|ϕ⟩ = ⟨Ψ|ϕ⟩ ⟨Ψ|Ψ⟩ |Ψ⟩ = ⟨Ψ|ϕ⟩ |Ψ⟩ .

1.3. The Mutually Unbiased Bases problem

Definition 1.1. Let |a⟩ and |b⟩ be normalized vectors that belong to a d-dimensional
Hilbert spaceHd. These two vectors are said to be mutually unbiased if

|⟨a|b⟩|2 =
1
d
.

Example 1.1. For example, imagine we have an orthonormal basis
{︁
|0⟩ , |1⟩

}︁
inH2. Then,

the vectors |0⟩ and 1
√

2

(︁
|0⟩ + |1⟩

)︁
are mutually unbiased because

⟨0|
(︄

1
√

2

(︁
|0⟩ + |1⟩

)︁)︄
=

1
√

2

(︂
⟨0|0⟩ + ⟨0|1⟩

)︂
=

1
√

2

(︂
1 + 0

)︂
=

1
√

2
,

whose norm squared is 1/2.

Example 1.2. Now, for a not so trivial example, take the vectors 1
√

2

(︁
|0⟩+|1⟩

)︁
and 1

√
2

(︁
|0⟩+

i |1⟩
)︁
. They are mutually unbiased because(︄

1
√

2

(︁
⟨0| + ⟨1|

)︁)︄(︄ 1
√

2

(︁
|0⟩ + i |1⟩

)︁)︄
=

1
2

(︂
⟨0|0⟩ + i ⟨1|1⟩

)︂
=

1
2

(︂
1 + i

)︂
,

whose norm squared is 1/2.
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We can extend the definition of mutual unbiasedness to bases.

Definition 1.2. Let B1 =
{︂
|ai⟩

}︂d−1

i=0
and B2 =

{︂
|bi⟩

}︂d−1

i=0
be two orthonormal bases, we say

that they are mutually unbiased if any two vectors belonging to a different basis each are
mutually unbiased. This can also be expressed mathematically as⃓⃓⃓

⟨ai|b j⟩
⃓⃓⃓2
=

1
d
, ∀i, j = 0, 1, ..., d − 1.

It can be easily checked that the bases
{︂
|0⟩ , |1⟩

}︂
and

{︄
1
√

2

(︁
|0⟩ + |1⟩

)︁
, 1
√

2

(︁
|0⟩ − |1⟩

)︁}︄
are mutually unbiased.

Definition 1.3. Moreover, we say that a set
{︃
B1,B2, ...,Bn

}︃
of n orthonormal bases is

mutually unbiased if every possible pair of bases within the set is mutually unbiased.

Continuing with the example in d = 2, the set of three orthonormal bases

B0 =
{︂
|0⟩ , |1⟩

}︂
, B1 =

{︄
1
√

2

(︁
|0⟩ + |1⟩

)︁
,

1
√

2

(︁
|0⟩ − |1⟩

)︁}︄
,

B2 =

{︄
1
√

2

(︁
|0⟩ + i |1⟩

)︁
,

1
√

2

(︁
|0⟩ − i |1⟩

)︁}︄
, (1.1)

is mutually unbiased.

In fact, it can be proven [7] that, in d = 2, one cannot construct a mutually unbiased
set of more than 3 bases.

The problem of mutually unbiased bases is concerned with how big you can make a
mutually unbiased set of bases in any dimension d, or how it is usually put: how many
mutually unbiased bases there are in dimension d.

It is a well-known result that for any dimension d, there exist, at most, d + 1 mutually
unbiased bases. It is also known that when d is a prime or a power of a prime number
(d = pk, for k ∈ N), d + 1 mutually unbiased bases do exist [8]. However, for composite
dimensions (d = 6, 10, 12, ...) it is not known how many there actually are.

Due to other limiting bounds on the number of mutually unbiased bases, in d = 6 there
are at least 3 mutually unbiased bases, but no more have been found. It is a conjecture that
there only exist 3 mutually unbiased bases in d = 6, and finding a correct answer which
proves or disproves it is rewarded with the Golden KCIK award [2].

From now on, MUB will stand for mutually unbiased basis.
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1.4. The qubit and the Bloch sphere

In d = 2, any vector can be written as

|Ψ⟩ = a |0⟩ + b |1⟩ , (1.2)

where
{︂
|0⟩ , |1⟩

}︂
is an orthonormal basis, usually called the computational basis, and

a, b ∈ C.

However, for the vector in (1.2) to represent a physical state it must be normalized, that
is, it must satisfy |a|2 + |b|2 = 1. Let a = |a|eiφa and b = |b|eiφb , we can rewrite the vector as

|Ψ⟩ = eiφa
(︂
|a| |0⟩ + |b|ei(φb−φa) |1⟩

)︂
= eiφa

(︂
|a| |0⟩ + ei(φb−φa)

√︂
1 − |a|2 |1⟩

)︂
.

Vectors that differ only by a nonzero complex scalar represent the same physical state.
We can then get rid of the eiφa factor, and by defining φ ≡ φb − φa, we rewrite the state as

|Ψ⟩ = |a| |0⟩ + eiφ
√︂

1 − |a|2 |1⟩ .

Since 0 ≤ |a|2 ≤ 1, we let |a| = cos θ
2 , with θ ∈ [0, π] and obtain

|Ψ⟩ = cos
θ

2
|0⟩ + eiφ sin

θ

2
|1⟩ , (1.3)

with φ ∈ [0, 2π]. Therefore, any quantum state in d = 2 can be described by two real
parameters θ ∈ [0, π] and φ ∈ [0, 2π]. This naturally spans the surface of a sphere with
unit radius, which we call the Bloch sphere, Figure 1.1. In the previous section, we pre-

φ

Ψ

Figure 1.1: Bloch sphere.

sented all mutually unbiased bases in d = 2 (Equation (1.1)). By comparing with (1.3),
we see that the vectors in B0 correspond to θ = 0 and θ = π, the vectors in B1 corre-
spond to (θ = π/2, φ = 0) and (θ = π/2, φ = π) and the vectors in B2 correspond to
(θ = π/2, φ = π/2) and (θ = π/2, φ = 3π/2). By looking at the Bloch sphere in Figure
1.1, we see that each basis is associated to one of the axes in the sphere, and each vector
inside the basis corresponds with one of the ends of the axis.
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Note how orthogonal vectors of the same basis belong to the same axis in the Bloch
sphere, whereas mutually unbiased vectors from different bases belong to orthogonal axes
in the Bloch sphere. In the next chapter we will prove how the Bloch-subspaces spanned
by two MUBs are orthogonal for any d.

Let me now introduce another way to arrive at the Bloch picture which will prove useful
for the rest of this thesis. For this purpose, we are going to work with projectors instead
of kets.

Using the same vector from Equation (1.2), its projector has the following matrix rep-
resentation

|Ψ⟩ ⟨Ψ| =
(︂
a |0⟩+ b |1⟩

)︂(︂
a∗ ⟨0|+ b∗ ⟨1|

)︂
= |a|2 |0⟩ ⟨0|+ ab∗ |0⟩ ⟨1|+ a∗b |1⟩ ⟨0|+ |b|2 |1⟩ ⟨1| =

=

⎡⎢⎢⎢⎢⎣|a|2 ab∗

a∗b |b|2

⎤⎥⎥⎥⎥⎦ .
Since for |Ψ⟩ to represent a real physical state it must be normalized, that is, |a|2+ |b|2 = 1,
the trace of the projector satisfies

Tr
(︂
|Ψ⟩ ⟨Ψ|

)︂
= |a|2 + |b|2 = 1.

We are now concerned with finding a basis of operators (or a basis of matrices) in terms
of which we can express the projector |Ψ⟩ ⟨Ψ|. One such basis is, of course,

|0⟩ ⟨0| =
⎡⎢⎢⎢⎢⎣1 0
0 0

⎤⎥⎥⎥⎥⎦ , |0⟩ ⟨1| =
⎡⎢⎢⎢⎢⎣0 1
0 0

⎤⎥⎥⎥⎥⎦ , |1⟩ ⟨0| =
⎡⎢⎢⎢⎢⎣0 0
1 0

⎤⎥⎥⎥⎥⎦ , |1⟩ ⟨1| =
⎡⎢⎢⎢⎢⎣0 0
0 1

⎤⎥⎥⎥⎥⎦ , (1.4)

which we already used. Note how the dimension of the basis has to be 4 in order to de-
scribe a general operator in d = 2. For any d, the dimension of any vector basis is d, while
the dimensions of any operator basis is d2.

However, to arrive at the Bloch sphere we should use the three Pauli matrices and the
identity matrix

σx =

⎡⎢⎢⎢⎢⎣0 1
1 0

⎤⎥⎥⎥⎥⎦ , σy =

⎡⎢⎢⎢⎢⎣0 −i
i 0

⎤⎥⎥⎥⎥⎦ , σz =

⎡⎢⎢⎢⎢⎣1 0
0 −1

⎤⎥⎥⎥⎥⎦ , σ0 ≡ 1 =

⎡⎢⎢⎢⎢⎣1 0
0 1

⎤⎥⎥⎥⎥⎦ ,
which are all hermitian, unitary and satisfy the following orthogonality condition

Tr
(︂
σ†iσ j

)︂
= 2δi j. (1.5)

Notice that out of these four matrices, only the identity matrix has nonzero trace: Tr1 = 2.
This suggests that any projector |Ψ⟩ ⟨Ψ| can be cast into the following form

|Ψ⟩ ⟨Ψ| =
1
2

(︂
1 + rxσx + ryσy + rzσz

)︂
, (1.6)
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in order to satisfy the unit trace of |Ψ⟩ ⟨Ψ|. The vector of coefficients (rx, ry, rz) associated
to the Pauli matrices is called Bloch vector. Following from the orthogonality condition
(1.5), the Bloch coordinates are given by

ri = Tr
(︂
σ†i |Ψ⟩ ⟨Ψ|

)︂
. (1.7)

It can be proven (see Section 2.4) that the magnitude of the Bloch vector (in d = 2) is
unity, so it naturally spans the surface of a unit sphere.

For example, it is easy to see that the projector |0⟩ ⟨0| is given by

|0⟩ ⟨0| =
1
2

(︂
1 + σz

)︂
,

which corresponds to a (0, 0, 1) Bloch vector, whereas the |1⟩ ⟨1| projector gives the
(0, 0,−1) Bloch vector

|1⟩ ⟨1| =
1
2

(︂
1 − σz

)︂
.

For a more ‘complex’ example, the projector associated to the state 1
√

2

(︂
|0⟩ − i |1⟩

)︂
can be

expressed in terms of the four matrices as follows[︄
1
√

2

(︂
|0⟩ − i |1⟩

)︂]︄[︄ 1
√

2

(︂
⟨0| + i ⟨1|

)︂]︄
=

⎡⎢⎢⎢⎢⎣ 1
2

i
2

− i
2

1
2

⎤⎥⎥⎥⎥⎦ = 1
2

(︂
1 − σy

)︂
,

which corresponds to a (0,−1, 0) Bloch vector.

As a result, we obtain the same Bloch sphere representation from Figure 1.1. Although
the two representations of the Bloch sphere that we have used, (1.3) and (1.6), might seem
somewhat redundant, this is only the case for d = 2. When one goes to higher dimensions,
the representation of MUBs via Bloch vectors becomes geometrically appealing because
of the fact that Bloch vectors that belong to different MUBs are orthogonal. This result
will also be demonstrated in the next chapter.
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2. GENERAL PROPERTIES INHD

2.1. Properties of mutually unbiased bases and example for d = 3

In the previous chapter, we saw how some geometrical properties arise in relation to mu-
tual unbiasedness. We will now give all the mutually unbiased bases in d = 3 so that they
will serve as examples throughout the chapter.

For visualization purposes, we will represent each basis in d × d matrix form, where
the elements of each column are the coordinates of each vector of the basis (in terms of
the computational basis). So, for example, the B1 basis in (1.1) can be written as

1
√

2

⎡⎢⎢⎢⎢⎣1 1
1 −1

⎤⎥⎥⎥⎥⎦ .
The first basis of any set of mutually unbiased bases can always be taken to be the com-
putational basis {| j⟩}d−1

j=0 which, in matrix form, is written as the identity

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0

. . .

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Now, for any vector |φ⟩ =

∑︁d−1
j=0 c j | j⟩ to be mutually unbiased to B0 it must satisfy

|⟨ j|φ⟩| =
⃓⃓⃓
c j

⃓⃓⃓
=

1
√

d
, j = 0, 1, ..., d − 1, (2.1)

which means that the coefficients’ modulus are completely determined and only the phases
θ j such that

|φ⟩ =
1
√

d

d−1∑︂
j=0

eiθ j | j⟩ , (2.2)

are left to be specified in order to build the rest of the MU bases.

As we said in Section 1.3, there exist d + 1 mutually unbiased bases in prime dimen-
sions. Since d = 3 is prime, we will have 4 mutually unbiased bases, of which we take
the computational basis {|0⟩ , |1⟩ , |2⟩} as the first one

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
The remaining three bases are

B1 =
1
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
1 ω ω2

1 ω2 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B2 =
1
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
ω ω2 1
ω 1 ω2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B3 =
1
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
ω2 1 ω

ω2 ω 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (2.3)
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where ω ≡ e2πi/d, and here d = 3. We will denote |i⟩ j the i-th vector of the j-th mutually
unbiased basis, where i = 0, ..., d − 1 and j = 0, ..., d.

A couple of things are worth noting here. Firstly, all bases are orthonormal, and all
elements are nonzero and of modulus 1/

√
d in accordance with (2.1). Also, the phase θ0

of every vector (first element of each column) can always be taken to be zero. Finally,
all phases of the first vector of the second basis, B1, can be chosen to be zero. These
impositions hold for any dimension d and not only d = 3 (see for example (1.1)).

These degrees of freedom come from how we define two sets of MUBs to be equiva-
lent [7]1. For example, that all θ0 can be set to zero is a consequence of the fact that any
two vectors |φ1⟩, |φ2⟩, that are mutually unbiased (or orthogonal),

|⟨φ1|φ2⟩| =
1
√

d
,

will still be mutually unbiased (or orthogonal) if they are multiplied by arbitrary phase
factors eiα1 , eiα2 , respectively⃓⃓⃓

⟨eiα1φ1|eiα2φ2⟩
⃓⃓⃓
=

⃓⃓⃓
ei(α2−α1)

⃓⃓⃓
|⟨φ1|φ2⟩| = |⟨φ1|φ2⟩| =

1
√

d
.

Therefore, we can factor a global phase out of each vector so that the first coefficients are
simply 1/

√
d.

2.2. The Fourier basis

The Fourier basis is a simple orthonormal basis that is mutually unbiased to the compu-
tational basis for any dimension d. Using the notation established in the previous section,
it is given by

F =
1
√

d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 . . . 1
1 ω ω2 ω3 . . . ωd−1

1 ω2 ω4 ω6 . . . ω2(d−1)

1 ω3 ω6 ω9 . . . ω3(d−1)

...
...

...
...

. . .
...

1 ωd−1 ω2(d−1) ω3(d−1) . . . ω(d−1)(d−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.4)

where ω ≡ e2πi/d. This gives the same basis B1 from (2.3) for d = 3 by noting that
ωp = ωp mod d with p an integer.

We can write each state individually as

| fi⟩ =
1
√

d

d−1∑︂
k=0

ωik |k⟩ . (2.5)

1Appendix A.
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From (2.1), it is obvious that the Fourier basis F is mutually unbiased to the computa-
tional basis. It only remains then to prove that F is, in fact, orthonormal.

⟨ fi| f j⟩ =
1
d

d−1∑︂
k=0

d−1∑︂
k′=0

ω−ikω jk′ ⟨k|k′⟩ .

Since ⟨k|k′⟩ = δk,k′ we get

⟨ fi| f j⟩ =
1
d

d−1∑︂
k=0

(︁
ω j−i)︁k

.

If j = i, then the sum gives d and we obtain

⟨ fi| f j⟩ = 1.

On the other hand, if i ≠ j, the sum is a geometric progression whose solution is

⟨ fi| f j⟩ =
1
d

1 − (ω j−i)d

1 − ω j−i = 0,

because ω(i− j)d = 1 for any i, j and the numerator cancels. Therefore,

⟨ fi| f j⟩ = δi, j.

2.3. Properties of the Bloch representation

In the previous chapter we saw how a general projector |Ψ⟩ ⟨Ψ| in d = 2 can be written in
terms of an operator basis (1.6), which in a general dimension d takes the form

|Ψ⟩ ⟨Ψ| =
1
d

(︃
1 +

d2−1∑︂
i=1

riλi

)︃
, (2.6)

where the λi, i = 1, ..., d2 − 1, are traceless operators (or matrices) which, together with
the identity (Tr1 = d), form a basis of dimension d2. One could also denote λ0 ≡ 1 with
r0 = 1, but we will not do this for now.

We also derived an expression for the coordinates of the associated Bloch vector (1.7),
and in a general dimension d this takes the same form

ri = Tr
(︂
λ†i |Ψ⟩ ⟨Ψ|

)︂
, (2.7)

where we have assumed the orthogonality condition

Tr
(︂
λ†i λ j

)︂
= dδi j. (2.8)

Finally, we define the vector (r1, ..., rd2−1) as the Bloch vector of |Ψ⟩ ⟨Ψ| in terms of the λi,
i = 1, ..., d2 − 1.
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Example 2.1. The generalized Gell-Mann matrices [9] are a set of d2 − 1 traceless and
hermitian matrices which satisfy the orthogonality condition (2.8). In d = 3 they are given
by

X01 =

√︃
3
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0
1 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , X02 =

√︃
3
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 1
0 0 0
1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , X12 =

√︃
3
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 0 1
0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Y01 =

√︃
3
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 −i 0
i 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Y02 =

√︃
3
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 −i
0 0 0
i 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Y12 =

√︃
3
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 0 −i
0 i 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

Z1 =

√︃
3
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 −1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , Z2 =

√︃
1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Taking these matrices together with the identity 1, we obtain a matrix basis of dimensions
3 × 3.

Let us take the state |1⟩ from the computational basis. Its projector in matrix form is
given by

|1⟩ ⟨1| =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This matrix can be written in terms of 1 and the generalized Gell-Mann matrices as

|1⟩ ⟨1| =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 1
3

(︄
1 −

√︃
3
2

Z1 +
1
√

2
Z2

)︄
,

with Bloch vector
(︂
0, 0, 0, 0, 0, 0,−

√︂
3
2 ,

1
√

2

)︂
.

Alternatively, let us consider the state |1⟩3 from (2.3). Its projector takes the following
matrix form

|1⟩3 ⟨1|3 =
1
3

(︂
|0⟩ + ω |1⟩ + |2⟩

)︂(︂
⟨0| + ω∗ ⟨1| + ⟨2|

)︂
=

1
3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 ω∗ 1
ω 1 ω

1 ω∗ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
This matrix can be written as the following linear combination

|1⟩3 ⟨1|3 =
1
3

(︄
1 −

1
√

6
X01 +

√︃
2
3

X02 −
1
√

6
X12 +

1
√

2
Y01 −

1
√

2
Y12

)︄
,

with Bloch vector
(︂
− 1
√

6
,
√︂

2
3 ,−

1
√

6
, 1
√

2
, 0,− 1

√
2
, 0, 0

)︂
.

The Bloch vectors of |1⟩ and |1⟩3 are obviously orthogonal.
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Consider a state |i⟩ from the computational basis, then the matrix form of its projector
|i⟩ ⟨i| is all zeros but a one in the i-th position of the diagonal (as seen in Example 2.1).
Therefore, the projector can be written as a linear combination of d diagonal matrices.

In contrast, let |φ⟩ be mutually unbiased to the computational basis, then it can be written
as in (2.2). The projector of such a state is

|φ⟩ ⟨φ| =
1
d

(︄ d−1∑︂
i=0

d−1∑︂
j=0

ei(θi−θ j) |i⟩ ⟨ j|
)︄
,

which can be separated into two different sums: one of projectors |i⟩ ⟨i| and another one
of outer products |i⟩ ⟨ j|, with i ≠ j

|φ⟩ ⟨φ| =
1
d

(︄ d−1∑︂
i=0

|i⟩ ⟨i| +
∑︂

i, j
i≠ j

ei(θi−θ j) |i⟩ ⟨ j|
)︄
.

The first term is precisely the identity matrix, because of the completeness relation, so we
end up with

|φ⟩ ⟨φ| =
1
d

(︄
1 +

∑︂
i, j
i≠ j

ei(θi−θ j) |i⟩ ⟨ j|
)︄
.

The second term, on the other hand, is made up of matrices with zero diagonal (see, for
example, Equation (1.4)).

Therefore, any state |φ⟩ that is mutually unbiased to the computational basis, its pro-
jector (or, rather, its Bloch vector) can be written in terms of matrices with zero diagonal
(with the exception of the identity matrix, of course). We already saw an example of this
in Example 2.1, where the Bloch vector of the projector |1⟩3 ⟨1|3 is written as a linear
combination of matrices with zero diagonal.

As a consequence, even though there are many possible bases {1, λ1, ..., λd2−1} in terms
of which we can write projectors, for convenience we will work with bases that can be
divided into matrices with nonzero diagonal, to describe projectors of the computational
basis; and matrices with zero diagonal, to describe projectors that are unbiased to the
computational basis. Specifically, there will be d diagonal matrices including the identity
to span the whole diagonal, and d2 − d matrices with zero diagonal.

2.4. Orthogonality and mutual unbiasedness of Bloch vectors

In this section we are going to show what is the connection between two Bloch vectors
associated to different projectors, by means of its dot product.
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Let ρ1 = |φ1⟩ ⟨φ1| and ρ2 = |φ2⟩ ⟨φ2| be two projectors that can be written in terms of
the {1, λ1, ..., λd2−1} basis as

ρ1 = |φ1⟩ ⟨φ1| =
1
d

(︃
1 +

d2−1∑︂
i=1

r1iλi

)︃
,

ρ2 = |φ2⟩ ⟨φ2| =
1
d

(︃
1 +

d2−1∑︂
j=1

r2 jλ j

)︃
,

where the r1i and the r2 j are complex numbers.

Even though any projector is hermitian, that is,
(︂
|Ψ⟩ ⟨Ψ|

)︂†
= |Ψ⟩ ⟨Ψ|, we can still write

ρ†1 =
(︃
|φ1⟩ ⟨φ1|

)︃†
=

1
d

(︃
1 +

d2−1∑︂
i=1

r∗1iλ
†

i

)︃
.

Therefore, the operator ρ†1ρ2 is

ρ†1ρ2 =
1
d2

(︄
1 +

d2−1∑︂
i=1

r∗1iλ
†

i +

d2−1∑︂
j=1

r2 jλ j +
∑︂

i, j

r∗1ir2 jλ
†

i λ j

)︄
.

We now take the trace of this expression and obtain

Tr (ρ†1ρ2) =
1
d2

(︄
d +

∑︂
i, j

r∗1ir2 j Tr
(︂
λ†i λ j

)︂)︄
,

where we have used the fact that the trace is a linear operator, that is,

Tr (A + B) = Tr A + Tr B, Tr (cA) = c Tr A,

for any square matrix A and B and any scalar c, and that the trace of each element of the
basis is

Tr1 = d, Tr λi = Tr λ†i = 0, i = 1, ..., d2 − 1.

Finally, using the orthogonality condition Tr (λ†i λ j) = dδi j we obtain

Tr (ρ†1ρ2) =
1
d

(︃
1 +

d2−1∑︂
i=1

r∗1ir2i

)︃
.

Notice that the sum is actually the scalar product between the Bloch vectors of the two
projectors. Let P⃗1 = (r11, ..., r1,d2−1) and P⃗2 = (r21, ..., r2,d2−1), then we have

Tr (ρ†1ρ2) =
1
d

(︃
1 + P⃗

∗

1 · P⃗2

)︃
.

On the other hand, the trace of two projectors is

Tr (ρ†1ρ2) = Tr
(︂
|φ1⟩ ⟨φ1|φ2⟩ ⟨φ2|

)︂
= ⟨φ1|φ2⟩Tr |φ1⟩ ⟨φ2|.
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Since Tr |φ1⟩ ⟨φ2| = ⟨φ2|φ1⟩ (see Appendix A), we have

Tr (ρ†1ρ2) = |⟨φ1|φ2⟩|
2.

We can now relate the two expressions obtained for Tr (ρ†1ρ2)

|⟨φ1|φ2⟩|
2 =

1
d

(︃
1 + P⃗

∗

1 · P⃗2

)︃
.

If |φ1⟩ = |φ2⟩ the inner product |⟨φ1|φ2⟩|
2 is one and we obtain the modulus of the Bloch

vector
|P⃗|2 = d − 1. (2.9)

If |φ1⟩ and |φ2⟩ are orthogonal then ⟨φ1|φ2⟩ = 0 and we have

P⃗
∗

1 · P⃗2 = −1. (2.10)

Since P⃗
∗

1 · P⃗2 = |P⃗
∗

1||P⃗2| cos θ and both Bloch vectors have modulus
√

d − 1, then

cos θ = −
1

d − 1
. (2.11)

Finally, if |φ1⟩ and |φ2⟩ are mutually unbiased, then |⟨φ1|φ2⟩|
2 = 1/d, so

P⃗
∗

1 · P⃗2 = 0. (2.12)

This last equation proves the result we have encountered previously that the Bloch vectors
associated to two mutually unbiased states are orthogonal.

More generally, any mutually unbiased basis has a set of Bloch vectors that span a ‘Bloch
subspace’ which is orthogonal to the ‘Bloch subspace’ of any other mutually unbiased
basis.

Additionally, from Equation (2.11) we have that the projection of a Bloch vector onto
any other Bloch vector from the same Bloch subspace is constant.

Example 2.2. From Equation (2.11), we get that in d = 2 the angle between Bloch vec-
tors belonging to the same mutually unbiased basis is cos θ = −1 → θ = π. We already
saw this in Section (1.4), where each mutually unbiased basis corresponded to an axis in
the Bloch sphere, and the two ends of each axis represented the states that make up the
basis. The Bloch subspace is a line.

In d = 3, we get that cos θ = −1/2, so θ = 2π/3. Since each mutually unbiased basis
contains 3 Bloch vectors and 3 vectors that are separated by an angle 2π/3 must be in
the same plane (see Figure 2.1), the Bloch subspaces are planes. Although we cannot
draw any Bloch sphere equivalent for d = 3 because the dimension of the Bloch vector2

is d2 − 1 = 8, knowing that the set of d + 1 = 4 MUBs results in 4 planes perpendicular to
each other makes it ‘easier’ to picture.

2Note that in d = 2, the dimension of the Bloch vector is d2 − 1 = 3, so we can draw a Bloch sphere.
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Figure 2.1: Bloch vectors from a Bloch subspace in d = 3.

At this point, we can give a sense of why in any dimension d the maximum possible
number of MUBs is d + 1.3 As we saw in Example 2.2, although each MUB gives d
Bloch vectors, the Bloch subspace spanned by these is of dimension d−1. The dimension
of the total Bloch space is d2 − 1 = (d + 1)(d − 1), and since these Bloch subspaces are
all orthogonal to each other, the total Bloch space can contain d+1 such subspaces at most.

In order to obtain a rigorous proof, we would have to show that Bloch subspaces are
indeed of dimension d − 1, but we will not do this here. It is not complicated to show that
one of these d Bloch vectors can be written as a linear combination of the rest. In fact, let
{P⃗0, P⃗1, P2, ..., P⃗d−1} be the set of d Bloch vectors associated to one of the MUBs, then the
vector P⃗0 can be written as the linear combination

P⃗0 = −

d−1∑︂
i=1

P⃗i,

and it is easy to see that it satisfies conditions (2.9) and (2.10), so the Bloch subspace is
at most of dimension d − 1.

3Which is not to say that these MUBs exist.
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3. MUB GENERATION IN PRIME DIMENSION

3.1. The Weyl basis

In Example 2.1, we saw one possible basis in terms of which to write Bloch vectors, the
generalized Gell-Mann basis. There is another basis, the Weyl basis [3], that gives Bloch
vectors a nice structure in prime dimensions.

The Weyl basis is constructed from two operators Z and X that act on the computational
basis in the following way

Z | j⟩ = ω j | j⟩ , X | j⟩ = | j + 1 mod d⟩ , j = 0, ..., d − 1,

where ω ≡ e2πi/d (in this definition of ω, the number i is the imaginary unit). In other
words, X is a circular shifting operator and Z is diagonal in the computational basis.
Also, the action of Zk and Xk on the computational basis is

Zk | j⟩ = ω jk | j⟩ , Xk | j⟩ = | j + k mod d⟩ , j = 0, ..., d − 1, (3.1)

where k is any integer, positive or negative. Notice that (3.1) gives the inverses of Z and
X if k = −1.

Since ω jd = 1 and ( j + d mod d) = j, from (3.1) we have that

Zd = Xd = 1. (3.2)

These operators can be defined without acting on any state as follows

Zk =

d−1∑︂
j=0

ω jk | j⟩ ⟨ j| , Xk =

d−1∑︂
j=0

| j + k mod d⟩ ⟨ j| . (3.3)

The operators Zk and Xk for any integer k are unitary, that is

(Zk)† = Z−k, (Xk)† = X−k.

This is easy to see from (3.3) by noting that
(︁
|a⟩ ⟨b|

)︁†
= |b⟩ ⟨a|.

Finally, the commutation relation between Z and X is

ZX = ωXZ,

from which we get the more general relation

Z jXk = ω jkXkZ j. (3.4)
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Example 3.1. Here we show the matrix form of some operators Zk and Xk in d = 5.

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 ω 0 0 0
0 0 ω2 0 0
0 0 0 ω3 0
0 0 0 0 ω4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X0 = 1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

X1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

X3 = X−2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X4 = X−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ZX2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0
0 0 0 0 ω

ω2 0 0 0 0
0 ω3 0 0 0
0 0 ω4 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, X0 + X1 + X2 + X3 + X4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The Weyl basis is the set of d2 operators D j,k, with j, k = 0, ..., d − 1, where each

operator is given by
D j,k = Z jXkω− jk/2. (3.5)

There are d diagonal but traceless matrices D j,0, with j = 0, ..., d − 1 and d2 − d matrices
D j,k with k = 1, ..., d − 1 that have zero diagonal. This is because the Xk have zero diago-
nal, and multiplying them by a diagonal matrix Z j will maintain the zero diagonal.

The adjoint of D j,k is given by(︁
D j,k

)︁†
=

(︁
Z jXkω− jk/2)︁† = (︁

ω− jk/2)︁†(︁Xk)︁†(︁Z j)︁† = ω jk/2X−kZ− j.

Therefore, these operators are also unitary because

D†j,kD j,k = D j,kD†j,k = 1. (3.6)

On the other hand, the product of D†j,k and D j′,k′ yields

D†j,kD j′,k′ = ω
( jk− j′k′)/2X−kZ j′− jXk′ ,
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and using (3.4) we obtain

D†j,kD j′,k′ = ω
( jk− j′k′)/2ωk( j′− j)Z j′− jXk′−k = ω( j′k− jk′)/2D j′− j,k′−k, (3.7)

which is a traceless matrix if j′ ≠ j or k′ ≠ k. Therefore, the Weyl basis operators satisfy
the orthogonality condition

Tr
(︁
D†j,kD j′,k′

)︁
= dδ j, j′δk,k′ , j, k, j′, k′ = 0, ..., d − 1. (3.8)

While it is not relevant for now, we should mention here what happens to the orthogonal-
ity condition when one considers operators Dp,q where p and q do not necessarily belong
to 0, ..., d − 1.

Consider
D†p,qDp′,q′ = ω

(p′q−pq′)/2Dp′−p,q′−q, (3.9)

the matrix Dp′−p,q′−q is traceless unless p′ − p = nd and q′ − q = md are some multiple of
d, in which case

Dnd,md ∝ ZndXmd = 1.

Therefore, we can say for certain that

Tr
(︁
D†p,qDp′,q′

)︁
∝ dδp′−p mod d,0δq′−q mod d,0, (3.10)

but whether the proportionality constant is 1 as in (3.8) or not is more complicated. To
give an example, take p = 1, q = 0, p′ = d + 1 and q′ = d then, from (3.7), we have

D†1,0Dd+1,d = ω
−d/2Dd,d.

From (3.5) we have that Dd,d = ω
−d2/21 ≠ 1 so, by substituting, the previous expression

becomes
D†1,0Dd+1,d = ω

−d(d+1)/21 = e−πi(d+1)1 = (−1)d+11,

so
Tr

(︁
D†1,0Dd+1,d

)︁
= (−1)d+1d.

In other words, the definition of the Weyl operators Dp,q in (3.5), when p and q do not
belong to 0, ..., d − 1, give rise to possibly unexpected phase factors.

3.2. Computational and Fourier bases in terms of the Weyl basis

In this section we are going to express the projectors of the computational and Fourier
bases as linear combinations of Weyl operators. This will be useful in the next section
when we generate all MUBs in prime dimension.
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Similarly to (2.6), we know that any projector |Ψ⟩ ⟨Ψ| can be written in terms of the Weyl
operators as

|Ψ⟩ ⟨Ψ| =
1
d

d−1∑︂
j=0

d−1∑︂
k=0

r j,kD j,k, (3.11)

where we have hidden the identity matrix term inside the sum as r0,0D0,0 = 1.

Let us start with the projector |0⟩ ⟨0|. Since its matrix form is diagonal, we only need
the diagonal terms in the sum in (3.11), i.e., the D j,0. Therefore,

|0⟩ ⟨0| =
1
d

∑︂
j=0

r j,0D j,0 =
1
d

d−1∑︂
j=0

r j,0Z j.

From (2.7), the r j,0 are given by

r j,0 = Tr
(︂
Z− j |0⟩ ⟨0|

)︂
. (3.12)

Using (3.3) the operator Z− j |0⟩ ⟨0| is

Z− j |0⟩ ⟨0| =
d−1∑︂
k=0

ω− jk |k⟩ ⟨k|0⟩ ⟨0| .

Since ⟨k|0⟩ = δk,0, then
Z− j |0⟩ ⟨0| = |0⟩ ⟨0| .

Substituting in (3.12) we obtain

r j,0 = Tr
(︂
|0⟩ ⟨0|

)︂
= 1,

so the first projector of the computational basis is simply

|0⟩ ⟨0| =
1
d

d−1∑︂
j=0

Z j. (3.13)

From (3.1), we can write any projector of the computational basis as

|i⟩ ⟨i| = Xi |0⟩ ⟨0| (Xi)† = Xi |0⟩ ⟨0| X−i.

Substituting (3.13) we get

|i⟩ ⟨i| =
1
d

d−1∑︂
j=0

XiZ jX−i,

and using the commutation relation (3.4) we obtain

|i⟩ ⟨i| =
1
d

d−1∑︂
j=0

ω−i jZ jXiX−i =
1
d

d−1∑︂
j=0

ω−i jZ j. (3.14)

Regarding the projectors of the Fourier basis, recall (2.5). The projector | f0⟩ ⟨ f0| is then

| f0⟩ ⟨ f0| =
1
d

d−1∑︂
k=0

d−1∑︂
k′=0

|k′⟩ ⟨k| ,
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whose matrix form is simply

| f0⟩ ⟨ f0| =
1
d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
which is the same matrix we saw in Example 3.1 for the sum of the X matrices in d = 5
but with a factor 1/d. Therefore, we can write

| f0⟩ ⟨ f0| =
1
d

d−1∑︂
j=0

X j.

Using (2.5) and (3.1) we see that | fi⟩ = Zi | f0⟩ because

| fi⟩ = Zi | f0⟩ =
1
√

d

d−1∑︂
k=0

Zi |k⟩ =
1
√

d

d−1∑︂
k=0

ωik |k⟩ ,

and we then obtain a general expression for a projector | fi⟩ ⟨ fi| of the Fourier basis

| fi⟩ ⟨ fi| = Zi | f0⟩ ⟨ f0| (Zi)† = Zi | f0⟩ ⟨ f0|Z−i =
1
d

Zi

(︄ d−1∑︂
j=0

X j

)︄
Z−i =

1
d

d−1∑︂
j=0

ZiX jZ−i,

and using the commutation relation (3.4) we get

| fi⟩ ⟨ fi| =
1
d

d−1∑︂
j=0

ωi jX j, (3.15)

where the X j could also be written as D0, j.

It is very interesting to see that the projectors associated to the computational basis and
the Fourier basis, (3.14) and (3.15), are expressed in terms of only d−1 operators D j,k and
the identity D0,0. Moreover, the contributing operators to the computational basis are the
D j,0, whereas in the case of the Fourier basis it is the D0, j that contribute. In other words,
they do not share any operators in the expansion except for the identity D0,0. Therefore,
their respective Bloch vectors are clearly orthogonal.

Example 3.2. Here we give some examples of Bloch vectors in the Weyl basis in d = 3.

The projector |2⟩ ⟨2| from the computational basis is

|2⟩ ⟨2| =
1
3

(︂
1 + ω−2Z1 + ω−4Z2

)︂
.

Because ω3 = 1, by noting that ω−2 = ω3ω−2 = ω and that, similarly, ω−4 = ω−1 = ω2,
we obtain

|2⟩ ⟨2| =
1
3

(︂
1 + ωZ1 + ω2Z2

)︂
=

1
3

(︂
1 + ωD1,0 + ω

2D2,0

)︂
.
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If we order the coordinates in the Bloch vector as
(︁
r0,1, r0,2, r1,0, r1,1, r1,2, r2,0, r2,1, r2,2

)︁
, then

the Bloch vector associated to |2⟩ ⟨2| is

P⃗|2⟩⟨2| =
(︁
0, 0, ω, 0, 0, ω2, 0, 0

)︁
.

Now, let us take the projector | f1⟩ ⟨ f1| from the Fourier basis. Then, the linear combination
of Weyl operators is

| f1⟩ ⟨ f1| =
1
3

(︂
1 + ωX1 + ω2X2

)︂
=

1
3

(︂
1 + ωD0,1 + ω

2D0,2

)︂
,

and the Bloch vector is
P⃗| f1⟩⟨ f1 | =

(︁
ω,ω2, 0, 0, 0, 0, 0, 0

)︁
.

The two Bloch vectors are clearly orthogonal.

As a last example, consider | f2⟩ ⟨ f2|. The expansion in Weyl operators is

| f2⟩ ⟨ f2| =
1
3

(︂
1 + ω2D0,1 + ω

4D0,2

)︂
=

1
3

(︂
1 + ω2D0,1 + ωD0,2

)︂
,

and its Bloch vector is
P⃗| f2⟩⟨ f2 | =

(︁
ω2, ω, 0, 0, 0, 0, 0, 0

)︁
.

The inner product between these two Bloch vectors is

P⃗
∗

| f1⟩⟨ f1 | · P⃗| f2⟩⟨ f2 | = ω
−1 · ω2 + ω−2 · ω = ω + ω−1 = e2πi/3 + e−2πi/3 = −1,

as predicted by (2.10).

3.3. W matrix

For the reader’s ease, we recall here all MUBs for d = 3 that were given in (2.3)

B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

B1 =
1
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
1 ω ω2

1 ω2 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B2 =
1
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
ω ω2 1
ω 1 ω2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , B3 =
1
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1
ω2 1 ω

ω2 ω 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,
where B0 is the computational basis and B1 is the Fourier basis.

If we look closely, we find that we can get the bases B2 and B3 simply by multiplying the
Fourier basis with the following W matrix on the left

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 ω 0
0 0 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (3.16)

In other words, let |i⟩l denote the i-th state of the l-th basis, then

W |i⟩1 = |i⟩2 , W2 |i⟩1 = |i⟩3 , W3 = 1.
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Example 3.3. Consider the following state from the Fourier basis

|2⟩1 =
1
√

3

(︂
|0⟩ + ω2 |1⟩ + ω |2⟩

)︂
,

then

|2⟩2 = W |2⟩1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 ω 0
0 0 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ω2

ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
ω2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
Also, to get |2⟩3 we do

|2⟩3 = W2 |2⟩1 = W |2⟩2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 ω 0
0 0 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
ω2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
ω

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
If we apply W to |2⟩3, we get

W |2⟩3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 ω 0
0 0 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1
ω

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
ω2

ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = |2⟩1 .
Now, we would like to know if there exist similar W diagonal matrices for all d which,

given the Fourier basis, produce the rest of the MUBs, and what is their structure. Al-
though this is a very ambitious question, we can state two properties that the W matrix
must have.

The first property of W is a consequence of the fact that all MUB vectors must be of
the form (2.2) so that they are unbiased to the computational basis. This forces the diag-
onal W matrix to only have elements of unit modulus.

More formally, let W be

W =
d−1∑︂
k=0

gk |k⟩ ⟨k| .

When W acts on a vector |φ⟩ of the form (2.2) we obtain

W |φ⟩ =
1
√

d

d−1∑︂
j=0

d−1∑︂
k=0

gkeiθ j |k⟩ ⟨k| j⟩ =
1
√

d

d−1∑︂
j=0

g jeiθ j | j⟩ ,

which only satisfies (2.2) if
⃓⃓⃓
g j

⃓⃓⃓
= 1, for j = 0, ..., d − 1. Therefore, the matrix W is a

diagonal matrix of complex exponentials

W =
d−1∑︂
k=0

eiαk |k⟩ ⟨k| .

The second property is a consequence of the fact that the vector W |φ⟩ must be unbiased
to |φ⟩, that is, |⟨φ|W |φ⟩| = 1/

√
d. Let us compute ⟨φ|W |φ⟩

⟨φ|W |φ⟩ =
1
d

(︄ d−1∑︂
j=0

e−iθ j ⟨i|
)︄(︄ d−1∑︂

k=0

eiαkeiθk |k⟩
)︄
=

1
d

d−1∑︂
j=0

eiα j =
1
d

Tr W.
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Therefore,
|Tr W | =

√
d.

However, we can still add more restrictions, as any Wm |φ⟩ must also be unbiased to |φ⟩,
as long as m = 1, ..., d − 1. By noting that Wm |φ⟩ is

Wm |φ⟩ =
1
√

d

d−1∑︂
j=0

eimα jeiθ j | j⟩ ,

and by computing ⟨φ|Wm|φ⟩ as before, it is easy to see that we obtain the restriction

|Tr Wm| =
√

d, m = 1, ..., d − 1.

Finally, since Wd = 1 we also get the condition

Tr Wd = d ⇒
d−1∑︂
j=0

eidα j = d.

This last result suggests that, instead of considering general complex exponentials eiα j ,
we could try with integer powers of ω (i.e., ωn j), since ωdn j = 1, independently from n j

and, therefore,
∑︁d−1

j=0 ω
dn j = d.

A possible candidate is the following W matrix

W =
d−1∑︂
n=0

ωn2
|n⟩ ⟨n| . (3.17)

The trace of Wm is given by

Tr Wm =

d−1∑︂
n=0

ωmn2
=

d−1∑︂
n=0

e2πimn2/d, m = 1, ..., d − 1. (3.18)

This is a specific case of a Gauss sum. Because of the mathematical complexity behind
this field of number theory, we will not go into much detail and simply state the following.

It can be proven that the absolute value of the Gauss sum in (3.18) is
√

d for all m =
1, ..., d − 1 only if d is a prime number [10].

Obviously, the fact that the specific form of W from (3.17) only admits prime dimen-
sions for its trace to have modulus

√
d does not imply that there does not exist any other

W that satisfies it for any dimension d.

In any case, it is rather disappointing that the proof for one of the most interesting re-
sults from the Mutually Unbiased Bases problem (i.e., prime dimensions do admit d + 1
MUBs) is not shown in this thesis. Therefore, in the next section we will show an alter-
native proof that the matrix W from (3.17) does indeed generate all MUBs in any prime
dimension d.

23



Example 3.4. The W matrix from (3.17) is the same as (3.16) for d = 3

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 ω 0
0 0 ω4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 ω 0
0 0 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

3.4. Proof for the existence of d + 1 MUBs in prime dimension

We already showed that in any dimension d, the computational and the Fourier bases form
a mutually unbiased set of two bases. We will now prove that consecutive actions of the
W matrix operator, defined in (3.17), on the Fourier basis leads to the remaining d − 1
mutually unbiased bases if d is an odd prime.

We will denote |k⟩n ≡ Wn−1 |k⟩1, where |k⟩1 is the k-th vector from the Fourier basis.
The vector |k⟩n should be the k-th vector of the n-th mutually unbiased basis. Therefore,
we must prove the following

⃓⃓⃓⃓
⟨ j|i⟩m l

⃓⃓⃓⃓2
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1
d , if m ≠ l,

0, if m = l and i ≠ j,

1, if m = l and i = j,

(3.19)

where i, j = 0, ..., d − 1 and l,m = 1, ..., d. The first statement is simply the unbiasedness
condition between different bases, while the second and third mean that the generated
bases are orthonormal.

From the result proved in Appendix A, the quantity in (3.19) can also be written as the
trace of the composition of the two projectors⃓⃓⃓⃓

⟨ j|i⟩m l

⃓⃓⃓⃓2
= Tr

(︂
|i⟩l ⟨i| j⟩l m ⟨ j|j

)︂
.

By definition, |k⟩n = Wn−1 |k⟩1, and so ⟨k|n = ⟨k|1 W−(n−1). Therefore,⃓⃓⃓⃓
⟨ j|i⟩m l

⃓⃓⃓⃓2
= Tr

(︃
W l−1 |i⟩1 ⟨i|1 W−(l−1)Wm−1 | j⟩1 ⟨ j|1 W−(m−1)

)︃
.

Using the expression presented in (3.15) for the Fourier projectors

|i⟩1 ⟨i|1 =
1
d

d−1∑︂
j=0

ωi jD0, j,

and substituting in the derivation at hand we obtain

⃓⃓⃓⃓
⟨ j|i⟩m l

⃓⃓⃓⃓2
= Tr

(︄
W l−1

(︂1
d

d−1∑︂
k=0

ωikD0,k

)︂
W−(l−1)Wm−1

(︂1
d

d−1∑︂
k′=0

ω jk′D0,k′
)︂
W−(m−1)

)︄
.
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By linearity of the trace we have⃓⃓⃓⃓
⟨ j|i⟩m l

⃓⃓⃓⃓2
=

1
d2

∑︂
k,k′

ωikω jk′ Tr
[︃
W l−1D0,kW−(l−1)Wm−1D0,k′W−(m−1)

]︃
.

At this stage, we must use the following commutation relation

WnD j,kW−n = D j+2nk,k,

whose proof, in order not to disturb the current narrative, is discussed in Appendix B.
This is, actually, the only time when we use the explicit form of W defined in (3.17).
Therefore, we end up with the following expression⃓⃓⃓⃓

⟨ j|i⟩m l

⃓⃓⃓⃓2
=

1
d2

∑︂
k,k′

ωikω jk′ Tr
[︃
D2(l−1)k,kD2(m−1)k′,k′

]︃
,

and using the property D j,k = D†
− j,−k we have⃓⃓⃓⃓

⟨ j|i⟩m l

⃓⃓⃓⃓2
=

1
d2

∑︂
k,k′

ωikω jk′ Tr
[︃
D†
−2(l−1)k,−kD2(m−1)k′,k′

]︃
.

This expression for the trace cannot be directly replaced with the orthogonality condition
(3.8) because here, the subidinces do not necessarily lie in 0, ..., d−1. Using (3.9) we find
that

D†
−2(l−1)k,−kD2(m−1)k′,k′ = ω

kk′(l−m)D2(m−1)k′+2(l−1)k,k′+k,

and using (3.5) we have

D†
−2(l−1)k,−kD2(m−1)k′,k′ = ω

kk′(l−m)ω−(k′+k)(k′(m−1)+k(l−1))Z2(m−1)k′+2(l−1)kXk′+k. (3.20)

Here we notice what we already stated in (3.10), that is, the trace of the expression above
is nonzero only when the following two conditions are satisfied

k′ + k mod d = 0, (3.21a)

2(m − 1)k′ + 2(l − 1)k mod d = 0 (3.21b)

Since k′, k = 0, ..., d − 1, the condition (3.21a) is satisfied either when k = k′ = 0 or when
k′ + k = d. If k = k′ = 0, then the second condition (3.21b) is also satisfied. On the other
hand, if k′ = d − k, then the second condition becomes

2k(l − m) mod d = 0. (3.22)

Here, the obvious solution is l = m but, at first sight, it is not clear whether there are more.
The answer is that l = m is a unique solution ∀k = 0, ..., d − 1 if and only if d is an odd
prime number. This is best seen with some examples. Although, first notice that, since
l,m = 1, ..., d, the factor l − m can take the range of values −(d − 1), ..., 0, ..., d − 1. That
is, both k and l − m can only take values that are strictly lower than d in magnitude.
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Example 3.5. If d is an even number, then it is easy to see that there exist more solutions.
Let d = 4, then the values k = 2, l = 4, m = 2 satisfy (3.22). Moreover, let d = 2 the only
even prime number, then the combination k = 1, l = 2 and m = 1 also satisfies (3.22).

Example 3.6. Let d be an odd prime number. Since d has no divisors other than 1 and
itself, and since both k and |l−m| are lower than d, there are no more solutions than l = m.
Take d = 5, for example. Then, we have k = 0, ..., 4 and l − m = −4, ..., 0, ...4. There are
no numbers here with which to produce a multiple of 5 in order to satisfy (3.22).

Example 3.7. Let d = 9, then, k = 0, ..., 8 and l − m = −8, ..., 0, ..., 8. A possible solution
to (3.22) is simply k = 3 and l − m = 3. Although it is true that, for example, in the
specific case of k = 1 there are no other solutions than l = m, what we are interested in is
whether the solution l = m is unique for all k = 0, ..., d − 1, and this is only accomplished
when d is an odd prime.

In short, the only way to satisfy both conditions (3.21a) and (3.21b) when d is an odd
prime is either k = k′ = 0 or k + k′ = d and l = m. In any of these two cases, it turns out
that the ω factors in (3.20) are unity, and so we can safely say that

Tr
[︃
D†
−2(l−1)k,−kD2(m−1)k′,k′

]︃
= d(δk,0δk′,0 + δk′,d−kδl,m),

if d is an odd prime.

Going back to the proof and substituting this orthogonality condition, we obtain⃓⃓⃓⃓
⟨ j|i⟩m l

⃓⃓⃓⃓2
=

1
d2

∑︂
k,k′

ωikω jk′d(δk,0δk′,0 + δk′,d−kδl,m) =

=
1
d
+

1
d
δl,m

d−1∑︂
k=1

ωikω j(d−k).

Since ω jd = 1, then the sum becomes
∑︁d−1

k=1 ω
(i− j)k. This sum resembles the one discussed

at the end of Section 2.2 with the only difference that it starts in k = 1. By adding and
subtracting a 1 to the sum we obtain

d−1∑︂
k=1

ω(i− j)k = −1 +
d−1∑︂
k=0

ω(i− j)k = −1 + dδi, j.

Therefore, ⃓⃓⃓⃓
⟨ j|i⟩m l

⃓⃓⃓⃓2
=

1
d
+

1
d
δl,m

(︁
− 1 + dδi, j

)︁
.

This is exactly the result (3.19) we aimed at proving.

Example 3.8. Now that we have a method for obtaining every mutually unbiased basis in
an odd dimension, let us apply it to d = 5 and obtain the 6 bases. The W matrix in d = 5
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is

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 ω 0 0 0
0 0 ω4 0 0
0 0 0 ω9 0
0 0 0 0 ω16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 ω 0 0 0
0 0 ω4 0 0
0 0 0 ω4 0
0 0 0 0 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and, from (2.4), the computational and Fourier bases can be written as

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B2 =

1
√

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω6 ω8

1 ω3 ω6 ω9 ω12

1 ω4 ω8 ω12 ω16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1
√

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
1 ω ω2 ω3 ω4

1 ω2 ω4 ω ω3

1 ω3 ω ω4 ω2

1 ω4 ω3 ω2 ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The remaining bases can be obtained by consecutively multiplying W to B2 on the left

B3 = WB2 =
1
√

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
ω ω2 ω3 ω4 1
ω4 ω ω3 1 ω2

ω4 ω2 1 ω3 ω

ω 1 ω4 ω3 ω2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B4 = WB3 =
1
√

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
ω2 ω3 ω4 1 ω

ω3 1 ω2 ω4 ω

ω3 ω ω4 ω2 1
ω2 ω 1 ω4 ω3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B5 = WB4 =
1
√

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
ω3 ω4 1 ω ω2

ω2 ω4 ω ω3 1
ω2 1 ω3 ω ω4

ω3 ω2 ω 1 ω4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B6 = WB5 =
1
√

5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1
ω4 1 ω ω2 ω3

ω ω3 1 ω2 ω4

ω ω4 ω2 1 ω3

ω4 ω3 ω2 ω 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These are the same bases that are obtained in [7].

3.5. Bloch vector structure

In this section we are going to look at a nice property of Bloch vectors that we already
saw in Example 3.2. Consider the i-th projector from the l-th mutually unbiased basis,
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with l = 1, ..., d, which can be written as

|i⟩l ⟨i|l = W l−1 |i⟩1 ⟨i|1 W−(l−1).

Using (3.15) we can rewrite it as

|i⟩l ⟨i|l =
1
d

d−1∑︂
k=0

ωikW l−1D0,kW−(l−1).

Here, we can use the commutation relation (B.3) and obtain

|i⟩l ⟨i|l =
1
d

d−1∑︂
k=0

ωikD2(l−1)k,k. (3.23)

In Example 3.2 we saw that Bloch vectors that are associated to different mutually unbi-
ased bases do not share any Weyl operators (except D0,0) in terms of which the projectors
can be written, and so the Bloch vectors are very visibly orthogonal. On the other hand,
we also saw that Bloch vectors associated to the same basis share all Weyl operators. This
last claim is obvious from (3.23), because the D2(l−1)k,k do not depend on i.

However, regarding the first claim, we would have to prove that the Weyl operators
D2(l−1)k,k and D2(l′−1)k,k are always different if l′ ≠ l. Remember that this is not neces-
sarily the case as Dp,q ∝ Dp mod d,q mod d. Formally, we would have to prove that the
equation

2(l − 1)k mod d = b (3.24)

has a unique solution ∀k = 0, ..., d − 1. Although we will not prove it, this is only the case
when d is an odd prime [11].

Example 3.9. Take d = 3. In addition to the computational basis, there exist other 3
mutually unbiased bases given by

|i⟩1 ⟨i|1 =
1
d

(︂
D0,0 + ω

iD0,1 + ω
2iD0,2

)︂
, i = 0, ..., d − 1,

|i⟩2 ⟨i|2 =
1
d

(︂
D0,0 + ω

iD2,1 + ω
2iD4,2

)︂
, i = 0, ..., d − 1,

|i⟩3 ⟨i|3 =
1
d

(︂
D0,0 + ω

iD4,1 + ω
2iD8,2

)︂
, i = 0, ..., d − 1,

Using (3.5), some of the Weyl operators can be rewritten as

D4,2 = D1,2, D4,1 = ω
−3/2D1,1, D8,2 = D2,2.

so the previous mutually unbiased bases are

|i⟩1 ⟨i|1 =
1
d

(︂
D0,0 + ω

iD0,1 + ω
2iD0,2

)︂
, i = 0, ..., d − 1,

|i⟩2 ⟨i|2 =
1
d

(︂
D0,0 + ω

iD2,1 + ω
2iD1,2

)︂
, i = 0, ..., d − 1,
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|i⟩3 ⟨i|3 =
1
d

(︂
D0,0 + ω

iω−3/2D1,1 + ω
2iD2,2

)︂
, i = 0, ..., d − 1.

We can see that no Weyl operators except for D0,0 are repeated. The associated Bloch
vectors are

P⃗|i⟩1 ⟨i|1
= (ωi, ω2i, 0, 0, 0, 0, 0, 0), i = 0, ..., d − 1,

P⃗|i⟩2 ⟨i|2
= (0, 0, 0, 0, ω2i, 0, ωi, 0), i = 0, ..., d − 1,

P⃗|i⟩3 ⟨i|3
= (0, 0, 0, ω−3/2+i, 0, 0, 0, ω2i), i = 0, ..., d − 1,

which are visibly orthogonal.

Moreover, let d = 4. For example, in the case of k = 1 and b = 2 we can find two
solutions to (3.24): l = 2 and l = 4. This means that the projectors |i⟩2 ⟨i|2 and |i⟩4 ⟨i|4

will share the Weyl operator D2,1 so the Bloch vectors are not necessarily orthogonal and
so |i⟩2 = W |i⟩1 and |i⟩4 = W3 |i⟩1 do not necessarily belong to mutually unbiased bases.
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4. CONCLUSIONS

The main objective of this thesis was to present an easy-to-follow introduction to the
Mutually Unbiased Bases problem that does not rely too much on the mathematical back-
ground of the reader. Moreover, we decided to approach the problem using the Bloch
representation because of the geometrically appealing structure that emerges. Therefore,
we hope this thesis can serve as a reference for any future students who decide to pur-
sue further this interesting problem via the Bloch representation. We will now give an
overview of the main results that were shown throughout the thesis.

In Chapter 2, we derived what is the connection between the Bloch vectors associated
to different or the same mutually unbiased bases. Specifically, we saw that each MUB de-
fines a (d−1)-dimensional subspace, called Bloch subspace, inside a (d2−1)-dimensional
Hilbert space. We also proved that a Bloch subspace is orthogonal to every other Bloch
subspace and, therefore, one can only have a maximum of d+1 MUBs in a d-dimensional
Hilbert space. Furthermore, the inner product between any two Bloch vectors belonging
to the same MUB was shown to be constant, which gives the vectors a nice geometrical
structure. Since the d2 − 1 Hilbert space is three-dimensional when d = 2, this allows us
to draw the usual Bloch sphere whose axes are the Bloch subspaces.

In Chapter 3, we presented the Fourier basis, which is always unbiased to the compu-
tational basis, in terms of the Weyl operators and provided a method to obtain the rest of
the MUBs when the dimension d is an odd prime. This method consisted in using one
particular diagonal matrix that resulted in the next MUB when consecutively applied to
the Fourier basis. Finally, we saw that, not only were the Bloch vectors associated to
different MUBs orthogonal, but they shared no nonzero components.

4.1. Future work

As we stated at the beginning of this thesis, the existence of d + 1 mutually unbiased
bases has only been shown for prime power dimensions. Nonetheless, all of the proofs
rely on explicitly constructing these bases (as we did for odd prime dimensions) and not
on an abstract existence proof. As a result, there is still a lot to learn even for prime power
dimensions, and as follow-up work, it would be interesting to use the Bloch representation
to produce the MUBs in these dimensions. In fact, the dimensions that are a power of 2
are of special interest since they describe a set of qubits, which is the unit of quantum
information that people usually work with. In any case, even though we do not actually
know, there seems to be a widespread conviction that for d = 6 there exist a maximum of
3 bases, instead of 7 [4].
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A. TRACE OF AN OUTER PRODUCT

Let |a⟩ and |b⟩ be two states that can be written in terms of the computational basis
{|i⟩}d−1

i=0 as follows

|a⟩ =
d−1∑︂
i=0

ai |i⟩ , |b⟩ =
d−1∑︂
j=0

b j | j⟩ ,

then its outer product is
|a⟩ ⟨b| =

∑︂
i, j

aib∗j |i⟩ ⟨ j| .

By definition, the trace of an operator A is

Tr A =
d−1∑︂
k=0

⟨k|A|k⟩ ,

so the trace of the outer product |a⟩ ⟨b| is

Tr |a⟩ ⟨b| =
d−1∑︂
k=0

⟨k|
(︄∑︂

i, j

aib∗j |i⟩ ⟨ j|
)︄
|k⟩ =

∑︂
i, j,k

aib∗j ⟨k|i⟩ ⟨ j|k⟩ .

Since the basis is orthonormal, ⟨k|i⟩ = δki and ⟨ j|k⟩ = δ jk so we obtain

Tr |a⟩ ⟨b| =
d−1∑︂
i=0

aib∗i ,

which is precisely the inner product ⟨b|a⟩. Therefore,

Tr |a⟩ ⟨b| = ⟨b|a⟩ .
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B. COMMUTATION RELATIONS BETWEEN THE W MATRIX
AND THE WEYL MATRICES DJ,K

For this demonstration we are going to use the definitions of X and W that were pre-
sented in (3.3) and (3.17), which we write here

W =
d−1∑︂
k=0

ωk2
|k⟩ ⟨k| , Xn =

d−1∑︂
i=0

|i + n mod d⟩ ⟨i| .

By using these definitions, we can write the quantity WXnW−1 as

WXnW−1 =

(︄ d−1∑︂
k=0

ωk2
|k⟩ ⟨k|

)︄(︄ d−1∑︂
i=0

|i + n mod d⟩ ⟨i|
)︄(︄ d−1∑︂

k′=0

ω−k′2 |k′⟩ ⟨k′|
)︄
=

=
∑︂
k,k′,i

ωk2
ω−k′2 |k⟩ ⟨k|i + n mod d⟩ ⟨i|k′⟩ ⟨k′| .

Since ⟨i|k′⟩ = δi,k′ and ⟨k|i + n mod d⟩ = δi+n mod d,k, then we obtain

WXnW−1 =
∑︂
k′=0

ω(k′+n mod d)2
ω−k′2 |k′ + n mod d⟩ ⟨k′| .

Here we can make the substitution ω(k′+n mod d)2
= ω(k′+n). To see why, consider the

following quantity
ωp2

,

where p is an integer that has r as a remainder when divided by d, that is, p = nd+ r, with
n ∈ Z and r = 0, ..., d − 1. Substituting we have

ωp2
= ω(nd+r)2

= ωn2d2
ω2nrdωr2

= ωr2
,

where the last equality is due to the identity ωd = 1. Therefore, ωp2
= ωr2

= ω(p mod d)2
.

Going back to the proof, we have

WXnW−1 = ωn2
d−1∑︂
k′=0

ω2nk′ |k′ + n mod d⟩ ⟨k′| .

Looking at the definition of the powers of Z in (3.3) it is easy to see that

XnZ2n =

d−1∑︂
k′=0

ω2nk′ |k′ + n mod d⟩ ⟨k′| .

Therefore,
WXnW−1 = ωn2

XnZ2n. (B.1)

It is now straightforward to obtain an expression for WmXnW−m. For example, take m = 2,
using the above equality (B.1) we obtain

W2XnW−2 = WWXnW−1W−1 = Wωn2
XnZ2nW−1.
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Because all diagonal matrices commute among themselves and the powers of both Z and
W are diagonal, we have

W2XnW−2 = ωn2
WXnW−1Z2n.

Applying (B.1) once again we get

W2XnW−2 = ω2n2
XnZ2·2n.

Therefore, by repeating this process as many times as necessary, we infer the relation

WmXnW−m = ωmn2
XnZ2mn. (B.2)

We can now move on and prove the final commutation relation WmD j,kW−m by using the
definition of the D j,k in (3.5):

WmD j,kW−m = WmZ jXkω− jk/2W−m = ω− jk/2Z jWmXkW−m.

Using (B.2) we get
WmD j,kW−m = ω− jk/2ωmk2

Z jXkZ2mk.

Finally, using the commutation relation (3.4) we have

WmD j,kW−m = ω− jk/2ωmk2
ω−2mk2

Z j+2mkXk,

which results in the final expression

WmD j,kW−m = D j+2mk,k. (B.3)
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